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HIGH-DIMENSIONALITY EFFECTS IN THE MARKOWITZ
PROBLEM AND OTHER QUADRATIC PROGRAMS WITH

LINEAR CONSTRAINTS: RISK UNDERESTIMATION1

BY NOUREDDINE EL KAROUI

University of California, Berkeley

We first study the properties of solutions of quadratic programs with lin-
ear equality constraints whose parameters are estimated from data in the high-
dimensional setting where p, the number of variables in the problem, is of the
same order of magnitude as n, the number of observations used to estimate
the parameters. The Markowitz problem in Finance is a subcase of our study.
Assuming normality and independence of the observations we relate the effi-
cient frontier computed empirically to the “true” efficient frontier. Our com-
putations show that there is a separation of the errors induced by estimating
the mean of the observations and estimating the covariance matrix. In partic-
ular, the price paid for estimating the covariance matrix is an underestimation
of the variance by a factor roughly equal to 1 −p/n. Therefore the risk of the
optimal population solution is underestimated when we estimate it by solving
a similar quadratic program with estimated parameters.

We also characterize the statistical behavior of linear functionals of the
empirical optimal vector and show that they are biased estimators of the cor-
responding population quantities.

We investigate the robustness of our Gaussian results by extending the
study to certain elliptical models and models where our n observations are
correlated (in “time”). We show a lack of robustness of the Gaussian results,
but are still able to get results concerning first order properties of the quan-
tities of interest, even in the case of relatively heavy-tailed data (we require
two moments). Risk underestimation is still present in the elliptical case and
more pronounced than in the Gaussian case.

We discuss properties of the nonparametric and parametric bootstrap in
this context. We show several results, including the interesting fact that stan-
dard applications of the bootstrap generally yield inconsistent estimates of
bias.

We propose some strategies to correct these problems and practically val-
idate them in some simulations. Throughout this paper, we will assume that
p, n and n − p tend to infinity, and p < n.

Finally, we extend our study to the case of problems with more general
linear constraints, including, in particular, inequality constraints.
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1. Introduction. Many statistical estimation problems are now formulated,
implicitly or explicitly, as solutions of certain optimization problems. Naturally,
the parameters of these problems tend to be estimated from data and it is there-
fore important that we understand the relationship between the solutions of two
types of optimization problems: those which use the population parameters and
those which use the estimated parameters. This question is particularly relevant
in high-dimensional inference where one suspects that the differences between
the two solutions might be considerable. The aim of this paper is to contribute
to this understanding by focusing on quadratic programs with linear constraints.
An important example of such a program where our questions are very natural is
the celebrated Markowitz optimization problem in Finance which will serve as a
supporting example throughout the paper.

The Markowitz problem [Markowitz (1952)] is a classic portfolio optimization
problem in Finance, where investors choose to invest according to the following
framework: one picks assets in such a way that the portfolio guarantees a certain
level of expected returns but minimizes the “risk” associated with them. In the
standard framework, this risk is measured the variance of the portfolio.

Markowitz’s paper was highly influential and much work has followed. It is now
part of the standard textbook literature on these issues [Ruppert (2006), Campbell,
Lo and MacKinlay (1996)]. Let us recall the setup of the Markowitz problem.

• We have the opportunity to invest in p assets, A1, . . . ,Ap .
• In the ideal situation, the mean returns are known and represented by a p-

dimensional vector, μ.
• Also, the covariance between the returns is known; we denote it by �.
• We want to create a portfolio, with guaranteed mean return μP , and minimize

its risk, as measured by variance.
• The question is how should items be weighted in portfolio? What are weights w?

We note that � is positive semi-definite and hence is in particular symmetric. In
the ideal (or population) solution, the covariance and the mean are known. The
mathematical formulation is then the following simple quadratic program. We wish
to find the weights w that solve the following problem:⎧⎨⎩min 1

2w′�w,

w′μ = μP ,

w′e = 1.

Here e is a p-dimensional vector with 1 in every entry. If � is invertible, the
solution is known explicitly (see Section 2). If we call woptimal the solution of
this problem, the curve w′

optimal�woptimal, seen as a function of μP , is called the
efficient frontier.

Of course, in practice, we do not know μ and � and we need to estimate them.
An interesting question is therefore to know what happens in the Markowitz prob-
lem when we replace population quantities by corresponding estimators.
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Naturally, we can ask a similar question for general quadratic programs with
linear constraints [see below or Boyd and Vandenberghe (2004) for a definition],
the Markowitz problem being a particular instance of such a problem. This paper
provides an answer to these questions under certain distributional assumptions on
the data. Hence our paper is really about the impact of estimation error on certain
high-dimensional M-estimation problems.

It has been observed by many that there are problems in practice when re-
placing population quantities by standard estimators [see Lai and Xing (2008),
Section 3.5], and alternatives have been proposed. A famous one is the Black–
Litterman model [Black and Litterman (1990), Meucci (2005) and, e.g., Meucci
(2008)]. Adjustments to the standard estimators have also been proposed: Ledoit
and Wolf (2004), partly motivated by portfolio optimization problems, proposed to
“shrink” the sample covariance matrix toward another positive definite matrix (of-
ten the identity matrix properly scaled), while Michaud (1998) proposed to use the
bootstrap and to average bootstrap weights to find better-behaved weights for the
portfolio. As noted in Lai and Xing (2008), there is a dearth of theoretical studies
regarding, in particular, the behavior of bootstrap estimators.

An aspect of the problem that is of particular interest to us is the study of large-
dimensional portfolios (or quadratic programs with linear constraints). To make
matters clear, we focus on a portfolio with p = 100 assets. If we use a year of
daily data to estimate �, the covariance between the daily returns of the assets, we
have n � 250 observations at our disposal. In modern statistical parlance, we are
therefore in a “large n, large p” setting, and we know from random matrix theory
that �̂ the sample covariance matrix is a poor estimator of �, especially when it
comes to spectral properties of �. There is now a developing statistical literature
on properties of sample covariance matrices when n and p are both large, and it is
now understood that, though �̂ is unbiased for �, the eigenvalues and eigenvec-
tors of �̂ behave very differently from those of �. We refer the interested reader
to Johnstone (2001), El Karoui (2007, 2008, 2009a), Bickel and Levina (2008a),
Rothman et al. (2008) for a partial introduction to these problems. We wish with
this study to make clear that the “large n, large p” character of the problem has an
important impact of the empirical solution of the problem. By contrast, standard
but thorough discussions of these problems [Meucci (2005)] give only a cursory
treatment of dimensionality issues (e.g., one page out of a whole book).

Another interesting aspect of this problem is that the high-dimensional setting
does not allow, by contrast to the classical “small p, large n” setting, a perturbative
approach to go through. In the “small p, large n” setting, the paper Jobson and
Korkie (1980) is concerned, in the Gaussian case, with issues similar to the ones
we will be investigating.

The “large n, large p” setting is the one with which random matrix theory is
concerned—and the high-dimensional Markowitz problem has therefore been of
interest to random matrix theorists for some time now. We note in particular the
paper Laloux et al. (2000), where a random matrix-inspired (shrinkage) approach
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to improved estimation of the sample covariance matrix is proposed in the context
of the Markowitz problem.

Let us now remind the reader of some basic facts of random matrix theory that
suggest that serious problems may arise if one solves naively the high-dimensional
Markowitz problem or other quadratic programs with linear equality constraints.
A key result in random matrix theory is the Marčenko–Pastur equation [Marčenko
and Pastur (1967)] which characterizes the limiting distribution of the eigenvalues
of the sample covariance matrix and relates it to the spectral distribution of the
population covariance matrix. We give only in this introduction its simplest form
and refer the reader to Marčenko and Pastur (1967), Wachter (1978), Silverstein
(1995), Bai (1999) and, for example, El Karoui (2009a) for a more thorough intro-
duction and very recent developments, as well as potential geometric and statistical
limitations of the models usually considered in random matrix theory.

In the simplest setting, we consider data {Xi}ni=1, which are p-dimensional. In
a financial context, these vectors would be vectors of (log)-returns of assets, the
portfolio consisting of p assets. To simplify the exposition, let us assume that the
Xi’s are i.i.d. with distribution N (0, Idp). We call X the n × p matrix whose ith
row is the vector Xi . Let us consider the sample covariance matrix

�̂ = 1

n − 1
(X − X̄)′(X − X̄),

where X̄ is a matrix whose rows are all equal to the column mean of X. Now let us
call Fp the spectral distribution of �̂, that is, the probability distribution that puts
mass 1/p at each of the p eigenvalues of �̂. A graphical representation of this
probability distribution is naturally the histogram of eigenvalues of �̂. A conse-
quence of the main result of the very profound paper Marčenko and Pastur (1967)
is that Fp , though a random measure, is asymptotically nonrandom, and its limit,
in the sense of weak convergence of distributions, F has a density (when p < n)
that can be computed. F depends on ρ = limn→∞ p/n in the following manner: if
p < n, the density of F is

fρ(x) = 1

2πρ

√
(y+ − x)(x − y−)

x
1y−≤x≤y+,

where y+ = (1 + √
ρ)2 and y− = (1 − √

ρ)2. Figure 1 presents a graphical illus-
tration of this result.

What is striking about this result is that it implies that the largest eigenvalue of
�, λ1, will be overestimated by l1 the largest eigenvalue of �̂. Also, the smallest
eigenvalue of �, λp , will be underestimated by the smallest eigenvalue of �̂, lp .
As a matter of fact, in the model described above, � has all its eigenvalues equal
to 1, so λ1(�) = λp(�) = 1, while l1 will asymptotically be larger or equal to
(1 + √

ρ)2 and lp smaller or equal to (1 − √
ρ)2 (in the Gaussian case and several

others, l1 and lp converge to those limits). We note that the result of Marčenko and
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FIG. 1. Illustration of Marčenko–Pastur-law, n = 500, p = 200. The red curve is the density of the
Marčenko–Pastur-law for ρ = 2/5. The simulation was done with i.i.d. Gaussian data. The histogram
is the histogram of eigenvalues of X′X/n.

Pastur (1967) is not limited to the case where � is identity, as presented here, but
holds for general covariance � (Fp has of course a different limit then).

Perhaps more concretely, let us consider a projection of the data along a vec-
tor v, with ‖v‖2 = 1, where ‖v‖2 is the Euclidian norm of v. Here it is clear that,
if X ∼ N (0, Idp), var(v′X) = 1, for all v, since v′X ∼ N (0,1). However, if we
do not know � and estimate it by �̂, a naive (and wrong) reasoning suggests
that we can find direction of lower variance than 1, namely those corresponding
to eigenvectors of �̂ associated with eigenvalues that are less than 1. In particu-
lar, if vp is the eigenvector associated with lp , the smallest eigenvalue of �̂, by
naively estimating, for X independent of {Xi}ni=1, the variance in the direction of
vp , var(v′

pX), by the empirical version v′
p�̂vp , one would commit a severe mis-

take: the variance in any direction is 1, but it would be estimated by something
roughly equal to (1 − √

p/n)2 in the direction of vp .
In a portfolio optimization context, this suggests that by using standard esti-

mators, such as the sample covariance matrix, when solving the high-dimensional
Markowitz problem, one might underestimate the variance of certain portfolios (or
“optimal” vectors of weights). As a matter of fact, in the previous toy example,
thinking (wrongly) that there is low variance in the direction vp , one might (nu-
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merically) “load” this direction more than warranted, given that the true variance
is the same in all directions.

This simple argument suggests that severe problems might arise in the high-
dimensional Markowitz problem and other quadratic programs with linear con-
straints, and in particular, risk might be underestimated. While this heuristic ar-
gument is probably clear to specialists of random matrix theory, the problem had
not been investigated at a mathematical level of rigor in that literature before this
paper was submitted [the paper Bai, Liu and Wong (2009) has appeared while this
paper was being refereed. It is concerned with different models than the ones we
will be investigating and our results do not overlap]. It has received some attention
at a physical level of rigor [see, e.g., Pafka and Kondor (2003), where the authors
treat only the Gaussian case, and do not investigate the effect of the mean, which
as we show below creates problems of its own]. In this paper, we propose a theo-
retical analysis of the problem in a Gaussian and elliptical framework for general
quadratic programs with linear constraints, one of them involving the parameter μ.
Our results and contributions are several-fold. We relate the empirical efficient
frontier to the theoretical efficient frontier that is key to the Markowitz theory, in a
variety of theoretical settings. We show that the empirical frontier generally yields
an underestimation of the risk of the portfolio and that Gaussian analysis gives
an over-optimistic view of this problem. We show that the expected returns of the
naive “optimal” portfolio are poorly estimated by μP . We argue that the bootstrap
will not solve the problems we are pointing out here. Beside new formulas, we
also provide robust estimators of the various quantities we are interested in.

The paper is divided into four main parts and a conclusion. In Section 2, to make
the paper self-contained, we discuss the solution of quadratic problems with linear
equality constraints—a focus of this paper. In Section 3, we study the impact of
parameter estimation on the solution of these problems when the observed data is
i.i.d. Gaussian and obtain some exact distributional results for fixed p and n. In
Section 4, we obtain results in the case where the data is elliptically distributed.
This allows us also to understand the impact of correlation between observations in
the Gaussian case and to get information about the behavior of the nonparametric
bootstrap. In Section 5, we apply the results of Section 4 to the quadratic programs
at hand and compare the elliptical and the Gaussian cases. We show, among other
things, that the Gaussian results are not robust in the class of elliptical distribution.
In particular, two models may yield the same μ and � but can have very different
empirical behavior. In Section 5, we also propose various schemes to correct the
problems we highlight (see pages 3547, 3548 and 3549 for pictures) and study
more general problems with linear constraints (see Section 5.6). The conclusion
summarizes our findings and the Appendix contains various facts and proofs that
did not naturally flow in the main text or were better highlighted by being stated
separately.

Several times in the paper �̂−1 and �−1 will appear. Unless otherwise noted,
when taking the inverse of a population matrix, we implicitly assume that it ex-
ists. The question of existence of inverse of sample covariance matrices is well



HIGH-DIMENSIONAL QUADRATIC PROGRAMS 3493

understood in the statistics literature. Because our models will have a component
with a continuous distribution, there are essentially no existence problems (unless
we explicitly mention and treat them) as proofs similar to standard ones found
in textbooks [e.g., Anderson (2003)] would show. Hence, we do not belabor this
point any further in the rest of the paper as our focus is on things other than rather
well-understood technical details, and the paper is already a bit long.

Finally, let us mention that while the Finance motivation for our study is impor-
tant to us, we treat the problem in this paper as a high-dimensional M-estimation
question (which we think has practical relevance). We will not introduce particular
modelization assumptions which might be relevant for practitioners of Finance but
might make the paper less relevant in other fields. A companion paper [El Karoui
(2009b)] deals with more “financial” issues and the important question of the re-
alized risk of portfolios that are “plug-in” solutions of the Markowitz problem.

2. Quadratic programs with linear equality constraints. We discuss here
the properties of the solution of quadratic programs with linear equality constraints
as they lay the foundations for our analysis of similar problems involving estimated
parameters (and of problems with inequality constraints). We included this section
for the convenience of the reader to make the paper as self-contained as possible.

The problem we want to solve is the following:⎧⎨⎩ min
w∈Rp

1

2
w′�w,

w′vi = ui, 1 ≤ i ≤ k.

(QP-eqc)

Here � is a positive definite matrix of size p × p, vi ∈ Rp and ui ∈ R. We have
the following theorem:

THEOREM 2.1. Let us call V the p×k matrix whose ith column is vi , U the k

dimensional vector whose ith entry is ui and M the k × k matrix

M = V ′�−1V.

We assume that the vi ’s are such that M is invertible. The solution of the quadratic
program with linear equality constraints (QP-eqc) is achieved for

woptimal = �−1V M−1U,

and we have

w′
optimal�woptimal = U ′M−1U.

PROOF. Let us call λ a k dimensional vector of Lagrange multipliers. The
Lagrangian function is, in matrix notation,

L(w,λ) = w′�w

2
− λ′(V ′w − U).
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This is clearly a (strictly) convex function in w, since � is positive definite by
assumption. We have

∂L

∂w
= �w − V λ.

So woptimal = �−1V λ. Now we know that U = V ′woptimal. So U = V ′�−1V λ =
Mλ. Therefore,

woptimal = �−1V M−1U.

We deduce immediately that

w′
optimal�woptimal = U ′M−1U. �

We now turn to another result which will prove to be useful later. It gives a com-
pact representation of linear combinations of the weights of the optimal solution,
and we will rely heavily on it in particular in the case of Gaussian data.

LEMMA 2.2. Let us consider woptimal the solution of the optimization problem
(QP-eqc). Let γ be a vector in Rp . Let us call M the (k + 1)× (k + 1) matrix that
is written in block form

M =
(

V ′�−1V V ′�−1γ

γ ′�−1V γ ′�−1γ

)
.

Assume that M is invertible. Then

γ ′woptimal = − 1

M−1
k+1,k+1

(U ′0)M−1
(

0k

1

)
.(1)

PROOF. The proof is a consequence of the results discussed in the Appendix
concerning inverses of partitioned matrices [see Section A.1 and equation (A.4)
there]. Let us write

M =
(M11 M12

M21 M22

)
,

where M11 is k × k, M12 is naturally k × 1 and M22 is a scalar. With the same
block notation, we have

M−1 =
(M11 M12

M21 M22

)
.

Then, we know [see equation (A.4)] that M12 = −M−1
11 M12M22, but since M22

is a scalar, equal to M−1(k + 1, k + 1), we have

M−1
11 M12 = −M12/M22.
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Now M−1
11 M12 = (V ′�−1V )−1V ′�−1γ , so U ′M−1

11 M12 = w′
optimalγ . Hence,

w′
optimalγ = − 1

M22 (U ′0)M−1
(

0k

1

)
. �

We note that here (M22)−1 = γ ′�−1γ − γ ′�−1V M−1V ′�−1γ , as an applica-
tion of equation (A.2) clearly shows.

3. QP with equality constraints: Impact of parameter estimation in the
Gaussian case. From now on, we will assume that we are in the high-
dimensional setting where p and n go to infinity. Our study will be divided into
two. We will first consider the Gaussian setting (in this section) and then study
an elliptical distribution setting (in Section 4). (We note that for the Markowitz
problem, the assumption of Gaussianity would be satisfied if we worked under
Black–Scholes diffusion assumptions for our assets and were considering log-
returns as our observations.) Interestingly, we will show that the results are not
robust against the assumption of Gaussianity, which is not (so) surprising in light
of recent random matrix results [see El Karoui (2009a)]. We will also show that
understanding the elliptical setting allows us to understand the impact of correla-
tion between observations and to discuss bootstrap-related ideas. In particular, we
will see that various problems arise with the bootstrap in high-dimension and that
the results change when one deals with observations that are correlated (in time)
or not.

We also address similar questions concerning inequality constrained problems
in Section 5.6.

Before we proceed, we need to set up some notations: we call e the p-
dimensional vector whose entries are all equal to 1. We call V , as above, the ma-
trix containing all of our constraint vectors, which we may have to estimate (for
instance, if vi = μ for a certain i). We call V̂ the matrix of estimated constraint
vectors.

The template question for all our investigations will be the following (Marko-
witz) question: what can be said of the statistical properties of the solution of⎧⎪⎨⎪⎩

min
w∈Rp

w′�̂w,

w′μ̂ = μP ,

w′e = 1
compared to the solution of the population version⎧⎪⎨⎪⎩

min
w∈Rp

w′�w,

w′μ = μP ,

w′e = 1?

We will solve the problem at a much greater degree of generality, by consid-
ering first quadratic programs with linear equality constraints (see Section 5.6 for
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inequality constraints) and comparing the solutions of⎧⎪⎨⎪⎩
min
w∈Rp

w′�̂w,

w′vi = ui, 1 ≤ i ≤ k − 1,

w′μ̂ = uk

(QP-eqc-Emp)

and ⎧⎪⎨⎪⎩
min
w∈Rp

w′�w,

w′vi = ui, 1 ≤ i ≤ k − 1,

w′μ = uk.

(QP-eqc-Pop)

Here �̂ and μ̂ will be estimated from the data. We call wemp the vector that yields
a solution of problem (QP-eqc-Emp) and wtheo the vector that yields a solution of
problem (QP-eqc-Pop).

We call V̂ the p × k matrix containing {vi}k−1
i=1 and μ̂, and V its population

counterpart, which contains {vi}k−1
i=1 and μ. We assume that {vi}k−1

i=1 are determin-
istic and known (just like the vector e in the Markowitz problem). In our analysis, k
will be held fixed. (The kth column of V̂ will contain μ̂ in general or our estimator
of μ.)

