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REGRESSION ON MANIFOLDS: ESTIMATION OF THE
EXTERIOR DERIVATIVE1

BY ANIL ASWANI, PETER BICKEL AND CLAIRE TOMLIN

University of California, Berkeley

Collinearity and near-collinearity of predictors cause difficulties when
doing regression. In these cases, variable selection becomes untenable be-
cause of mathematical issues concerning the existence and numerical stability
of the regression coefficients, and interpretation of the coefficients is ambigu-
ous because gradients are not defined. Using a differential geometric inter-
pretation, in which the regression coefficients are interpreted as estimates of
the exterior derivative of a function, we develop a new method to do regres-
sion in the presence of collinearities. Our regularization scheme can improve
estimation error, and it can be easily modified to include lasso-type regular-
ization. These estimators also have simple extensions to the “large p, small n”
context.

1. Introduction. Variable selection is an important topic because of its wide
set of applications. Amongst the recent literature, lasso-type regularization [13, 30,
54, 59] and the Dantzig selector [10] have become popular techniques for variable
selection. It is known that these particular tools have trouble handling collinearity.
This has prompted work on extensions [60], though further developments are still
possible.

Collinearity is a geometric concept: it is equivalent to having predictors which
lie on manifolds of dimension lower than the ambient space, and it suggests the use
of manifold learning to regularize ill-posed regression problems. The geometrical
intuition has not been fully understood and exploited, though several techniques [5,
8, 30, 60] have provided some insight. Though it is not strictly necessary to learn
the manifold for prediction [8], doing so can improve estimation in a min–max
sense [43].

This paper considers variable selection and coefficient estimation when the pre-
dictors lie on a lower-dimensional manifold, and we focus on the case where this
manifold is nonlinear; the case of a global, linear manifold is a simple extension,
and we include a brief discussion and numerical results for this case. Prediction
of function value on a nonlinear manifold was first studied in [8], but the authors
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did not study estimation of derivatives of the function. We do not consider the case
of global estimation and variable selection on nonlinear manifolds because [21]
showed that learning the manifold globally is either poorly defined or computa-
tionally expensive.

1.1. Overview. We interpret collinearities in the language of manifolds, and
this provides the two messages of this paper. This interpretation allows us to de-
velop a new method to do regression in the presence of collinearities or near-
collinearities. This insight also allows us to provide a novel interpretation of re-
gression coefficients when there is significant collinearity of the predictors.

On a statistical level, our idea is to learn the manifold formed by the predictors
and then use this to regularize the regression problem. This form of regulariza-
tion is informed by the ideas of manifold geometry and the exterior derivative [34,
40]. Our idea is to learn the manifold either locally (in the case of a local, nonlinear
manifold) or globally (in the case of a global, linear manifold). The regression esti-
mator is posed as a least-squares problem with an additional term which penalizes
for the regression vector lying in directions perpendicular to the manifold.

Our manifold interpretation provides a new interpretation of the regression co-
efficients. The gradient describes how the function changes as each predictor is
changed independently of other predictors. This is impossible to do when there
is collinearity of the predictors, and the gradient does not exist [51]. The exterior
derivative of a function [34, 40] tells us how the function value changes as a pre-
dictor and its collinear terms are simultaneously changed, and it has applications
in control engineering [47], physics [40] and mathematics [51]. In particular, most
of our current work is in high-dimensional system identification for biological and
control engineering systems [3, 4]. We interpret the regression coefficients in the
presence of collinearities as the exterior derivative of the function.

The exterior derivative interpretation is useful because it says that the regres-
sion coefficients only give derivative information in the directions parallel to the
manifold, and the regression coefficients do not give any derivative information
in the directions perpendicular to the manifold. If we restrict ourselves to com-
puting regression coefficients for only the directions parallel to the manifold, then
the regression coefficients are unique and they are uniquely given by the exterior
derivative.

This is not entirely a new interpretation. Similar geometric interpretations are
found in the literature [16, 18, 19, 30, 37, 58], but our interpretation is novel be-
cause of two main reasons. The first is that it is the first time the geometry is
interpreted in the manifold context, and this is important for many application do-
mains. The other reason is that this interpretation allows us to show that existing
regularization techniques are really estimates of the exterior derivative, and this
has important implications for the interpretation of estimates calculated by exist-
ing techniques. We do not explicitly show this relationship; rather, we establish a
link from our estimator to both principal components regression (PCR) [16, 37]
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and ridge regression (RR) [26, 30]. Links between PCR, RR and other regulariza-
tion techniques can be shown [18, 22, 24, 25].

1.2. Previous work. Past techniques have recognized the importance of geo-
metric structure in doing regression. Ordinary least squares (OLS) performs poorly
in the presence of collinearities, and this prompted the development of regulariza-
tion schemes. RR [26, 30] provides proportional shrinkage of the OLS estima-
tor, and elastic net (EN) [60] combines RR with lasso-type regularization. The
Moore–Penrose pseudoinverse (MP) [30] explicitly considers the manifold. MP
works well in the case of a singular design matrix, but it is known to be highly dis-
continuous in the presence of near-collinearity caused by errors-in-variables. PCR
[16, 37] and partial least squares (PLS) [2, 16, 55] are popular approaches which
explicitly consider geometric structure.

The existing techniques are for the case of a global, linear manifold, but these
techniques can easily be extended to the case of local, nonlinear manifolds. The
problem can be posed as a weighted, linear regression problem in which the
weights are chosen to localize the problem [46]. Variable selection in this context
was studied by RODEO [32], but this tool requires a heuristic form of regulariza-
tion which does not explicitly consider collinearity.

Sparse estimates can simultaneously provide variable selection and improved
estimates, but producing sparse estimates is difficult when the predictors lie on a
manifold. Lasso-type regularization, the Dantzig selector and the RODEO cannot
deal with such situations. The EN produces sparse estimates, but it does not ex-
plicitly consider the manifold structure of the problem. One aim of this paper is
to provide estimators that can provide sparse estimates when the regression coef-
ficients are sparse in the original space and the predictors lie on a manifold.

If the coefficients are sparse in a rotated space, then our estimators admit exten-
sions which consider rotations of the predictors as another set of tunable parame-
ters which can be chosen with cross-validation. In variable selection applications,
interpretation of selected variables is difficult when dealing with rotated spaces,
and so we only focus on sparsity in the original space. Numerical results show
that our sparse estimators without additional rotation parameters do not seem to
significantly worsen estimation when there is no sparsity in the unrotated space.

The estimators we develop learn the manifold and then use this to regularize the
regression problem. As part of the manifold learning, it is important to estimate the
dimension of the manifold. This can either be done with dimensionality estimators
[12, 23, 35] or with resampling-based approaches. Though it is known that cross-
validation performs poorly when used with PCR [31, 41], we provide numerical
examples in Section 7 which show that bootstrapping, to choose dimension, works
well with our estimators. Also, it is worth noting that our estimators only work for
manifolds with integer dimensions, and our approach cannot deal with fractional
dimensions.



REGRESSION ON MANIFOLDS 51

Learning the manifold differs in the case of the local, nonlinear manifold as op-
posed to the case of the global, linear manifold. In the local case, we use kernels
to localize the estimators which (a) learn the manifold and (b) do the nonparamet-
ric regression. For simplicity, we use the same bandwidth for both, but we could
also use separate bandwidths. In contrast, the linear case has faster asymptotic
convergence because it does not need localization. We consider a linear case with
errors-in-variables where the noise variance is identifiable [28, 31], and this dis-
tinguishes our setup from that of other linear regression setups [13, 30, 54, 59,
60].

2. Problem setup. We are interested in prediction and coefficient estimation
of a function which lies on a local, nonlinear manifold. In the basic setup, we are
only concerned with local regression. Consequently, in order to prove results on
the pointwise-convergence of our estimators, we only need to make assumptions
which which hold locally. The number of predictors is kept fixed. Note that it is
possible that the dimension of the manifold varies at different points in the predic-
tor space; we do not prohibit such behavior. We cannot do estimation at the points
where the manifold is discontinuous, but we can do estimation at the remaining
points.

Suppose that we would like to estimate the derivative information of the func-
tion about the point X0 ∈ Rp , where there are p predictors. The point X0 is the
choice of the user, and varying this point allows us to compute the derivative in-
formation at different points. Because we do local estimation, it is useful to select
small portions of the predictor-space; we define a ball of radius R centered at X in
p-dimensions using the notation: Bp

x,R = {v ∈ Rp :‖v − x‖2
2 < R}.2

We assume that the predictors form a d-dimensional manifold M in a small
region surrounding X0, and we have a function which lies on this manifold
f (·) : M → R. Note that d ≤ p, and that d is in general a function of X0; how-
ever, implicit in our assumptions is that the manifold M is continuous within the
ball. We can more formally define the manifold at point X0 as the image of a local
chart:

M = {φ(u) ∈ Bp
x0,μ

⊂ Rp :u ∈ Bd
0,r ⊂ Rd},(2.1)

for small μ, r > 0. An example of this setup for p = 2 and d = 1 can be seen in
Figure 1.

We make n measurements of the predictors Xi ∈ Rp , for i = {1, . . . , n}, where
the Xi are independent and identically distributed. We also make n noisy measure-
ments of the function Yi = f (Xi)+εi , where the εi are independent and identically
distributed with E(εi) = 0 and Var(εi) = σ 2. Let κ,M > 0 be finite constants, and
assume the following:

2In our notation, we denote subscripts in lower case. For instance, the ball surrounding the point
X0 is denoted in subscripts with the lower case x0.
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FIG. 1. In a small ball Bp
x0,μ about the point X0, the predictors form the manifold M. The response

variable is a function of the predictors, which lie on this manifold. Here the manifold is of dimension
d = 1, and the number of predictors is p = 2.

1. The kernel function K(·), which is used to localize our estimator by selecting
points within a small region of predictor-space, is three-times differentiable and
radially symmetric. These imply that K(·) and K ′′(·) are even functions, while
K ′(·) is an odd function.

2. The bandwidth h is the radius of predictor points about X0 which are used by
our estimator, and it has the following asymptotic rate: h = κn−1/(d+4).

3. The kernel K(·) either has exponential tails or a finite support [8]. Mathemati-
cally speaking,

E
[
Kγ ((X − x)/h

)
w(X)1

(
X ∈ (Bp

x,h1−ε )
c)]= o(hd+4),

for γ ∈ {1,2}, 0 < ε < 1 and |w(x)| ≤ M(1 + |x|2).
4. The local chart φ(·) which is used to define the manifold in (2.1) is invert-

ible and three-times differentiable within its domain. The manifold M is a
differentiable manifold, and the function f (·) is three-times differentiable:
‖∂i∂j ∂k(f ◦ φ)‖∞ ≤ M .

