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The density function of the limiting spectral distribution of general sam-
ple covariance matrices is usually unknown. We propose to use kernel estima-
tors which are proved to be consistent. A simulation study is also conducted
to show the performance of the estimators.

1. Introduction. Suppose that Xij are independent and identically distributed
(i.i.d.) real random variables. Let Xn = (Xij )p×n and Tn be a p × p nonrandom
Hermitian nonnegative definite matrix. Consider the random matrices

An = 1

n
T1/2

n XnXT
n T1/2

n .

When EX11 = 0 and EX2
11 = 1, An can be viewed as a sample covariance matrix

drawn from the population with covariance matrix Tn. Moreover, if Tn is another
sample covariance matrix, independent of Xn, then An is a Wishart matrix.

Sample covariance matrices are of paramount importance in multivariate analy-
sis. For example, in principal component analysis, we need to estimate eigenvalues
of sample covariance matrices in order to obtain an interpretable low-dimensional
data representation. The matrices consisting of contemporary data are usually
large, with the number of variables proportional to the sample size. In this set-
ting, fruitful results have accumulated since the celebrated Marcenko and Pastur
law [8] was discovered; see the latest monograph of Bai and Silverstein [4] for
more details.

The basic limit theorem regarding An concerns its empirical spectral distrib-
ution F An . Here, for any matrix A with real eigenvalues, the empirical spectral
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distribution F A is given by

F A(x) = 1

p

p∑
k=1

I (λk ≤ x),

where λk , k = 1, . . . , p, denote the eigenvalues of A.
Suppose the ratio of the dimension to the sample size cn = p/n tends to c

as n → ∞. When Tn becomes the identity matrix, F An tends to the so-called
Marcenko and Pastur law with the density function

fc(x) =
{

(2πcx)−1√(b − x)(x − a), a ≤ x ≤ b,
0, otherwise.

It has point mass 1 − c−1 at the origin if c > 1, where a = (1 − √
c)2 and b =

(1 + √
c)2 (see Bai and Silverstein [4]).

In the literature, it is also common to study

Bn = 1

n
XT

n TnXn

since the eigenvalues of An and Bn differ by |n − p| zero eigenvalues. Thus,

F Bn(x) =
(

1 − p

n

)
I
(
x ∈ [0,∞)

) + p

n
F An(x).(1.1)

When F Tn converges weakly to a nonrandom distribution H , Marcenko and Pastur
[8], Yin [16] and Silverstein [13] proved that, with probability one, F Bn(x) con-
verges in distribution to a nonrandom distribution function Fc,H (x) whose Stielt-
jes transform m(z) = mFc,H

(z) is, for each z ∈ C+ = {z ∈ C :�z > 0}, the unique
solution to the equation

m = −
(
z − c

∫
t dH(t)

1 + tm

)−1

.(1.2)

Here, the Stieltjes transform mF (z) for any probability distribution function F(x)

is defined by

mF (z) =
∫ 1

x − z
dF (x), z ∈ C+.(1.3)

Therefore, from (1.1), we have

Fc,H (x) = (1 − c)I
(
x ∈ [0,∞)

) + cFc,H (x),(1.4)

where Fc,H (x) is the limit of F An(x). As a consequence of this fact, we have

m(z) = −1 − c

z
+ cm(z).(1.5)
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Moreover, m(z) has an inverse,

z(m) = − 1

m
+ cn

∫
t dH(t)

1 + tm
.(1.6)

Relying on this inverse, Silverstein and Choi [14] carried out a remarkable analysis
of the analytic behavior of Fc,H (x).

When Tn becomes the identity matrix, there is an explicit solution to (1.2). In
this case, from (1.1), we see that the density function of Fc,H (x) is

f
c,I

(x) = (1 − c)I (c < 1)δ0 + cfc(x),

where δ0 is the point mass at 0. Unfortunately, there is no explicit solution to (1.2)
for general Tn. Although we can use F An(x) to estimate Fc,H (x), we cannot make
any statistical inference on Fc,H (x) because there is, as far as we know, no central
limit theorem concerning (F An(x) − Fc,H (x)). Actually, it is argued in Bai and
Silverstein [4] that the process n(F An(x) − Fc,H (x)), x ∈ (−∞,∞), does not
converge to a nontrivial process in any metric space. This makes us want to pursue
other ways of understanding the limiting spectral distribution Fc,H (x).

This paper is part of a program to estimate the density function fc,H (x) of the
limiting spectral distribution Fc,H (x) of sample covariance matrices An by kernel
estimators. In this paper, we will prove the consistency of those estimators as a
first step.

2. Methodology and main results. Suppose that the observations X1, . . . ,Xn

are i.i.d. random variables with an unknown density function f (x) and Fn(x) is
the empirical distribution function determined by the sample. A popular nonpara-
metric estimate of f (x) is then

f̂n(x) = 1

nh

n∑
j=1

K

(
x − Xj

h

)
= 1

h

∫
K

(
x − y

h

)
dFn(y),(2.1)

where the function K(y) is a Borel function and h = h(n) is the bandwidth which
tends to 0 as n → ∞. Obviously, f̂n(x) is again a probability density function
and, moreover, it inherits some smooth properties of K(x), provided the kernel is
taken as a probability density function. Under some regularity conditions on the
kernel, it is well known that f̂n(x) → f (x) in some sense (with probability one, or
in probability). There is a huge body of literature regarding this kind of estimate.
For example, one may refer to Rosenblatt [10], Parzen [9], Hall [7] or the book by
Silverman [12].

Informed by (2.1), we propose the following estimator fn(x) of fc,H (x):

fn(x) = 1

ph

p∑
i=1

K

(
x − μi

h

)
= 1

h

∫
K

(
x − y

h

)
dF An(y),(2.2)
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where μi , i = 1, . . . , p, are eigenvalues of An. It turns out that fn(x) is a consistent
estimator of fc,H (x) under some regularity conditions.