As should be clear from Theorem 2.1, the properties of the entries of the matrix
V̂ ′�̂−1V̂ as compared to those of the matrix V ′�−1V will be key to our under-
standing of this question. In what follows, we assume that the vectors v̂i are either
deterministic or equal to μ̂. The extension to linear combinations of a determin-
istic vector and μ̂ is straightforward. We also note that in the Gaussian case, we
could just assume that the v̂i are (deterministic) functions of μ̂ (because μ̂ and �̂

are independent in this case). On the other hand, the vector U is assumed to be
deterministic.

Before we proceed, let us mention that after our study was completed, we
learned of similar results (restricted to the Markowitz case and not dealing with
general quadratic programs with linear equality constraints) by Kan and Smith
(2008). We stress the fact that our work was independent of theirs and is more
general which is why it is included in the paper.

3.1. Efficient frontier problems. We first study questions concerning the effi-
cient frontier and then turn to information we can get about linear functionals of
the empirical weights.

THEOREM 3.1. Let us assume that we observe data Xi
i.i.d.� N (μ,�), for i =

1, . . . , n. Here � is p × p and p < n. Suppose we estimate � with the sample
covariance matrix �̂, and μ with the sample mean μ̂. Suppose we wish to solve
the problem {

min
w∈Rp

w′�w,

w′vj = uj , 1 ≤ j ≤ k.
(QP-eqc-Pop)
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where uj are deterministic, vj are deterministic and given for j < k and vk = μ.
Assume that we use as a proxy for the previous problem the empirical version with
plugged-in parameters. Let us consider the solution of the problem{

min
w∈Rp

w′�̂w,

w′v̂j = uj , 1 ≤ j ≤ k.
(QP-eqc-Emp)

Now v̂j = vj for j < k and v̂k = f (μ̂), for a given deterministic function f . Let
us call wemp the corresponding “weight” vector. The plug-in estimate of w′�w

is w′
emp�̂wemp. Let us call woracle the optimal solution of the quadratic program

obtained under the assumption that � is given, but μ is not and is estimated by
f (μ̂). Finally, we assume that n − 1 − p + k > 0.

Then we have

w′
emp�̂wemp = w′

oracle�woracle
χ2

n−1−p+k

n − 1
,(2)

where w′
oracle�woracle is random (because μ̂ is) but is statistically independent of

χ2
n−1−p+k . Also,

w′
oracle�woracle = U ′(V̂ ′�−1V̂ )−1U.

The previous theorem means that the cost of not knowing the covariance matrix

and estimating it is the apparition of the
χ2

n−1−p+k

n−1 . In the high-dimensional setting
when p and n are of the same order of magnitude and n − p is large, this terms
is approximately 1 − (p − k)/(n − 1). Hence, the theorem quantifies the random
matrix intuition that having to estimate the high-dimensional covariance matrix
at stake here leads to risk underestimation, by the factor 1 − (p − k)/(n − 1). In
other words, using plug-in procedures leads to over-optimistic conclusions in this
situation.

We also note that the previous theorem shows that, in the Gaussian setting un-
der study here, the effect of estimating the mean and the covariance on the so-
lution of the quadratic program are “separable”: the effect of the mean estima-
tion is in the oracle term, while the effect of estimating the covariance is in the
χ2

n−p−1+k/(n − 1) term. To show risk underestimation, it will therefore be neces-
sary to relate w′

oracle�woracle to w′
theo�wtheo. We do it in Proposition 3.2 but first

give a proof of Theorem 3.1.

PROOF OF THEOREM 3.1. The crux of the proof is the following result, which
is well known by statisticians, concerning (essentially) blocks of the inverse of a
Wishart matrix: if S ∼ Wp(�,m), that is, S is a p × p Wishart matrix with m

degree of freedoms and covariance �, and A is p × k, deterministic matrix, then,
when m > p,

(A′S−1A)−1 ∼ Wk

(
(A′�−1A)−1,m − p + k

)
.
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We refer to Eaton [(1983), Proposition 8.9, page 312] for a proof, and to Mardia,
Kent and Bibby [(1979), pages 70–73] for related results.

Another important remark is the well-known fact that, in the situation we
are considering, μ̂ is N (μ,�/n) and independent of �̂. Finally, it is also well
known that if S ∼ Wp(�,m) and U is a p-dimensional deterministic vector, then
U ′SU = U ′�Uχ2

m.
Now �̂ ∼ Wp(�,n − 1)/(n − 1). Therefore, since V̂ is a function of μ̂, we

have, by independence of μ̂ and �̂,

(V̂ ′�̂−1V̂ )−1|μ̂ ∼ Wk

(
(V̂ ′�−1V̂ )−1, n − 1 − p + k

)
/(n − 1).

Therefore,

U ′(V̂ ′�̂−1V̂ )−1U

U ′(V̂ ′�−1V̂ )−1U

∣∣∣∣μ̂ ∼ χ2
n−p−1+k

n − 1
.

Because the right-hand side does not depend on μ̂, we have established the inde-
pendence of

U ′(V̂ ′�̂−1V̂ )−1U

U ′(V̂ ′�−1V̂ )−1U
and

χ2
n−p−1+k

n − 1
.

Hence, we conclude that

U ′(V̂ ′�̂−1V̂ )−1U = U ′(V̂ ′�−1V̂ )−1U
χ2

n−p−1+k

n − 1
,

and the two terms are independent. Now the term U ′(V̂ ′�−1V̂ )−1U is the estimate
we would get for the solution of problem (QP-eqc-Pop), if � were known and μ

were estimated by f (μ̂). In other words, it is the “oracle” solution described above.
�

3.1.1. Some remarks on the oracle solution. Theorem 3.1 sheds light on the
separate effects of mean and covariance estimation on the problem considered
above. To understand further the problem of risk estimation, we need to better
understand the role the estimation of the mean might play. This is what we do
now.

PROPOSITION 3.2. Suppose that the last column of V̂ is μ̂. Let us call V−k

the p × k − 1 dimensional matrix whose j th column is vj , which are known
deterministic vectors. Suppose that M = V ′�−1V = O(1). Suppose further that
λk(V

′�−1V ) � n−1/2, where λk(S) is the smallest eigenvalue of the k × k ma-
trix S.

Further, call M = V ′�−1V ∈ Rk×k and call ei the canonical basis vectors in
Rk . Finally, call α = χ2

p/n.
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Then, when p/n → ρ ∈ (0,1), asymptotically,

w′
oracle�woracle = w′

theo�wtheo − α
(U ′M−1ek)

2

1 + αe′
kM

−1ek

+ oP (w′
theo�wtheo).

Let us discuss a little bit this result before we provide a proof. In the asymptotics
we have in mind and are considering, p/n → ρ ∈ (0,1) and therefore α � p/n +
O(n−1/2). So if δn = (U ′M−1ek)

2/(1 + p/ne′
kM

−1ek), when the above analysis
applies, the impact of the estimation of μ by μ̂ will be risk underestimation, just
as is the case for the case of the covariance matrix. Here, we can also quantify the
impact of this estimation of μ by μ̂: it leads to risk underestimation by the amount
αδn.

PROOF OF PROPOSITION 3.2. Let us write μ̂ = μ+e, where e ∼ N (0,�/n).
Clearly, e = n−1/2�1/2Z, where Z is N (0, Idp). We have, using block notations,

V̂ ′�−1V̂ = V ′�−1V +
(

0 0
0 e′�−1e

)
+
(

0 V ′−k�
−1e

e′�−1V−k 2μ′�−1e

)
.

Replacing e by its value, we have μ′�−1e ∼ N (0,μ′�−1μ/n). By the same to-
ken, we can also get that

V ′−k�
−1e = 1√

n
V ′−k�

−1/2Z ∼ N
(

0,
V ′−k�

−1V−k

n

)
.

Our assumption that V ′�−1V = O(1) implies that μ′�−1μ = O(1) and V ′−k ×
�−1V−k = O(1). Therefore,(

0 V ′−k�
−1e

e′�−1V−k 2μ′�−1e

)
= OP

(
1√
n

)
.

Hence, since e′�−1e = Z′Z/n = α,

V̂ ′�−1V̂ = V ′�−1V + αeke
′
k + OP (n−1/2).

Our assumptions guarantee that λk(V
′�−1V ) � n−1/2, and therefore λk(V

′�−1 ×
V +αeke

′
k) � n−1/2. In other respects, let A be a matrix such that λp(A) � n−1/2

and E be a matrix such that E = O(n−1/2). Recall that for symmetric matrices,
λp(A+E) ≥ λp(A)+λp(E) [see, e.g., Weyl’s theorem, Horn and Johnson (1994),
page 185]. So in this situation, (A + E)−1 = o(n1/2). Let us now consider the
implications of this remark on the difference of (A+E)−1 and A−1. We claim that
(A + E)−1 = A−1 + o(A−1). By the first resolvent identity, (A + E)−1 = A−1 −
(A + E)−1EA−1; our previous remark implies that σ1[(A + E)−1E] = o(1) and
the result follows. Applying the results of this discussion to A = V ′�−1V +αeke

′
k

and A + E = V̂ ′�−1V̂ , we have

V̂ ′�−1V̂ = (V ′�−1V + αeke
′
k)

−1 + oP

(
(V ′�−1V + αeke

′
k)

−1).
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We can now use well-known results concerning inverses of rank-1 perturbation of
matrices, namely

(V ′�−1V + αeke
′
k)

−1 = (M + αeke
′
k)

−1 = M−1 − α
M−1eke

′
kM

−1

1 + αe′
kM

−1ek

.

This allows us to conclude that

U ′(V̂ ′�−1V̂ )−1U = U ′M−1U − α
(U ′M−1ek)

2

1 + αe′
kM

−1ek

+ oP (U ′M−1U).

This is the result announced in the theorem and the proof is complete. �

We can now combine the results of Theorem 3.1 and Proposition 3.2 to obtain
the following corollary.

COROLLARY 3.3. We assume that the assumptions of Theorem 3.1 and
Proposition 3.2 hold and that p/n has a finite nonzero limit, as n → ∞, and n−p

tends to infinity. Then we have

w′
emp�̂wemp =

(
1 − p − k

n − 1

)(
w′

theo�wtheo − p

n

(U ′M−1ek)
2

1 + (p/n)e′
kM

−1ek

)
(3)

+ oP (w′
theo�wtheo ∨ n−1/2),

where M is the population quantity M = V ′�−1V .

The corollary shows that the effects of both covariance and mean estimation are
to underestimate the risk, and the empirical frontier is asymptotically determinis-
tic.

3.2. On the optimal weights. Our matrix characterization of the empirical op-
timal weights (Lemma 2.2) allows us to give a precise characterization of the sta-
tistical properties of linear functionals of these weights. We give here some exact
results, concerning distributions and expectations of those functionals. A longer
discussion, including robustness and more detailed bias issues can be found in
Section 5.

PROPOSITION 3.4. Assume that the assumptions of Theorem 3.1 hold and in
particular Xi are i.i.d. N (μ,�p). Let γ be a fixed n-dimensional vector. Let us
call V̂γ = (V̂ γ ) the p × (k + 1) matrix whose first k columns are those of V̂ .
Let N̂γ = (V̂ ′

γ �−1V̂γ )−1 and Wγ be a (k + 1) × (k + 1) matrix with distribution
Wk+1(N̂γ , n − p + k) (conditional on μ̂). Then,

γ ′wemp|μ̂ L= −
∑k

i=1 uiWγ (i, k + 1)

Wγ (k + 1, k + 1)
.
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In particular,

E(γ ′wemp|μ̂) = −
∑k

i=1 uiN̂γ (i, k + 1)

N̂γ (k + 1, k + 1)
.

We note, somewhat heuristically, that when μ is estimated by μ̂, since μ̂ ∼
N (μ,�/n), μ̂′�−1μ̂ � μ′�−1μ + p/n, when p, n and n − p are all large (we
refer again to Section 5 for a more precise statement). Hence N̂γ is a not a consis-
tent estimator of Nγ = (V ′

γ �−1Vγ )−1. As we will see in Section 5.2 and as can be
expected from the previous proposition, this will also imply bias for linear combi-
nations of empirical optimal weights. We will show in particular that returns are
overestimated when using μ̂ as an estimator for μ.

Another interesting aspect of the previous proposition is that it allows us to
understand the fluctuation behavior of γ ′wemp when n−p + k is large: as a matter
of fact, the limiting fluctuation behavior of the entries of a (fixed-dimensional)
Wishart matrix with large number of degrees of freedom is well known [see, e.g.,
Anderson (2003), Theorem 3.4.4, page 87] and the δ-method can be applied to get
the information—conditional on μ̂.

For instance, if we assume that, conditional on μ̂, the matrix N̂γ converges to
a matrix N0

γ , which possibly depends on μ̂, we see that calling ν the last column
Wγ /(n − p + k), ν is asymptotically normal (all statements are conditional on μ̂),
if n − p + k goes to infinity when p and n go to infinity. Furthermore we know
the limiting covariance of ν (after scaling by

√
n − p + k), using Theorem 3.4.4

in Anderson (2003). Let us call it 0 and let us call ν0 the limit of ν—which we
assume exists.

If we assume that ν0(k + 1) is not 0, Slutsky’s lemma and the δ-method give us
through simple computations that√

n − p + k

(
γ ′wemp +

∑k
i=1 uiν0(i)

ν0(k + 1)

)∣∣∣μ̂ �⇒ 1

ν0(k + 1)2 N (0,C′0C),

where C = ν0(k + 1)
(U

0

)− (
(U

0

)′
ν0)ek+1.

We know the distribution of μ̂, so we could get (limiting) unconditional results
for γ ′wemp. This is not hard but a bit tedious if we want explicit expressions, and
because our focus is mostly on first-order properties in this paper, we do not state
the result.

PROOF OF PROPOSITION 3.4. The proof follows from the representation we
gave in Lemma 2.2, that is,

γ ′wemp = − 1

(V̂ ′
γ �̂−1V̂γ )−1(k + 1, k + 1)

(U ′0)(V̂ ′
γ �̂−1V̂γ )−1

(
0k

1

)
,

and the fact that, by the same arguments as before, conditional on μ̂,

(V̂ ′
γ �̂−1V̂γ )−1|μ̂ ∼ Wk+1

(
(V̂ ′

γ �−1V̂γ )−1, n − p + k
)
/(n − 1).
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We conclude that

γ ′wemp|μ̂ L= − (U ′0)Wγ

(0k

1

)
Wγ (k + 1, k + 1)

= −
∑k

i=1 uiWγ (i, k + 1)

Wγ (k + 1, k + 1)
.

This shows the fist part of the proposition.
The second part follows from the following observation. Suppose the matrix P

is Wp(Idp,K). If α and β are n-dimensional, orthogonal vectors, let us consider

α′Pβ

β ′Pβ
.

We can, of course, write P =∑K
i=1 YiY

′
i , where Yi are i.i.d. N (0, Idp). In other

respects, Y ′
i α and Y ′

i β are clearly independent normal random variables, since their
covariance is α′β = 0, and they are normal. So

E
(

α′Pβ

β ′Pβ

∣∣∣{Y ′
i β}Ki=1

)
= 0

because the quantity whose expectation we are taking is a linear combination of
mean 0 independent normal random variables. Hence, also,

E
(

α′Pβ

β ′Pβ

)
= 0.

Now, when α is not orthogonal to β , we write α = β(α′β)/‖β‖2
2 + δ, where δ is

orthogonal to β . We immediately deduce that in general,

E
(

α′Pβ

β ′Pβ

)
= α′β

‖β‖2
2

+ E
(

δ′Pβ

β ′Pβ

)
= α′β

‖β‖2
2

.

Furthermore, when P is Wp(�,K), because we can write P = �1/2P0�
1/2,

where P0 ∼ Wp(Idp,K), we finally have

E
(

α′Pβ

β ′Pβ

)
= α′�β

β ′�β
.

In the case of interest to us, we have α = (U0 ), β = ek+1 and � = N̂γ . Applying
the previous formula gives us the second part of the proposition. �

We now turn to the question of understanding the robustness properties of the
Gaussian results we just obtained. We will do so by studying the same problems
under more general distributional assumptions, and specifically we will now as-
sume that the observations are elliptically distributed.
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4. Solutions of quadratic programs when the data is elliptically distributed.
In Section 3, we studied the properties of the “plug-in” solution of problem (QP-
eqc-Pop) under the assumption that the data was normally distributed. While this
allowed us to shed light on the statistical properties of the solution of problem
(QP-eqc-Emp), it is naturally extremely important to understand how robust the
results are to our normality assumptions.

In this section, we will consider elliptical models, that is, models such that the
data can be expressed as

Xi = μ + λi�
1/2Yi,

where λi is a random variable and Yi are i.i.d. N (0, Idp) entries. λi and Yi are
assumed to be independent, and to lift the indeterminacy between � and λ, we
assume that E(λ2

i ) = 1. Under this assumption, we clearly have cov(Xi) = �. We
note that this is not the standard definition of elliptical models, which generally
replaces Yi with a vector uniformly distributed on the sphere in Rp , but it captures
the essence of the problem. We refer the interested reader to Anderson (2003) and
Fang, Kotz and Ng (1990) for extensive discussions of elliptical distributions.

Our motivation for undertaking this study comes also from the fact that for cer-
tain types of data, such as financial data, it is sometimes argued that elliptical mod-
els are more reasonable than Gaussian ones, for instance, because they can capture
nontrivial tail dependence [see Frahm and Jaekel (2005) where such models are ad-
vocated for high-dimensional modelization of financial returns, Meucci (2005) for
a discussion of their relevance for certain financial markets, Biroli, Bouchaud and
Potters (2007) for modelization considerations quite similar to Frahm and Jaekel
(2005) and McNeil, Frey and Embrechts (2005) for a thorough discussion of tail
dependence]. From a theoretical standpoint, considering elliptical models will also
help in several other ways: the results will yield alternative proofs to some of the
results we obtained in the Gaussian case, they will allow us to deal with some
situations where the data Xi are not independent and they will also allow us to
understand the properties of the bootstrap.

We also want to point out that elliptical distributions allow us to not fall into
the geometric “trap” of standard random matrix models highlighted in El Karoui
(2009a): the fact that data vectors drawn from standard random matrix models are
essentially assumed to be almost orthogonal to one another and that their norm
(after renormalization by 1/

√
p) is almost constant. In a sense, studying elliptical

models will allow us to understand what is the impact of the implicit geometric
assumptions made about the data when assuming normality. (We purposely do so
not under minimal assumptions but under assumptions that capture the essence of
the problem while allowing us to show in the proofs the key stochastic phenomena
at play.) This part of the article can therefore be viewed as a continuation of the in-
vestigation we started in El Karoui (2009a) where we showed a lack of robustness
of random matrix models (contradicting claims of “universality”) by thoroughly
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investigating limiting spectral distribution properties of high-dimensional covari-
ance matrices when the data is drawn according to elliptical models and general-
izations. We show here that the theoretical problems we highlighted in El Karoui
(2009a) have important practical consequences. [For more references on elliptical
models in a random matrix context, we refer the reader to El Karoui (2009a) where
an extended bibliography can be found.]

We now turn to the problem of understanding the solution of problem (QP-eqc-
Emp) in the setting where the data is elliptically distributed. We will limit ourselves
to the case where the matrix V̂ is full of known and deterministic vectors, except
possibly for the sample mean. In this section we restrict ourselves to convergence
in probability results. It is clear from Section 2 that to tackle the problems we are
considering we need to understand at least three types of quantities: v′�̂−1v for a
deterministic v with unit norm, μ̂′�̂−1v and μ̂′�̂−1μ̂.

Here is a brief overview of our findings. When we consider elliptical models,
our results say that roughly speaking, under certain assumptions given precisely
later:

1. v′�̂−1v
v′�−1v

→ s, where s satisfies, if G is the limit law of the empirical distribution

of the λ2
i and p/n → ρ ∈ (0,1),

∫ dG(τ)
1+τρs

= 1 − ρ.

2. If μ = 0, μ̂′�̂−1μ̂ → ρ/(1 − ρ).
3. If μ = 0, μ̂′�̂−1v → 0.

All these convergence results are to be understood in probability. They naturally
allow us—under certain conditions on the population parameters—to conclude
about the convergence in probability of the matrix V̂ ′�̂−1V̂ . The results mentioned
above are stated in all details in Theorems 4.1 and 4.6.

In the situation where λi are i.i.d., the results above hold when λi have a second
moment and they do not put too much mass near 0. This is interesting in practice
because it tells us that our results hold for heavy-tailed data, which are of particular
interest in some financial applications.