5. The probability density cannot be defined in the ambient space because the
Lebesgue measure of a manifold is generally zero. We have to define the prob-
ability density with respect to a d-dimensional measure by inducing the density
with the map φ(·) [8]. We define:

P(X ∈ S) = Q
(
Z ∈ φ−1(S)

)
,

where S ⊆ Rp . The density Q(·) is denoted by F(z), and we assume that it is
three-times differentiable and strictly positive at (z = 0) ∈ φ−1(X0).
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6. The Tikhonov-type regularization parameter λn is nondecreasing and satisfies
the following rates: λn/nhd+2 → ∞ and hλn/nhd+2 → 0. The lasso-type reg-
ularization parameter μn is nonincreasing and satisfies the following rates:
μn(nhd+2)−1/2 → 0 and μn(nhd+2)(γ−1)/2 → ∞.

The choice of the local chart φ(·) is not unique; we could have chosen a different
local chart ψ(·). Fortunately, it can be shown that our results are invariant under
the change of coordinates ψ−1 ◦ φ as long as the measure Q(·) is defined to fol-
low suitable compatibility conditions under arbitrary, smooth coordinate changes.
This is important because it tells us that our results are based on the underlying
geometry of the problem.

3. Change in rank of local covariance estimates. To localize the regression
problem, we use kernels, bandwidth matrices and weight matrices. We define the
scaled kernel Kh(U) = h−pK(U/h), where h is a bandwidth. The weight matrix
centered at X0 with bandwidth h is given by

Wx0 = diag
(
Kh(X1 − X0), . . . ,Kh(Xn − X0)

)
,

and the augmented bandwidth matrix is given by H = H 1/2H 1/2, where

H 1/2 =
√

nhd

[
1 0
0 hIp×p

]
.

If we define the augmented data matrix as

Xx0 =
⎡
⎢⎣

1 (X1 − X0)
′

...
...

1 (Xn − X0)
′

⎤
⎥⎦ ,

then the weighted Gram matrix of Xx0 is

Ĉn �
[
Ĉ11

n Ĉ12
n

Ĉ21
n Ĉ22

n

]
= hp · H−1/2X′

x0
Wx0Xx0H

−1/2.(3.1)

A formal statement is given in the Appendix, but the weighted Gram matrix (3.1)
converges in probability to the following population parameters:

C11 = F(0)

∫
Rd

K(duφ · u)du,

C21 = C12′ = 0,(3.2)

C22 = F(0)duφ ·
[∫

Rd
K
(
duφ(0) · u)uu′ du

]
· duφ

′.

If we expand the Ĉ22
n term from the weighted Gram matrix (3.1) into

Ĉ22
n = 1

nhd+2−p

n∑
i=1

Kh(Xi − X0)(Xi − X0)(Xi − X0)
′,(3.3)



54 A. ASWANI, P. BICKEL AND C. TOMLIN

it becomes apparent that Ĉ22
n can be interpreted as a local covariance matrix. The

localizing terms associated with the kernel add a bias, and this causes problems
when doing regression. The Ĉ11

n term does not cause problems because it is akin
to the denominator of the Nadaraya–Watson estimator [15] which does not need
any regularizations.

The bias of the local covariance estimate Ĉ22
n causes problems in doing regres-

sion, because the bias can cause the rank of Ĉ22
n to be different than the rank

of C22
n . The change in rank found in the general case of the local, nonlinear mani-

fold causes problems with MP which is discontinuous when the covariance matrix
changes rank [1]. In the special case of a global, linear manifold, a similar change
in rank can happen because of errors-in-variables. It is worth noting that MP works
well in the case of a singular design matrix.

4. Manifold regularization. To compensate for this change in rank, we use a
Tikhonov-type regularization similar to RR and EN. The distinguishing feature of
our estimators is the particular form of the regularizing matrix used. Our approach
is to estimate the tangent plane at X0 of the manifold M and then constrain the
regression coefficients to lie close to the principal components of the manifold.
The idea for this type of regularization is informed by the intuition of exterior
derivatives.3 An advantage of this regularization is that it makes it easy to apply
lasso-type regularizations, and this combination of the two types of regularization
is similar to EN.

To constrain the regression coefficients to lie close to the manifold, we pose the
problem as a weighted least-squares problem with Tikhonov-type regularization:

β̂ = arg min‖W(Y − Xβ)‖2
2 + λ‖�β‖2

2.(4.1)

The matrix � is a projection matrix chosen to penalize β for lying off of the
manifold. Contrast this to RR and EN which choose � to be the identity matrix.
Thus, RR and EN do not fully take the manifold structure of the problem into
consideration.

Stated in another way, � is a projection matrix which is chosen to penalize the
components of β which are perpendicular to the manifold. The cost function we
are minimizing has the term ‖�β‖2

2, and this term is large if β has components
perpendicular to the manifold. Components of β parallel to the manifold are not
penalized because the projection onto these directions is zero.

Since we do not know the manifold a priori, we must learn the manifold from
the sample local covariance matrix Ĉ22

n . We do this by looking at the principal
components of Ĉ22

n , and so our estimators are very closely related to PCR. Suppose
that we do an eigenvalue decomposition of Ĉ22

n :

Ĉ22
n = [ ÛR ÛN ] diag(λ1, . . . , λp) [ ÛR ÛN ]′ ,(4.2)

3We specifically use the intuition that the exterior derivative lies in the cotangent space of the
manifold, and this statement can be mathematically written as: dxf ∈ T ∗

p M.
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where ÛR ∈ Rp×d , ÛN ∈ Rp×(p−d) and λ1 ≥ λ2 ≥ · · · ≥ λp . Note that the eigen-
value decomposition always exists because Ĉ22

n is symmetric. The estimate of the
manifold is given by the d most relevant principal components, and the remaining
principal components are perpendicular to the estimated manifold.

Because we want the projection matrix � to project β onto the directions per-
pendicular to the estimated manifold, we define the following projection matrices

�̂ � ÛN ÛN ′
,

(4.3)
P̂ � diag(0, �̂).

The choice of d is a tunable parameter that is similar to the choice in PCR.
These matrices act as a regularizer because d can always be chosen to ensure that
rank(Ĉ22

n + λ�̂n) = p. Furthermore, we have the following theorem regarding the
full regularizing matrix P̂ :

THEOREM 4.1 [Lemma A.2, part (d)]. Under the assumptions given in Sec-
tion 2, the following holds with probability one:

rank(Ĉn + λnP̂n/nhd+2) = p + 1.(4.4)

Our estimators can perform better than PCR because of a subtle difference.
PCR requires that the estimate lies on exactly the first d most relevant principal
components; however, our estimator only penalizes for deviation from the d most
relevant principal components. This is advantageous because in practice d is not
known exactly and because the principal components used are estimates of the true
principal components. Thus, our regularization is more robust to errors in the esti-
mates of the principal components. Also, our new regularization allows us to easily
add additional lasso-type regularization to potentially improve the estimation. PCR
cannot be easily extended to have lasso-type regularization.

We denote the function value at X0 as f |x0 . Also, we denote the exterior deriv-
ative of f (·) at X0 as dxf |x0 . Then, the true regression coefficients are denoted by
the vector

β ′ = [f |x0 dxf |x0 ] .(4.5)

The nonparametric exterior derivative estimator (NEDE) is given by

β̂ = arg min
β̃

{hp‖W 1/2
x0

(Y − Xx0 β̃)‖2
2 + λn‖P̂n · β̃‖2

2},(4.6)

where P̂n is defined using (4.3) with Ĉn. We can also define a nonparametric adap-
tive lasso exterior derivative estimator (NALEDE) as

β̂ = arg min
β̃

{
hp‖W 1/2

x0
(Y − Xx0 β̃)‖2

2 + λn‖P̂n · β̃‖2
2 + μn

p∑
j=1

1

ŵ
γ
j

|β̃j |
}
,(4.7)
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where P̂n is define in (4.3) using Ĉn, ŵ is the solution to (4.6), and γ > 0.
Our estimators have nice statistical properties, as the following theorem shows.

THEOREM 4.2. If the assumptions in Section 2 hold, then the NEDE (4.6) and
NALEDE (4.7) estimators are consistent and asymptotically normal:

H 1/2(β̂ − β)
d→ C†N (B ′, σ 2V ),

where B and V are, respectively, given in (A.3) and (A.4), and C† denotes the
Moore–Penrose psuedoinverse of C. Furthermore, we asymptotically have that
β̂ ′ ∈ R × T ∗

P M. The NALEDE (4.7) estimator has the additional feature that

P
(
sign(β̂) = sign(β)

)→ 1.

Note that the asymptotic normality is biased because of the bias typical in non-
parametric regression. This bias is seen in both the NEDE (4.6) and NALEDE (4.7)
estimators, but examining B one sees that the bias only exists for the function es-
timate f̂x0 and not for the exterior derivative estimate dxf̂ |x0 . This bias occurs
because we are choosing h to converge at the optimal rate. If we were to choose
h at a faster rate, then there would be no asymptotic bias, but the estimates would
converge at a slower rate.

It is worth noting that the rate of convergence in Theorem 4.2 has an exponen-
tial dependence on the dimension of the manifold d , and our particular rates are
due to the assumption of the existence of three derivatives. As is common with
local regression, it is possible to improve the rate of convergence by using local
polynomial regression which assumes the existence of higher-order derivatives [8,
46]. However, the general form of local polynomial regression on manifolds would
require the choice of a particular chart φ(·) and domain U . Local linear regression
on manifolds is unique in that one does not have to pick a chart and domain.

As a last note, recall that the rate of convergence in Theorem 4.2 depends on
the dimension of the manifold d and does not depend on the dimension p of the
ambient space. We might mistakenly think that this means that the estimator con-
verges in the “large p, small n” scenario, but without additional assumptions these
results are only valid for when p grows more slowly than n. Analogous to other
“large p, small n” settings, if we assume sparsity then we can achieve faster rates
of convergence, which is the subject of the next section.

5. Large p, small n. We consider extensions of our estimators to the “large p,
small n” setting. The key difference in this case is the need to regularize the covari-
ance matrix. Our NEDE (4.6) and NALEDE (4.7) estimators use the eigenvectors
of the sample covariance matrix, and it is known [7, 33] that the sample covariance
matrix is poorly behaved in the “large p, small n” setting. To ensure the sample
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eigenvectors are consistent estimates, we must use some form of covariance regu-
larization [7, 33, 61].