Suppose that the kernel function K(x) satisfies

sup
−∞<x<∞

|K(x)| < ∞, lim|x|→∞|xK(x)| = 0(2.3)

and ∫
K(x)dx = 1,

∫
|K ′(x)|dx < ∞.(2.4)

THEOREM 1. Suppose that K(x) satisfies (2.3) and (2.4). Let h = h(n) be a
sequence of positive constants satisfying

lim
n→∞nh5/2 = ∞, lim

n→∞h = 0.(2.5)

Moreover, suppose that all Xij are i.i.d. with EX11 = 0, Var(X11) = 1 and
EX16

11 < ∞. Also, assume that cn → c ∈ (0,1). Let Tn be a p × p nonrandom
symmetric positive definite matrix with spectral norm bounded above by a positive
constant such that Hn = F Tn converges weakly to a nonrandom distribution H . In
addition, suppose that Fc,H (x) has a compact support [a, b] with a > 0. Then,

fn(x) −→ fc,H (x) in probability uniformly in x ∈ [a, b].
REMARK 1. We conjecture that the condition EX16

11 can be reduced to
EX4

11 < ∞.

When Tn is the identity matrix, we have a slightly better result.

THEOREM 2. Suppose that K(x) satisfies (2.3) and (2.4). Let h = h(n) be a
sequence of positive constants satisfying

lim
n→∞nh2 = ∞, lim

n→∞h = 0.(2.6)

Moreover, suppose that all Xij are i.i.d. with EX11 = 0, Var(X11) = 1 and
EX12

11 < ∞. Also, assume that cn → c ∈ (0,1). Denote the support of the MP
law by [a, b]. Let Tn = I. Then,

sup
x∈[a,b]

|fn(x) − fc(x)| −→ 0 in probability.

Theorem 1 also gives the estimate of Fc,H (x), as below.

COROLLARY 1. Under the assumptions of Theorem 1, correspondingly,

Fn(x) → Fc,H (x) in probability,(2.7)

where

Fn(x) =
∫ x

−∞
fn(t) dt.(2.8)
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Corollary 1 and the Helly–Bray lemma ensure that we have the following.

COROLLARY 2. Under the assumptions of Theorem 1, if g(x) is a continuous
bounded function, then∫

g(x) dFn(x) →
∫

g(x) dFc,H (x) in probability.(2.9)

In order to prove consistency of the nonparametric estimates, we need to de-
velop a convergence rate for F An . When Tn = I, Bai [1] developed a Berry–
Esseen-type inequality and investigated the convergence rate of EF An . Later,
Götze and Tikhomirov [6] improved the Berry–Esseen-type inequality and ob-
tained a better convergence rate. For general Tn, we establish the following con-
vergence rate.

THEOREM 3. Under the assumptions of Theorem 1,

sup
x

|EF An(x) − Fcn,Hn(x)| = O

(
1

n2/5

)
(2.10)

and

E sup
x

|F An(x) − Fcn,Hn(x)| = O

(
1

n2/5

)
.(2.11)

REMARK 2. Under the fourth moment condition, that is, EX4
11 < ∞, we con-

jecture that the above rate O(n−2/5) could be improved to O(n−1√logn).

3. Applications. Let us demonstrate some applications of Theorems 1, 2 and
their corollaries. Since Fc,H (x) does not have an explicit expression (except for
some special cases), we may now use Fn(x) to estimate it, by Corollary 1. More
importantly, Fn(x) has some smoothness properties, which F An does not have.

We first consider an example in wireless communication. Consider a synchro-
nous CDMA system with n users and processing gain p. The discrete-time model
for the received signal Y is given by

Y =
n∑

k=1

xkhk + W,(3.1)

where xi ∈ R and hk ∈ Rp are, respectively, the transmitted symbol and the signa-
ture spreading sequence of user k, and W is the Gaussian noise with zero mean and
covariance matrix σ 2I. Assume that the transmitted symbols of different users are
independent, with Exk = 0 and E|xk|2 = pk . This model is slightly more general
than that in [15], where all of the users’ powers pk are assumed to be the same.
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Following [15], consider the demodulation of user 1 and use the signal-to-
interference ratio (SIR) as the performance measure of linear receivers. The SIR
of user 1 is defined by (see [15])

β1 = (cT
1 h1)

2p1

cT
1 c1σ 2 + ∑K

k=2(c
T
1 hk)2pk

.

The minimum mean square error (MMSE) receiver minimizes the mean square
error as well as maximizes the SIR for all users (see [15]). The SIR of user 1 is
given by

βMMSE
1 = p1hT

1 (H1D1HT
1 + σ 2I)−1h1,

where

D1 = diag(p2, . . . , pn), H1 = (h2, . . . ,hn).

Assume that the h′
k are i.i.d. random vectors, each consisting of i.i.d. random

variables with appropriate moments. Moreover, suppose that p/n → c > 0 and
F D1(x) → H(x). Then, by Lemma 2.7 in [2] and the Helly–Bray lemma, it is not
difficult to check that

βMMSE
1 − p1

∫ 1

x + σ 2 dFc,H (x)
i.p.−→ 0.

To judge the performance of different receivers, we may then compare the value
of

∫ 1
x+σ 2 dFc,H (x) with the limiting SIR of the other linear receiver. However,

the awkward fact is that we usually do not have an explicit expression for Fc,H (x).
Thus, we may use the kernel estimate

∫ 1
x+σ 2 dFn(x) to estimate

∫ 1
x+σ 2 dFc,H (x),

by Corollary 2.
A second application: we may use fn(x) to infer, in some way, some statistical

properties of the population covariance matrix Tn. Specifically speaking, by (1.3),
we may evaluate the Stieltjes transform of the kernel estimator fn(x),

mfn(z) =
∫ 1

x − z
fn(x) dx, z ∈ C+.(3.2)

We may then obtain mfn
(z), by (1.5). On the other hand, we conclude from (1.6)

that

m(z)(c − 1 − zm(z))

c
=

∫
dH(t)

t + 1/m(z)
.(3.3)

Note that m(z) has a positive imaginary part. Therefore, with notation z1 =
−1/m(z) and s(z1) = m(z)(c−1−zm(z))

c
, we can rewrite (3.3) as

s(z1) =
∫

dH(t)

t − z1
, z1 ∈ C+.(3.4)
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Consequently, in view of the inversion formula

F {[a, b]} = 1

π
lim
v→0

∫ b

a
�mF (u + iv) du,(3.5)

we may recover H(t) from s(z1) as given in (3.4). However, s(z1) can be estimated
by the resulting kernel estimate

mfn
(z)(c − 1 − zmfn

(z))

c
.(3.6)

Once H(t) is estimated, we may further estimate the functions of the population
covariance matrix Tn, such as 1

n
tr T2

n. Indeed, by the Helly–Bray lemma, we have

1

n
tr T2

n =
∫

t2 dHn(t)
D−→

∫
t2 dH(t).