The bootstrap situation corresponds basically to G being Poisson(1), which we
denote by Po(1). Also in the statement above for μ̂′�̂−1μ̂, one should replace
ρ/(1 − ρ) by s − 1 in the bootstrap case. This is explained in Theorem 4.12 and
Section 4.4.4. Finally, in the case of Gaussian data with “temporal” correlation,
that is, when the data can be written in matrix form X = enμ

′ + �Y�1/2, where
� is not diagonal (and en is an n-dimensional vector with only 1’s in its entries),
one should replace G by the limiting spectral distribution of �′�. The question
of convergence of μ̂′�̂−1μ̂ is then more involved. We refer to Proposition 4.8 for
details about this situation.

Though we are taking a fundamentally random matrix theoretic approach, our
presentation purposely avoids borrowing too many techniques from random matrix
theory in the hope of making clear(er) the phenomena that yield the results we will
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obtain. A more general but considerably more technically complicated (for non-
specialists of random matrix theory) approach is being developed in our study of a
connected problem and will appear in another paper.

This section is divided into four subsections. The first two are devoted to the
main technical issues arising in the study of the problem when the data is ellip-
tically distributed. The third discusses the impact of correlation between obser-
vations when the data is Gaussian, as it can be recast as a variant of elliptical
problems. The last subsection discusses questions related to the (nonparametric)
bootstrap.

4.1. On quadratic forms of the type v′�̂−1v. The focus of this subsection is
on understanding statistics of the type v′�̂−1v, where v is a deterministic vector.
We will prove the following important theorem.

THEOREM 4.1. Suppose we observe n observations Xi , where Xi has the

form Xi = μ + λi�
1/2Yi , with Yi

i.i.d.� N (0, Idp) and {λi}ni=1 is independent of
{Yi}ni=1. �1/2 is deterministic and E(λ2

i ) = 1.
We call ρn = p/n and assume that ρn → ρ ∈ (0,1).
We use the notation τi = λ2

i and assume that the empirical distribution, Gn, of
τi converges weakly in probability to a deterministic limit G. We also assume that
τi �= 0 for all i.

If τ(i) is the ith largest τk , we assume that we can find a random variable N ∈ N

and positive real numbers ε0 and C0 such that⎧⎨⎩
P(p/N < 1 − ε0) → 1, as n → ∞,

P
(
τ(N) > C0

)→ 1,

∃η0 > 0 such that P(N/n > η0) → 1, as n → ∞.

(Assumption-BB)

Under these assumptions, if v is a (sequence of) deterministic vector,

v′�̂−1v

v′�−1v
→ s in probability,

where s satisfies ∫
dG(τ)

1 + ρτs
= 1 − ρ.(4)

A few comments are in order before we turn to the proof. First, the assump-
tion that λi �= 0 for all i could be dispensed of, as long as all assumptions stated
above hold when n is understood to denote the number of nonzero λi’s. Second,
(Assumption-BB) concerning N and C will generally hold as soon as G does not
put too much mass at 0, the only problem-specific question remaining being how
much mass is put at 0 by G compared to ρ, the limit of p/n.

In particular, in the case where the τi’s are i.i.d., if there exists C0 > 0 and
x0 > 0 such that PG(X > C0) = x0 > 0, and if Gn is the empirical distribution of
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the τi’s, if Gn �⇒ G, we see, using, for example, Lemma 2.2 in van der Vaart
(1998), that

lim inf
n→∞ PGn(X > C0) = Card{τi > C0}

n
≥ PG(X > C0) = x0.

So picking N = (1−δ)x0n will guarantee that we have, if Gn �⇒ G in probability,
P(τ(N) > C0) → 1 and, of course, P(N/n > η) → 1. Hence, in checking whether
the theorem applies, we just need to see whether p/N stays bounded away from 1.

In the simpler case when all the |λi | are bounded away from 0, the conditions on
N and C apply directly by taking N = n. Finally, let us say that (Assumption-BB)
is needed in the proof to guarantee that the smallest eigenvalues of �̂ stay bounded
away from 0 with high-probability.

We now briefly compare the Gaussian and elliptical cases. A simple convexity
argument [relying on the fact that 1/(1 + x) is a convex function of x for x ≥ 0
and Jensen’s inequality] shows that, if μG is the mean of G,

s ≥ 1

1 − ρ

1

μG

.

In the case of Gaussian data, G = δ1, that is, it is a point mass at 1 and we have
s = 1/(1 − ρ). In other respects, for Xi to have covariance �, we need E(λ2

i ) = 1.
When the λi’s are i.i.d., with λ2

i having distribution G, μG = E(λ2
i ) = 1, and we

know that Gn �⇒ G in probability. Therefore, in the class of elliptical distribu-
tions considered here, risk underestimation, which is essentially measured by 1/s

(see Theorem 2.1 and Section 5) will be least severe in the Gaussian case. In other
words, the Gaussian results lead to over-optimistic conclusions (in terms of prox-
imity between sample and population solutions of the quadratic programs we are
considering) within the class of elliptical distributions.

We go back to these questions in more detail in Section 5 and now turn to the
proof of Theorem 4.1. The proof could be carried out in at least two ways. We take
one that is not standard but we feel best explains the phenomenon that is occurring.

PROOF OF THEOREM 4.1. The proof is easier to carry out when we write the
problem in matrix form. Because we focus on �̂, we can assume without loss of
generality (wlog) that μ = 0. Let us consider the n × p data matrix X whose ith
row is Xi . Similarly, we denote by Y the n × p data matrix whose ith row is Yi .
Let us call � the diagonal matrix with ith diagonal entry λi and H = Idn − ee′/n,
where e is an n-dimensional vector whose entries are all equal to 1. Note that
H ′H = H . With these notations, we have, since we assume that μ = 0,

X = �Y�1/2.

Therefore, X − X̄ = HX, and

�̂ = 1

n − 1
(X − X̄)′(X − X̄) = 1

n − 1
�1/2Y ′�H�Y�1/2.
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Let us call L the matrix L = �H�. Note that Y ′LY is a rank p matrix with
probability 1, if we assume that p ≤ n − 1 (recall that all the entries of � are
nonzero). Hence, Y ′LY is invertible with probability 1. Therefore,

�̂−1 = �−1/2
(

1

n − 1
Y ′LY

)−1

�−1/2.

Finally, we have

v′�̂−1v

v′�−1v
= ν′
(

1

n − 1
Y ′LY

)−1

ν,

where ν = �−1/2v/‖�−1/2v‖2 is a vector of �2 norm 1.
We now make all of our statements conditional on �. Because of the indepen-

dence of Y and �, we can therefore treat the λi ’s as if they were constant and
the Yi,j ’s as i.i.d. N (0,1) random variables. � is now assumed to be in the set of
matrices Lε,δ , defined just below, for which we have control of the smallest eigen-
value of S = Y ′LY/(n − 1). In the steps that follow that are conditional on �, we
therefore consider that we control the smallest eigenvalue of S . We note that if �

is in Lε,δ , N is lower bounded. Because N is a function of the λi’s and hence of
�, we write all the results conditionally on �, but the reader should keep in mind
that this conditioning constrains also the possible values of N .

• The set Lε,δ .
In Lemma B.1 in the Appendix, we prove the following result: when � is such

that p/N < 1 − ε, if Cn = C0
N−1
n−1 [see (Assumption-BB) and Lemma B.1 for

definitions] and γp is the smallest eigenvalue of Y ′LY/n − 1, we have, if P�

denotes probability conditional on �,

P�

(√
γp ≤√Cn

[(
1 − √

1 − ε
)− t

])≤ exp
(−(N − 1)t2).

Let us call Lε,δ the set of matrices � such that p/N < 1−ε and C0(N −1)/(n−
1) > δ. Under (Assumption-BB), for a δ bounded away from 0 (e.g., δ = C0η0/2,
since we need a bound on lim infC0N/n that holds with probability going to 1),
P(� ∈ Lε,δ) → 1. In other respects, if � ∈ Lε,δ ,

P�

(√
γp ≤ √

δ
[(

1 − √
1 − ε

)− t
])≤ exp

(−(n − 1)δt2/C0
)
.

• Getting results conditionally on �.

If O is an orthogonal matrix, O ′Y ′LYO
L= Y ′LY , because Y is full of i.i.d.

N (0,1) random variables and is therefore invariant (in law) by left and right ro-
tation. Therefore the eigenvalues and eigenvectors of Y ′LY are independent and
its matrix of eigenvectors is uniformly (i.e., Haar) distributed on the orthogonal
group [see also Chikuse (2003), page 40, equation (2.4.4)]. Let us write a spectral
decomposition of Y ′LY

S = 1

n − 1
Y ′LY =

p∑
i=1

γiυiυ
′
i .
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We know that a.s. γi �= 0 for all i, so

ν′S −1ν =
p∑

i=1

1

γi

(ν′υi)
2.

We claim that

ν′S −1ν − 1

p

p∑
i=1

1

γi

∣∣∣({γi}pi=1,�) → 0.

To see this, note that E((ν′υi)
2) = ‖ν‖2

2/p = 1/p because υi is uniformly distrib-
uted on the unit sphere when ϒ (the matrix containing the υi ) is Haar distributed
on the orthogonal group. Hence, given the independence between γi and υi ,

E(ν′S −1ν|{γi}ni=1,�) = 1

p

p∑
i=1

1

γi

.

Now let us call w the vector with wi = (ν′υi)
2, and g the vector with ith entry gi =

1/γi . Clearly, since ν′S −1ν = g′w, var(ν′S −1ν|{γi},�) = g′ cov(w)g. By sym-
metry it is clear that cov(w)(i, i) = cov(w)(1,1) and cov(w)(i, j) = cov(w)(1,2)

if i �= j . Further, since the matrix ϒ containing the vectors υi is Haar distributed
on the orthogonal group, we can assume without loss of generality that ν = e1 for
all the computations at stake. As a matter of fact, if O1 is an orthogonal matrix
such that O1ν = e1, then ν′υi = e′

1O1υi = e′
1υ̃i where the matrix ϒ̃ = O1ϒ is

again Haar distributed on the orthogonal group.
So from now on, we assume (without loss of generality) that ν = e1, and we

therefore simply need to understand the correlation between (υ1(1))2 and (υ2(1))2.
Now, the first row of an orthogonal matrix uniformly distributed on the orthogonal
group is a unit vector uniformly distributed on the unit sphere, because if O is Haar
distributed, so is O ′. We now recall the fact that a vector uniformly distributed on
the unit sphere, υ can be generated by drawing at random a N (0, Idp) random
vector and normalizing it. In other words, if Z ∼ N (0, Idp), υ = Z/‖Z‖2.

So our task has now been considerably simplified, and it consists in understand-
ing the covariance between 2 random variables, r1 and r2 such that, if Zi are i.i.d.
N (0,1),

ri = Z2
i∑p

i=1 Z2
i

.

Now, by symmetry, E(r1r2) = E(rirj ) for all i �= j and p(p − 1)E(r1r2) =∑
i �=j E(rirj ). In other words,

p(p − 1)E(r1r2) = E
(∑

i �=j

Z2
i Z

2
j

(
∑p

i=1 Z2
i )

2

)
= E
( ∑

i,j Z2
i Z

2
j

(
∑p

i=1 Z2
i )

2
−

p∑
i=1

Z4
i

(
∑p

i=1 Z2
i )

2

)
.
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We can therefore conclude that

p(p − 1)E(r1r2) = 1 − pE
(

Z4
1

(
∑p

i=1 Z2
i )

2

)
.

Hence, E(r1r2) ≤ 1/(p(p − 1)). On the other hand,

E
(

Z4
1

(
∑p

i=1 Z2
i )

2

)
≤ E
(

Z4
1

(
∑p

i=2 Z2
i )

2

)
= 3

(p − 3)(p − 5)
,

since
∑p

i=2 Z2
i ∼ χ2

p−1, and E((χ2
p−1)

r ) = 2r((p − 1)/2 + r)/((p − 1)/2), for
r > −(p − 1)/2 [see, e.g., Mardia, Kent and Bibby (1979), page 487]. Applying
these results with r = −2 yields the above result as soon as p > 5, by using the
fact that (x + 1) = x(x). We therefore have

1 − 3p

(p − 3)(p − 5)
≤ p(p − 1)E(r1r2) ≤ 1.

Since, for instance by symmetry, E(r1) = 1/p, and 1/(p(p − 1)) − 1/p2 =
(p2(p − 1))−1, we conclude that

1

p2(p − 1)
− 3p

p(p − 1)(p − 3)(p − 5)
≤ cov(r1, r2) ≤ 1

p2(p − 1)
.

We have therefore established the fact that

| cov(r1, r2)| = O(p−3).

On the other hand, since E(r2
1 ) = E(Z4

1(
∑p

i=1 Z2
i )

−2), we have

0 ≤ var(ri) ≤ 3

(p − 3)(p − 5)
− 1

p2 .

Now using the (standard) fact that, for symmetric matrices M , if σ1(M) is the
largest singular value of M ,

σ1(M) ≤ max
i

∑
j

|mi,j |,

[it can easily be proved using, for instance, Theorems 5.6.6 and 5.6.9 in Horn and
Johnson (1994), or Geršgorin’s theorem (Theorem 6.1.1 in the same reference)]
we have

σ1(cov(r)) ≤
(

3

(p − 3)(p − 5)
− 1

p2

)
+ O(p−2) = O(p−2).

The first term in the previous bound comes from the contribution of the diagonal
and the second term is the sum over the p − 1 off-diagonal elements on a given
row of the upper-bound we had on each such element, that is, Cp−3 for some C.
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Let us now return to our initial question which was to show that the conditional
variance of interest to us was going to zero. Recall that g is a vector whose ith
entry is 1/γi . Since

var(ν′S −1ν|{γi},�) = g′ cov(w)g,

and cov(w) = cov(r), we have, for C a constant, and if |||A|||2 denotes the operator
norm (or largest singular value) of the matrix A,

var(ν′S −1ν|{γi},�) ≤ ||| cov(r)|||2‖g‖2
2 ≤ C

‖g‖2
2

p2 = C
1

p2

p∑
i=1

1

γ 2
i

.

Now given the assumptions we made on �, according to the arguments given
at the beginning of this proof and Lemma B.1 in the Appendix, γ 2

i ≥ Cn(1 −√
p/(N − 1))2/2, where Cn = C0(N −1)/(n−1), with high ({Yi}ni=1)-probability.

So we conclude that all the γi’s are bounded away [uniformly for � in Lε,δ and
with high ({Yi}ni=1)-probability] from 0, and when this is the case,

var(ν′S −1ν|{γi},�) → 0.

Therefore,

ν′S −1ν − 1

p

p∑
i=1

1

γi

∣∣∣{γi}pi=1,� → 0 in probability.

Let us now show that this implies convergence in probability to 0 (conditional on

� only) of Qn = ν′S −1ν − 1
p

∑p
i=1

1
γi

. Let us call hn = C
‖g‖2

2
p2 = C

p2

∑p
i=1

1
γ 2
i

. For

ζn to be determined later, we have

P(|Qn| > ε|�) ≤ P(|Qn| > ε & hn ≤ ζn|�) + P(hn > ζn|�).

On the other hand,

P(|Qn| > ε & hn ≤ ζn|�) = E
(
E
(
1|Qn|>ε1hn≤ζn |{gi},�)|�).

Because hn is a function of the gi’s and var(Qn|{γi}pi=1,�) ≤ hn,

E
(
1|Qn|>ε1hn≤ζn |{gi},�)= 1hn≤ζnE

(
1|Qn|>ε|{gi},�)≤ 1hn≤ζn

hn

ε2 ≤ ζn

ε2 .

But when � ∈ Lε,δ , under our assumptions and their consequences on the γ 2
i ’s

mentioned above [i.e., γ 2
i ≥ Cn(1 − √

p/(N − 1))2/2 with high {Yi}ni=1 probabil-
ity], we have hn|� = OP (1/p), so taking ζn = n−1/2, we have P(hn > ζn|�) → 0
and of course, ζn/ε

2 → 0. Hence, for any ε > 0,

P(|Qn| > ε|�) → 0.

Let us now turn to the question of identifying the limit.
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• About 1
p

∑p
i=1

1
γi

.
The Stieltjes transform of the spectral distribution of Y ′LY/(n − 1) is

sp(z) = 1

p

p∑
i=1

1

γi − z
.

The quantity 1
p

∑p
i=1

1
γi

is therefore sp(0) and we are interested in its limit, if it
exists, which would correspond to s.

Recall the Marčenko–Pastur equation, from Marčenko and Pastur (1967),
Wachter (1978) and Silverstein (1995): if Y is n × p has i.i.d. entries with mean 0
and variance 1 and L is positive semidefinite, has limiting spectral distribution G

and is independent of Y , if p/n → ρ > 0, and if mp is the Stieltjes transform of
the spectral distribution of Y ′LY/p, then mp(z) tends (in probability) to m(z) for
all z in C+ and m satisfies

− 1

m(z)
= z − 1

ρ

∫
τ dG(τ)

1 + τm(z)
.(5)

Note that, if p/n = ρn, we have

ρnsp(ρnz) = mp(z).

Therefore, according to Marčenko and Pastur (1967), Wachter (1978) and
Silverstein (1995), we know that sp(z) converges for z ∈ C+ to a nonrandom quan-
tity s(z), in probability. Note that s satisfies, in light of equation (5),

− 1

s(z)
= z −

∫
τ dG(τ)

1 + τρs(z)
.

Here, because we know using our assumptions (see the end of the proof) that
γi are bounded away from 0 with probability going to 1, we can also conclude
that sp(0) → s(0) with probability going to 1, because of the weak convergence
(in probability) of spectral distributions that pointwise convergence of Stieltjes
transforms implies (as a test function, we can use a function that coincides with 1/x

except in a interval near 0 where we are guaranteed that there are no eigenvalues
asymptotically). We also know that s is continuous (and actually analytic) at 0 in
this situation since the s is the Stieltjes transform of a measure who has support
bounded away from 0. So the previous equation holds for z = 0, and we have

− 1

s(0)
= −

∫
τ dG(τ)

1 + τρs(0)
.

Multiplying both sides by −ρs(0), we get, after we recall that G is a probability
measure,

ρ =
∫

ρτs(0) dG(τ)

1 + τρs(0)
=
∫ (

1 − 1

1 + τρs(0)

)
dG(τ) = 1 −

∫ 1

1 + τρs(0)
dG(τ).



3512 N. EL KAROUI

Calling s(0) = s, we have the result we announced, conditionally on �. Now,
here G is the limiting spectral distribution of �H�, but because this matrix is a
rank one perturbation of �2, these two matrices have the same limiting spectral
distribution. This concludes this part of the proof.

• Getting results unconditionally on �.
All the statements above were made conditional on �. If we can show that our

probability bounds and our characterization of the limit hold uniformly in �, we
will have an unconditional statement, as we seek.

The fact that the limit does not depend on � is essentially obvious from its
description: all that matters is the limiting spectral distribution, which is the same
for all �. Let us consider the question of uniform probability bounds. All we need
to do is show that we control P(hn > ζn|�) uniformly in �. At this point, it is
helpful to recall that N can be viewed as a function of �.

Recall also that if � ∈ Lε,δ ,

P�

(√
γp ≤ √

δ
[(

1 − √
1 − ε

)− t
])≤ exp

(−(n − 1)δt2/C0
)
.

Hence, when � ∈ Lε,δ , if ζn = n−1/2, P(hn > ζn|�) ≤ fn(C0, ε, δ), where
fn(C0, ε, δ) tends to 0 as n tends to infinity. In other words, we have now es-
tablished that if � ∈ Lε,δ , and Qn = ν′S −1ν − 1

p

∑p
i=1

1
γi

, for any t > 0,

P(|Qn| > t |�) ≤ ζn

t2 + fn(C0, ε, δ).

Using the fact that P(|Qn| > t) ≤ P(|Qn| > t & {� ∈ Lε,δ}) + P(� /∈ Lε,δ), we
conclude that P(|Qn| > t) → 0 as n tends to infinity for any t > 0 and the proof is
complete. �

As a consequence of Theorem 4.1, we have the following practically useful
result.

LEMMA 4.2. We assume that the assumptions of Theorem 4.1 hold and that
G is such that s is not ∞.

Suppose that v1 and v2 are deterministic vectors such that

v′
1�

−1v2

(v1 + v2)′�−1(v1 + v2)
and

v′
1�

−1v2

(v1 − v2)′�−1(v1 − v2)

are bounded away from 0. Then under the assumptions of Theorem 4.1,

v′
1�̂

−1v2

v′
1�

−1v2
→ s in probability.