We use the regularization technique used in [7] for ease of analysis and because
other regularization techniques [33, 61] do not work when the true covariance
matrix is singular. The scheme in [7] works by thresholding the covariance matrix,
which leads to consistent estimates as long as the threshold is correctly chosen. We
define the thresholding operator as

Tt (m) = m1(|m| > t),

and by abuse of notation Tt(M) is Tt(·) applied to each element of M .
The setup and assumptions are nearly identical to those of the fixed p case

described in Section 2. The primary differences are that (a) d,p,n increase at
different rates toward infinity, and (b) there is some amount of sparsity in the man-
ifold and in the function. The population parameters Cn, analogous to (3.2), are
functions of n and are defined in nearly the same manner, except with [C21

n ]k =
F(0)/2

∫
Rd K(duφ · u)∂ijφ

kuiuj du. Their estimates are now defined

Ĉn = H−1X′
x0

Wx0Xx0;
compare this to (3.1). Just as Cn can be interpreted as a local covariance matrix,
we now define a local cross-covariance matrix:

Rn =
[
R1

n

R2
n

]
=
[

C11
n · f |x0

C21
n · f |x0 + C22

n · dxf |x0

]
,

and the estimates are given by

R̂n = H−1/2X′
x0

Wx0Y.

For the sake of brevity, we summarize the other the differences from Section 2.
The following things are different:

1. The manifold Mn, local chart φn(·), manifold dimension dn, number of predic-
tors pn, and density function Fn(·) are all functions of n. We drop the subscript
n when it is clear from the context. These objects are defined in the same man-
ner as in Section 2, and we additionally assume that the density F(·) is Lipschitz
continuous.

2. The asymptotic rates for d,p,n are given by d = o(logn),

h = o
(
(c4

nn/ logp)−1/(4+d)),
cn

√
logp

nhd
= o(1);

where cn is a measure of sparsity that describes the number of nonzero entries
in covariance matrices, exterior derivative, etc.
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3. The kernel K(·) has finite support and is Lipschitz continuous, which implies
that

K

(
φ(hu) − φ(0)

h

)
= K(duφ · u) = 0,

for u /∈ Bdn

0,�. Contrast this to the second assumption in Section 2.
4. The local chart φn(·), function fn(·) and local (cross-)covariance matrices

Cn,Rn satisfy the following sparsity conditions:

p∑
k=1

1(Qk = 0) ≤ cn and |Qk| ≤ M,(5.1)

for (derivatives of the local chart; the index k denotes the kth component of
the vector-valued φ) Qk = ∂iφ

k, ∂ijφ
k, ∂ijmφk, ∂ijmnφ

k ; for (derivatives of the
function) Qk = [dxf ]k, ∂ik(f ◦ φ), ∂ijk(f ◦ φ); and for (local covariance ma-
trices) Qk = [Cn]ik, [Rn]ik .

5. The smallest, nonzero singular value of the local covariance matrix is bounded.
That is, there exists ε > 0 such that

inf
n>0

(
inf

σ(·)>0
σ(Cn)

)
> ε.(5.2)

This condition ensures that the regularized inverse of the local covariance ma-
trix is well defined in the limit; otherwise we could have a situation with ever-
decreasing nonzero singular values.

6. The Tikhonov-type regularization parameter λn and the lasso-type regulariza-
tion parameter μn have the following asymptotic rates:

λn = Op

(√
cn

(
nhd

logp

)1/4)
,

μnc
3/2
n

(
logp

nhd

)1/4

= o(1),

μn

(
c3/2
n

(
logp

nhd

)1/4)1−γ

→ ∞.

7. The threshold which regularizes the local sample covariance matrix is given by

tn = K

√
logp

n
,(5.3)

where logp
n

= o(1). This regularization will make the regression estimator con-
sistent in the “large p, small n” case.
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5.1. Manifold regularization. The idea is to regularize the local sample co-
variance matrix by thresholding. If the true, local covariance matrix is sparse, this
regularization will give consistent estimates. This is formalized by the following
theorem.

THEOREM 5.1. If the assumptions given in Section 5 are satisfied, then

‖Tt (Ĉn) − Cn‖ = Op

(
cn

√
logp/nhd

)
,

‖Tt (R̂n) − Rn‖ = Op

(
cn

√
logp/nhd

)
.

Once we have consistent estimates of the true, local covariance matrix, we can
simply apply our manifold regularization scheme described in Section 4. The non-
parametric exterior derivative estimator for the “large p, small n” case (NEDEP)
is given by

β̂n = arg min
β̃

∥∥(Tt (Ĉn) + λnP̂n

)
β̃ − Tt (R̂n)

∥∥2
2,(5.4)

where P̂n is as defined in (4.3) except using Tt(Ĉ
22
n ). The nonparametric adaptive

lasso exterior derivative estimator for the “large p, small n” case (NALEDEP) is
given by

β̂ = arg min
β̃

arg min
β̃

∥∥(Tt (Ĉn) + λnP̂n

)
β̃ − Tt(R̂n)

∥∥2
2

(5.5)

+ μn

p∑
j=1

1

ŵ
γ
j

|β̃j |,

where P̂n is as defined in (4.3) except using Tt (Ĉ
22
n ) and ŵ is the solution to (5.4).

These estimators have nice statistical properties.

THEOREM 5.2. If the assumptions given in Section 5 are satisfied, then the
NALEDE (5.4) and NALEDEP (5.5) estimators are consistent:

‖β̂ − β‖2 = Op

(
c3/2
n

(
logp

nhd

)1/4)
.

The NALEDEP (5.5) estimator is also sign consistent:

P
(
sign(β̂) = sign(β)

)→ 1.

We do not give a proof of this theorem, because it uses essentially the same
argument as Theorem 5.3. One minor difference is that the proof uses our Theo-
rem 5.1 instead of Theorem 1 from [7].
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5.2. Linear case. Our estimators admit simple extensions in the special case
where predictors lie on a global, linear manifold and the response variable is a
linear function of the predictors. We specifically consider the errors-in-variables
situation with manifold structure in order to present our formal results, because: in
principle, our estimators provide no improvements in the linear manifold case over
existing methods when there are no errors-in-variables. In practice, our estimators
sometimes provide an improvement in this case. Furthermore, our estimators pro-
vide another solution to the identifiability problem [19]; the exterior derivative is
the unique set of regression coefficients because the predictors are only sampled
in directions parallel to the manifold, and there is no derivative information about
the response variable in directions perpendicular to the manifold.

Suppose there are n data points and p predictors, and the dimension of the
global, linear manifold is d . We assume that d,n,p increase to infinity, and leaving
d fixed is a special case of our results. We consider a linear model η = �β , where
η ∈ Rn×1 is a vector of function values, � ∈ Rn×p is a matrix of predictors, and
β ∈ Rp is a vector.

The � are distributed according to the covariance matrix �ξ , which is also a
singular design matrix in this case. The exterior derivative of this linear function
is given by β = P�ξ β , where P�ξ is the projection matrix that projects onto the
range space of �ξ . We make noisy measurements of η and �:

X = � + ν,

Y = η + ε.

The noise ν and ε are independent of each other, and each component of ν is
independent and identically distributed with mean 0 and variance σ 2

ν . Similarly,
each component of ε is independent and identically distributed with mean 0 and
variance σ 2. In this setup, the variance σ 2

ν is identifiable [28, 31], and an alternative
that works well in practice for low noise situations is to set this quantity to zero.

Our setup with errors-in-variables is different from the setup of existing tools
[10, 38], but it is important because in practice, many of the near-collinearities
might be true collinearities that have been perturbed by noise. Several formulations
explicitly introduce noise into the model [11, 14, 28, 31, 41]. We choose the setting
of [28, 31], because the noise in the predictors is identifiable in this situation.

The exterior derivative estimator for the “large p, small n” case (EDEP) is given
by

β̂ = arg min
β̃

∥∥(Tt (X
′X/n) − σ 2

ν I + λnP̂n

)
β̃ − Tt(X

′Y/n)
∥∥2

2,(5.6)

where P̂n is as defined in (4.3) except applied to Ĉ22
n = Tt (X

′X/n) − σ 2
ν I. This

is essentially the NEDEP estimator, except the weighting matrix is taken to be
the identity matrix and there are additional terms to deal with errors-in-variables.
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We can also define an adaptive lasso version of our estimator. The adaptive lasso
exterior derivative estimator for the “large p, small n” case (ALEDEP) is given by

β̂ = arg min
β̃

∥∥(Tt (X
′X/n) − σ 2

ν I + λnP̂n

)
β̃ − Tt(X

′Y/n)
∥∥2

2

(5.7)

+ μn

p∑
j=1

1

ŵ
γ
j

|β̃j |,

where P̂n is as defined in (4.3) except applied to Ĉ22
n = Tt (X

′X) − σ 2
ν I and ŵ is

the solution to (5.6). We can analogously define the EDE and ALEDE estimators
which are the EDEP and ALEDEP estimators without any thresholding. In prac-
tice, setting the value of the σ 2

ν term equal to zero seems to work well with actual
data sets.

The technical conditions we make are essentially the same as those for the case
of the local, nonlinear manifold. The primary difference is that we ask that the
conditions in Section 5 hold globally, instead of locally. This also means that we
do not use any kernels to localize the estimators, and the W matrix in the esti-
mators is simply the identity matrix. If the theoretical rates for the regularization
and threshold parameters are compatibility redefined, then we can show that these
estimators have nice statistical properties.

THEOREM 5.3. If the assumptions in Sections 5 and 5.2 hold, then the EDEP
(5.6) and ALEDEP (5.7) estimators are consistent. They asymptotically converge
at the following rate:

‖β̂ − β‖2 = Op

(
c3/2
n

(
logp

n

)1/4)
.

The ALEDE (5.7) estimator is also sign consistent:

P
(
sign(β̂) = sign(β)

)→ 1.(5.8)

Our theoretical rate of convergence is slower than that of other techniques [10,
38] because we have applied our technique for local estimation to global estima-
tion, and we have not fully exploited the setup of the global case. However, we do
get faster rates of convergence in our global case versus our local case. Further-
more, our model has errors-in-variables, while the model used in other techniques
[10, 38] assumes that the predictors are measured with no noise. Applying the
various techniques to both real and simulated data shows that our estimators per-
form comparably to or better than existing techniques. It is not clear if the rates
of convergence for the existing techniques [10, 38] would be slower if there were
errors-in-variables, and this would require additional analysis.
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6. Estimation with data. Applying our estimators in practice requires careful
usage. The NEDE estimator requires the choice of two tuning parameters, while
the NALEDE and NEDEP estimators require choosing three; the NALEDEP es-
timator requires choosing four. The extra tuning parameters—in comparison to
existing techniques like MP or RR—make our method prone to over-fitting. This
makes it crucial to select the parameters using methods, such as cross-validation
or bootstrapping, that protect against overfitting. It is also important to select from
a small number of different parameter-values to protect against overfitting caused
by issues related to multiple-hypothesis testing [42, 44, 45].