Thus, we may construct an estimator for 1
n

tr T2
n based on the resulting kernel esti-

mate (3.6). We conjecture that the estimators of H(t) and the corresponding func-
tions like 1

n
tr T2

n, obtained by the above method, are also consistent. A rigorous
argument is currently being pursued.

4. Simulation study. In this section, we perform a simulation study to inves-
tigate the behavior of the kernel density estimators of the Marcenko and Pastur
law. We consider two different populations, exponential and binomial distribu-
tions. From each population, we generate two samples with sizes 50 × 200 and
800 × 3200, respectively. We can therefore form two random matrices, (Xij )50,200
and (Xij )800,3200. The kernel is selected as

K(x) = (2π)−1/2e−x2/2,

which is the standard normal density function. The bandwidth is chosen as h =
0.5n−1/3 (n = 200,3200).

For (Xij )50,200, the kernel density estimator is

1

50 × 200−2/5

50∑
i=1

K
(
(x − μi)/200−2/5)

,

where μi, i = 1, . . . ,50, are eigenvalues of 200−1(Xij )50,200(Xij )
T
50,200. This

curve is drawn by dot-dash lines in the first two pictures.
For (Xij )800,3200, the kernel density estimator is

1

800 × 3200−2/5

800∑
i=1

K
(
(x − μi)/3200−2/5)

,

where μi , i = 1, . . . ,800, are eigenvalues of 3200−1(Xij )800,3200(Xij )
T
800,3200.

This curve is drawn by dashed lines in the first two pictures.
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FIG. 1. Spectral density curves for sample covariance matrices n−1(Xij )p×n(Xij )Tp×n, Xij ∼
exponential distribution.

The density function of the Marcenko and Pastur law is drawn by solid lines in
the first two pictures. Here, in Figure 1, the distribution is

F(x) = e−(x+1), x ≥ −1.(4.1)

In Figure 2, the distribution is

P(X = −1) = 1/2, P (X = 1) = 1/2.(4.2)

From the two figures, we see that the estimated curves fit the Marcenko and Pastur
law very well. As n becomes large, the estimated curves become closer to the
Marcenko and Pastur law.

Finally, we consider the estimated density curves based on the following three
matrices:

A200 = 1
200T1/2

200X50×200XT
50×200T1/2

200,

A3200 = 1
3200 T1/2

800X800×3200XT
800×3200T1/2

3200,

A6400 = 1
6400 T1/2

6400X1600×6400XT
1600×6400T1/2

6400,
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FIG. 2. Spectral density curves for sample covariance matrices n−1(Xij )p×n(Xij )Tp×n, Xij ∼
binomial distribution.

where Xp×4p , p = 50,800,1600, are p × 4p matrices whose elements are i.i.d.
random variables with distribution (4.1), and Tn = 1

4p
Yp×4pYT

p×4p . Here, Yp×4p

is a p × 4p matrix consisting of i.i.d. random variables whose distributions are
given by (4.2). Tn and Xp×4p are independent. The kernel function is the same as
before. The bandwidths corresponding to the three matrices are 0.5 × (4p)−1/3. In
Figure 3, we present three estimated curves. The dot-dash line is based on A200,
the dashed line on A3200 and the solid line on A6400. Although, in this case, we do
not know its exact formula, we can predict the limiting spectral density function
from Figure 3.

In order to show that the above conclusion is reliable, we choose ten points
throughout the range and calculate the mean square errors (MSEs) for the kernel
density estimator at the selected ten points, based on 500 matrices,

MSE(x) = 500−1
500∑
i=1

(
f (i)

n (x) − fc(x)
)2

,
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FIG. 3. Spectral density curves for sample covariance matrices n−1T1/2
n (Xij )p×n(Xij )Tp×nT1/2

n ,

Xij ∼ exponential distribution, Tn = n−1(Yij )p×n(Yij )Tp×n, Yij ∼ binomial distribution.

where f
(i)
n (x) is the kernel density estimator at x based on the ith matrix. If the

limiting distribution is unknown as in the case A200, we use the averaged spectral
density

f̄c(x) = 500−1
500∑
i=1

f (i)
n (x).

So, in this case,

MSE(x) = 500−1
500∑
i=1

(
f (i)

n (x) − f̄c(x)
)2

.

The numerical results for the three different matrices considered in this section are
presented in Tables 1, 2 and 3. The notation “e−j” in these tables means multipli-
cation by 10−j . The MSEs are uniformly small. As n becomes large, the MSEs
become smaller. This supports the conclusion that our proposed kernel spectral
density curve is consistent.
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TABLE 1
MSE of spectral density curves for sample covariance matrices

n−1(Xij )p×n(Xij )Tp×n, Xij ∼ exponential distribution

x = 0.30 0.511 0.722 0.933 1.144

50 × 200 9.89e−2 3.21e−2 3.18e−2 3.25e−2 3.56e−2
800 × 3200 3.84e−03 7.44e−5 7.28e−5 7.67e−5 7.34e−5

x = 1.356 1.567 1.778 1.989 2.20

50 × 200 3.79e−2 3.18e−2 3.73e−2 2.76e−2 3.63e−2
800 × 3200 7.67e−5 7.23e−5 6.88e−5 6.60e−5 6.74e−5

TABLE 2
MSE of spectral density curves for sample covariance matrices

n−1(Xij )p×n(Xij )Tp×n, Xij ∼ binomial distribution

x = 0.30 0.511 0.722 0.933 1.144

50 × 200 3.23e−1 3.14e−2 2.38e−2 2.76e−2 2.86e−2
800 × 3200 5.13e−03 8.01e−5 6.05e−5 7.30e−5 6.53e−5

x = 1.356 1.567 1.778 1.989 2.20

50 × 200 2.70e−2 2.44e−2 2.42e−2 2.40e−2 1.69e−2
800 × 3200 6.28e−5 7.65e−5 6.14e−5 6.68e−5 1.13e−4

TABLE 3
MSE of spectral density curves for sample covariance matrices

n−1T1/2
n (Xij )p×n(Xij )Tp×nT1/2

n , Xij ∼ exponential distribution

Tn = n−1(Yij )p×n(Yij )Tp×n, Yij ∼ binomial distribution

n−1(Xij )p×n(Xij )Tp×n, Xij ∼ binomial distribution

x = 0.30 0.511 0.722 0.933 1.144

50 × 100 1.20e−2 8.71e−3 8.58e−3 7.90e−3 8.77e−3
800 × 1600 6.25e−05 4.00e−5 3.51e−5 3.19e−5 2.71e−5

1600 × 3200 2.98e−5 1.83e−5 1.44e−5 1.39e−5 1.53e−5

x = 1.356 1.567 1.778 1.989 2.20

50 × 200 7.91e−3 8.07e−3 8.34e−3 7.54e−3 7.17e−3
800 × 3200 3.04e−5 3.10e−5 2.98e−5 2.89e−5 2.66e−5

1600 × 3200 1.19e−5 1.19e−5 1.36e−5 1.29e−5 1.32e−5
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We also conducted simulations using a wide range of bandwidths from small
h = n−1/2 to large h = n−1/10. The kernel spectral density curves seem to change
rather slowly. This indicates that the kernel spectral density estimator is robust
with respect to the bandwidth selection.