In other respects, suppose that v′
1�

−1v2 → 0, while v′
1�

−1v1 and v′
2�

−1v2
stay bounded away from ∞. Then, under the assumptions of Theorem 4.1,

v′
1�̂

−1v2 → 0 in probability.
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PROOF. The proof of the first part of the lemma is an immediate consequence
of Theorem 4.1, after writing

2
v′

1�̂
−1v2

v′
1�

−1v2
= (v1 + v2)

′�̂−1(v1 + v2)

(v1 + v2)′�−1(v1 + v2)

(v1 + v2)
′�−1(v1 + v2)

v′
1�

−1v2

− (v1 − v2)
′�̂−1(v1 − v2)

(v1 − v2)′�−1(v1 − v2)

(v1 − v2)
′�−1(v1 − v2)

v′
1�

−1v2
.

For the proof of the second part, we note that Theorem 4.1 implies that

v′�̂−1v = sv′�−1v + oP (v′�−1v).

Note that since for i = 1,2, v′
i�

−1vi is assumed to stay bounded, the same is true
of (v1 + εv2)

′�−1(v1 + εv2), where ε = ±1. Now we write

2v′
1�̂

−1v2 = (v1 + v2)
′�̂−1(v1 + v2) − (v1 − v2)

′�̂−1(v1 − v2).

Our previous remark and the assumption of boundedness of v′
i�

−1vi implies that,
when v′

1�
−1v2 → 0,

2v′
1�̂

−1v2 = s
(
(v1 + v2)

′�−1(v1 + v2) − (v1 − v2)
′�−1(v1 − v2)

)+ oP (1)

= s2v′
1�

−1v2 + oP (1) = oP (1). �

4.2. On quadratic forms involving μ̂ and �̂−1. As is clear from the solutions
of problems (QP-eqc) and (QP-eqc-Emp), when μ̂ appears in the matrix V̂ , its
influence on the solution of our quadratic program will manifest itself in the form
of quantities of the type μ̂′�̂−1μ̂ and v′

i�̂
−1μ̂. It is therefore important that we

get a good understanding of those quantities.
Compared to the Gaussian case, in the elliptical case, μ̂ is not independent of �̂

anymore, which generates some complications. They are fully addressed in The-
orem 4.6, but as a stepping stone to that result (the main of this subsection), we
need the following theorem, which essentially takes care of the problem of un-
derstanding μ̂′�̂−1μ̂ for the class of elliptical distributions we consider when the
population mean is 0.

THEOREM 4.3. Suppose Y is an n × p matrix whose rows are the vectors Yi ,
which are i.i.d. N (0, Idp).

Suppose � is a diagonal matrix whose ith entry is λi , which is possibly random
and is independent of Y . Call τi = λ2

i . We assume that τi �= 0 for all i and

1

n2

n∑
i=1

λ4
i = 1

n2

n∑
i=1

τ 2
i → 0 in probability.(Assumption-BLa)
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If τ(i) is the ith largest τk , we assume that we can find a random variable N ∈ N

and positive real numbers ε0 and C0 such that⎧⎨⎩
P(p/N < 1 − ε0) → 1, as n → ∞,

P
(
τ(N) > C0

)→ 1,

∃η0 > 0 such that P(N/n > η0) → 1, as n → ∞.

(Assumption-BB)

Let us call ρn = p/n and ρ = limn→∞ ρn. We assume that ρ ∈ (0,1). We call

Zn,p = 1

n2 e′�Y(Y ′�2Y/n)−1Y ′�e.

Then we have

Zn,p → ρ in probability.

If the n×p data matrix X̃ is written X̃ = �Y�1/2, and if m̂ = �1/2Y ′�e/n is the
vector of column means of X̃, and if �̂ is the sample covariance matrix computed
from X̃, we have

m̂′�̂−1m̂ → κ = ρ

1 − ρ
in probability.

Some comments on this theorem are in order. First, Zn,p is unchanged if we
rescale all the λi ’s by the same constant. So it appears we could assume that they
are all less than 1, for instance, and dispense entirely with (Assumption-BLa).
However, that would potentially violate the conditions of (Assumption-BB) which
appear to guarantee that Zn,p has variance going to zero. We also note that because
the Yi ’s have a continuous distribution and we know that all the λi’s are different
from 0, the existence of Zn,p is guaranteed with probability 1.

Some practical clarifications are also in order concerning the condition

1

n2

n∑
i=1

λ4
i = 1

n2

n∑
i=1

τ 2
i → 0 in probability.

When the λi ’s are i.i.d., this condition is satisfied (almost surely and hence in
probability) if for, instance, the λi ’s have finite second moment according to the
Marcinkiewicz–Zygmund law of large numbers [see Chow and Teicher (1997),
page 125]. This is very interesting from a practical standpoint as it basically means
that we only require our random variables Xi to have a second moment for the the-
orem to hold. We note that if there were no variance, the premises of the problem
would be essentially flawed (after all the quadratic form we are optimizing involves
a proxy for the population covariance, and, in the absence of a second moment for
the λi’s, the population covariance would not exist), and hence we require minimal
conditions from the point of view of the practical problem at stake.

Finally, and remarkably, the limit of Zn,p does not depend on the empirical
distribution of the λi’s. In particular, in the class of elliptical distributions (satis-
fying the assumptions of Theorem 4.3), the limit of m̂′�̂−1m̂ is always the same:
κ = ρ/(1 − ρ).
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We now turn to proving Theorem 4.3. The proof will be facilitated by the fol-
lowing lemma, which essentially gives us E(Zn,p).

LEMMA 4.4. Let Y be an n × p random matrix, with n ≥ p with, for in-
stance, independent rows, Yi . Assume that Yi have symmetric distributions, that is,

Yi
L= −Yi . Let � be an n × n diagonal matrix with possibly random entries. Let

P = �Y(Y ′�2Y)−1Y ′� be a random projection matrix. Y is assumed to be inde-
pendent of � and Y and � are assumed to be such that P exists with probability 1.
Then,

E(e′P e|�) = E(e′P e) = p.

In particular, the result applies when Yi are normally distributed, and � is such
that (Assumption-BB) holds, and P is defined with probability one.

PROOF OF LEMMA 4.4. Let us note that P = f�(Y1, . . . , Yn). Now, condi-

tional on �, P
L= f�(−Y1, Y2, . . . , Yn) = P̃ . However, P̃ (1, j) = −P(1, j), if

j �= 1. As a matter of fact,

P(1, j) = λ1λjY
′
1

(
n∑

i=1

λ2
i YiY

′
i

)−1

Yj .

Hence, conditional on �, P(1, j)
L= −P(1, j). Now P is an orthogonal projection

matrix, P = P ′, so all its entries are less than 1 in absolute value, the operator norm
of P . In particular, all the entries have an expectation. Since, if j �= 1, P(1, j) has
a symmetric distribution (conditional on �), we conclude that

E(P (1, j)|�) = 0, if j �= 1.

Note that the same arguments would apply if 1 were replaced by i, so we really
have

E(P (i, j)|�) = 0, if j �= i.

Therefore,

E(e′P e|�) = E(trace(P )|�) = p,

since P has rank p and is a projection matrix.
The same results hold when we take expectations over � by similar arguments.

�

To prove Theorem 4.3, all we have to do (in light of Lemma 4.4) is to show that
we control the variance of

Zn,p = 1

n
e′P e.
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We are going to do this now by using rank 1 perturbation arguments, in connection
with the Efron–Stein inequality.

PROOF OF THEOREM 4.3. As before, we first work conditionally on �. We
assume until further notice that � ∈ Lε0,δ0 , a set of matrices which is defined at
the end of the proof, will have measure going to 1 asymptotically, and is such that
all the technical issues appearing in the proof can be taken care of. (The arguments
are not circular.)

We will use the notation

S = 1

n

n∑
k=1

λ2
kYkY

′
k and Si = S − 1

n
λ2

i YiY
′
i .

Note that Si is symmetric and positive semi-definite. Naturally, in matrix form we
can write S = (Y ′�2Y)/n and Si = (Y ′�2

i Y )/n, where �2
i is the same matrix as

�, except that �i(i, i) = 0. Our aim is to approximate

Zn,p = e′�Y

n

(
Y ′�2Y

n

)−1 Y ′�e
n

= f (X1, . . . ,Xn),

by a random variable involving only (Y1, . . . , Yi−1, Yi+1, . . . , Yn), that is, not
involving Yi . Using classic matrix perturbation results [see Horn and Johnson
(1990), page 19], we have

S −1 =
(

Si + λ2
i

n
YiY

′
i

)−1

= S −1
i − λ2

i

n

S −1
i YiY

′
i S −1

i

1 + λ2
i (Y

′
i S −1

i Yi/n)
.

Of course, if ei is the ith canonical basis vector in Rn,

W � �Y =
n∑

i=1

λieiY
′
i � Wi + λieiY

′
i .

Let us now call qi = Y ′
i S −1

i Yi/n and ri = Wi S −1
i Yi . We have

�Y S −1 = Wi S −1
i − λ2

i

n

riY
′
i S −1

i

1 + λ2
i qi

+ λieiY
′
i S −1

i − λ3
i qi

eiY
′
i S −1

i

1 + λ2
i qi

.(6)

Similarly,

�Y S −1Y ′� = Wi S −1
i W ′

i − λ2
i

n

rir
′
i

1 + λ2
i qi

+ λieir
′
i − λ3

i qi

eir
′
i

1 + λ2
i qi

(7)

+ λirie
′
i − λ3

i qi

rie
′
i

1 + λ2
i qi

+ λ2
i nqieie

′
i − λ4

i nq2
i

eie
′
i

1 + λ2
i qi

.
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This is, in some sense, the key expansion in this proof. Now let us call μ̂′
i = e′Wi/n

and wi = e′ri/n = μ̂′
i S −1

i Yi . We have

Zn,p = μ̂′
i S −1

i μ̂i − λ2
i

n

w2
i

1 + λ2
i qi

+ 2
λi

n
wi

− 2

n
λ3

i

qiwi

1 + λ2
i qi

+ λ2
i

n
qi − λ4

i

n

q2
i

1 + λ2
i qi

.

Now let us call Zi = μ̂′
i S −1

i μ̂i . Clearly, Zi does not depend on Yi . Now, it is easily
verified that(

2λiwi + λ2
i qi − λ4

i q
2
i

1 + λ2
i qi

− λ2
i w

2
i

1 + λ2
i qi

− 2
λ3

i qiwi

1 + λ2
i qi

)
= 1 − (1 − λiwi)

2

1 + λ2
i qi

.

We finally conclude that

Zn,p = Zi + 1

n

(
1 − (1 − λiwi)

2

1 + λ2
i qi

)
.(8)

We now recall the Efron–Stein inequality, as formulated in Theorem 9 of Lugosi
(2006): if α = f (X1, . . . ,Xn), where the Xi’s are independent, and αi is a mea-
surable function of (X1, . . . ,Xi−1,Xi+1, . . . ,Xn), then

var(α) ≤
n∑

i=1

E
(
(α − αi)

2).
In particular, for us, it means that

var(Zn,p|�) ≤
n∑

i=1

E
((

Zn,p − Zi − 1

n

)2∣∣∣�).
If we now use equation (8) and the fact that qi ≥ 0, we have

n

∣∣∣∣Zn,p − Zi − 1

n

∣∣∣∣= (1 − λiwi)
2

1 + λ2
i qi

≤ 2(1 + λ2
i w

2
i ).

Moreover, conditional on Y(−i) = (Y1, . . . , Yi−1, Yi+1, . . . , Yn) (and � since all our
arguments at this point are made conditional on �), wi is N (0, μ̂′

i S −2
i μ̂i) when

the Y ’s are N (0, Idp), because wi = μ̂′
i S −1

i Yi . Therefore,

E(w4
i |�) = 3E((μ̂′

i S −2
i μ̂i)

2|�).

Almost by definition, we have μ̂′
i S −1

i μ̂i ≤ 1, since the vector e/
√

n has norm 1
and Wi(W

′
iWi)

−1W ′
i is a projection matrix (recall that Si = W ′

iWi/n and μ̂′
i =

e′Wi/n). So we would be done if we had uniform control on |||S −1
i |||2. Let us now

go around this difficulty.
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• Regularization interlude.
Let us consider, for t > 0, Z(t) = μ̂′(S + tIdp)−1μ̂, where μ̂′ = e′W/n. Clearly,

0 ≤ Z(t) ≤ Zn,p = Z(0), because S + tIdp � S � 0 in the positive-semidefinite
ordering. In other respects, the decomposition in equation (8) is still valid if we
replace Zi by Zi(t) and Si by Si (t) everywhere. However, |||(Si (t))

−1|||2 ≤ 1/t .
We therefore have

μ̂′
i Si (t)

−2μ̂i ≤ |||S −1
i (t)|||2‖S −1/2

i μ̂i‖2
2 ≤ μ̂′

i S −1
i (t)μ̂i

t
≤ μ̂′

i S −1
i μ̂i

t
≤ 1

t
.

So applying the previous analysis and using the fact that μ̂′
i(Si (t))

−2μ̂i ≤ 1/t , we
conclude that

var(Z(t)|�) ≤ 8

n2

n∑
i=1

(
1 + 3

λ4
i

t2

)
.

So under our assumptions, Z(t) can be approximated, in probability, at least con-
ditionally on �, by E(Z(t)|�). If we write the singular value decomposition
of W/

√
n = ∑p

i=1 σiuiv
′
i , where σ1 ≥ σ2 ≥ · · · ≥ σp , we have W S −1W ′/n =∑p

i=1 uiu
′
i , W(S(t))−1W ′/n =∑p

i=1 σ 2
i /(σ 2

i + t)uiu
′
i , and therefore

0 ≤ Zn,p − Z(t) = t

n

p∑
i=1

1

σ 2
i + t

(u′
ie)

2

≤ t

σ 2
p + t

1

n

p∑
i=1

(u′
ie)

2 ≤ t

σ 2
p + t

‖e‖2
2

n
= t

σ 2
p + t

.

To get the inequality above, we used the fact that the {ui}pi=1 are orthonormal in
Rn, and can therefore be completed to form an orthonormal basis of this vector
space. The quantities u′

ie are naturally the coefficients of e in this basis, and we
know that their sum of squares should be the squared norm of e, which is n.

Let us now call Lε0,δ the set of matrices � such that p/N < 1 − ε0 and C0(N −
1)/(n − 1) > δ. Under our assumptions, for a δ0 bounded away from 0 (e.g., δ0 =
1/2C0η0), P(� ∈ Lε0,δ0) → 1. Let us pick such a δ0. If � ∈ Lε0,δ0 , according to
Lemma B.1 and the proof of Theorem 4.1, if P� denotes probability conditional
on �,

P�

(
σp ≤√δ0

[(
1 −√1 − ε0

)− t
])≤ exp

(−(n − 1)δ0t
2/C0

)
.

Hence, when � ∈ Lε0,δ0 , we can find, for any u > 0, an η(u) > 0,

P
(|Zn,p − Z(η(u))| > u

)≤ fn(ε0, δ0, η(u), u) = fn(u),

where, fn(u) = fn(ε0, δ0, η(u), u) → 0 as n → ∞, for fixed u.
On the other hand, our conditional variance computations have established that,

for any η > 0, Z(η)− E(Z(η)|�) converges in probability (conditional on �) to 0
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if η−2∑λ4
i /n2 tends to 0. We note that 0 ≤ Zn,p ≤ 1 and that the same is true for

γn(u) = E(Z(η(u))|�). Therefore, |Zn,p − γn(u)| ≤ 1 and E((Zn,p − γn(u))2|�)

goes to zero, since

E
((

Z − γn(u)
)2|�)

≤ u2P
(|Zn,p − γn(u)| ≤ u|�)+ P

(|Zn,p − γn(u)| > u|�)
≤ u2 + P

(|Zn,p − Z(η(u))| > u/2|�)+ 4

u2 var(Z(η(u))|�).

In other words, we also have, if � ∈ Lε0,δ0 , for any u > 0,

var(Zn,p|�) ≤ u2 + fn(u/2) + 32

u2

1

n2

n∑
i=1

(
1 + 3

λ4
i

η(u)2

)
.

Hence, if � ∈ Lε0,δ0 and
∑n

i=1 λ4
i /n2 → 0, var(Z|�) goes to zero as n goes to

infinity, and we conclude that, since E(Z|�) = p/n,

Z − p

n
→ 0 in probability, conditional on �.

• Deconditioning on �.
Let us call L2

ε0,δ0,t
the set of matrices such that L2

ε0,δ0,t
= Lε0,δ0 ∩ {( 1

n2 ×∑n
i=1 λ4

i ) ≤ t}. Our previous computations clearly show that we can find a func-
tion gn(u), with gn(u) → 0 as n → ∞, such that, for any u > 0, when � ∈
L2

ε0,δ0,u
4η(u)2 � L2(u), var(Zn,p|�) ≤ 97u2 + gn(u), and hence we have the “uni-

form bound,” if � ∈ L2(u),

P

(∣∣∣∣Zn,p − p

n

∣∣∣∣> x|�
)

≤ 97u2 + gn(u)

x2 .

Now under our assumptions, P(� ∈ L2(u)) goes to 1 for any given u, so we con-
clude, using the fact that

P(|Zn,p − p/n| > x) ≤ P [|Zn,p − p/n| > x & � ∈ L2(u)]
+ P [� /∈ L2(u)],

that

Zn,p − p

n
→ 0 in probability.

This last statement is now understood of course unconditionally on � and this
proves the first part of the theorem.

• Proof of the second part of the theorem.
We now focus on the m̂′�̂−1m̂ part of the theorem. Let us call S = X̃′X̃/n.

Then, n−1
n

�̂ = S − m̂m̂′. Therefore,

n

n − 1
�̂−1 = S−1 + S−1m̂m̂′S−1

1 − m̂′S−1m̂
.
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Hence,

n

n − 1
m̂′�̂−1m̂ = m̂′S−1m̂

1 − m̂′S−1m̂
= Zn,p

1 − Zn,p

.

Since Zn,p → ρ in probability with ρ ∈ (0,1), we have the result announced in
the theorem. �

Now that we have proved Theorem 4.3, we need to turn to results that will allow
us to handle the case of nonzero population mean, as well as questions such as the
convergence of μ̂′�̂−1v, for deterministic v.

4.2.1. On quantities of the type (μ̂ − μ)′�̂−1μ. Recall that the key quantity in
the solution of problem (QP-eqc-Emp), the problem of main interest in this paper,
is of the form V̂ ′�̂−1V̂ . Therefore, it is important for us to understand quantities
of the type

ζ = μ̂′�̂−1v,

for a fixed vector v. At this point, we focus on the particular case where μ =
E(Xi) = 0. To do so, we will need to study, if S = Y ′�′�Y/n,

ζ = 1

n
e′�Y S −1v,

for a fixed vector v. As it turns out, this random variable goes to zero in probability
when for instance ‖v‖2 = 1.

THEOREM 4.5. Suppose v is a deterministic vector, with ‖v‖2 = 1. Suppose
the assumptions stated in Theorem 4.3 hold and also that

1

n

n∑
i=1

λ2
i remains bounded with probability going to 1.(Assumption-BLb)

Consider

ζ = 1

n
e′�Y S −1v,

where S = 1
n
Y ′�2Y . Then

ζ → 0 in probability.

Before giving the proof, we note that if the λi’s are i.i.d. and have a second mo-
ment, the “extra” condition on

∑n
i=1 λ2

i /n introduced in this theorem (as compared
to Theorem 4.3) is clearly satisfied by the law of large numbers.

PROOF OF THEOREM 4.5. The proof is quite similar to the proof of Theo-
rem 4.3 above. We start by conditioning on �.
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Let us call ζ(t) the quantity obtained when we replace S by S(t) = S + tId in

the definition of ζ . Note that since Y is symmetric, ζ(t)
L= −ζ(t), conditionally

on �, by arguments similar to those given in the proof of Lemma 4.4. Now ζ(t)

clearly has an expectation (conditional on �), because |||S−1(t)|||2 ≤ 1/t , for t > 0,
so E(ζ(t)|�) = 0. Now recall equation (6): with the notations used there,

�Y S −1 = Wi S −1
i − λ2

i

n

riY
′
i S −1

i

1 + λ2
i qi

+ λieiY
′
i S −1

i − λ3
i qi

eiY
′
i S −1

i

1 + λ2
i qi

.