Bootstrapping is one good choice for parameter selection with our estimators [7,
9, 48–50]. Additionally, we suggest selecting parameters in a sequential manner;
this is to reduce overfitting caused by testing too many models [42, 44, 45]. An-
other benefit of this approach is that it simplifies the parameter selection into a set
of one-dimensional parameter searches—greatly reducing the computational com-
plexity of our estimators. For instance, we first select the Tikhonov-regularization
parameter λ for RR. Using the same λ value, we pick the dimension d for the
NEDE estimator. The prior values of λ and d are used to pick the lasso-regu-
larization parameter μ for the NALEDE estimator.

MATLAB implementations of both related estimators and our estimators can
be found online.4 The lasso-type regressions were computed using the coordinate
descent algorithm [17, 57], and we used the “improved kernel PLS by Dayal” code
given in [2] to do the PLS regression. The increased computational burden of our
estimators, as compared to existing estimators, is reasonable because of: improved
estimation in some cases, easy parallelization, and computational times of a few
seconds to several minutes on a general desktop for moderate values of p.

7. Numerical examples. We provide three numerical examples: the first two
examples use simulated data, and the third example uses real data. In the examples
with simulated data, we study the estimation accuracy of various estimators as
the amount of noise and number of data points vary. The third example uses the
Isomap face data5 used in [53]. In the example, we do a regression to estimate the
pose of a face based on an image.

For examples involving linear manifolds and functions, we compare our esti-
mators with popular methods. The exterior derivative is locally defined, but in the
linear case it is identical at every point—allowing us to do the regression globally.
This is in contrast to the example with a nonlinear manifold and function where
we pick a point to do the regression at. Though MP, PLS, PCR, RR and EN are
typically thought of as global methods, we can use these estimators to do local,
nonparametric estimation by posing the problem as a weighted, linear regression

4http://hybrid.eecs.berkeley.edu/~NEDE/EDE_Code.zip.
5http://isomap.stanford.edu/datasets.html.

http://hybrid.eecs.berkeley.edu/~NEDE/EDE_Code.zip
http://isomap.stanford.edu/datasets.html
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which can then be solved using either our or existing estimators. As a note, the MP
and OLS estimators are equivalent in the examples we consider.

Some of the examples involve errors-in-variables, and this suggests that we
should use an estimator that explicitly takes this structure into account. We com-
pared these methods with Total Least Squares (TLS) [27] which does exactly this.
TLS performed poorly with both the simulated data and experimental data, and
this is expected because standard TLS is known to perform poorly in the presence
of collinearities [27]. TLS performed comparably to or worse than OLS/MP, and
so the results are not included.

Based on the numerical examples, it seems that the improvement in estimation
error of our estimators is mainly due to the Tikhonov-type regularization, with
lasso-type regularization providing additional benefit. Thresholding the covariance
matrices did not make significant improvements, partly because bootstrap has dif-
ficulty with picking the thresholding parameter. Improvements may be possible by
refining the parameter selection method or by changes to the estimator. We also
observed the well-known tendency of lasso to overestimate the number of nonzero
coefficients [39]; using stability selection [39] to select the lasso parameter would
likely lead to better results.

7.1. Simulated data. We simulate data for two different models and use this
to compare different estimators. One model is linear, and we do global estimation
in this case. The other model is nonlinear, and hence we do local estimation in this
case. In both models, there are p predictors and the dimension of the manifold is
d = round(3

4p). The predictors ξ and response η are measured with noise:

x = ξ + N (0, σ 2
ν ),

y = η + N (0, σ 2).

And for notational convenience, let q = round(1
2p). Define the matrix

Fij =

⎧⎪⎪⎨
⎪⎪⎩

0.3|i−j |, if 1 ≤ i, j ≤ d,
0.3, if d + 1 ≤ i ≤ p ∧ j = q + i − d,
0.3, if d + 1 ≤ i ≤ p ∧ j = q + i + 1 − d,
0, o.w.

The two models are given by:

1. Linear model: the predictors are distributed ξ = N (0,FF ′), and the function is

η = f (ξ) = 1 +
q∑

i=1
i is odd

ξi .(7.1)

If w = [1 0 1 · · ·] is a vector with ones in the odd index-positions and ze-
ros elsewhere, then the exterior derivative of this linear function at every point
on the manifold is given by the projection of w onto the range space of the
matrix F .
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2. Nonlinear model: the predictors are distributed ξ = sin(N (0,FF ′)), and the
function is

η = f (ξ) = 1 +
q∑

i=1
i is odd

sin(ξi).(7.2)

We are interested in local regression about the point x0 = [0 · · · 0]. If w =
[1 0 1 · · ·] is a vector with ones in the odd index-positions and zeros else-
where, then the exterior derivative of this nonlinear function at the origin is
given by the projection of w onto the range space of the matrix F .

Table 1 shows the average square-loss estimation error ‖β̂ − β‖2
2 for different

estimators using data generated by the linear model and nonlinear model given
above, over different noise variances and number of data points n. We conducted
100 replications of generating data and doing a regression, and this helped to pro-
vide standard deviations of square-loss estimation error to show the variability of

TABLE 1
Averages and standard deviations over 100 replications of square-loss estimation error for different
estimators using data generated by the linear model and nonlinear model given in Section 7.1, over

different noise variances and number of data points n

n = 10 n = 100 n = 1000

Linear model: σ 2
ν = 0.01, σ 2 = 1.00

OLS/MP 3.741 (2.476) 6.744 (3.602) 0.588 (0.368)
RR 2.523 (1.020) 0.369 (0.193) 0.167 (0.086)
EN 2.562 (1.054) 0.117 (0.197) 0.017 (0.008)
PLS 2.428 (0.536) 0.501 (0.207) 0.031 (0.013)
PCR 3.391 (0.793) 1.629 (0.144) 1.583 (0.047)
EDE 2.528 (1.030) 0.367 (0.185) 0.166 (0.086)
ALEDE 2.564 (1.061) 0.111 (0.177) 0.015 (0.006)
EDEP 2.527 (1.025) 0.370 (0.184) 0.167 (0.085)
ALEDEP 2.563 (1.057) 0.111 (0.177) 0.015 (0.006)

Linear model: σ 2
ν = 0.10, σ 2 = 1.00

OLS/MP 3.629 (1.488) 1.259 (0.598) 0.173 (0.050)
RR 2.717 (0.847) 0.892 (0.351) 0.260 (0.042)
EN 2.783 (0.895) 0.661 (0.523) 0.064 (0.013)
PLS 2.588 (0.566) 0.740 (0.252) 0.138 (0.037)
PCR 3.425 (0.747) 1.645 (0.144) 1.569 (0.047)
EDE 2.716 (0.846) 0.840 (0.305) 0.255 (0.042)
ALEDE 2.782 (0.893) 0.590 (0.459) 0.050 (0.013)
EDEP 2.720 (0.849) 0.841 (0.305) 0.255 (0.042)
ALEDEP 2.784 (0.895) 0.590 (0.459) 0.050 (0.013)
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TABLE 1
(Continued)

n = 20 n = 100 n = 1000

Nonlinear model: σ 2
ν = 0.01, σ 2 = 1.00

OLS/MP 657.7 (1842) 3.797 (2.172) 0.367 (0.223)
RR 2.188 (0.715) 1.160 (0.265) 0.300 (0.132)
EN 2.140 (0.768) 1.083 (0.341) 0.162 (0.081)
PLS 2.102 (0.757) 0.995 (0.256) 0.172 (0.120)
PCR 2.731 (0.439) 1.679 (0.244) 0.123 (0.043)
NEDE 2.184 (0.716) 1.104 (0.269) 0.288 (0.118)
NALEDE 2.136 (0.769) 1.009 (0.357) 0.144 (0.067)
NEDEP 2.184 (0.716) 1.103 (0.269) 0.288 (0.118)
NALEDEP 2.136 (0.769) 1.008 (0.357) 0.144 (0.067)

Nonlinear model: σ 2
ν = 0.1, σ 2 = 1.00

OLS/MP 147.5 (338.3) 1.843 (0.975) 0.473 (0.110)
RR 2.693 (1.793) 1.260 (0.369) 0.672 (0.139)
EN 2.698 (1.927) 1.168 (0.455) 0.472 (0.197)
PLS 2.385 (0.629) 1.210 (0.318) 0.768 (0.133)
PCR 2.767 (0.450) 1.766 (0.293) 0.554 (0.348)
NEDE 2.694 (1.793) 1.233 (0.352) 0.641 (0.119)
NALEDE 2.702 (1.925) 1.126 (0.445) 0.407 (0.130)
NEDEP 2.693 (1.794) 1.231 (0.352) 0.641 (0.119)
NALEDEP 2.702 (1.926) 1.124 (0.445) 0.407 (0.130)

the estimators. Table 2 shows computation times in seconds for the different esti-
mators; it shows that our estimators require more computation, but the computation
time is still reasonable. The computation time does not depend on the noise level,
and so we have averaged the computation times over the 100 + 100 replications
for σ 2

ν = 0.01,0.10.
One curious phenomenon observed is that the estimation error goes down in

some cases as the error variance of the predictors σ 2
ν increases. To understand

why, consider the sample covariance matrix in the linear case Ŝ = X′X/n with
population parameter S = FF ′ + σ 2

ν I. Heuristically, the OLS estimate will tend to
(FF ′+σ 2

ν I)−1X′Y/n, and the error in the predictors actually acts as the Tikhonov-
type regularization found in RR, with lower levels of noise leading to less regular-
ization.