5. Proofs of Theorems 1 and 2. Throughout this section and the next, to
simplify notation, M,M1, . . . ,M12 stand for constants which may take different
values from one appearance to the next.

5.1. Proof of Theorem 1. We begin by developing the following two lemmas,
necessary for the argument of Theorem 1.

LEMMA 1. Under the assumptions of Theorem 1, let Fcn,Hn(t) be the dis-
tribution function obtained from Fc,H (t) by replacing c and H by cn and Hn,
respectively. Furthermore, fcn,Hn(x) denotes the density of Fcn,Hn(x). Then,

sup
n,x

fcn,Hn(x) ≤ M.

PROOF. From (3.10) in [2], we have

z(mn) = − 1

mn

+ cn

∫
t dHn(t)

1 + tmn

,(5.1)

where mn = mn(z) = mFcn,Hn
(z). Based on this expression, conclusions similar

to those in Theorem 1.1 of [14] still hold if we replace Fc,H (x) by Fcn,Hn(x)

and then argue similarly with the help of [14]. For example, the equality (1.6) in
Theorem 1.1 of [14] states that

x = − 1

m(x)
+ c

∫
t dH(t)

1 + tm(x)
.(5.2)

Similarly, for every x �= 0 for which fcn,Hn(x) > 0, πfcn,Hn(x) is the imaginary
part of the unique mn(x) satisfying

x = − 1

mn(x)
+ cn

∫
t dHn(t)

1 + tmn(x)
.(5.3)

Now, consider the imaginary part of mn(x). From (5.3), we obtain

cn

∫
t2 dHn(t)

|1 + tmn(x)|2 = 1

|mn(x)|2 .(5.4)



3736 JING, PAN, SHAO AND ZHOU

It follows from (5.3), (5.4) and Hölder’s inequality that

|mn(x)| ≤ |cn − 1|
x

+ cn

x

∫
dHn(t)

|1 + tmn(x)|

≤ |cn − 1|
x

+ cn

x

(∫
t2 dHn(t)

|1 + tmn(x)|2
∫

dHn(t)

t2

)1/2

≤ |cn − 1|
x

+
√

cn

x|mn(x)|
(∫

dHn(t)

t2

)1/2

,

where
∫ dHn(t)

t2 is well defined because we require the support of Fc,H (x) to be
[a, b] with a > 0. This inequality is equivalent to

|mn(x)|2 ≤ |cn − 1|
x

|mn(x)| +
√

cn

x

(∫
dHn(t)

t2

)1/2

.

It follows that

sup
n,x

|mn(x)| ≤ M.(5.5)

This leads to supn,x fcn,Hn(x) ≤ M . �

LEMMA 2. Under the assumptions of Lemma 1, when xn → x, we have

fcn,Hn(xn) − fc,H (xn) → 0.(5.6)

PROOF. Obviously, fc,H (xn) − fc,H (x) → 0 because fc,H (x) is continuous
on the interval [a, b]. Moreover, in view of (5.5), we may choose a subsequence nk

so that mnk
(xnk

) converges. We denote its limit by a(x). Suppose that �(a(x)) > 0.
Then, as in Lemma 3.3 in [14], we may argue that the limit of mn(xn) exists as
n → ∞. Next, we verify that a(x) = m(x). By (5.3), we then have

x = − 1

a(x)
+ c

∫
t dH(t)

1 + ta(x)

because, via (5.4) and Hölder’s inequality,∣∣∣∣
∫

t dHn(t)

1 + tmn(x)
−

∫
t dHn(t)

1 + ta(x)

∣∣∣∣

≤ |mn(x) − a(x)|
(

1

cn|mn(x)|2
∫

t2 dHn(t)

|1 + ta(x)|2
)1/2

and ∫
t dHn(t)

1 + ta(x)
→

∫
t dH(t)

1 + ta(x)
.
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Since the solution satisfying the equation (5.2) is unique, a(x) = m(x). Therefore,
mn(x) → m(x), which then implies that

fcn,Hn(xn) − fc,H (x) → 0.(5.7)

Now, suppose that �(a(x)) = 0. This implies that �(mn(xn)) → 0 and then that
fcn,Hn(xn) → 0 because if there is another subsequence on which �(mn(xn)) con-
verges to a positive number, then mn(xn) must converge to the complex number
with the positive imaginary part, by the previous argument. Next, by (1.2) and
(5.1), �(mn(xn + iv)) − �(m(xn + iv)) → 0 for any v > 0. We may then choose
vn → 0 so that �(mn(xn + ivn)) − �(m(xn + ivn)) → 0 as n → ∞. Moreover,
�(m(xn + ivn)) → �(m(x)) and �(mn(xn + ivn)) − �(mn(x)) → 0 by Theo-
rem 1.1 of [14] and a theorem for mn(z) similar to Theorem 1.1 of [14]. Therefore,
in view of the continuity of mn(x) for x �= 0, �(m(x)) = 0 and then (5.6) holds for
the case �(a(x)) = 0. �

We now proceed to prove Theorem 1. First, we claim that

sup
x

∣∣∣∣fn(x) − 1

h

∫
K

(
x − t

h

)
dFcn,Hn(t)

∣∣∣∣ −→ 0(5.8)

in probability. Indeed, from integration by parts and Theorem 3, we obtain

E sup
x

∣∣∣∣ 1

h

∫
K

(
x − t

h

)
dF An(t) − 1

h

∫
K

(
x − t

h

)
dFcn,Hn(t)

∣∣∣∣
= E sup

x

∣∣∣∣ 1

h2

∫
K ′

(
x − t

h

)(
F An(t) − Fcn,Hn(t)

)
dt

∣∣∣∣
= E sup

x

∣∣∣∣ 1

h

∫
K ′(u)

(
F An(x − uh) − Fcn,Hn(x − uh)

)
du

∣∣∣∣
≤ 1

h
E sup

x
|F An(x) − Fcn,Hn(x)|

∫
|K ′(u)|du

≤ M

n2/5h
→ 0.