Let us now call qi(t) = Y ′
i Si (t)

−1Yi/n, wi(t) = e′Wi Si (t)
−1Yi/n = μ̂′

i Si (t)
−1Yi

and θi(t) = Y ′
i Si (t)

−1v. Clearly, if ζi(t) is the random variable obtained by ex-
cluding Yi from the computation of ζ(t) (e.g., by replacing λi by 0), we have

ζ(t) = ζi(t) − λ2
i

n

wi(t)θi(t)

1 + λ2
i qi(t)

+ λiθi(t)

n
− θi(t)

n

λ3
i qi(t)

1 + λ2
i qi(t)

= ζi(t) + 1

n

(
λiθi(t)(1 − λiwi(t))

1 + λ2
i qi(t)

)
.

We remark that θi(t)|(Y(−i),�) ∼ N (0, v′S −2
i (t)v) and recall that wi |(Y(−i),�) ∼

N (0, μ̂′
i S −2

i μ̂i). Using the fact that ‖v‖2 = 1, |||S −2
i (t)|||2 ≤ t−2 and the remarks

we made in the proof of Theorem 4.3, we get that E([θi(t)]2k|(Y(−i),�)) ≤
Ckt

−2k , E([wi(t)]2k|(Y(−i),�)) ≤ Ckt
−k , where C1 = 1 and C2 = 3. We also

have [
λiθi(t)

(
1 − λiwi(t)

)]2 ≤ 2[λ2
i θ

2
i (t) + λ4

i θ
2
i (t)w2

i (t)].
Hence, simply using the fact that 2(ab)2 ≤ (a4 + b4), we get

E
((

λiθi(t)(1 − λiwi(t))

1 + λ2
i qi(t)

)2∣∣∣�)≤ 2
2λ2

i

t2 + 3λ4
i

(
1

t2 + 1

t4

)
.

We conclude by the Efron–Stein inequality that, when � is such that
∑n

i=1 λ4
i /

n2 → 0, for any t > 0,

ζ(t) → 0 in probability, conditionally on �.

As before, let us call Lε0,δ the set of matrices � such that p/N < 1 − ε0 and
C0(N − 1)/(n − 1) > δ. Recall that under our assumptions, for δ0 bounded away
from 0 (e.g., δ0 = C0η0/2), P(� ∈ Lε0,δ0) → 1.

As we saw before, when � ∈ Lε0,δ0 , |||S −1|||2 is bounded with high-probability
(conditional on �), so we conclude that, for any η > 0, we can find a t such that

|||S −1 − S −1(t)|||2 < η with probability (conditional on �) going to 1.
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We also notice that conditionally on �, μ̂ ∼ N (0,
∑

λ2
i

n2 Idp) and hence, ‖μ̂‖2
2 ∼

χ2
p/n(

∑
λ2

i )/n. We recall that ‖v‖2 = 1, and since

|ζ − ζ(t)| ≤ ‖μ̂‖2|||S −1 − S −1(t)|||2‖v‖2,

we conclude that with high-probability (conditional on �), for any η > 0, |ζ −
ζ(t)| ≤ η and finally,

ζ → 0 in probability, conditionally on �.

Now along the same lines as what was done in the proof of Theorem 4.3, we can
make all these probability bounds uniform in � when � is in a set of matrices such
as Lε0,δ0 and when we also have bounds on

∑n
i=1 λ4

i /n2 and
∑n

i=1 λ2
i /n. Under our

assumptions, the set of � for which these conditions hold has measure going to 1,
so we can finally conclude—along the same lines (omitted here) as in the proof of
Theorem 4.3—that, unconditionally on �,

ζ → 0 in probability. �

After these preliminaries, we can finally state the theorem of main interest. Re-
call that under the assumptions of Theorem 4.1, if v is deterministic,

v′�̂−1v

v′�−1v
→ s in probability,

where s is defined in equation (4).

THEOREM 4.6. Suppose that Xi = μ + λi�
1/2Yi , where Yi are i.i.d. N (0,

Idp) and {λi}ni=1 are random variables, independent of {Yi}ni=1. Let v be a de-
terministic vector. Suppose that ρn = p/n has a finite nonzero limit, ρ and that
ρ ∈ (0,1).

We call τi = λ2
i . We assume that τi �= 0 for all i as well as

1
n2

∑n
i=1 λ4

i → 0 in probability and
1
n

∑n
i=1 λ2

i remains bounded in probability.
(Assumption-BL)

If τ(i) is the ith largest τk , we assume that we can find a random variable N ∈ N

and positive real numbers ε0 and C0 such that⎧⎨⎩
P(p/N < 1 − ε0) → 1, as n → ∞,

P
(
τ(N) > C0

)→ 1,

∃η0 > 0 such that P(N/n > η0) → 1, as n → ∞.

(Assumption-BB)

We also assume that the empirical distribution of τi’s converges weakly in prob-
ability to a deterministic limit G.

We call � the n×n diagonal matrix with �(i, i) = λi , Y the n×p matrix whose
ith row is Yi , W = �Y and S = W ′W/n =∑n

k=1 λ2
kYkY

′
k/n. Finally, we use the

notation ω̂ = W ′e/n, μ̃ = �−1/2μ.
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Then, we have, for s defined as in equation (4),

μ̂′�̂−1v√
v′�−1v

= μ′�̂−1v√
v′�−1v

+ oP (1) = s
μ′�−1v√
v′�−1v

+ oP

(
1 ∨ μ′�−1v√

v′�−1v

)
,(9)

the second statement holding if, for instance, μ and v are such that the first set of
conditions in Lemma 4.2 are met.

Also,

μ̂′�̂−1μ̂ = μ′�̂−1μ + ρn

1 − ρn

+ 2
n − 1

n

ω̂′S −1μ̃

1 − ω̂′S −1ω̂
+ oP (1),(10)

and we recall that ω̂′S −1μ̃/‖μ̃‖ = oP (1) and ω̂′S −1ω̂ = p/n + oP (1).

To be able to exploit equation (10) in practice, we make the following remarks.
We can consider three cases, having to do with the size of μ′�−1μ = ‖μ̃‖2

2:

1. If μ′�−1μ → 0, then, μ̂′�̂−1μ̂ = ρn

1−ρn
+ oP (1).

2. If μ′�−1μ → ∞, then μ̂′�̂−1μ̂ ∼ sμ′�−1μ.
3. Finally, if μ′�−1μ stays bounded away from 0 and infinity,

μ̂′�̂−1μ̂ = sμ′�−1μ + ρn

1 − ρn

+ oP (1).

A noticeable feature of these results is that the “extra bias” κn = ρn/(1 − ρn),
which comes essentially from mis-estimation of μ, is constant within the class of
elliptical distributions considered here. This should be contrasted with the “scal-
ing,” s, which strongly depends on the empirical distribution of the λ2

i ’s.
We now give a brief proof of Theorem 4.6.

PROOF OF THEOREM 4.6. We first note that �1/2ω̂ = m̂ in the notation of
Theorem 4.3. Also, μ̂ = μ + �1/2ω̂ = μ + m̂. Finally,

n − 1

n
�̂ = �1/2S�1/2 − m̂m̂′ = �1/2(S − ω̂ω̂′)�1/2.

Proof of equation (10). By writing μ̂ = μ + m̂, we clearly have

μ̂′�̂−1μ̂ = μ′�̂−1μ + 2m̂′�̂−1μ + m̂′�̂−1m̂.

We have already seen in Theorem 4.3 that the third term tends to κ = ρ/(1 − ρ).
On the other hand, half of the middle term is equal to

n

n − 1
ω̂′(S − ω̂ω̂′)−1μ̃.

Since (S − ω̂ω̂′)−1 = S −1 + S −1ω̂ω̂′S −1/(1 − ω̂′S −1ω̂), we have

n

n − 1
m̂′�̂−1 = ω̂′S −1

(
1 + ω̂′S −1ω̂

1 − ω̂′S −1ω̂

)
�−1/2

= 1

1 − ω̂′S −1ω̂
ω̂′S −1�−1/2,
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and we deduce the result of equation (10). We now remark that ω̂′S −1ω̂ is equal
to the quantity Zn,p in Theorem 4.3. The fact that ω̂′S −1μ̃/‖μ̃‖ = oP (1) follows
from applying Theorem 4.5 with v = μ̃/‖μ̃‖2.

Proof of equation (9). The proof of this result follows from a decompo-
sition similar to the one we just made. Clearly the only question is whether
m̂′�̂−1v/

√
v′�−1v goes to 0. As we just saw,

n

n − 1
m̂′�̂−1v = 1

1 − ω̂′S −1ω̂
ω̂′S −1�−1/2v.

The results of Theorem 4.5 guarantee that

ω̂′S −1�−1/2v

‖�−1/2v‖2
→ 0 in probability.

Since ω̂′S −1ω̂ tends to ρ < 1 and ‖�−1/2v‖2
2 = v′�−1v, we have shown the result

stated in equation (9). �

4.3. On the effect of correlation between observations. It is clear that in finan-
cial practice and other applied settings, the assumption that the returns (or observed
data vectors) are independent is often questionable. So for quadratic programs with
linear equality constraints (including the Markowitz problem but also going be-
yond it), it is natural to ask what is the impact of correlation in our observations on
the empirical solution of the problem. In our notation, this means that the vectors
Xi and Xj are correlated; we refer to this situation as the correlated case or as the
case of temporal correlation.

Our work on the elliptical case comes in handy here and allows us to also
draw conclusions concerning the correlated case. We consider a particular model,
namely we assume that the n × p data matrix X is given by

X = enμ
′ + �Y�1/2,

where � is a deterministic but not necessarily a diagonal matrix, and Y is a matrix
with i.i.d. N (0,1) entries. We assume throughout that � is full rank. The model we
consider now is more general than the one we looked at before, since if � = Idn,
we get the i.i.d. Gaussian case, and if � is diagonal we are back in an “ellipti-
cal” case (where the ellipticity parameters are assumed to be deterministic, which
amounts to doing computations conditional on �). But when � is not diagonal,
Xi and Xj might be correlated. [In all the situations where � is deterministic, the
marginal distribution of Xi is N (μ, s2

i �), where si is the norm of the ith row of
�.]

Because we want to focus here on robustness questions arising when going
from independent Gaussian random variables to correlated ones, we will assume
throughout that � is deterministic. (Allowing � to be random simply requires
some minor technical modifications but would make the exposition a bit less
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clear.) Our main results in this subsection can be interpreted as saying that that
the Gaussian analysis of Section 3, carried out in the setting of independent obser-
vations, is not robust against these independence assumptions. The results change
quite significantly when the vectors of observations are correlated.

In general, we write the singular value decomposition of the n × n matrix � as
� = ADB ′ [see Horn and Johnson (1990), page 414], where A and B are orthog-
onal, and D is diagonal. Therefore, AA′ = Idn, and

1

n
(X − enμ

′)′(X − enμ
′) = 1

n
�1/2Y ′BD2B ′Y�1/2 L= 1

n
�1/2Y ′D2Y�1/2.

So we are almost back in the elliptical case. The key difference now is that what
will matter in our analysis are not the diagonal entries of �′�, but rather its eigen-
values (see Proposition 4.7). Also, we will see (in Proposition 4.8) that the results
change quite significantly when we look at quantities like μ̂′�̂−1μ̂.

4.3.1. On quadratic forms involving �̂−1. As a counterpart to Theorem 4.1,
we have the following proposition.

PROPOSITION 4.7. Suppose the n × p data matrix X (whose ith row is the
ith vector of observations) can be written as

X = enμ
′ + �Y�1/2,

where � is a deterministic but not necessarily diagonal matrix. Suppose that the
eigenvalues of �′� satisfy (Assumption-BB) with a deterministic N and that the
spectral distribution of �′� converges weakly to a probability distribution G. Sup-
pose also that p/n → ρ ∈ (0,1). Call �̂ the classical sample covariance matrix,
that is,

�̂ = 1

n
(X − X̄)′(X − X̄).

Then, if v is a deterministic vector, we have

v′�̂−1v

v′�−1v
→ s in probability,

where s satisfies, if G is the limiting spectral distribution �′�∫
dG(τ)

1 + ρτs
= 1 − ρ.

The proposition shows that Theorem 4.1 essentially applies again; however, now
what matters, unsurprisingly, are the singular values of � and not its diagonal
entries. The proof of Proposition 4.7, or rather the adjustments needed to make the
proof of Theorem 4.1 go through, are given in the Appendix, Section C.1.
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4.3.2. On quadratic forms involving μ̂ and �̂−1. This is the situation where
the results are most different from that of the uncorrelated case. Once again, here
we will be content to just state the results; a detailed justification of our claims is
in the Appendix, Section C.2.

As before, the most complicated aspect of the problem is to understand quanti-
ties of the type μ̂′�̂−1μ̂, in the situation where μ = 0. In this setting, we have the
following result.

PROPOSITION 4.8. Suppose the n × p data matrix X̃ is such that, for Y an
n × p matrix with i.i.d. N (0,1) entries, and � a deterministic matrix,

X̃ = �Y�1/2.

We assume that (Assumption-BB) holds for the eigenvalues of �′�, for a de-
terministic sequence N(n). We write the singular value decomposition of � as
� = ADB ′.

We call S = X̃′X̃/n and m̂ = �1/2Y ′�′e/n, that is, the sample mean of the

columns of X̃. We denote by di the diagonal elements of D, and Ỹ = B ′Y L= Y . We
also call

F = 1

n

n∑
i=1

d2
i Ỹi Ỹ

′
i , Fi = F − 1

n
d2
i Ỹi Ỹ

′
i , P = DỸ (Ỹ ′D2Ỹ )−1Ỹ ′D.

If we call ω = A′e, and qi = Ỹ ′
i F

−1
i Ỹi/n, we have, if ‖ω‖4

4/n2 and ‖d‖4
4/n2 → 0,

m̂′S −1m̂ − κ(n,p) → 0 in probability,

where

κ(n,p) = 1

n

n∑
i=1

ω2
i E(P (i, i)) and P(i, i) = 1 − 1

1 + qid
2
i

.

Further,

m̂′�̂−1m̂ − κ(n,p)

1 − κ(n,p)
→ 0 in probability.

Furthermore, under the above assumptions, if the spectral distribution of �′�
converges to G and (

∑n
i=1 ω2

i d
2
i )/n remains bounded, a result similar to Theo-

rem 4.6 holds, with s being computed by solving equation (4) with the correspond-
ing G and κ(n,p) playing the role of ρn/(1 − ρn).

Essentially the previous proposition tells us that when dealing with correlated
variables, the new κ(n,p) replaces the old κ = ρ/(1 − ρ). We note that there
are no inconsistencies with our previous results as

∑
i P (i, i) = trace(P ) = p and

in the “elliptical” case (i.e., � diagonal), ω2
i = 1, so the previous proposition is
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consistent with the results we have obtained in the elliptical case. We also remark
that ‖ω‖ = √

n, since A is orthogonal.
Finally, in the case where the di ’s have a limiting spectral distribution and satisfy

(Assumption-BB), further computations show that qi − ρns → 0. However, this
does not help (in general) in getting a simpler expression for κ(n,p).

4.4. On the bootstrap. An interesting aspect of the analysis of elliptical mod-
els is that it also shed lights on the properties of the bootstrap in this context. As
a matter of fact, the nonparametric bootstrap yields covariance matrices that have
a structure similar to those computed from elliptical distributions: if we call D the
diagonal matrix whose ith diagonal entry is the number of times observation Xi

appears in our bootstrap sample, we have, if �̂∗ is the bootstrapped covariance
matrix,

�̂∗ = 1

n − 1
X′DX − n

n − 1
μ̂∗(μ̂∗)′,

where X is our original data matrix, and μ̂∗ is the sample mean of our bootstrap
sample, which can also be written μ̂∗ = X′De/n. Unless otherwise noted, we as-
sume in the discussion that follows that the population mean μ is 0. Since the
covariance matrix is shift-invariant, we can make this assumption without loss of
generality. We call

S∗ = 1

n
X′DX and S ∗ = �−1/2S∗�−1/2.

As we will see shortly, understanding the properties of �̂∗ boils down to under-
standing those of S ∗ so we will focus on this slightly more convenient object in
this short discussion.

We note that if X is Gaussian, S∗ can be thought of as a “covariance matrix”
computed from the elliptical data X̃i = d

1/2
i Xi . The same remark applies when X

is elliptical, that is, for us, Xi = λi N (0,�): all we need to do is change the “el-
lipticity parameter” λi to

√
diλi . The same remark is also applicable to the case

of correlated observations, that is, X = �Y�1/2, where � is not diagonal any-
more. Studying the bootstrap properties of such a model is the same as studying
that of the model where we replace � by

√
D�. We therefore would like to apply

directly all the results we have obtained above in our study of elliptical models
to better understand the bootstrap. For quantities of the form v′(�̂∗)−1v, we will
see that we can essentially do it, but differences will appear when dealing with
(μ̂∗)′(�̂∗)−1μ̂∗, which yields statistics that are not exactly analogous to corre-
sponding statistics appearing in the elliptical case.

Our focus will be on bias properties of bootstrapped replications, so we will
aim for convergence in probability results and not fluctuation behavior. Our over-
all strategy here is to show convergence in probability of the quantities we are
interested in as functions of both the di ’s and Xi’s. We will derive the convergence
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properties of our bootstrapped statistics by then conditioning on the data and ar-
guing that with high probability (over the Xi’s), this does not change the results
much. We first give some needed background on the bootstrap in Sections 4.4.1
and 4.4.2, then turn to properties of quantities like v′(�̂∗)−1v (in Section 4.4.3)
and finally study (μ̂∗)′(�̂∗)−1μ̂∗ (in Section 4.4.4), where we will see (in Propo-
sition 4.13) some key differences with the elliptical case. We conclude this sub-
section with a brief discussion of the parametric bootstrap and the conclusions that
can be reached about it through our results.

4.4.1. A remark on needed convergence properties. Making statements about
bootstrapped statistics requires us to make statements that are conditional on the
observed data. This is not a trivial matter for the statistics we deal with since they
cannot be easily described in terms of simple formulas involving the original ob-
servations. However, we can take a roundabout way: by showing joint convergence
in probability (joint here refers to the “new” data being the vectors of bootstrapped
weights and observations), we can obtain interesting conclusions conditional on
the data. Though this is not difficult to show, we give full arguments here for the
sake of completeness.

We will look at our statistics as functions of the number of times an observation
appears in the sample and also, of course, of our observations. In other words, the
original statistic, Tn can be written

Tn = f (1, . . . ,1,X1, . . . ,Xn)

and, the bootstrapped version T ∗
n is, if observation Xi appears w∗

i times in the
bootstrap sample,

T ∗
n = f (w∗

1, . . . ,w∗
n,X1, . . . ,Xn).

The following simple proposition is used repeatedly in our bootstrap work.

PROPOSITION 4.9. Let us consider a statistic Tn = f (w1, . . . ,wn,X1, . . . ,

Xn), where wi is the number of times Xi appears in our sample. Suppose that the
vector of weights, w, is independent of the data matrix X. Denote by Qn the joint
probability distribution of the wi ’s, Pn the joint probability distribution of the Xi’s
and Rn = Qn × Pn the probability distribution of (w1, . . . ,wn,X1, . . . ,Xn).

Suppose we have established that Tn tends in Rn-probability to c, a determin-
istic object, as n → ∞.

Then we have, with Pn-probability going to 1 as n → ∞,

Tn|{Xi}ni=1 → c in Qn-probability.

In other words, calling Xn = {Xi}ni=1, for all ε, η > 0, if Qn(ε) = Qn(|Tn − c| >

ε|Xn), Pn(Qn(ε) > η) → 0 as n tends to infinity.
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In the case where the weights wi are obtained by standard bootstrapping, Qn is
multinomial(1/n, . . . ,1/n,n). Then, Tn|Xn has the distribution of the usual boot-
strap quantity T ∗

n . We will focus on this case more specifically later.

PROOF OF PROPOSITION 4.9. The proof and the statement are almost obvious
but we include them for the sake of completeness. Let us call τn = |Tn − c| and
Xn = {X1, . . . ,Xn}. By assumption, τn → 0 in Rn probability. Hence,

ERn(1τn>ε) = EPn(EQn[1τn>ε|Xn]) → 0.

Let us call Qn(ε) = Qn(|Tn − c| > ε|Xn). Clearly, 0 ≤ Qn(ε) ≤ 1 and
EPn(Qn(ε)) → 0, so for any η > 0,

Pn

(
Qn(ε) > η

)→ 0. �

We now investigate the case of the classical bootstrap, that is, the situation in
which Qn is multinomial( 1

n
, . . . , 1

n
, n).