The results indicate that our estimators are not significantly more variable than
existing ones, and our estimators perform competitively against existing estima-
tors. Though our estimators are closely related to PCR, RR and EN, our estimators
performed comparably to or better than these estimators. PLS also did quite well,
and our estimators did better than PLS in some cases. Increasing the noise in the



66 A. ASWANI, P. BICKEL AND C. TOMLIN

TABLE 2
Averages and standard deviations over 200 replications of computation times in seconds

for the different estimators using data generated by the linear model and
nonlinear model given in Section 7.1

n = 10 n = 100 n = 1000

Linear model

OLS/MP 0.001 (0.000) 0.001 (0.000) 0.001 (0.000)
RR 0.055 (0.005) 0.063 (0.005) 0.110 (0.004)
EN 1.739 (1.325) 0.292 (0.032) 0.387 (0.042)
PLS 1.631 (0.029) 1.716 (0.077) 1.925 (0.051)
PCR 0.185 (0.006) 0.192 (0.010) 0.253 (0.007)
EDE 0.239 (0.007) 0.255 (0.016) 0.367 (0.021)
ALEDE 2.071 (1.363) 0.715 (0.043) 0.912 (0.059)
EDEP 0.411 (0.011) 0.523 (0.019) 0.731 (0.052)
ALEDEP 2.248 (1.366) 0.990 (0.042) 1.283 (0.083)

n = 20 n = 100 n = 1000

Nonlinear model

OLS/MP 0.001 (0.000) 0.001 (0.000) 0.001 (0.000)
RR 0.359 (0.039) 0.470 (0.028) 0.938 (0.040)
EN 0.916 (0.433) 1.005 (0.058) 1.917 (0.269)
PLS 1.980 (0.130) 2.114 (0.072) 2.879 (0.162)
PCR 1.014 (0.062) 1.118 (0.038) 1.911 (0.166)
NEDE 0.840 (0.078) 1.066 (0.058) 2.031 (0.092)
NALEDE 2.175 (0.594) 1.843 (0.090) 3.381 (0.401)
NEDEP 1.403 (0.120) 1.726 (0.087) 2.277 (0.175)
NALEDEP 2.671 (0.647) 2.513 (0.122) 4.631 (0.397)

predictors did not seem to significantly affect the qualitative performance of the
estimators, except for OLS as explained above.

In Section 5.2, we discussed how the converge rate of our linear estimators is
of order n−1/4 which is in contrast to the typical convergence rate of n−1/2 for
lasso-type regression [38]. We believe that this theoretical discrepancy is because
our model has errors-in-variables while the standard model used in lasso-type re-
gression does not [38]. These theoretical differences do not seem significant in
practice. As seen in Table 1, our estimators can be competitive with existing lasso-
type regression.

7.2. Isomap face data. The Isomap face data6 from [53] consists of images
of an artificial face. The images are labeled with and vary depending upon three

6http://isomap.stanford.edu/datasets.html.

http://isomap.stanford.edu/datasets.html
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FIG. 2. Sample images from the Isomap face data [53]. The images are labeled with and vary
depending upon three variables: illumination-, horizontal- and vertical-orientation.

variables: illumination-, horizontal- and vertical-orientation; sample images taken
from this data set can be seen in Figure 2. Three-dimensional images of the face
would form a three-dimensional manifold (each dimension corresponding to a
variable), but this data set consists of two-dimensional projections of the face. In-
tuitively, a limited number of additional variables are needed for different views of
the face (e.g., front, profile, etc.). This intuition is confirmed by dimensionality es-
timators which estimate that the two-dimensional images form a low-dimensional
manifold [35].

To compare the different estimators, we did 100 replications of the following
experiment: we randomly split the data (n = 698 data points) into a training set
nt = 688 and validation set nv = 10, and then we used the training set to estimate
the horizontal pose angle of images in the validation set. Since we are doing local
linear estimation, the estimate for each image requires its own regression. The
number of predictors p is large in this case because each data point Xi is a two-
dimensional image. Estimation when p is large is computationally slow, and so
we chose a small validation set size to ensure that the experiments completed in a
reasonable amount of time. Replicating this experiment 100 times helps to prevent
spurious results due to having a small validation set.

To speed up the computations further, we scaled the images from 64 ×64 pixels
to 7 × 7 pixels in size. This is a justifiable approach because the images form a
low-dimensional manifold, and so this resizing of the images does not lead to a
loss in predictor information [56]. This leads to significantly faster computations,
because this process reduces the number of predictors from p = 4096 to p = 49.
In practice, our choice of p = 49 gives predictions that deviate from the true hori-
zontal pose angle of images (which uniformly ranges between −75 to 75 degrees)
in the validation set by a root-mean-squared error of three degrees or less.

Table 3 gives the prediction error of the models generated by different estimators
on the validation set. The specific quantity provided is∑

Xi∈V
‖β̂0(Xi) − Yi‖2

2/nv,(7.3)

where V is the set of predictors in the validation set, β̂0(Xi) is the first component
of the estimated regression coefficients computed about the point X0 = Xi , and
Yi is the corresponding horizontal pose angle of the image Xi . The regression is
computed using only data taken from the training set. The results from this real
data set shows that our estimators can provide improvements over existing tools,
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TABLE 3
Averages and standard deviations over 100 replications of validation set prediction

error for different estimators using the Isomap face data [53]. The average computation
time and its standard deviation is given in seconds, and it gives the time to estimate

the horizontal pose angle of a single image

Prediction error Computation time

OLS/MP 5.276 (11.06) 0.002 (0.001)
RR 5.286 (6.156) 2.052 (0.166)
EN 5.168 (6.112) 17.79 (5.235)
PLS 10.12 (14.84) 16.22 (0.841)
PCR 5.813 (7.617) 8.877 (0.609)
NEDE 4.523 (4.926) 4.740 (0.347)
NALEDE 4.409 (4.889) 22.94 (5.349)
NEDEP 4.527 (4.925) 7.777 (0.511)
NALEDEP 4.406 (4.900) 25.77 (5.221)

because our estimators have the lowest prediction errors. Table 3 also provides the
computation times for estimating the horizontal pose, and it again shows that our
estimators require more computation but not by an excessively larger amount.

8. Conclusion. By interpreting collinearity as predictors on a lower-dimen-
sional manifold, we have developed a new regularization, which has connections to
PCR and RR, for linear regression and local linear regression. This viewpoint also
allows us interpret the regression coefficients as estimates of the exterior derivative.
We proved the consistency of our estimators in both the classical case and the
“large p, small n” case and this is useful from a theoretical standpoint.

We provided numerical examples using simulated and real data which show
that our estimators can provide improvements over existing estimators in estima-
tion and prediction error. Though our estimators provide modest improvements
over existing ones, these improvements are consistent over the different examples.
Specifically, the Tikhonov-type and lasso-type regularizations provided improve-
ments, and the thresholding regularization did not provide major improvements.
This is not to say that thresholding is not a good regularization, because as we
showed: from a theoretical standpoint, thresholding does provide consistency in
the “large p, small n” situation. This leaves open the possibility of future work on
how to best select this thresholding parameter value.

There is additional future work possible on extending our set of estimators.
There is some benefit provided by shrinkage from the Tikhonov-type regulariza-
tion which is independent of the manifold structure. Exploring more fully the re-
lationship between manifold structure and shrinkage will likely lead to improved
estimators.
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APPENDIX

In this section, we provide the proofs of our theorems. We also give a few lem-
mas, which are needed for the proofs, that were not stated in the main text.

LEMMA A.1. If the assumptions in Section 2 hold, then:

(a) ‖E(Ĉ22
n ) − C22‖2

2 = O(h4);

(b) ‖E[(Ĉ22
n − C22)(Ĉ22

n − C22)′]‖2
2 = O(1/nhd);

(c) Ĉn
p→ C.

PROOF. This proof follows the techniques of [8, 46]. We first prove part (c).
Note that

Ĉ11
n = 1

nhd−p

n∑
i=1

Kh(xi − x0),

and consider its expectation

E(Ĉ11
n ) = E

(
1

hd−p
Kh(xi − x0)1

(
X ∈ (Bp

x,h1−ε )
))

+ E

(
hp

hd
Kh(xi − x0)1

(
X ∈ (Bp

x,h1−ε )
c))

=
∫
Bd

0,h1−ε

1

hd
K

(
φ(z) − φ(0)

h

)
F(z) dz + o(h2+p)

=
∫

Rn
K(duφ · u)F (0) du + O(h2),

where we have used the assumption that K(·) is an even function, K ′(·) is an odd
function, and K ′′(·) is an even function.

A similar calculation shows that for

Ĉ21
n = 1

nhd+1−p

n∑
i=1

Kh(xi − x0)(xi − x0),

we have that the expectation is

E(Ĉ21
n ) = O(h) = o(1).

And, a similar calculation shows that for

Ĉ22
n = 1

nhd+2−p

n∑
i=1

Kh(xi − x0)(xi − x0)(xi − x0)
′,

we have that the expectation is

E(Ĉ22
n ) = F(0) duφ ·

[∫
Rd

K
(
duφ(0) · u)uu′ du

]
· duφ

′ + O(h2).
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The result in part (c) follows from the weak law of large numbers. The last calcu-
lation also proves part (a).

Next, we prove part (b). For notational simplicity, let

Ti = Kh(xi − x0)(xi − x0)(xi − x0)
′.

The variance is

Var(Ĉ22
n ) = 1

n2h4+2d−2p
Tr
(
n
(
E(TiT

′
i ) − E(Ti)E(Ti)

′)
+ n(n − 1)

(
E(TiT

′
j ) − E(Ti)E(Tj )

′)).
Since Ti and Tj are independent, it follows that E(TiT

′
j )− E(Ti)E(Tj )

′ = 0. Next,
note that

E(TiT
′
i ) = h−2p

(∫
Bd

0,h1−ε

(
K

(
φ(z) − φ(0)

h

))2

[φ(z) − φ(0)][φ(z) − φ(0)]′

× [φ(z) − φ(0)][φ(z) − φ(0)]′F(z) dz + o(hd+2)

)

= hd+4−2p

(
F(0)

∫
Rd

(
K(duφ · u)

)2
duφ · uu′ · duφ

′ · duφ

× uu′ · duφ
′ · du + O(h2)

)
.

Thus, the variance is given by

Var(Ĉ22
n ) = 1

nhd
Tr
(
F(0)

∫
Rd

(
K(duφ · u)

)2
duφ · uu′ · duφ

′ · duφ

× uu′ · duφ
′ · du + op(1)

)
. �

LEMMA A.2. If the assumptions in Section 2 hold, then the matrices Ĉn, C22,
�, �̂n, P̂n, and P have the following properties:

(a) rank(C22) = d and R(C22) = Tp M;
(b) R(�) = N (C22), N (�) = R(C22) and N (�) ∩ N (C22) = {0};
(c) ‖P̂n − P‖2

2 = ‖�̂n − �‖2
2 = Op(1/nhd);

(d) P(rank(Ĉn + λnP̂n/nhd+2) = p + 1) → 1.