The next aim is to show that
1

h

∫
K

(
x − t

h

)
dFcn,Hn(t) − 1

h

∫
K

(
x − t

h

)
dFc,H (t) −→ 0

uniformly in x ∈ [a, b]. This is equivalent to, for any sequence {xn,n ≥ 1} in [a, b]
converging to x,∫

K(u)
(
fcn,Hn(xn − uh) − fc,H (xn − uh)

)
du −→ 0.(5.9)

From Theorem 1.1 of [14], fc,H (x) is uniformly bounded on the interval [a, b].
Therefore, (5.9) follows from the dominated convergence theorem, Lemma 1 and
Lemma 2.
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Finally,∣∣∣∣ 1

h

∫
K

(
x − t

h

)
dFc,H (t) − fc,H (x)

1

h

∫ x−a

x−b
K

(
t

h

)
dt

∣∣∣∣
=

∣∣∣∣
∫ x−a

x−b

(
fc,H (x − t) − fc,H (x)

) 1

h
K

(
t

h

)
dt

∣∣∣∣
≤ sup

x∈[a,b]

∫
|t |>δ

∣∣∣∣(fc,H (x − t) − fc,H (x)
) 1

h
K

(
t

h

)∣∣∣∣dt

+ sup
x∈[a,b]

∫
|t |≤δ

∣∣∣∣(fc,H (x − t) − fc,H (x)
) 1

h
K

(
t

h

)∣∣∣∣dt

≤ 2 sup
x∈[a,b]

fc,H (x)

∫
|t |>δ/h

|K(y)|dy

+ sup
x∈[a,b]

sup
|t |≤δ

|fc,H (x − t) − fc,H (x)|
∫ 1

h

∣∣∣∣K
(

t

h

)∣∣∣∣dt,

which goes to zero by fixing δ and letting n → ∞ first, and then letting δ → 0. On
the other hand, obviously,

1

h

∫ x−a

x−b
K

(
t

h

)
dt =

∫ (x−a)/h

(x−b)/h
K(t) dt →

∫ +∞
−∞

K(t) dt = 1.

Thus, the proof is complete.

5.2. Proof of Theorem 2. Denote by Fcn(t) the distribution function obtained
from Fc(t) = ∫ t

−∞ fc(x) dx with c replaced by cn. Let Sn = 1
n

XnXT
n . From inte-

gration by parts, we obtain∣∣∣∣1

h

∫
K

(
x − t

h

)
dF Sn(t) − 1

h

∫
K

(
x − t

h

)
dFcn(t)

∣∣∣∣
=

∣∣∣∣ 1

h2

∫
K ′

(
x − t

h

)(
F Sn(t) − Fcn(t)

)
dt

∣∣∣∣
=

∣∣∣∣ 1

h

∫
K ′(u)

(
F Sn(x − uh) − Fcn(x − uh)

)
du

∣∣∣∣
≤ 1

h
sup
x

|F Sn(x) − Fcn(x)|
∫

|K ′(u)|du

≤ M√
nh

,

where the last step uses Theorem 1.2 in [6]. We next prove that

sup
x

∣∣∣∣ 1

h

∫
K

(
x − t

h

)
dFcn(t) − 1

h

∫
K

(
x − t

h

)
dFc(t)

∣∣∣∣ → 0.
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It suffices to prove that

sup
x

|fcn(x) − fc(x)| → 0,(5.10)

where fcn(x) stands for the density of Fcn(x).
Note that when c < 1,

fcn(x) − fc(x) =
√

(x − a(cn))(b(cn) − x)

2πcnx
−

√
(x − a(c))(b(c) − x)

2πcx
,

where

a(c) = (
1 − √

c
)2

, b(c) = (
1 + √

c
)2

,

and a(cn) and b(cn) are obtained from a(c) and b(c) by replacing c with cn, re-
spectively. It is then a simple matter to verify that (5.10) holds for x ∈ [a(c), b(c)].

Finally, as in Theorem 1, one may prove that

sup
x

∣∣∣∣ 1

h

∫
K

(
x − t

h

)
dFc(t) − fc(x)

∣∣∣∣ → 0.

Thus, the proof is complete.

5.3. Proof of Corollary 1. The result follows from Theorem 1 in [11].

6. Proof of Theorem 3.

6.1. Summary of argument. The strategy is to use Corollary 2.2 and Le-
mma 7.1 in [6]. To this end, a key step is to establish an upper bound for |b1|,
defined below. Note that in a suitable interval for z with a well-chosen imagi-
nary part v, the absolute value of the expectation of the Stieltjes transform of FAn

,
|Emn(z)|, is bounded. Moreover, for such v, when n → ∞, the difference between
b1 and its alternative expression involving Emn(z), ρn [given in (6.13)], converges
to zero with some convergence rate. Therefore, we may argue that |b1| is bounded.
Once this is done, we further develop a convergence rate of mn(z) − Emn(z) us-
ing a martingale decomposition, and a convergence rate of the difference between
Emn(z) and its corresponding limit using a recurrence approach.

We begin by giving some notation. Define A(z) = An−zI, Aj (z) = A(z)−sj sT
j

and sj = T1/2
n xj , with xj being the j th column of Xn. Let Ej = E(·|s1, . . . , sj )

and let E0 denote the expectation. Moreover, introduce

βj = 1

1 + sT
j A−1

j (z)sj

, β̂j = 1

1 + n−1 tr TnA−1
j (z)

,

ηj = sT
j A−1

j (z)sj − 1

n
tr A−1

j (z)Tn, b1 = 1

1 + n−1E tr TnA−1
1 (z)

,
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mn(z) =
∫

dFAn
(x)

x − z
, m0

n(z) =
∫

dFcn,Hn(x)

x − z
,

mn(z) =
∫

dFBn
(x)

x − z
, m0

n(z) =
∫

dF cn,Hn
(x)

x − z

and

ξ1 = sT
1 A−1

1 (z)s1 − 1

n
E tr A−1

1 (z)Tn.