4.4.2. Empirical distribution of bootstrap weights. As we saw in Theorem 4.1,
the empirical distribution of the ellipticity parameters affect crucially statistics of
the type v′�̂−1v, so to understand the effect of bootstrapping, we need to under-
stand the empirical distribution of the bootstrap weights. This question has surely
been investigated, but we did not find a good reference, so we provide the result
and a simple proof for the convenience of the reader.

PROPOSITION 4.10. Let the vector w be distributed according to a multino-
mial( 1

n
, . . . , 1

n
, n) distribution. Call Fn the empirical distribution of the vector w.

Then

Fn �⇒ Po(1) in probability,

where Po(1) is the Poisson distribution with parameter 1.

PROOF. Let us first start by an elementary remark: suppose π1, . . . , πn are
i.i.d. with distribution Po(1). Call �n =∑n

i=1 πi . Then

(π1, . . . , πn)|{�n = n} ∼ multinomial
(

1

n
, . . . ,

1

n
,n

)
.

This result is a simple application of Bayes’s rule and the fact that �n ∼ Po(n).
Let us now show that if f is bounded and continuous, and if W ∼ Po(1),

EFn(f ) = 1

n

n∑
i=1

f (wi) → E(f (W)) in probability.

To do so, we note that wi ∼ binomial(n,1/n) and therefore its marginal distribu-
tion is asymptotically Po(1). Therefore,

E(EFn(f )) → E(f (W)).
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Now all we need to do is therefore to show that var(EFn(f )) goes to zero. Clearly,
by independence of the πi ’s,

var

(
1

n

n∑
i=1

f (πi)

)
= 1

n
var(f (W)) = O

(
1

n

)
,

because f is bounded. But our first remark implies that

var(EFn(f )) = var

(
1

n

n∑
i=1

f (πi)
∣∣∣�n = n

)
.

Now,

var

(
1

n

n∑
i=1

f (πi)

)
= E

(
var

(
1

n

n∑
i=1

f (πi)
∣∣∣�n

))
+ var

(
E

(
1

n

n∑
i=1

f (πi)
∣∣∣�n

))

≥ var

(
1

n

n∑
i=1

f (πi)
∣∣∣�n = n

)
P(�n = n).

Since �n has Po(n) distribution, P(�n = n) ∼ 1/
√

2πn. Hence,

var(EFn(f )) = var

(
1

n

n∑
i=1

f (πi)|�n = n

)
= O(n−1/2) → 0,

and the result is established. �

We will also need later to use on the following (coarse) fact:

FACT 4.11. Let the vector w be distributed according to a multinomial( 1
n
, . . . ,

1
n
, n) distribution. Then

P
(

max
i=1,...,n

wi > (logn)
)

= O
(

n3/2

(logn)!
)
.

In particular, this probability goes to 0 faster than any n−a , a > 0.

The proof of the fact is elementary, and relies on the representation used above
for the vector w, a simple union bound, the fact that P(Po(n) = n) ∼ n−1/2 and
the fact that P(Po(1) ≥ M) ≤ (M!)−1M/(M − 1) which is easy to see by writing
explicitly the probability we are trying to compute.

With these preliminaries behind us, we are now ready to tackle the question of
understanding the (first-order) bootstrap properties of the statistics appearing in
the study of quadratic programs with linear equality constraints.
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4.4.3. On inverse covariance matrices computed from bootstrapped data. Our
aim in this subsubsection and the next is to find analogs to Theorems 4.1 and
Theorems 4.6. Our first result along these lines is an analog of Theorem 4.1.

We present the result in the case of Gaussian data, where we can get a somewhat
explicit expression for the quantity we care about, and discuss possible extensions
below.

THEOREM 4.12. Suppose we observe n i.i.d. observations Xi , where Xi are
i.i.d. in Rp with distribution N (μ,�p). Call ρn = p/n and assume that ρn →
ρ ∈ (0,1 − e−1). Call �̂∗ the covariance matrix computed after bootstrapping the
Xi’s. Call Pn the joint distribution of the Xi ’s.

If v is a (sequence of) deterministic vectors, then conditional on {Xi}ni=1, with
high Pn probability,

v′(�̂∗)−1v

v′�−1v
→ s in probability,

where s satisfies, if G is a Po(1) distribution∫
dG(τ)

1 + ρτs
= 1 − ρ.(11)

PROOF. As before, we call Qn the law of the bootstrap weights [i.e.,
multinomial( 1

n
, . . . , 1

n
, n)] and Rn = Qn × Pn. Without loss of generality, we can

assume that μ = 0. Let us call D the diagonal matrix containing the bootstrap
weights. We have μ̂∗ = X′De/n. Also, it is true that

�̂∗ = 1

n − 1

(
X − e(μ̂∗)′

n

)′
D

(
X − e(μ̂∗)′

n

)
.

Since e′De = n, we also have

(n − 1)�̂∗ = X′D
(

Id − ee′D
n

)
X = X′D1/2

(
Id − 1

n
D1/2ee′D1/2

)
D1/2X.

Because X is of the form X = Y�1/2 under our assumptions, we see that

�̂∗ = �1/2S ∗�1/2

where S ∗ = 1

n − 1
Y ′D1/2

(
Id − 1

n
D1/2ee′D1/2

)
D1/2Y.

If we call δ = D1/2e, we have ‖δ‖2
2 = n because the sum of the bootstrap weights

is n. Therefore, Hδ = Idn − δδ′/n � 0. Also, Hδ (like H ) is a projection matrix
and a rank 1 perturbation of Idn.

The situation is therefore very similar to the question we studied in Theorem 4.1,
except that H = Idn − ee′/n is replaced by Hδ = Idn − δδ′/n. All the arguments
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given there hold provided we can show that (Assumption-BB) is satisfied for the
bootstrap weights in the situation we have here.

Now let us call N the number of nonzero bootstrap weights. In the notation
of Theorem 4.1, λi = √

di and τi = di . So clearly, τ(N) ≥ 1. So C0 = 1/2 is a
possibility. Also, N/n → 1 − 1/e in probability, so p/N has a limit in probability
and this limit is bounded away from 1 because of our assumption that ρn → ρ ∈
(0,1 − 1/e). Finally, we can pick η0 = (1 − 1/e)/2.

So the proof of Theorem 4.1 applies [it is easy to see here that the assumption
that τi �= 0 can be dispensed of, because we know that the nonzero τi’s are large
enough for our arguments to go through, and there are enough of them that we do
not have problems (at least in probability) with �̂−1 not being defined], and we
have the announced result. �

The previous theorems settled the question of understanding the impact of the
nonparametric bootstrap on statistics of the form v′�̂−1v in the situation where
the original data were Gaussian. A similar analysis could be carried out in the
case of elliptical data, when we assume that the “ellipticity” parameters, λi , are
such (Assumption-BB) is satisfied for the “new weights” τi = λ2

i wi . The result
would then depend on the limiting distribution of λ2

i wi (if it exists), where wi is
the bootstrap weight given to observation i.

4.4.4. Bootstrap analogs of Theorems 4.5 and 4.6. An important piece of our
analysis of quadratic programs with linear equality constraints when the data are
elliptically distributed was the study of quadratic forms of the type μ̂′�̂−1μ̂. It
is natural to ask what happens to them when we bootstrap the data. In the el-
liptical case, we saw that the key statistic was of the form, when μ = 0 and
S = �1/2Y ′�2Y�1/2/n,

μ̂′S−1μ̂ = 1

n
e′�Y(Y ′�2Y)−1Y ′�e.

However, in the bootstrap case, if � is the diagonal matrix containing the bootstrap
weights, we have S∗ = �1/2Y ′�Y�1/2/n, but μ̂∗ = Y ′�e/n, so the key statistic
is going to be of the form

(μ̂∗)′(S∗)−1(μ̂∗) = 1

n
e′�Y(Y ′�Y)−1Y ′�e.

This creates complications because the matrix �Y(Y ′�Y)−1Y ′� is not a projec-
tion matrix, and hence some of our previous analysis cannot be applied directly.
However, this statistic can be rewritten, if we denote w = �1/2e, as

1

n
w′�1/2Y(Y ′�Y)−1Y ′�1/2w = 1

n
w′P�1/2w,

where P�1/2 is now a projection matrix. As before its off-diagonal elements have
mean 0 (conditional on �), but now we also need to understand

∑n
i=1 wiPi,i/n
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and not only
∑n

i=1 Pi,i/n. A detailed analysis of the former quantity is done in
Appendix C.3.

We naturally now assumes that p/n has a finite limit, ρ in (0,1 − 1/e). As
explained in Appendix C.3,

∑n
i=1 wiPi,i/n → (s − 1)/s in Qn-probability, with

Pn probability going to 1, where s is computed by solving equation (11) [i.e.,
using Po(1) for G in that equation].

Similarly, it is explained there, that with Pn probability going to 1, when Xi

have mean 0,

(μ̂∗)′(�̂∗)−1μ̂∗ → s − 1 ≥ ρ

1 − ρ
in Qn-probability.

Finally, an analog of Theorem 4.5 holds, so we have an analog of Theorem 4.6,
where s is as defined above, and ρn/1 − ρn needs to be replaced by s − 1.

In summary, we have the following proposition.

PROPOSITION 4.13. Call s the quantity defined by equation (11).
Suppose the data X1, . . . ,Xn is i.i.d. N (μ,�), and call Pn the corresponding

probability distribution. Suppose v is a given deterministic sequence of vectors.
Under the assumptions of Theorem 4.12, we have, when bootstrapping the data,
with Pn probability going to 1

v′(�̂∗)−1v

v′�−1v
→ s in Qn-probability,

(μ̂∗)′(�̂∗)−1v√
v′�−1v

→ 0 in Qn-probability, when μ = 0,

(μ̂∗)′(�̂∗)−1μ̂∗ � sμ′�−1μ + (s − 1) + oQn

(√
μ′�−1μ,1

)
.

We note that our techniques could yield generalizations of the previous fact for
the case where the data is elliptically distributed. However, in the case where Xi

have mean 0, the quantity (μ̂∗)′(�̂∗)−1μ̂∗ does not seem to have a limiting value
that is writable in compact form, so we do not dwell on this question further.

Naturally, the motivation behind the previous proposition is practical and the
results are interesting from that standpoint. They show that the bootstrap yields in-
consistent estimators of the population quantities, something that is not completely
unexpected when we understand the random matrix aspects of these questions. Per-
haps even more interesting is that bootstrap estimates of bias are themselves incon-
sistent: as a matter of fact, the key quantity that measures bias in the Gaussian case
is 1/(1−p/n); when bootstrapping it is replaced by s, as defined in equation (11).
These results therefore cast some doubts on the practical relevance of the bootstrap
for the high-dimensional problems we are considering, at least when the bootstrap
is used in “classical” ways.
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4.4.5. On the parametric bootstrap. In the settings considered here, it is also
natural to ask how the parametric bootstrap would behave. For instance, if we
assumed Gaussianity of the data, we could just estimate � and μ (e.g., naively, by
�̂ and μ̂) and use a parametric bootstrap to get at the quantities we are interested
in.

Naturally, the analysis of such a scheme is similar to the analysis of the Gaussian
case carried out in Section 3, where the population parameters � and μ need to be
replaced by the estimators we use in our parametric bootstrap. The same would be
true if we were to do a parametric bootstrap for elliptical data, but we would have
to use the results of Section 4 instead.

Our computations show that the parametric bootstrap could be used in the prob-
lems under study to estimate the bias of various plug-in estimators: we would for
instance recover the correct s by considering v′(�∗

parametric)
−1v/v′�̂−1v. We note,

however, that our analyses, and the estimation work we carry out in Section 5 could
do this too, at a cheaper numerical cost.

Finally and very interestingly, we see that a naive use of the parametric bootstrap
to estimate the bias in the empirical efficient frontier—a perhaps reasonable idea
at first glance—would yield inconsistent estimates of bias.

5. Robustness, bias and improved estimation. We now go back to our orig-
inal problem, which was to understand the relationship between the solution of
problem (QP-eqc-Emp) and the solution of problem (QP-eqc-Pop) (see page 3496
for definitions).

It is naturally important to understand the effect of making the assumption that
the data is normally distributed as compared to, say, an assumption of elliptical dis-
tribution for the data. The following discussion fleshes out some of our theoretical
results and what their significance is when solving quadratic programs with linear
constraints. The discussion is an application of the work done in Sections 2–4. It
might appear to be mainly heuristic, but precise statements can be easily deduced
from the precise statements of the theorems given in the corresponding technical
sections.

We discuss here only the case of i.i.d. data. As we have shown above, the boot-
strap case and the case of correlated observations are more complicated to handle,
and the formulas are not as explicit in those cases as they are in the case of i.i.d.
data. But for certain cases, one could plug-in our earlier results for those situations
to obtain explicit results about efficient frontiers and weight vectors in those cases
too.

As a matter of notation, all of our approximation statements hold with high-
probability asymptotically, unless otherwise noted. We will carry out our work
under the model put forward in Theorem 4.1, assuming that the λi ’s are i.i.d. and
the following assumptions:

Assumption A1: for all i ∈ {1, . . . , k}, v′
i�

−1vi stays bounded away from 0. vk is
assumed to be equal to μ.
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Assumption A2: the smallest eigenvalue of M = V ′�−1V stays bounded away
from 0 and the condition number of M remains bounded.

Assumption A3: if ε = ±1, (vi + εvj )
′�−1(vi + εvj ) stays bounded away from

infinity.
Assumption A4: (Assumption-BB) and (Assumption-BL) hold. (See Theorem 4.6

for definitions.)
Assumption A5: we have, for some ε > 0, if un = (2 log(n)+ (logn)ε)1/2 +√

2π ,
|||�|||2

trace(�)
u2

n → 0, where |||�|||2 is the largest eigenvalue of �.

These assumptions guarantee that the noise terms involving μ̂ do not overwhelm
the signal terms involving μ, and also that we can safely take inverses of our ap-
proximations to get approximations of their inverses. Also, all the key results we
obtained in Sections 3 and 4 are applicable, and our conclusions will of course
heavily rely on them.

We will use the notation ρn = p/n. We recall that in the Gaussian case, the
quantity s appearing below is approximately equal to 1/(1 − ρn) and in the ellip-
tical case, it is always greater than 1/(1 − ρn), as we explained after the proof of
Theorem 4.1.

We start by investigating the case of equality constraints. We discuss inequality
constraints in Section 5.6.

5.1. Relative positions of efficient frontiers: Gaussian vs. elliptical case.
When assumptions (A1–A4) hold, it is clear that

M̂ = V̂ ′�̂−1V̂ � sV ′�−1V + ρn

1 − ρn

eke
′
k.(12)

Now recall that in the elliptical case, s ≥ 1/(1 − p/n) = sG, that is, the “s” corre-
sponding to the Gaussian case. Calling M̂E the empirical estimator of M we get in
the elliptical case and M̂G its analog in the Gaussian case, we have, when A1–A4
are satisfied, with high-probability,

M̂E � M̂G,

at least asymptotically.
We now call f

(E)
emp and f

(G)
emp the “efficient frontiers” obtained by solving prob-

lem (QP-eqc-Emp) when the data is respectively elliptical and Gaussian. Recall
that under our assumptions, μ and � are the same for the two problems, so the
population version corresponding to the two problems is the same. We call the
population solution, that is, the efficient frontier computed with the population pa-
rameters, ftheo. Naturally, this is the quantity we are fundamentally interested in
estimating.

Using the fact that femp = U ′M̂−1U , the following important results.
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THEOREM 5.1. When assumptions A1–A4 are satisfied, we have with high-
probability and asymptotically,

f (E)
emp ≤ f (G)

emp ≤ ftheo.

In other words, risk underestimation in the empirical quadratic program with lin-
ear equality constraints is least severe (within the class of elliptical models) in the
Gaussian case.

In other respects, we have, asymptotically, with high-probability, if κn =
ρn/(1 − ρn),

f (E)
emp � 1

s

(
ftheo − κn

s

(e′
kM

−1U)2

1 + (κn/s)e
′
kM

−1ek

)
.(13)

Another way of phrasing this result is the fact that the Gaussian analysis gives
the most optimistic view of risk underestimation within the class of elliptical mod-
els considered here.

Practically, it means that users of Markowitz-type optimization should be wary
of the empirical solution they get, and even of the correction that Gaussian results
suggest. If the data is elliptical, they will underestimate the risk of their portfolio
even more than the Gaussian results suggest.

Let us now give a proof of Theorem 5.1.

PROOF OF THEOREM 5.1. Under the assumptions of the theorem, we can use
the approximation in equation (12). The first part of the theorem has been argued
before, so we do not need to do anything else to obtain it.

The second part follows directly from a rank one perturbation argument. We
have

f (E)
emp � U ′

(
sV ′�−1V + ρn

1 − ρn

eke
′
k

)−1

U

= 1

s
U ′
(
M + κn

s
eke

′
k

)−1

U.

Using the classic result (M + νν′)−1 = M−1 − M−1νν′M−1/(1 + ν′M−1ν), we
conclude that

U ′
(
M + κn

s
eke

′
k

)−1

U = U ′M−1U − κn

s

(U ′M−1ek)
2

1 + (κn/s)e
′
kM

−1ek

.

We now recall from Section 2 that ftheo = U ′M−1U , and we have the announced
result. �

Equation (13) naturally suggests better ways of estimating ftheo than using femp.
We postpone a discussion of this issue to Section 5.4 because it requires somewhat
lengthy preliminaries.
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5.2. Issues concerning the weights of the portfolio. Besides problems in the
location of the efficient frontiers, our analysis reveals another very interesting phe-
nomenon: problems with estimating wtheo, the optimal vector of weights. In par-
ticular, one can show that the mean return of the portfolio is poorly estimated and
the weight given to each asset is biased.

THEOREM 5.2 (Bias in weights). Suppose assumptions A1–A4 hold. We have,
asymptotically and with high-probability,

wemp � wtheo − ζ(s)
κn

s
wb,(14)

where

ζ(s) = e′
kM

−1U

1 + (κn/s)e
′
kM

−1ek

, wb = �−1V M−1ek.

This approximation is valid when looking at linear combinations of the vector of
weights: if γ ∈ Rn is deterministic and assumption A3 extended to include this
vector holds,

γ ′wemp = γ ′
(
wtheo − ζ(s)

κn

s
wb

)
+ oP (1).

We note that the last assertion of the theorem does not necessarily immediately
follow from equation (14) in high-dimension, but it is true in the setting we con-
sider. A particularly interesting corollary is the following statement concerning
inconsistent estimation of the returns.

COROLLARY 5.3 (Poor estimation of returns). Recall that with our notations,
w′

theoμ = uk = μP . In practical terms, μP corresponds to the desired expected
returns we wish to have for our “portfolio.” Under the same assumptions as that
of Theorem 5.2, we have

μ′wemp � μP

1

1 + (κn/s)e
′
kM

−1ek

− κn

s

∑
i<k uie

′
kM

−1ei

1 + (κn/s)e
′
kM

−1ek

.

The previous corollary is a statement about poor estimation of returns for the
following reason: μ̂′wemp = μP by construction, so one might naively hope that,
for a new observation Xn+1, independent of X1, . . . ,Xn and with the same distri-
bution as them, E(w′

empXn+1|X1, . . . ,Xn) = w′
empμ � μP . However, as the pre-

vious corollary shows, this is not satisfied. We note that the factor affecting μP

is a shrinkage factor, always smaller than 1 because M is positive semi-definite.
The other term could have either sign, so its effect on return estimation is less in-
terpretable. For large μP , it is nonetheless clear that the previous corollary shows
that the returns are overestimated: the realized returns are (asymptotically and with
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high-probability) less than μP . Hence, our result can be seen as a generalization
of the overestimation of returns result first found in [Jobson and Korkie (1980)], in
the low-dimensional Gaussian case.

We now prove these two results. The proof of the corollary is at the end of the
proof of the theorem.

PROOF OF THEOREM 5.2. Under the assumptions of the theorem we have

M̂ � sM + κneke
′
k,

and our assumptions guarantee that we can take inverses and still have valid ap-
proximations. Hence, using the classic formula for inversion of a rank one pertur-
bation of a matrix [see Horn and Johnson (1990), page 19], we have

M̂−1 � 1

s

(
M−1 − κn

s

M−1eke
′
kM

−1

1 + (κn/s)e
′
kM

−1ek

)
.

Now recall that wemp = �̂−1V̂ M̂−1U and wtheo = �−1V M−1U . For a determin-
istic γ , our work in Section 4 indicates that γ ′�̂−1V̂ = sγ ′�−1V + oP (1). So we
conclude that

γ ′wemp = sγ ′�−1V
1

s

(
M−1 − κn

s

M−1eke
′
kM

−1

1 + (κn/s)e
′
kM

−1ek

)
U + oP (1).