PROOF. To show property (a), we first show that for M ∈ Rd×d , where

M =
∫

Rd
K
(
duφ(0) · u)uu′ du,
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we have that rank(M) = d . To prove this, choose any v ∈ Rd \ {0} and then con-
sider the quantity

v′Mv =
∫

Rd
K
(
duφ(0) · u)v′uu′v du.

By construction, v′uu′v > 0 almost everywhere. Additionally, since φ is three
times differentiable, we have that K(duφ(0) · u) > 0 on a set of nonzero mea-
sure and K(duφ(0) · u) ≥ 0 elsewhere. Thus, v′Mv > 0 for all v ∈ Rd \ {0}. It
follows that M is symmetric and positive definite with rank(M) = d . Since M is
a d-dimensional manifold, we have that rank(duφ) = d by Corollary 8.4 of [34].
The Sylvester Inequality [47] implies that

rank(C22) = rank(duφMduφ
′) = d,

and this implies that

R(C22) = R(duφMduφ
′) = R(duφ).

However, R(duφ) = Tp M, where we take p = x0. This proves the result.
We next consider property (b). We have that

σ1, . . . , σd = 0 and σd+1 = · · · = σp = 0,

because rank(C22) = d by property (a). Thus, the null-space of C22 is given by the
column-span of UN ; however, the construction of P implies that the column-span
of UN is the range-space of P . Ergo, R(P ) = N (C22). Note that the column-span
of UR belongs to the null-space of P , because each column in UR is orthogonal—
by property of the SVD—to each column in UN . Thus, we have the dual result that
N (P ) = R(C22). The orthogonality of UR and UN due to the SVD implies that
N (P ) ∩ N (C22) = {0}.

Now, we turn to property (c). For h = κn−1/(d+4), Lemma A.1 says that ‖Ĉ22
n −

C22‖2
F = Op(1/nhd). The result follows from Corollary 3 of [29], by the fact that

I − PX is the projection matrix onto the null-space of X, and by the equivalence:

‖PX − PZ‖2
2 ≡ ‖sin�[R(X), R(Z)]‖,

where PX is a projection matrix onto the range space of X [52].
Lastly, we deal with property (d). Lemma A.1 shows that

Cn
p→ C =

[
C11 0
0 C22

]
.

Since F(0) = 0 by assumption, C11 = 0; thus, rank(C) = 1 + rank(C22). Since
N (P )∩ N (C22) = {0}, we have that rank(C22 +λnP/nhd+2) = p. Consequently,
rank(C) = p + 1. Next, consider the expression

‖Cn + λnP̃n/nhd+2 − C − λnP̃ /nhd+2‖2
2

≤ ‖Ĉn − C‖2
2 + λn

nhd+2 ‖P̃n − P̃ ‖2
2
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≤ Op(h2) + Op

(
λn

n2h2d+2

)

≤ op(h).

Weyl’s theorem [6] implies that

‖σi(Cn + λnP̃n/nhd+2) − σi(C + λnP̃ /nhd+2)‖2
2 ≤ op(h).(A.1)

Note that σi(C +λnP̃ /nhd+2) is nondecreasing because λn/nhd+2 is nondecreas-
ing. Define

η = min
(
σi

(
C + λnP̃ /n2/(d+4))),

and consider the probability

P
(
rank(Cn + λnP̃n/nhd+2) = p + 1

)
≥ P

(∣∣σi(Cn + λnP̃n/nhd+2)

− σi(C + λnP̃ /nhd+2)
∣∣≤ η,∀i

)
(A.2)

≥
p+1∑
i=1

P
(∣∣σi(Cn + λnP̃n/nhd+2)

− σi(C + λnP̃ /nhd+2)
∣∣≤ η

)− p.

The result follows from (A.1) and (A.2). �

For notational convenience, we define

Bn = hp(f (X) − βXx

)′
Wx0XxH

−1/2

and

M = 1
2 [∂i∂j (f ◦ φ) − dxf · ∂i∂jφ].

Then, we have the following result concerning the asymptotic bias of the estimator:

LEMMA A.3. If h = κn−1/(d+4), then Bn
p→ B , where

B =
[
κF(0)

∫
Rd

K(duφ · u)uu′ duM ′ Op×1

]
.(A.3)

PROOF. First, recall the Taylor polynomial of the pullback of f to z:

f (φ(z)) = f (φ(0)) + dxf · duφ · z + 1
2 ∂i∂j (f ◦ φ) · zz′ + o(‖z‖2),
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where we have performed a pullback of dxf from T ∗
x M to T ∗

x U . In the following
expression, we set z = hu:

f (φ(z)) − f (x0) − dxf · [φ(z) − φ(0)]

= h2

2
[∂i∂j (f ◦ φ) − dxf · ∂i∂jφ]uu′ + o(‖hu‖2)

= h2Buu′ + o(‖hu‖2).

Because β = [f (x0) dxf ]′, we can rewrite the expectation of the expression as

E(Bn) = E

(
hp−dKH (x − x0)

(
f (x) − xx0β

)′
xx0

[
1 0
0 1/h2I

])
H 1/2

=
(∫

Rd

{
K(duφ · u)h2u′uM ′

[
1

1

h
duφ · u + 1

2
∂i∂jφ · uu′

]

× (
F(0) + hduF (0) · u)}du

+ o(h2)

)
H 1/2

=
√

nhdh2
[
F(0)

∫
Rd

K(duφ · u)uu′ duM ′ + o(1) O
(√

h2
) ]

,

where the last line follows because of the odd symmetries in the integrand. Since
h = κn−1/(d+4), this expectation becomes

E(Bn) = B + o(1)11×(p+1).

The result follows from application of the weak law of large numbers. �

Let

V = F(0)

∫
Rd

(
K(duφ · u)

)2 [1 0
0 duφ · uu′ · duφ

]
du,(A.4)

then the following lemma describes the asymptotic distribution of the error resid-
uals.

LEMMA A.4. If h = κn−1/(d+4), then

hpε′Wx0XxH
−1/2 d→ N (0, σ 2V ).

PROOF. Since E(ε) = 0 and ε is independent of x, we have that

E
(√

nhpεKH(x − x0)xx0H
−1/2)= 0.
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The variance of this quantity is

Var
(
hp

√
nεKH(x − x0)xx0H

−1/2)
= E

((
hp

√
nεKH(x − x0)xx0H

−1/2)′(hp
√

nεKH(x − x0)xx0H
−1/2))

= nh2pσ 2E
((

KH(x − x0)
)2 [ 1 (x − x0)

′ ]′ H−1 [ 1 (x − x0)
′ ]
)

= σ 2

⎧⎨
⎩
∫

Rd

(
K(duφ · u)

)2⎡⎣1
(
duφ · u + h

2
∂i∂jφ · uu′

)′

· duφ · uu′ · duφ

⎤
⎦

× (
F(0) + hduF (0) · u)du + o(h2)

⎫⎬
⎭

= σ 2(V + o(h)I
)
.

Thus, the central limit theorem implies that

hp
√

nε′Wx0XxH
−1/2

√
n

d→ N (0, σ 2V ). �

PROOF OF THEOREM 4.2. This proof follows the framework of [30, 59] but
with significant modifications to deal with our estimator. For notational conve-
nience, we define the indices of β such that: β0 = f (x0) and [β1 · · · βp] = dxf .
Let β̃ = β + H−1/2u and

�n(u) = hp
∥∥W 1/2

x0

(
Y − Xx0(β + H−1/2u)

)∥∥2
2

+ λn‖Pn · (β + H−1/2u)‖2
2.

Let û(n) = arg min�n(u); then β̂(n) = β +H−1/2û(n). Note that �n(u)−�n(0) =
V

(n)
4 (u), where

V
(n)
4 (u) = u′H−1/2(hpX′

x0
Wx0Xx0 + λnPn)H

−1/2u

+ 2
(
hp(Y − Xx0β)′Wx0Xx0 + λnβ

′Pn

)
H−1/2u.

If λn/nhd+2 → ∞ and hλn/nhd+2 → 0, then for every u

λnβ
′PnH

−1/2u = λnβ
′Pu/

√
nhd+2Op(1) + λnh/nhd+2Op(1),

where we have used Lemma A.2. It follows from the definition of β (4.5) and
Lemma A.2 that β ′P ≡ 0; thus, λnβ

′PnH
−1/2u = λnh/nhd+2Op(1) = op(1). For

all u ∈ N (P ), we have

λn/nhd+2u′Pnu = λn/nhd+2Op(1/nhd) = oP (hλn/nhd+2),

and for all u /∈ N (P ), we have

λn/nhd+2u′Pnu = λn/nhd+2u′PnuOp(1) → ∞.
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Let W ∼ N (0, σ 2V ). Then, by Slutsky’s theorem we must have that V
(n)
4 (u)

d→
V4(u) for every u, where

V4(u) =
{

u′Cu − 2u′(W + B), if u ∈ N (P ),
∞, otherwise.

Lemma 5 shows that V
(n)
4 (u) is convex with high-probability, and Lemma 5 also

shows that V4(u) is convex. Consequently, the unique minimum of V4(u) is given
by u = C†(W + B), where C† denotes the Moore–Penrose pseudoinverse of C.

Following the epi-convergence results of [20, 30], we have that û(n) d→ C†(W +
B). This proves asymptotic normality of the estimator, as well as convergence in
probability.

The proof for the NALEDE estimator comes for free. The proof formulation that
we have used for the consistency of nonparametric regression in (4.6) allows us to
trivially extend the proof of [59] to prove asymptotic normality and consistency.

�

LEMMA A.5. Consider An,Bn ∈ Rpn×pn that are symmetric, invertible ma-
trices. If ‖An − Bn‖2 = Op(γn), ‖A−1

n ‖2 = Op(1) and ‖B−1
n ‖2 = Op(1), then

‖A−1
n − B−1

n ‖2 = Op(γn).

PROOF. Consider the expression

‖A−1
n − B−1

n ‖2 = ‖A−1
n (Bn − An)B

−1
n ‖2

≤ ‖A−1
n ‖2 · ‖An − Bn‖2 · ‖B−1

n ‖2,

where the last line follows because the induced, matrix norm ‖ · ‖2 is sub-
multiplicative for square matrices. �

PROOF OF THEOREM 5.3. Under our set of assumptions, the results from [7]
apply:

‖Tt (X
′X/n) − (�ξ + σ 2

ν I)‖2 = Op

(
cn

√
logp

n

)
,(A.5)

‖Tt (X
′Y/n) − �ξβ‖2 = Op

(
cn

√
logp

n

)
.(A.6)

An argument similar to that given in Lemma A.2 implies that

‖P̂n − Pn‖ = Op

(
cn

√
logp/n

)
.