Here, Fcn,Hn
(x) is obtained from Fc,H (x) by replacing c and H by cn and Hn,

respectively.
Let 
n = supx |EF An(x)−Fcn,Hn(x)| and v0 = max{γ
n,M1n

−2/5} with 0 <

γ < 1 to be chosen later and M1 an appropriate constant. As in Lemma 3.1 and
Lemma 3.2 in [14], we obtain, for u ∈ [a, b] and v0 ≤ v ≤ 1,

|m0
n(z)| ≤ M, |m0

n(z)| ≤ M,(6.1)

where the bound for |m0
n(z)| is obtained with the help of (1.5). Using integration

by parts, we have, for v > v0,

|Emn(z) − m0
n(z)| =

∣∣∣∣
∫ +∞
−∞

1

x − z
d
(
EF An(x) − Fcn,Hn(x)

)∣∣∣∣

=
∣∣∣∣
∫ +∞
−∞

EF An(x) − Fcn,Hn(x)

(x − z)2 dx

∣∣∣∣ ≤ π
n

v
≤ π

γ
.

This implies that

|Emn(z)| ≤ M, |Emn(z)| ≤ M,(6.2)

where the bound for |Emn(z)| is obtained from an equality similar to (1.5), noting
that �z ≥ a. It is readily observed that |β̂j | and |βj | are both bounded by |z|/v
(see (3.4) in [2]) and that Lemma 2.10 in [2] yields

|βj sT
j A−2

j (z)sj | ≤ v−1,(6.3)

which gives

| tr(A − zI)−1 − tr(Ak − zI)−1| ≤ v−1.(6.4)

This, together with (6.2), gives, for v > v0,
∣∣∣∣1

n
E tr A−1

1 (z)

∣∣∣∣ ≤ M.(6.5)

In the subsequent subsections, we will assume that z = u + iv with v ≥ v0 and
u ∈ [a, b].
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6.2. Bounds for n−2E| tr A−1(z) − E tr A−1(z)|2 and E|β1|2.

LEMMA 3. If |b1| ≤ M , then, for v > M1n
−2/5,

1

n2 E| tr A−1(z) − E tr A−1(z)|2 ≤ M

n2v3 .(6.6)

PROOF.
1

n
tr A−1(z) − E tr A−1(z)

= 1

n

n∑
j=1

(
Ej tr A−1(z) − Ej−1 tr A−1(z)

)

= 1

n

n∑
j=1

Ej

(
tr A−1(z) − A−1

j (z)
) − Ej−1 tr

(
tr A−1(z) − A−1

j (z)
)

= 1

n

n∑
j=1

(Ej − Ej−1)(βj sT
j A−2

j (z)sj )

= 1

n

n∑
j=1

(Ej − Ej−1)

[
b1

(
sT
j A−2

j (z)sj − 1

n
tr A−2

j (z)Tn

)

+ b1βj sT
j A−2

j (z)sj ξj

]
,

where the last step uses the fact that

βj = b1 − b1βjξj .(6.7)

Lemma 2.7 in [2] then gives

E

∣∣∣∣1

n

n∑
j=1

(Ej − Ej−1)

(
sT
j A−2

j (z)sj − 1

n
tr A−2

j (z)Tn

)∣∣∣∣
2

≤ M

n2

n∑
j=1

E

∣∣∣∣
(

sT
j A−2

j (z)sj − 1

n
tr A−2

j (z)Tn

)∣∣∣∣
2

≤ M

n2

n∑
j=1

E
1

n2 tr A−2
1 (z)TnA−2

1 (z̄)Tn

≤ λ2
max(Tn)

n3v2 E tr A−1
1 (z)A−1

1 (z̄) ≤ M

n2v3

because, via (6.5),

1

n
E tr A−1

1 (z)A−1
1 (z̄) = 1

v
�

(
1

n
E tr A−1

1 (z)

)
≤ M

v
.(6.8)
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Using (6.3) and Lemma 2.7 in [2], we similarly have

E

∣∣∣∣1

n

n∑
j=1

(Ej − Ej−1)βj sT
j A−2

j (z)sj ξj

∣∣∣∣
2

≤ M

n2v3 + M

n3v2 E| tr A−1(z) − E tr A−1(z)|2.
Summarizing the above, we have proven that(

1 − M

nv2

)
1

n2 E| tr A−1(z) − E tr A−1(z)|2 ≤ M

n2v3 ,

which implies Lemma 3 by choosing an appropriate M1 such that M
nv2 < 1

2 . �

LEMMA 4. If |b1| ≤ M , then, for v > M1n
−2/5,

1

n4 E| tr A−1(z) − E tr A−1(z)|4 ≤ M

n4v6 .(6.9)

PROOF. Lemma 4 is obtained by repeating the argument of Lemma 3 and
applying

E

(
1

n
tr A−2

1 (z)TnA−2
1 (z̄)Tn

)2

≤ λ4
max(Tn)

n2v6 E| tr A−1
1 (z) − E tr A−1

1 (z)|2 + λ4
max(Tn)

n2v6 |E tr A−1
1 (z)|2

≤ M

v6 . �

LEMMA 5. If |b1| ≤ M , then there is some constant M2 such that for v ≥
M2n

−2/5,

E|β1|2 ≤ M.

PROOF. By (6.7), we have

βj = b1 − b2
1ξj + b2

1βjξj

and

E|ξ1(z)|4 ≤ ME|η1(z)|4 + Mn−4E| tr A−1
1 (z)Tn − E tr A−1

1 (z)Tn|4
(6.10)

≤ M

n2v2 + M

n4v6

because repeating the argument of Lemma 3 and Lemma 4 yields

E

∣∣∣∣1

n
tr DA−1

1 (z) − E
1

n
tr DA−1

1 (z)

∣∣∣∣
4

≤ M

n4v6‖D‖4(6.11)
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for a fixed matrix D. It follows that

E|β1|2 ≤ |b1|2 + |b1|4E|ξ1|2 + |b1|4
v

(E|β1|2E|ξ1|4)1/2,

which gives

E|β1|2 ≤ M + M

nv
+ M

nv2 (E|β1|2)1/2.