In other words, we have

γ ′wemp = γ ′�−1V M−1U − κn

s

γ ′�−1V M−1eke
′
kM

−1U

1 + (κn/s)e
′
kM

−1ek

+ oP (1),

or, as announced,

γ ′wemp = γ ′wtheo − κn

s
γ ′wbζ(s) + oP (1).

It seems difficult to say more, because wb and ζ are population parameters and
their properties and values may vary from problem to problem.

• Proof of the corollary.
We now assume that γ = μ. We remark that μ = V ek , by construction of V .

Therefore,

μ′wb = e′
kV

′�−1V M−1ek = e′
kMM−1ek = 1.

Further,

e′
kM

−1U =
k∑

i=1

uie
′
kM

−1ei =∑
i<k

uie
′
kM

−1ei + μP e′
kM

−1ek.

These two remarks and the result of Theorem 5.2 give the conclusion of the corol-
lary. �
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5.3. Bias correction for the weights. An important question now that we have
identified possible problems with the empirical weights is to try and correct them.
We propose such a scheme, suggested by our computations.

Our investigations will rely on the following asymptotic result, discussed in
Theorem 5.2: in the notations of this theorem,

γ ′wemp = γ ′wtheo − κn

s
γ ′wbζ(s) + oP (1).

Our efforts will focus on trying to estimate wb/s and ζ(s), as κn = ρn/(1 − ρn)

is known and computable from the data.
Recall that we assumed that vk = μ and let us call

M̃ = M̂ − κneke
′
k.

Under the assumptions underlying the previous computations, we have

M̃ � sM.

In practice, we wish M̃ to be a positive semi-definite matrix—something that is
guaranteed asymptotically, but might require checking and potentially corrections
in practice.

We propose to use:

1. As an estimator of wb,

ŵb = �̂−1V̂ M̃−1ek.

2. As an estimator of ζ(s)/s,

ẑ = e′
kM̃

−1U

1 + κne
′
kM̃

−1ek

.

For any deterministic γ (such that the assumptions of Theorem 5.2 hold), γ ′ŵb �
γ ′w, because γ ′�̂−1V̂ � sγ ′�−1V and M̃−1U � M−1U/s. Also, e′

kM̃
−1U �

s−1e′
kM

−1U , and e′
kM̃

−1ek � s−1e′
kM

−1ek , so ẑ � ζ(s)/s. Hence,

γ ′ŵbẑ � γ ′wζ(s)

s
.

In other words, we have found an asymptotically consistent way of estimating the
quantities of interest. Hence, the estimator we propose to use is

ŵtheo = (wemp + κnẑŵb) = �̂−1V̂ M̃−1U.(15)

Interestingly, this proposal does not require us to estimate s. Furthermore, because
we have consistency of the estimator in the whole class of elliptical distributions,
this estimator is fairly robust to distributional assumptions about the data. Finally,
the estimator is consistent in the sense that all (deterministic and given) linear
combinations of ŵtheo are consistent for the corresponding linear combinations of
wtheo (provided these linear combinations are such that the assumptions of Theo-
rem 5.2 apply to them). (Naturally, we cannot take a supremum over too large a
class of γ ’s.)
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The estimator satisfies the constraints. It is nonetheless natural to raise the fol-
lowing question: does the proposed estimator satisfy the constraints of the prob-
lem? If not, our proposal would be problematic, but it is indeed the case that our
estimator satisfies the constraints ŵtheo

′vi = ui for all i ∈ {1, . . . , k −1}. Naturally,
the last constraint (i.e., ŵtheo

′μ = uk = μP ) is difficult to satisfy exactly because
μ is unknown, so it is also less of a concern.

Let us now briefly justify our claim concerning the satisfaction of the equality
constraints. By construction, wemp satisfies the constraints w′

empvi = ui , 1 ≤ i ≤
k − 1, so all we have to show is that the k × 1 vector V̂ ′ŵb is proportional to ek .
We recall that M̃ = M̂ − κneke

′
k , so

ŵb = �̂−1V̂ (M̂ − κneke
′
k)

−1ek.

Using the standard formula for the inverse of a rank-1 perturbation of a matrix, we
therefore get

ŵb = �̂−1V̂

(
M̂−1 + κn

M̂−1eke
′
kM̂

−1

1 − κne
′
kM̂

−1ek

)
ek

= �̂−1V̂ M̂−1ek + κn�̂
−1V̂ M̂−1ek

e′
kM̂

−1ek

1 − κne
′
kM̂

−1ek

= 1

1 − κne
′
kM̂

−1ek

�̂−1V̂ M̂−1ek.

Once we recall that M̂ = V̂ ′�̂−1V̂ , we immediately get the equality

V̂ ′ŵb = 1

1 − κne
′
kM̂

−1ek

ek,

which shows that v′
i ŵb = 0 for 1 ≤ i ≤ k − 1, as announced.

Finally, from a practical point of view, one might be worried that the estimator
proposed in equation (15) “puts too much weight on the theory and not enough
on the data” and that better practical performance might be achieved by tuning
more finely our corrections to the data. For instance, one might propose, we think
reasonably, to use, instead of M̃ the matrix M̃(λ1) = M̂ − λ1κneke

′
k , where λ1

would be picked by some form of cross-validation based on the new estimator
ŵtheo(λ1) = wemp +κnẑ(λ1)ŵb(λ1). We do not discuss this issue any further in this
paper as we plan to address it in another, more applied, article. We do, however,
show the performance of our estimator in limited simulations in Section 5.5.

5.4. Improved estimation of the frontier. We now discuss the question of im-
proved estimation of the efficient frontier. This is naturally an important quantity
in the problem, and, as we hope to have shown, a difficult one to estimate by naive
methods. One aspect of its importance is that it gives us a benchmark of perfor-
mance for optimal portfolios. We therefore think that in a financial context, it might
be of great interest in particular to regulators.
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5.4.1. Estimation of s. Though we have seen that we could devise a scheme
to improve the estimation of the weights without having to estimate s, this latter
quantity is still an important one to estimate if we want to better understand the
pitfalls we might be facing.

In the elliptical case, where Xi = μ + λi�
1/2Yi , we wish to estimate λ2

i , as
we have seen that s is “driven” by this quantity. We now describe heuristics that
suggest how to estimate s; more detailed consistency arguments follow in Propo-
sition 5.4. To estimate s, we recall that standard concentration of measure results
(see below) say that with very high probability, if the largest eigenvalue of � does
not grow too fast,

‖�1/2Yi‖2
2

p
� trace(�)

p
.

Hence, in this setting, the concentration of measure phenomenon can be used for
practical purposes. Now, note that ‖μ− μ̂‖2

2 � trace(�)
n

, because under our assump-
tions A1–A4 and the assumption of independence of the λi’s,

∑n
i=1 λ2

i /n → 1 and
A5 implies that the previous approximation holds. Hence,

‖Xi − μ̂‖2
2

p
� λ2

i

trace(�)

p
.

We now propose the following estimator for λ2
i :

λ̂2
i = ‖Xi − μ̂‖2

2∑n
i=1 ‖Xi − μ̂‖2

2/n
= ‖Xi − μ̂‖2

2

trace(�̂)
.

If we denote ρn = p/n, we then propose to estimate s using the positive solution
of

ĝn(x) = 1 − ρn where ĝn(x) = 1

n

n∑
i=1

1

1 + xλ̂2
i ρn

.

We note that this is just the discretized version of the equation characterizing s. (ĝn

is clearly a continuous convex decreasing function of x on [0,∞), so the existence
and uniqueness of a solution to g(x) = 1 − ρn is clear.)

5.4.2. Estimation of the efficient frontier. We recall an important result from
Theorem 5.1: under the assumptions made in this section,

femp � 1

s
ftheo − κn

(e′
kM

−1U/s)2

1 + (κn/s)e
′
kM

−1ek

.

Now recall that we have a consistent estimator of e′
kM

−1/s, that is, e′
kM̃

−1, and
we just discussed how to estimate s.
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As an estimator of the efficient frontier we therefore propose

f̂theo = ŝ

(
femp + κn

(e′
kM̃

−1U)2

1 + κne
′
kM̃

−1ek

)
.

We also note that M̃ could be replaced by M̃(λ1) described above with a similar
cross-validation scheme.

5.4.3. Consistency of the estimator of s. Let us now show that our proposed
estimator of s is consistent. We place ourselves in the setting where λi’s are i.i.d.
with a second moment and E(λ2

i ) = 1. Recall also that the Yi’s that appear below
are such that Yi ∼ N (0, Idp).

We have the following proposition.

PROPOSITION 5.4. Let us call un = (2 log(n) + (logn)ε)1/2 + √
2π and

|||�|||2 the largest eigenvalue of �. Then we have, with probability going to 1,

max
1≤i≤n

∣∣∣∣‖�1/2Yi‖2
2

p
− trace(�)

p

∣∣∣∣≤ |||�|||2
p

(4 + u2
n) + 2un

√
|||�|||2

p

√
trace(�)

p
.

Further, if ŝn is the solution of ĝn(x) = 1 − ρn,

ŝn → s in probability,

as soon as, for some ε > 0, |||�|||2
trace(�)

u2
n → 0 as n → ∞.

PROOF. Let us consider the function F(Y ) = ‖�1/2Y‖2/
√

p. Clearly this
function is ‖�1/2‖2/

√
p-Lipschitz with respect to Euclidian norm in Rp .

Now suppose that Y0 ∼ N (0, Idp). Let us call mF a median of F(Y0). Using
standard results on the concentration properties of Gaussian random variables [see
Ledoux (2001), Chapter 1 and Theorem 2.6], we have

P

(∣∣∣∣‖�1/2Y0‖2√
p

− mF

∣∣∣∣> t

)
≤ 2 exp

(
− pt2

2|||�|||2
)
.

Hence, using a simple union bound argument, we have, after some algebra, if tn =√|||�|||2/p(2 log(n) + log(n)ε)1/2,

P

(
max

1≤i≤n

∣∣∣∣‖�1/2Yi‖2√
p

− mF

∣∣∣∣> tn

)
≤ 2 exp

(−(log(n))ε/2
)
.

So with large probability,

max
1≤i≤n

∣∣∣∣‖�1/2Yi‖2√
p

− mF

∣∣∣∣≤ tn.
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Now, if we call μF = E(F (Y0)), we have, using Proposition 1.9 in Ledoux (2001),

|mF − μF | ≤ √
π

√
2|||�|||2

p
,

0 ≤ trace(�)

p
− μ2

F ≤ 4
|||�|||2

p
.

Now, using the fact that max1≤i≤n |a2
i − b2| ≤ max1≤i≤n |ai − b|(2b +

max1≤i≤n |ai − b|), and the fact that μF ≤ √
trace(�)/p, we have

max
1≤i≤n

∣∣∣∣‖�1/2Yi‖2
2

p
− trace(�)

p

∣∣∣∣
≤ max

1≤i≤n

∣∣∣∣‖�1/2Yi‖2√
p

− μF

∣∣∣∣(2
√

trace(�)/p + max
1≤i≤n

∣∣∣∣‖�1/2Yi‖2√
p

− μF

∣∣∣∣).
Our previous results imply that with large probability,

max
1≤i≤n

∣∣∣∣‖�1/2Yi‖2√
p

− μF

∣∣∣∣≤
√

|||�|||2
p

un,

and therefore, with large probability,

max
1≤i≤n

∣∣∣∣‖�1/2Yi‖2
2

p
− trace(�)

p

∣∣∣∣
≤ 4

|||�|||2
p

+
√

|||�|||2
p

un

(
2

√
trace(�)

p
+
√

|||�|||2
p

un

)

= |||�|||2
p

(4 + u2
n) + 2un

√
|||�|||2

p

√
trace(�)

p
,

as announced in the proposition. As a consequence, we have, if we call vn =√|||�|||2/ trace(�)un, with large probability,

max
1≤i≤n

∣∣∣∣‖�1/2Yi‖2
2

trace(�)
− 1
∣∣∣∣≤ 2vn + v2

n + |||�|||2
trace(�)

.

Hence, when for some ε > 0, vn goes to zero, which implies that |||�|||2
trace(�)

→ 0, we
have with high probability,

max
1≤i≤n

∣∣∣∣‖�1/2Yi‖2
2

trace(�)
− 1
∣∣∣∣→ 0.

• Consistency of ŝn.
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We now assume that vn goes to zero for some ε > 0 and turn to showing the
consistency of ŝn. First, let us note that

μ̂ − μ|{λi}ni=1 ∼
√√√√1

n

n∑
i=1

λ2
i

1√
n

N (0,�).

Hence, by the same concentration arguments we just used, and using the fact that
the λi ’s are i.i.d. with E(λ2

i ) = 1, we have

‖μ̂ − μ‖2
2 →√

p/n trace(�)/p.

Now, ∣∣∣∣‖Xi − μ̂‖2
2

trace(�)
− λ2

i

∣∣∣∣ ≤ ∣∣∣∣‖Xi − μ‖2
2

trace(�)
− λ2

i

∣∣∣∣+ ‖μ − μ̂‖2
2

trace(�)

= λ2
i

∣∣∣∣‖�1/2Yi‖2
2

trace(�)
− 1
∣∣∣∣+ ‖μ − μ̂‖2

2

trace(�)
.

Also, the law of large numbers (for triangular arrays) imply that with probability 1

trace(�̂)

trace(�)
→ 1.

So we can write

|λ̂2
i − λ2

i | ≤
trace(�)

trace(�̂)

∣∣∣∣‖Xi − μ̂‖2
2

trace(�)
− λ2

i

∣∣∣∣+ λ2
i

∣∣∣∣ trace(�)

trace(�̂)
− 1
∣∣∣∣,

and we have now all the terms on the right-hand side under control.
In particular, it is clear that when vn → 0,

1

n

n∑
i=1

|λ̂2
i − λ2

i | → 0.

With all these preliminaries behind us, let us now turn to the final part of the
proof. Let us call

gn(x) = 1

n

n∑
i=1

1

1 + xλ2
i ρn

.

With a slight abuse of notation, we note that s is the solution of g∞(x) = 1 − ρ.
If xn is the solution of gn(xn) = 1 − ρn, it is clear that xn is consistent for s: we
can just use the fact that gn is decreasing and evaluate it at y1 and y2 which are on
either sides of s. Clearly gn(y1) is consistent for g∞(y1), and similarly for y2, so
with high probability, xn needs to be in [y1, y2] asymptotically.

Recall that the roots we are looking for are positive. So we have

ĝn(x) − gn(x) = 1

n

n∑
i=1

xρn(λ
2
i − λ̂2

i )

(1 + xλ2
i ρn)(1 + xλ̂2

i ρn)
,
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and therefore, for x > 0,

|ĝn(x) − gn(x)| ≤ xρn

1

n

n∑
i=1

|λ2
i − λ̂2

i |.

By noting that ĝn(ŝn) = 1 − ρn = gn(xn), we have

|ĝn(xn) − ĝn(ŝn)| ≤ xnρn

1

n

n∑
i=1

|λ2
i − λ̂2

i | → 0,

since xn is bounded above.
Now since ĝn(x) is decreasing and is pointwise consistent for g∞(x), it is clear

that we can find y3, deterministic and bounded away from ∞, such that asymp-
totically, ŝn < y3, with high probability. Also, ĝn(x) is convex, so this guaran-
tees that |ĝ′

n| can be bounded below (uniformly in n with high probability) on
[0,max(y3, y2)] by a quantity that is strictly greater than 0 with high probabil-
ity. Note that this latter interval contains both xn and ŝn asymptotically. Using
the mean value theorem, the fact that we have a lower bound (different from 0)
on |ĝ′

n(x)| on [0,max(y3, y2)], and the equation in the previous display, we can
finally conclude that

xn − ŝn → 0

with high probability, and since xn is consistent for s, so is ŝn. �

5.4.4. On robust estimates of scatter. We just saw that we could take advan-
tage of the high-dimensionality of the problem to essentially estimate λ2

i , by using
concentration of measure arguments. This also allows us to propose estimates of
scatter that are tailored for high-dimensional problems.

In low-dimension, estimation of individual λ2
i is not possible and a classic pro-

posal for estimating the scatter matrix � is Tyler’s estimator [see Tyler (1987)],
which is the solution Vn (defined up to scaling), of the equation

p

n∑
i=1

(Xi − μ)(Xi − μ)′

(Xi − μ)′V −1
n (Xi − μ)

= Vn.

It has been observed in a random matrix context [see Frahm and Jaekel (2005)
and Biroli, Bouchaud and Potters (2007)] that when using Tyler’s estimator in
connection with elliptically distributed data, one seemed to recover a spectrum
that looked similar to predictions of the Marčenko–Pastur law, at least in the case
of Idp scatter. At this point, the evidence is mostly based on simulations though
a rigorous proof seems feasible with a little bit of effort (the argument given in
[Biroli, Bouchaud and Potters (2007)] is interesting though it falls short of a “full
proof,” which is acknowledged in that paper). We do not try to give a proof here
because this is quite far from being the topic of this paper.
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As a high-dimensional alternative to Tyler’s estimator, we could use

Ṽn = 1

n

n∑
i=1

(Xi − μ)(Xi − μ)′

λ̂2
i

.

One potential advantage of this proposal over Tyler’s estimator is that Tyler’s esti-
mator is a priori not-defined when p > n, because it becomes impossible to invert
Vn. Also, this estimator is rather quick to compute and does not require multi-
ple inversions of p × p matrices, where p is large [Tyler’s estimator is generally
found through an iterating procedure—see Frahm and Jaekel (2005) and references
therein]. The spectral properties of Ṽn are also quite easy to analyze in light of the
detailed work we carried out concerning consistency of our estimator of s. For
instance in the simple case where μ is known, it is easy to see that under some
conditions on � and the λi ’s, the limiting spectral distribution of Ṽn will satisfy
a Marčenko–Pastur-type equation. (Because this is really tangential to our main
points in the paper, we do not give further details.)

Note that these estimates of scatter essentially make the influence of the λi’s on
the problem disappear, at least as far as covariance (or really scatter) is concerned.
So to answer a question asked by an insightful referee, it is reasonable to think
that another approach might be to turn the problem back to an essentially Gaussian
problem by using an estimate of scatter instead of an estimate of covariance—if we
ignore problems due to mean estimation. Since in the Gaussian case, s = 1/(1 −
ρ), corrections are relatively easy then. However, the impact of mean estimation
needs to be investigated and furthermore, at this point there are no rigorous results
that we know of (only very limited simulations) concerning the spectral properties
of Tyler’s estimator in high-dimension. So we leave further investigations of the
properties of these estimates of scatter to future work, as they are not a primary
concern in this already long paper (after all we have a provably consistent estimator
that takes care of all the problems and is fast to compute).

Let us however note that using estimates of scatter (instead of covariance) would
likely yield a serious improvement in terms of the realized risk of portfolios which
is discussed in the paper [El Karoui (2009b)]. However, these questions touch more
on the issue of allocation, whereas we are concerned in this paper with estimating
the efficient frontier and have shown that we can do this well (at least asymptoti-
cally and theoretically) independently of allocation issues, a fact that is potentially
useful for, for instance, creating benchmarks.

5.5. Numerical results and practical considerations. This subsection gives
some numerical results to assess the quality of the proposed estimators for both
weights and “efficient frontier.” The simulation analysis is done in an a priori quite
favorable case—the question being whether even then the theory could be useful
in practice.