Consequently, it holds that

‖Tt (X
′X/n) − σ 2

ν I + λnP̂n − (�ξ + λnPn)‖2
(A.7)

= Op

(
cn(λn + 1)

√
logp

n

)
.
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Next, observe that

�ξ + λnPn = [UR UN ] diag(σ1, . . . , σd, λn, . . . , λn) [UR UN ]′ .
Recall that we only consider the case in which d < p. We have that:

(a) ‖(�ξ + λnPn)
−1‖2 = O(1), because of (5.2);

(b) ‖�†
ξ − (�ξ + λnPn)

−1‖2 = Op(1/λn).

Weyl’s theorem [6] and (A.7) imply that∥∥(Tt(X
′X/n) − σ 2

ν I + λnP̂n

)−1∥∥
2 = Op(1).

Additionally, Lemma A.5 implies that

∥∥(Tt (X
′X/n) − σ 2

ν I + λnP̂n

)−1 − (�ξ + λnPn)
−1∥∥= Op

(
cnλn

√
logp

n

)
.

Note that the solution to the estimator defined in (5.6) is:

β̂ = (
Tt(X

′X/n) − σ 2
ν I + λnP̂n

)−1
Tt (X

′Y/n).

Next, we define

β(n) �
(
Tt(X

′X/n) − σ 2
ν I + λnP̂n

)−1
�ξβ,

and note that the projection matrix onto the range space of �ξ is given by P�ξ =
�

†
ξ �ξ . Thus, β = P�ξ β = �

†
ξ �ξβ . Consequently, we have that

‖β̂ − β‖2 ≤ ∥∥β̂ − β(n)
∥∥

2 + ∥∥β(n) − β
∥∥

2

≤ ∥∥(Tt (X
′X/n) − σ 2

ν I + λnP̂n

)−1∥∥
2 · ‖Tt(X

′Y/n) − �ξβ‖2(A.8)

+ ∥∥(Tt(X
′X/n) − σ 2

ν I + λnP̂n

)−1 − �
†
ξ

∥∥
2 · ‖�ξβ‖2,

where the inequality comes about because ‖ ·‖2 is an induced, matrix norm and the
expressions are of the form Rp×p(Rp×pRp). Recall that for symmetric matrices,
‖A‖1 = ‖A‖∞; ergo, ‖A‖2 ≤ √‖A‖1‖A‖∞ = ‖A‖1. Because of (5.1), we can use
this relationship on the norms to calculate that ‖�ξ‖2 = O(cn) and ‖β‖ = O(cn).
Consequently,

(A.8) ≤ Op

(
cnλn

√
logp

n

)
+ Op(c2

n/λn).

The result follows from the relationship

λn = O

(√
cn

(
n

logp

)1/4)
. �

We can show that the bias of the terms of the nonparametric exterior derivative
estimation goes to zero at a certain rate.
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LEMMA A.6. Under the assumptions of Section 5, we have that

|E([Ĉn]ij ) − [Cn]ij | = O(h2c2
n(2�)2d),

|E([R̂n]ij ) − [Rn]ij | = O(h2c2
n(2�)2d),

where i, j denote the components of the matrices. Similarly, we have that

Var([nĈn]ij ) = O(1/hd),

Var([nR̂n]ij ) = O(1/hd).

PROOF. By the triangle inequality and a change of variables,

Bias(Ĉ11
n ) =

∣∣∣∣
∫

Bd
0,�/h

1

hd
K

(
φ(z) − φ(0)

h

)
F(z) dz −

∫
Bd

0,�

K(duφ · u)F (0) du

∣∣∣∣
≤
∣∣∣∣
∫

Bd
0,�

[
K

(
φ(hu) − φ(0)

h

)
− K(duφ · u)

]
F(hu)du

∣∣∣∣
+
∣∣∣∣
∫

Bd
0,�

K(duφ · u)[F(hu) − F(0)]du

∣∣∣∣= T1 + T2.

The Taylor remainder theorem implies that

K

(
φ(hu) − φ(0)

h

)

= K(duφ · u)

+ ∂kK(duφ · u) × (h ∂ijφ
k|0uiuj/2 + h2 ∂ijmφk|wuiujum/6)

+ ∂klK(v)/2 × (h ∂ijφ
k|0uiuj/2 + h2 ∂ijmφk|wuiujum/6)

× (h ∂ijφ
l|0uiuj/2 + h2 ∂ijmφl|wuiujum/6),

where w ∈ Bd
0,� and v ∈ Bd

duφ·u,h∂ij φk |0uiuj /2+h2 ∂ijmφk |wuiuj um/6, and

F(hu) = F(0) + h∂iF |0ui + h2 ∂ijF |vuiuj/2,

where v ∈ (0, hu).
The odd-symmetry components of the integrands of T1 and T2 will be equal to

zero, and so we only need to consider even-symmetry terms of the integrands. Re-
call that K(·), ∂kK(·), ∂klK(·) are, respectively, even, odd and even. By the spar-
sity assumptions, we have that

T1 = O(h2d6c2
n(2�)d),

T2 = O(h2d2(2�)d).

Consequently, T1 + T2 = O(h2d6c2
n(2�)d) = O(h2c2

n(2�)2d).
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We can compute the variance of nĈ11
n to be

Var(nĈ11
n ) =

∫
Bd

0,�/h

h−2d[K((
φ(z) − φ(0)

)
/h

)]2
(F (z))2 dz

− (E(nĈ11
n ))2

= h−d
∫

Bd
0,�

[
K
((

φ(hu) − φ(0)
)
/h

)]2
(F (hu))2 dy

− (E(nĈ11
n ))2

= O(1/hd).

The remainder of the results follow by similar, lengthy calculations. Note that
for the variance of terms involving Yi , a σ 2 coefficient appears, but this is just a
finite-scaling factor which is irrelevant in O-notation. �

PROOF OF THEOREM 5.1. The key to this proof is to provide an exponential
concentration inequality for the terms in Ĉn and R̂n. Having done this, we can then
piggyback off of the proof in [7] to immediately get the result. The proofs for Ĉn

and R̂n are identical; so we only do the proof for Ĉn.
Using the Bernstein inequality [36] and the union bound,

P
(
max
i,j

‖[Ĉn]ij − E[Ĉn]ij‖ > t
)

≤ 2p2 exp
(
− nt2

2 Var(n[Ĉn]ij ) + max(|n[Ĉn]ij |)2t/3

)
.

Since the ith component of X obeys: |[X]i | ≤ M , it follows that

max(|n[Ĉn]ij |) = 2M/hη,

where η ∈ {0,1,2} depending on i and j . Using this bound and Lemma A.6 gives

max
i,j

|[Ĉn]ij − E[Ĉn]ij | = Op

(√
logp/nhd

)
.

Recall that

max
i,j

|[Ĉn]ij − [Cn]ij | ≤ max
i,j

|[Ĉn]ij − E[Ĉn]ij | + max
i,j

|E([Ĉn]ij ) − [Cn]ij |.

However, this second term is o(
√

logp/nhd). Consequently,

max
i,j

|[Ĉn]ij − [Cn]ij | = Op

(√
logp/nhd

)
.(A.9)

Using (A.9), we can follow the proof of Theorem 1 in [7] to prove the result. �



REGRESSION ON MANIFOLDS 79

REFERENCES

[1] AITCHISON, P. W. (1982). Generalized inverse matrices and their applications. Internat. J.
Math. Ed. Sci. Tech. 13 99–109. MR0646552

[2] ANDERSSON, M. (2009). A comparison of nine PLS1 algorithms. J. Chemometrics 23 518–
529.

[3] ASWANI, A., BICKEL, P. and TOMLIN, C. (2009). Statistics for sparse, high-dimensional, and
nonparametric system identification. In IEEE International Conference on Robotics and
Automation 2133–2138. IEEE Press, Piscataway, NJ.

[4] ASWANI, A., KERÄNEN, S., BROWN, J., FOWLKES, C., KNOWLES, D., BIGGIN, M., BICKEL,
P. and TOMLIN, C. (2010). Nonparametric identification of regulatory interactions from
spatial and temporal gene expression data. BMC Bioinformatics 11 413.

[5] BELKIN, M., NIYOGI, P. and SINDHWANI, V. (2006). Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7
2399–2434. MR2274444

[6] BHATIA, R. (2007). Perturbation Bounds for Matrix Eigenvalues. Classics in Applied Mathe-
matics 53. SIAM, Philadelphia, PA. MR2325304

[7] BICKEL, P. and LEVINA, E. (2008). Covariance regularization by thresholding. Ann. Statist. 36
2577–2604. MR2485008

[8] BICKEL, P. and LI, B. (2007). Local polynomial regression on unknown manifolds. In Complex
Datasets and Inverse Problems: Tomography, Networks and Beyond. Institute of Math-
ematical Statistics Lecture Notes—Monograph Series 54 177–186. Inst. Math. Statist.,
Beachwood, OH. MR2459188

[9] BICKEL, P. and FREEDMAN, D. (1981). Some asymptotic theory for the bootstrap. Ann. Statist.
9 1196–1217. MR0630103

[10] CANDES, E. and TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much
larger than n. Ann. Statist. 35 2313–2351. MR2382644

[11] CARROLL, R., MACA, J. and RUPPERT, D. (1999). Nonparametric regression in the presence
of measurement error. Biometrika 86 541–554. MR1723777

[12] COSTA, J. and HERO, A. (2004). Geodesic entropic graphs for dimension and entropy estima-
tion in manifold learning. IEEE Trans. Signal Process. 52 2210–2221. MR2085582

[13] FAN, J. and LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle
properties. J. Amer. Statist. Assoc. 96 1348–1360. MR1946581

[14] FAN, J. and TRUONG, Y. (1993). Nonparametric regression with errors in variables. Ann. Statist.
21 1900–1925. MR1245773

[15] FAN, J. and GIJBELS, I. (1996). Local Polynomial Modelling and its Applications. Monographs
on Statistics and Applied Probability 66. Chapman and Hall, London. MR1383587

[16] FRANK, I. E. and FRIEDMAN, J. H. (1993). A statistical view of some chemometrics regression
tools. Technometrics 35 109–135.

[17] FRIEDMAN, J., HASTIE, T., HÖFLING, H. and TIBSHIRANI, R. (2007). Pathwise coordinate
optimization. Ann. Appl. Statist. 1 302–332. MR2415737

[18] FU, W. (2000). Ridge estimator in singular design with application to age-period-cohort analy-
sis of disease rates. Comm. Statist. Theory Methods 29 263–278.