Solving this inequality gives Lemma 5. �

6.3. A bound for b1(z). By (6.7) and

1 − cn − zcnmn(z) = 1

n

n∑
j=1

βj(6.12)

(see the equality above (2.2) in [13]), we get

b1 = 1 − cn − zcnEmn(z) + ρn,(6.13)

where

ρn = b1E(β1ξ1).

LEMMA 6. If |b1| ≤ M , then there is some constant M3 such that for v ≥
M3n

−2/5,

|ρn| ≤ M

nv
.

PROOF. Lemma 5 and (6.10) ensure that

|E[β1(z)ξ1(z)]| = |b1(z)E[β1(z)ξ
2
1 ]| ≤ M(E|β1(z)|2E|ξ1|4)1/2 ≤ M

nv
.

Thus, Lemma 6 is proved. �

LEMMA 7. If �(z +ρn) ≥ 0, then there exists a positive constant c depending
on γ, a, b such that

|b1| ≤ M.

PROOF. Consider the case �(Emn(z)) ≥ v > 0 first. It follows from (6.13)
and the assumption that

�(
cn + z + zcnEmn(z) − 1

)
≥ −�(b1)

= −|b1|2�(
1 + n−1E tr A−1(z̄)

)
.
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Note that

�(
cn + z + zcnEmn(z) − 1

)

= v + vcn

∫
x

|x − z|2 dFn2(x)(6.14)

= v + cn[v�(Emn(z)) + u�(Emn(z))] > 0.

Thus, we have

|b1|2 ≤ v + cn[v�(Emn(z)) + u�(Emn(z))]
cn�(Emn(z))

≤ [1 + cn|�(Emn(z))| + cnu]�(Emn(z))

cn�(Emn(z))
(6.15)

≤ 1/cn + M + b.

Next, consider the case �(Emn(z)) < v. Note that for u ∈ [a, b],
|�(Emn(z))| ≥

v

M + v2 .(6.16)

This, together with (6.15), gives

|b1|2 ≤ (M + v2)[1 + cn(|�(Emn(z))| + u)]v
cnMv

≤ 1 + cn[|�(Emn(z))| + u]
cnM

. �

LEMMA 8. There is some constant M4 such that, for any v ≥ M4n
−2/5,

�(z + ρn) > 0.

PROOF. First, we claim that

�(z + ρn) �= 0.(6.17)

If not, �(z + ρn) = 0 implies that

|ρn| ≥ |�(ρn)| = v.(6.18)

On the other hand, if �(z + ρn) = 0, then we then conclude from Lemma 7 and
Lemma 6 that

|ρn| ≤ M

nv
.

Thus, recalling that v ≥ M4n
−2/5, we may choose an appropriate constant M4 so

that

|ρn| ≤ v

3
,

which contradicts (6.18). Therefore, (6.17) holds.
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Next, note that

�(
z + zn−1E tr A−1

1 (z)
) ≥ v, �(

z + zn−1E tr A−1(z)
) ≥ v.

Therefore, when taking v = 1,

|b1(z)| ≤ |z|
v

≤ M, |b(z)| ≤ |z|
v

≤ M.

It follows from Lemma 7 and Lemma 6 that

|ρn| ≤ M

n
,

which implies that for n large and v = 1,

�(z + ρn) > 0.(6.19)

This, together with (6.17) and continuity of the function, ensures that (6.19) holds
for 1 ≥ v ≥ M3n

−2/5. Thus, the proof of Lemma 8 is complete. �

6.4. Convergence of expected value. Based on Lemma 7 and Lemma 8, |b1| ≤
M and therefore all results in Section 6.2 remain true for v ≥ Mn−2/5 with some
appropriate positive constant M .

Set F−1(z) = (EmnTn + I)−1 and then write (see (5.2) in [2])

cn

∫
dHn(t)

1 + tEmn

+ zcnE(mn(z)) = Dn,(6.20)

where

Dn = Eβ1

[
sT

1 A−1
1 (z)F−1(z)s1 − 1

n
E(tr F−1(z)TnA−1(z))

]
.

It follows that (see (3.20) in [2])

Emn(z) − m0
n(z)

(6.21)

= m0
n(z)Emnωn

/(
1 − cnEmnm

0
n

∫
t2 dHn(t)

(1 + tEmn)(1 + tm0
n)

)
,

where ωn = −Dn/Emn.

Applying (6.7), we obtain

Dn = b1E

[
1

n
tr F−1(z)TnA−1

1 (z) − 1

n
tr F−1(z)TnA−1(z)

]

− E

[
b1β1ξ1

(
sT

1 A−1
1 (z)F−1(z)s1 − 1

n
E(tr F−1(z)TnA−1(z))

)]
.
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We now investigate Dn. We conclude from (6.3) and Hölder’s inequality that∣∣∣∣1

n
tr F−1(z)TnA−1

1 (z) − 1

n
tr F−1(z)TnA−1(z)

∣∣∣∣
(6.22)

≤ M

nv3/2

(
1

n
tr F−1(z)F−1(z̄)

)1/2

.

Let ζ1 = sT
1 A−1

1 (z)F−1(z)s1 − 1
n
(tr F−1(z)TnA−1

1 (z)). By (6.8) and Hölder’s in-
equality, we have

|Eb2
1ξ1ζ1| = |b2

1Eη1ζ1| ≤ M

nv3/2

(
1

n
tr F−1(z)F−1(z̄)

)1/2

and by Lemma 5, Lemma 4, (6.10), (6.23) and Hölder’s inequality, we have

E|b2
1β1ξ

2
1 ζ1|

≤ M(E|β1|2)1/2(E|η1|8E|ζ1|4)1/4

+ M(E|β1|2)1/2

×
(
E

[∣∣∣∣1

n
tr A−1

1 (z)Tn − E
1

n
tr A−1

1 (z)Tn

∣∣∣∣
4

E(|ζ1|2|A−1
1 (z))

])1/2

≤ M

nv3/2 ,

where we also use (6.11) and the fact that, via Lemma 2.11 in [2],

‖F−1(z)‖ ≤ M

v
.(6.23)

These, together with (6.7), give

|Eb1β1ξ1ζ1| ≤ |Eb2
1ξ1ζ1| + |Eb2

1β1ξ
2
1 ζ1|

(6.24)

≤ M

nv3/2 + M

nv3/2

(
1

n
tr F−1(z)F−1(z̄)

)1/2

.