[19] FU, W. (2008). A smooth cohort model in age-period-cohort analysis with applications to
homicide arrest rates and lung cancer mortality rates. Sociol. Methods Res. 36 327–361.
MR2422770

[20] GEYER, C. (1994). On the asymptotics of constrained m-estimation. Ann. Statist. 22 1993–
2010. MR1329179

[21] GOLDBERG, Y., ZAKAI, A., KUSHNIR, D. and RITOV, Y. (2008). Manifold learning: The price
of normalization. J. Mach. Learn. Res. 9 1909–1939. MR2438829

http://www.ams.org/mathscinet-getitem?mr=0646552
http://www.ams.org/mathscinet-getitem?mr=2274444
http://www.ams.org/mathscinet-getitem?mr=2325304
http://www.ams.org/mathscinet-getitem?mr=2485008
http://www.ams.org/mathscinet-getitem?mr=2459188
http://www.ams.org/mathscinet-getitem?mr=0630103
http://www.ams.org/mathscinet-getitem?mr=2382644
http://www.ams.org/mathscinet-getitem?mr=1723777
http://www.ams.org/mathscinet-getitem?mr=2085582
http://www.ams.org/mathscinet-getitem?mr=1946581
http://www.ams.org/mathscinet-getitem?mr=1245773
http://www.ams.org/mathscinet-getitem?mr=1383587
http://www.ams.org/mathscinet-getitem?mr=2415737
http://www.ams.org/mathscinet-getitem?mr=2422770
http://www.ams.org/mathscinet-getitem?mr=1329179
http://www.ams.org/mathscinet-getitem?mr=2438829


80 A. ASWANI, P. BICKEL AND C. TOMLIN

[22] GOLUB, G. and VAN LOAN, C. (1996). Matrix Computations, 3rd ed. Johns Hopkins Univ.
Press, Baltimore, MD. MR1417720

[23] HEIN, M. and AUDIBERT, J.-Y. (2005). Intrinsic dimensionality estimation of submanifolds in
Rd . In International Conference on Machine Learning 289–296. ACM, New York.

[24] HELLAND, I. (1988). On the structure of partial least squares regression. Comm. Statist. Simu-
lation Comput. 17 581–607. MR0955342

[25] HOCKING, R. (1976). The analysis and selection of variables in linear regression. Biometrics
32 431–453. MR0398008

[26] HOERL, A. E. and KENNARD, R. W. (1970). Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics 8 27–51.

[27] HUFFEL, S. V. and VANDEWALLE, J. (1991). The Total Least Squares Problem: Computational
Aspects and Analysis. SIAM, Philadelphia, PA. MR1118607

[28] JOHNSTONE, I. M. and LU, A. Y. (2009). On consistency and sparsity for principal components
analysis in high dimensions. J. Amer. Statist. Assoc. 104 682–693.

[29] KAROUI, N. E. (2008). Operator norm consistent estimation of large-dimensional sparse co-
variance matrices. Ann. Statist. 36 2717–2756. MR2485011

[30] KNIGHT, K. and FU, W. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28 1356–
1378. MR1805787

[31] KRITCHMAN, S. and NADLER, B. (2008). Determining the number of components in a factor
model from limited noisy data. Chemometrics and Intelligent Laboratory Systems 94 19–
32.

[32] LAFFERTY, J. and WASSERMAN, L. (2006). Rodeo: Sparse nonparametric regression in high
dimensions. In Advances in Neural Information Processing Systems (NIPS) 18 707–714.
MIT Press, Cambridge, MA.

[33] LEDOIT, O. and WOLF, M. (2003). A well-conditioned estimator for large-dimensional covari-
ance matrices. J. Multivariate Anal. 88 365–411. MR2026339

[34] LEE, J. (2003). Introduction to Smooth Manifolds. Springer, New York. MR1930091
[35] LEVINA, E. and BICKEL, P. (2005). Maximum likelihood estimation of intrinsic dimension. In

Advances in NIPS 17 777–784. MIT Press, Cambridge, MA.
[36] LUGOSI, G. (2006). Concentration-of-measure inequalities. Technical report, Pompeu Fabra

Univ.
[37] MASSY, W. F. (1965). Principal components regression in exploratory statistical research.

J. Amer. Statist. Assoc. 60 234–246.
[38] MEINSHAUSEN, N. and YU, B. (2009). Lasso-type recovery of sparse representations for high-

dimensional data. Ann. Statist. 37 246–270. MR2488351
[39] MEINSHAUSEN, N. and BUEHLMANN, P. (2010). Stability selection. J. Roy. Statist. Soc. Ser. B

72 417–473.
[40] MISNER, C. W., THORNE, K. S. and WHEELER, J. A. (1973). Gravitation. W. H. Freeman and

Co., San Francisco, CA. MR0418833
[41] NADLER, B. (2008). Finite sample approximation results for principal component analysis:

A matrix perturbation approach. Ann. Statist. 36 2791–2817. MR2485013
[42] NG, A. (1997). Preventing overfitting of cross-validation data. In 14th International Conference

on Machine Learning 245–253. Morgan Kaufmann, San Francisco, CA.
[43] NIYOGI, P. (2008). Manifold regularization and semi-supervised learning: Some theoretical

analyses. Technical Report TR-2008-01, Univ. Chicago, Computer Science Dept.
[44] RAO, R., FUNG, G. and ROSALES, R. (2008). On the dangers of cross-valdation: An experi-

mental evaluation. In SIAM Data Mining. SIAM, Philadelphia, PA.
[45] REUNANEN, J. (2003). Overfitting in making comparisons between variable selection methods.

J. Mach. Learn. Res. 3 1371–1382.
[46] RUPPERT, D. and WAND, M. (1994). Multivariate locally weighted least squares regression.

Ann. Statist. 22 1346–1370. MR1311979

http://www.ams.org/mathscinet-getitem?mr=1417720
http://www.ams.org/mathscinet-getitem?mr=0955342
http://www.ams.org/mathscinet-getitem?mr=0398008
http://www.ams.org/mathscinet-getitem?mr=1118607
http://www.ams.org/mathscinet-getitem?mr=2485011
http://www.ams.org/mathscinet-getitem?mr=1805787
http://www.ams.org/mathscinet-getitem?mr=2026339
http://www.ams.org/mathscinet-getitem?mr=1930091
http://www.ams.org/mathscinet-getitem?mr=2488351
http://www.ams.org/mathscinet-getitem?mr=0418833
http://www.ams.org/mathscinet-getitem?mr=2485013
http://www.ams.org/mathscinet-getitem?mr=1311979


REGRESSION ON MANIFOLDS 81

[47] SASTRY, S. (1999). Nonlinear Systems. Springer, New York. MR1693648
[48] SHAO, J. (1993). Linear model selection by cross-validation. J. Amer. Statist. Assoc. 88 486–

494. MR1224373
[49] SHAO, J. (1994). Bootstrap sample size in nonregular cases. Proc. Amer. Math. Soc. 122 1251–

1262. MR1227529
[50] SHAO, J. (1996). Bootstrap model selection. J. Amer. Statist. Assoc. 91 655–665. MR1395733
[51] SPIVAK, M. (1965). Calculus on Manifolds. A Modern Approach to Classical Theorems of

Advanced Calculus. W. A. Benjamin, Inc., New York.
[52] STEWART, G. and SUN, J. (1990). Matrix Perturbation Theory. Academic Press, Boston, MA.

MR1061154
[53] TENENBAUM, J. B., DE SILVA, V. and LANGFORD, J. C. (2000). A global geometric framework

for nonlinear dimensionality reduction. Science 290 2319–2323.
[54] TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc.

Ser. B 58 267–288. MR1379242
[55] WOLD, H. (1975). Soft modeling by latent variables: the nonlinear iterative partial least squares

approach. In Perspectives in Probability and Statistics, Papers in Honour of M. S. Bartlett
(J. Gani, ed.) 117–142. Univ. Sheffield, Sheffield. MR0431486

[56] WRIGHT, J., YANG, A., GANESH, A., SASTRY, S. and MA, Y. (2009). Robust face recognition
via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 31 210–227.

[57] WU, T. T. and LANGE, K. (2008). Coordinate descent algorithms for lasso penalized regression.
Ann. Appl. Statist. 2 224–244. MR2415601

[58] YANG, Y., FU, W. and LAND, K. (2004). A methodological comparison of age-period-cohort
models: The intrinsic estimator and conventional generalized linear models. Sociological
Methodology 34 75–110.

[59] ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418–
1429. MR2279469

[60] ZOU, H. and HASTIE, T. (2005). Regularization and variable selection via the elastic net. J. R.
Stat. Soc. Ser. B Stat. Methodol. 67 301–320. MR2137327

[61] ZOU, H., HASTIE, T. and TIBSHIRANI, R. (2006). Sparse principal component analysis.
J. Comput. Graph. Statist. 15 265–286. MR2252527

DEPARTMENT OF ELECTRICAL ENGINEERING

AND COMPUTER SCIENCES

UNIVERSITY OF CALIFORNIA, BERKELEY

253 CORY HALL

BERKELEY, CALIFORNIA 94720-1770
USA
E-MAIL: aaswani@eecs.berkeley.edu

tomlin@eecs.berkeley.edu

DEPARTMENT OF STATISTICS

UNIVERSITY OF CALIFORNIA, BERKELEY

367 EVANS HALL

BERKELEY, CALIFORNIA 94720-3860
USA
E-MAIL: bickel@stat.berkeley.edu

http://www.ams.org/mathscinet-getitem?mr=1693648
http://www.ams.org/mathscinet-getitem?mr=1224373
http://www.ams.org/mathscinet-getitem?mr=1227529
http://www.ams.org/mathscinet-getitem?mr=1395733
http://www.ams.org/mathscinet-getitem?mr=1061154
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=0431486
http://www.ams.org/mathscinet-getitem?mr=2415601
http://www.ams.org/mathscinet-getitem?mr=2279469
http://www.ams.org/mathscinet-getitem?mr=2137327
http://www.ams.org/mathscinet-getitem?mr=2252527
mailto:aaswani@eecs.berkeley.edu
mailto:tomlin@eecs.berkeley.edu
mailto:bickel@stat.berkeley.edu

	Introduction
	Overview
	Previous work

	Problem setup
	Change in rank of local covariance estimates
	Manifold regularization
	Large p, small n
	Manifold regularization
	Linear case

	Estimation with data
	Numerical examples
	Simulated data
	Isomap face data

	Conclusion
	Appendix
	References
	Author's Addresses