Similarly, by (6.11), we may get∣∣∣∣Eb1β1ξ1

(
1

n
tr F−1(z)TnA−1

1 (z) − E
1

n
tr F−1(z)TnA−1

1 (z)

)∣∣∣∣ ≤ M

nv3/2 .(6.25)

In view of (6.22), we have

E

∣∣∣∣b1β1ξ1

(
E

1

n
tr F−1(z)TnA−1

1 (z) − E
1

n
tr F−1(z)TnA−1(z)

)∣∣∣∣

≤ M

nv

(
1

n
tr F−1(z)F−1(z̄)

)1/2

.
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Summarizing the above gives

|Dn| ≤ M

nv3/2 + M

nv3/2

(
1

n
tr F−1(z)F−1(z̄)

)1/2

.(6.26)

Now, considering the imaginary part of (6.20), we may conclude that

cn

∫
t

|1 + tEmn|2
dHn(t) ≤ |�(zcnE(mn(z)))|

�(Emn)
+ |Dn|

�(Emn)
.(6.27)

Formulas (6.16), (6.2) and an equality similar to (1.5) ensure that

|�(zcnE(mn(z)))|
�(Emn)

≤ u�(Emn) + v|�(Emn)|
�(Emn)

≤ M(6.28)

and that

|Dn|
�(Emn)

≤ M

nv5/2 + M

nv5/2

(
1

n
tr F−1(z)F−1(z̄)

)1/2

.

It follows that

cn

∫
t

|1 + tEmn|2
dHn(t)

(6.29)

≤ M + M

nv5/2 + M

nv5/2

(
1

n
tr F−1(z)F−1(z̄)

)1/2

,

which implies that∣∣∣∣1

n
tr F−1(z)F−1(z̄)

∣∣∣∣ =
∫

dHn(t)

|1 + tEmn|2
≤ 1

λmin(Tn)

∫
t dHn(t)

|1 + tEmn|2

≤ M + M

nv5/2 + M

nv5/2

(
1

n
tr F−1(z)F−1(z̄)

)1/2

.

This inequality yields ∣∣∣∣1

n
tr F−1(z)F−1(z̄)

∣∣∣∣ ≤ M.(6.30)

This, together with (6.26), ensures that

|Dn| ≤ M

nv3/2 .(6.31)

Next, we prove that

inf
n,z

|Emn(z)| > M > 0.(6.32)

To this end, by (6.13) and an equality similar to (1.5), we have

b1 = −zEmn(z) + ρn.(6.33)
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In view of Lemma 6 and (6.33), to prove (6.32), it is thus sufficient to show that∣∣∣∣1

n
E tr A−1

1 (z)Tn

∣∣∣∣ ≤ M.(6.34)

Suppose that (6.34) is not true. There then exist subsequences nk and zk → z0 �= 0
such that | 1

n
E tr A−1

1 (z)Tn| → ∞ on the subsequences nk and zk , which, together
with (6.33) and Lemma 6, implies that Emn(z) → 0 on such subsequences. This,
together with (6.30), ensures that on such subsequences

cn

∫
dHn(t)

1 + tEmn

→ c,

which, via an equality similar to (1.5), further implies that on such subsequences,

cn

∫
dHn(t)

1 + tEmn

+ zcnE(mn(z)) → 1.(6.35)

But, on the other hand, by (6.31) and (6.20),

cn

∫
dHn(t)

1 + tEmn

+ zcnE(mn(z)) → 0,

which contradicts (6.35). Therefore, (6.34) and, consequently, (6.32) hold.
It follows from (6.32) and (6.31) that for v > M8n

−2/5,

|ωn| ≤ M

nv3/2 ≤ v,(6.36)

where we may choose an appropriate M8. Moreover, since (1.6) holds when m is
replaced by m0

n, considering the imaginary parts of both sides of the equality, we
obtain

v = �(m0
n)

|m0
n|2

− cn�(m0
n)

∫
t2 dHn(t)

|1 + tm0
n|2

,

which implies that

cn�(m0
n)

∫
t2 dHn(t)

|1 + tm0
n|2

≤ M.

It follows that((
cn�(m0

n)

∫
t2 dHn(t)

|1 + tm0
n|2

)/(
v + cn�(m0

n)

∫
t2 dHn(t)

|1 + tm0
n|2

))1/2

≤ 1 − Mv.

Applying this and (6.36), as in (3.21) in [2], we may conclude that∣∣∣∣1 − cnEmnm
0
n

∫
t2 dHn(t)

(1 + tEmn)(1 + tm0
n)

∣∣∣∣ ≥ Mv.(6.37)

This, together with (6.21) and (6.31), yields

|Emn(z) − m0
n(z)| ≤

M

nv5/2 .(6.38)
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6.5. Convergence rate of EF An and F An . As in Theorem 1.1 in [14], fcn,Hn

is continuous. Therefore,

1

vπ
sup

x∈[a+1/2ε,b−1/2ε]

∫
|y|<2vM

|Fcn,Hn(x + y) − Fcn,Hn(x)|dy ≤ Mv,

where ε > vM11. Lemma 2.1 in [5] or Lemma 2.1 and Corollary 2.2 in [6] are then
applicable in our case.

First, consider EF An . For v ≥ v0, by Corollary 2.2 in [6], (6.38), we obtain,
after integration in u and v,


n ≤ M

n
+ M9v0 + M10

nv
3/2
0

,(6.39)

where we set V , given in Corollary 2.2 in [6], equal to one and also use the fact
that |Emn(z

′) − m0
n(z

′)| = O(n−1) with z′ = u + iV (see Section 4 in [3]). If
v0 = M1n

−2/5, then (6.39) gives |
n| ≤ M/n2/5. If v0 = γ
n, then we choose
γ = (2M9)

−1 (here one should note that M10 depends on γ , but M9 does not
depend on γ ). Again, (6.39) gives

|
n| ≤ M/n2/5.(6.40)

This completes the proof of (2.10).
Now, consider the convergence rate of F An . It follows from Cauchy’s inequality

that

n−1| tr A−2(z) − E tr A−2(z)| ≤ M

v
sup

z1∈Cv

n−1| tr A−1(z1) − E tr A−1(z1)|,

where Cv = {z1 : |z − z1| = v0/3}. This, together with Lemma 3, ensures that

En−1| tr A−2(z) − E tr A−2(z)| ≤ M

nv5/2 .(6.41)

Equation (2.11) then follows from (6.41), Lemma 3, the argument leading to (6.40)
and Lemma 7.1 in [6].
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