Our aim was to investigate among other things the improvement in the quality
of our approximations as n and p grew to infinity. Hence, we present the results of



HIGH-DIMENSIONAL QUADRATIC PROGRAMS 3547

FIG. 2. Performance of naive and corrected portfolios, for scaled “t6” (top picture) and Gaussian
returns. Here n = 250,p = 100 and the number of simulations is 1000. The dashed lines represent
95% confidence bands. The x-axis represents the returns an investor expects. The y-axis represents
what she would actually get on average (i.e., μ′ŵ). The plots show both the bias in the naive solution
(blue solid lines) and the fact that our estimator is nearly unbiased (red solid lines). They also
illustrate the robustness of our corrections. The black line is very close to the red line, showing a
very good correction (on average) in this setting where assumptions A1–A5 are satisfied.
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FIG. 3. Performance of naive and corrected portfolios, for scaled “t6” (left picture) and Gaussian
returns. Here n = 2500,p = 1000 and the number of simulations is 1000. The dashed lines represent
95% confidence bands. The x-axis represents the returns an investor expects. The y-axis represents
what she would actually get on average (i.e., μ′ŵ). The plots show both the bias in the naive solution
(blue solid lines) and the fact that our estimator is nearly unbiased (red solid lines). They also
illustrate the robustness of our corrections. Note the narrower confidence bands as compared to
Figure 2. The black line is essentially hidden under the red line, showing a near perfect correction
(on average) in this setting where assumptions A1–A5 are satisfied.
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(a) (b)

(c) (d)

FIG. 4. Performance of naive and corrected frontiers, for scaled “t6” [(a) and (c)] and Gaussian
returns [(b) and (d)]. Here, in the left column n = 250 and p = 100. In the right column,
n = 2500,p = 1000. The number of simulations is 1000 in all pictures. The dashed lines repre-
sent (empirical) 95% confidence bands. (The confidence bands corresponds are computed for a fixed
y.) The x-axis represents our estimate of variance of the optimal portfolio. The y-axis represents
the target returns for the portfolio. The plots show both the bias in the naive solution (blue solid
curves) and the fact that our estimator is nearly unbiased (red solid curves near, or covering the
black curve, the population solution). They also illustrate the robustness of our corrections. Another
striking feature is the lack of robustness of Gaussian computations, since the “efficient frontiers”
computed with “t6” returns are different from the Gaussian ones. The fact that, as our theoretical
work predicts, Gaussian computations underestimate risk-underestimation in the class of elliptical
distributions considered in the paper is illustrated by the fact that the “t6” curves are to the left of
the Gaussian curves. Note the narrower confidence bands in the larger dimensional simulations [(c)
and (d)]. The black line is essentially hidden under the red line in (c) and (d), showing a near perfect
correction (on average) in this setting where assumptions A1–A5 are satisfied.

two simulation setups: one where n = 250,p = 100 and one where n = 2500,p =
1000. We chose to work with simulations where we picked both � and μ so that
we could guarantee, for instance, that the efficient frontier was basically the same
for both simulations.
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More specifically, we chose � to be a p × p Toeplitz matrix, with �(i, j) =
α|i−j |, where α = 0.4. In the smaller dimensional simulation, that is, p = 100, we
picked v1 to be the eigenvector associated with the 90th smallest eigenvalue of �.
Calling β2 the eigenvector associated with the 15th smallest eigenvalue of �, we
picked v2 = μ to be

√
0.3v1 + √

0.7β2. In the larger dimensional simulation, we
used for v1 the eigenvector associated with the 900th smallest eigenvalue of �,
while β2 was now associated with the 150th smallest eigenvalue of �. μ = v2 was
computed in the same fashion in both simulations.

The simulations are here to illustrate “how large is large,” that is, when the as-
ymptotics kick-in and our theoretical predictions become accurate. The parameters
were chosen so that we would be close to satisfying assumptions A1–A5. Also,
the choice of v1 and v2 guarantees that the off-diagonal elements of M are not
zero, which we thought might make the problem easier and lead to overoptimistic
pictures. (This choice of parameters is not motivated by a particular problem in
Finance. We also note that if we knew that the covariance matrix were Toeplitz,
we could resort to regularization methods to better solve the problem. However, if
we applied the same random rotation to �, v1 and v2, it becomes less clear how
one could use other approaches than the ones presented here for estimation.)

We did simulations both in the Gaussian case and in the case of an elliptical
distribution as described above, that is, Xi = μ + λi�

1/2Zi , where λi was propor-
tional to a t-distributed random variables with 6 degrees of freedom and scaled
to have variance 1. We picked 6 degrees of freedom to have simulations with
relatively heavy tails and capture visually the corresponding effects. It was also
naturally a way to investigate the practical robustness of our estimators and com-
pare with the Gaussian case. We call below the set of simulations involving the t-
distribution the “t6” case because of its similarity with multivariate t-distributions.

We repeated 1000 times the simulations in all the cases considered. We chose
u1 = 1 and u2 (the “target returns” in a financial context) ranging from 0.1 to 5.

We note that our estimators require taking inverses of matrices which naturally
raises the question of how well conditioned those matrices are. This is particularly
the case when we deal with M and M̃ : if M is poorly conditioned, even though M̃

is a good estimator of sM , it can turn out that M̃−1 is a relatively poor estimator of
M−1s−1. In our simulations, both M and � were well conditioned but in practice,
one should be aware of potential difficulties that may arise if, for instance, M̃

indicates that M may be ill conditioned. When this is the case, it is actually quite
easy to make the estimators perform poorly (but of course this violates assumptions
A1–A5).

5.5.1. Estimation of portfolio weights. As we have seen earlier, the “naive”
weights obtained by plugging-in the sample mean and the sample covariance ma-
trix in our quadratic program with linear equality constraints are biased, in the
sense that their projection in any given direction will generally be biased.
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Here we show the performance of our estimator as measured by its projection
on vk = μ. It is a natural direction to consider since, for instance, in a financial
context and under our modeling assumptions, it gives us the expected returns of
our portfolio (conditional on X1, . . . ,Xn).

As our limited simulations indicate, our estimator appears to be practically un-
biased here (even in the “lower-dimensional” case), which means in a financial
context that the corresponding investment strategy will yield the returns that the
investor expected. (We note that from a mean–variance point of view, we do not
claim that our estimator is optimal. Work is under way to find better performing
portfolios—but it requires a new set of theoretical investigations whose results are
postponed to another paper. In limited simulations, it appeared that our “debiased”
portfolio performed similarly to the naive one from a mean–variance point of view,
its main advantage being that it delivers the returns that the investor expects.)

We present two pictures, Figure 2, page 3547 and Figure 3, page 3548 to give
a sense to the reader of the impact of the size of n and p on the estimators we
proposed [the “larger-dimensional” case gives quite significantly better results,
with narrower confidence bands, though (empirical) near-unbiasedness is present
in both cases].

5.5.2. Correction to the frontier. We now turn to the issue of estimating the
“efficient frontier,” that is, the curve that represents the minima of our convex
optimization problem (QP-eqc), on page 3493. The pictures we present on Figure 3
(see page 3549) were obtained from the simulations we described above. We chose
to plot the variance (i.e., minw′�w) on the x-axis and the “target returns” [i.e., the
uk’s in the notation of equation (QP-eqc)] on the y-axis as this is the convention in
financial applications.

As the reader can see, our estimator turns out to be essentially unbiased, even
in the “lower-dimensional” case. We note too that the variance can be quite large
but that the confidence bands obtained from our corrections were always to the
right of the confidence bands obtained from the naive estimator, meaning that if
one is concerned with risk estimation that in (essentially) the worst case for our
estimator, we still obtained a better performing estimator than in (essentially) the
best case for the naive estimator. (We do not claim that this is always the case and
it might be an artifact of the simulation setup chosen here.)

Finally, for graphical purposes and to help comparisons, we chose to put all the
graphs on the same scale. Some of the information on our original graphs (for the
“lower-dimensional” case) was therefore left out but can be inferred by “naturally”
extrapolating the curves shown on our graphs which are essentially parabolas.

5.6. Remarks on inequality constraints. Our work has mostly been concerned
with obtaining results for the case of a quadratic program with linear equality
constraints. We now explain that our results can also be used to obtain approxi-
mation results concerning the case of a quadratic program with linear inequality
constraints.
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In this subsection we therefore consider the problem

ftheo(Q) =
{

inf
w∈Rp

w′�w,

V ′w ∈ Q.
(QP-ineqc-Pop)

Here Q is a subset of Rk , and V is a p × k matrix. We naturally want to relate the
solution of the above problem to that of the empirical version of the problem:

femp(Q) =
{

inf
w∈Rp

w′�̂w,

V̂ ′w ∈ Q.
(QP-ineqc-Emp)

When Q is a product of intervals, we obtain a quadratic program with linear in-
equality constraints. But our formulation allows us to deal with even more com-
plicated constraint structures. We note that if G(U) is the solution of problem
(QP-ineqc-Pop) with Q = {U} (i.e., a singleton), where U is a vector in Rk , we
are back in the case of the equality constrained problem that we worked with for
most of this paper. Let us call Ĝ(U) the solution of problem (QP-ineqc-Emp) with
Q = {U}. We now make the simple following observation: note that

ftheo(Q) = inf
U∈Q

G(U),

femp(Q) = inf
U∈Q

Ĝ(U).

The main idea here is that we can find a deterministic equivalent to femp(Q)

and we can relate this deterministic equivalent to ftheo(Q).
Recall from Section 2 that G(U) = U ′M−1U and Ĝ(U) = U ′M̂−1U . Re-

call also that under the assumptions A1–A5 made at the beginning of this sec-
tion, we have found a deterministic equivalent to M̂−1: we have shown that
M̂ � sM + κneke

′
k = M0(s, κn) in probability. The previous result is valid entry-

wise, and since we assume that k stays bounded in the asymptotics we are con-
sidering, it is also valid in operator norm. Now, M̂ is invertible with probability
one under our assumptions, so we have, using the first resolvent identity, that is,
A−1 − B−1 = A−1(B − A)B−1,

|||M̂−1 − M−1
0 (s, κ)|||2 ≤ |||M̂−1|||2|||M−1

0 (s, κn)|||2|||M̂ − M0(s, κn)|||2.
Hence, since |||M−1|||2 remains bounded under our assumptions,

|||M̂−1 − M−1
0 (s, κ)|||2 → 0 in probability.

Under our assumptions, we also know that the smallest eigenvalue of M̂ and
M0(s, κ) stay bounded away from 0. Therefore, for any δ > 0, we know that as-
ymptotically, and with probability 1,

∀U ∈ Rk |U ′M̂−1U − U ′M−1
0 (s, κn)U | ≤ δ‖U‖2

2.

Furthermore, let us note that assumption A2 guarantees that |||M|||2 remains
bounded and hence so do |||M̂|||2 and |||M0(s, κn)|||2.

We have the following theorem.
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THEOREM 5.5. Suppose G0 and Ĝn are maps from Rk to R+ such that:

1. G0 is deterministic and Ĝn is possibly random.
2. G0(0) = Ĝn(0) = 0.
3. ∃c0 > 0 such that, ∀U , G0(U) ≥ c0‖U‖2

2. Similarly, ∃ĉn > 0 such that, ∀U ,
Ĝn(U) ≥ ĉn‖U‖2

2. Furthermore, ĉn → c0 with probability 1.
4. ∃δn such that δn → 0 in probability and ∀U , |Ĝn(U) − G0(U)| ≤ δn‖U‖2

2.

Assume that k is fixed as n → ∞. Suppose Q is a (nonempty) subset of Rk and
that we can find U0 ∈ Q such that G0(U0) < ∞ and U0 �= 0. Then,

lim
n→∞ inf

U∈Q
Ĝn(U) = inf

U∈Q
G0(U) in probability.

We have the following corollary:

COROLLARY 5.6. When assumptions A1–A5 are satisfied

femp(Q) → inf
U∈Q

U ′M−1
0 (s, κn)U in probability.

Hence, we have found a deterministic equivalent to femp(Q). It should also be
noted that because U ′M−1

0 (s, κn)U ≤ 1
s
M−1, we also have

femp(Q) ≤ 1

s
inf

U∈Q
U ′M−1U = 1

s
ftheo(Q) with high probability.

Hence, our results on risk underestimation remain valid, even with these more gen-
eral (nonequality) linear constraints. The comparison theorems between Gaussian
and elliptical assumptions remain also valid, because of similar comparison the-
orems for their deterministic equivalents. [Note also that when M̂ � sM (i.e.,
when the sample mean does not appear in V̂ ), the previous inequalities become
equalities.] Finally, our corrections also give a way to get a consistent estimator of
ftheo(Q): one can simply solve the optimization problem over Q with M̂ replaced
by 1/̂s(M̂ − κneke

′
k) in the definition of Ĝ.

Note that the corollary follows immediately from Theorem 5.5 because of our
remarks on the operator norm of M̂ and M̂−1 and their deterministic equivalents.

Let us now prove Theorem 5.5.

PROOF OF THEOREM 5.5. Let us pick U0 in Q. We can do so because Q

is nonempty. We assume without loss of generality that 0 /∈ Q, for otherwise the
problem is trivial, since 0 is the global minimizer of both (deterministic and sto-
chastic) problems.

Let us pick r0 = √
2G0(U0)/c0, with U0 �= 0. Suppose that U /∈ B(0, r0), where

B(0, r0) is the closed ball of radius r0 with center 0. Then, our assumptions on G0
guarantee that

G0(U) ≥ c0‖U‖2
2 > c0

2G0(U0)

c0
= 2G0(U0).
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So U0 ∈ B(0, r0). Also, if we call Q(r0) = Q ∩ B(0, r0), Q(r0) is nonempty and

inf
U∈Q

G0(U) = inf
U∈Q(r0)

G0(U),

because if U is outside of B(0, r0), G0(U) > G0(U0). Now, suppose that {αt }t∈T

and {βt }t∈T are two sets of real numbers. We have

| infαj − infβk| ≤ sup |αi − βi |.
As a matter of fact, for any j ,

(infαk) − βj ≤ αj − βj ≤ |αj − βj | ≤ sup
k

|αk − βk|.
Now supj [(infαk)−βj ] = (infαk)− (infβk). And the previous display guarantees
that supj [(infαk) − βj ] ≤ supk |αk − βk|. By symmetry of the role of α and β , we
therefore have

| infαj − infβk| ≤ sup |αi − βi |.
Hence, we can conclude that∣∣∣ inf

U∈Q(r0)
G0(U) − inf

U∈Q(r0)
Ĝn(U)

∣∣∣≤ sup
U∈Q(r0)

|G0(U) − Ĝn(U)| ≤ δnr
2
0 ,

by our assumptions, and the fact that ‖U‖2
2 ≤ r2

0 in Q(r0). Hence, since r0 stays
fixed as n → ∞,∣∣∣ inf

U∈Q
G0(U) − inf

U∈Q(r0)
Ĝn(U)

∣∣∣→ 0 in probability.

If we can show that with high-probability,

inf
U∈Q(r0)

Ĝn(U) = inf
U∈Q

Ĝn(U),

the result will be shown. First we note that if U /∈ B(0, r0),

Ĝn(U) ≥ ĉn

2G0(U0)

c0
> (1 + δ)Ĝn(U0)

for some δ > 0 with high probability under our assumptions. Let us call Eδ the
event Eδ = {2ĉn/c0 > (1 + δ)Ĝn(U0)/G0(U0)}. Of course, P(Eδ) → 1 under our
assumptions, since 2ĉn/c0 → 2 in probability and Ĝn(U0)/G0(U0) → 1 in proba-
bility. When Eδ is true, we have

inf
U∈Bc(0,r0)∩Q

Ĝn(U) ≥ (1 + δ)Ĝn(U0) > Ĝn(U0) ≥ inf
U∈Q(r0)

Ĝn(U).

So when Eδ is true, and hence with high-probability,

inf
U∈Q

Ĝn(U) = inf
U∈Q(r0)

Ĝn(U).

We can finally conclude that

inf
U∈Q

Ĝn(U) → inf
U∈Q

G0(U) in probability,

and the theorem is proved. �
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6. Conclusion. This study of quadratic programs with linear constraints
whose parameters are estimated from data has highlighted the difficulties created
by the high-dimensionality of the data. In particular, we have shown that the fact
that n (the number of observations used to estimate the parameters) and p both
grew to infinity lead to a systematic underestimation of the minimal “risk” one
exposed oneself to when approaching the optimization problem (QP-eqc-Pop) by
solving its naive proxy (QP-eqc-Emp).

Our study produced exact distributional results in the Gaussian case (Section 3)
and convergence results in probability in the elliptical case (Section 4), which also
allowed us to reach conclusions for the bootstrap and the case of nonindepen-
dent data (in particular, it covers the case of Gaussian data correlated in time). As
explained in Section 5, the study of the Gaussian case gives an over-optimistic as-
sessment of risk underestimation in the context we study: in the class of elliptical
distributions we consider, risk is minimally underestimated in the Gaussian case,
and the situation is more dire for other elliptical distributions. Our study also high-
lights the fact that standard bootstrap estimates of bias will be inconsistent. It also
suggests that in the case of correlated Gaussian observations, risk underestimation
is likely to be more severe than in the i.i.d. case.

Another benefit of our analysis is that it sheds light on what is creating those dif-
ficulties and allows us to propose robust corrections to these problems. As shown
in the theoretical part of the paper and illustrated in our limited simulation work,
they are robust in the class of elliptical distributions we consider. They also appear
to work reasonably well in practice (when the underlying assumptions hold), as
our (somewhat limited) simulation work seems to indicate.

Perhaps surprisingly, we did not need to make very strong assumptions about
the covariance matrix at stake or the mean, whereas recent statistical work fo-
cused on estimation of covariance matrices [see El Karoui (2008) or Bickel and
Levina (2008b)] tends to do so. This is in part because our theoretical analysis
clearly showed what functionals of these two parameters one needed to estimate,
and hence we were able to bypass stronger requirements by focusing on those
particular functionals and correcting the first order errors that appeared. In other
words, even though our aim was to estimate a complicated function of the popula-
tion covariance matrix and of the population mean, for which we do not have good
estimators in high-dimension in general, we were able to use poor estimators of
both (and our theoretical analysis) to get an accurate estimator of the functional of
interest. This is an interesting result in the context of high-dimensional statistics
more generally, as it suggests that we might be able to estimate certain functions of
high-dimensional parameters without having to accurately estimate the parameters
themselves [and hence we might be able to bypass in some situations sparsity (or
other similar requirements) for the population quantities].

Beside the interesting statistical and mathematical questions this study raised,
we hope that it might also be helpful to, for instance, financial regulators by per-
haps providing them with more realistic benchmarks for the performance of opti-
mal portfolios and that it sheds light on how the high-dimensionality of the data
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affects the proper assessment of risk of large portfolios obtained by solving high-
dimensional optimization problems.

APPENDIX A: CLASSICAL RESULTS OF LINEAR ALGEBRA

A.1. On inverses of partitioned matrices. In our study of the Gaussian case,
and in particular in connection with properties of Wishart matrices, we relied sev-
eral times on properties of the inverse of a partitioned matrix. Here is a detailed
statement of what we needed.

Let A be a generic matrix, and let us decompose it by blocks

A =
(

A11 A12
A21 A22

)
.

Let us call A−1 the inverse of A. We assume that all inverses we take are well
defined. Let us write

A−1 =
(

A11 A12

A21 A22

)
.

Then, it is well known that [see, e.g., Mardia, Kent and Bibby (1979), pages 458–
459, or Boyd and Vandenberghe (2004), page 650]

A11 = (A11 − A12A
−1
22 A21)

−1,(A.1)

A22 = (A22 − A21A
−1
11 A12)

−1,(A.2)

A12 = −A−1
11 A12A

22,(A.3)

A21 = −A22A21A
−1
11 .(A.4)

APPENDIX B: RANDOM MATRIX RESULTS

B.1. Lower bounds on smallest eigenvalue. In many proofs in the course of
the paper we needed to have quantitative bounds on the behavior of the smallest
eigenvalue of a number of matrices and made repeated use of the following lemma.

LEMMA B.1. Suppose Y is a n × p matrix, with i.i.d. N (0,1) entries, with
p/n → ρ, and 0 < ρ < 1.

Suppose � is an n × n diagonal and deterministic matrix and that we can find
N , C > 0 and ε > 0 such that, if τi is the ith largest eigenvalue of �′�, τN > C,
for some fixed C > 0. N is such that, for p and n large, p/N < 1 − ε and N/n

stays bounded away from 0. Finally, we assume that all the diagonal entries of �

are different from 0.
Call H = Id − δδ′/n, where ‖δ‖2

2 = n. Then λp , the smallest eigenvalue of
Y ′�′H�Y/n − 1, is bounded away from 0 with high-probability.

In particular, when p/N < 1 − ε, if Cn = C N−1
n−1 ,

P
(√

λp ≤√Cn

[(
1 − √

1 − ε
)− t

])≤ exp
(−(N − 1)t2).
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The following proof makes clear that the result holds also when some of the
diagonal entries of � are equal to zero if we make the following modification: n

should now denote the number of nonzero entries on the diagonal of �, and the
corresponding assumptions about p and N should then hold. We also point out
that under our assumptions H is an orthogonal projection matrix.

PROOF OF LEMMA B.1. Before we start the proof per se, we need some nota-
tions: we call λk the kth largest eigenvalue of a symmetric matrix. In other words,
the eigenvalues are decreasingly ordered and λ1 ≥ λ2 ≥ · · · .

The result is known if � = Idn, since

1

n − 1
Y ′HY

L= 1

n − 1
Wp(Idp,n − 1).

Using Davidson and Szarek (2001), Theorem II.13, we have the following result:
the smallest eigenvalue of a matrix with distribution W (Idp,n0)/n0 is strongly
concentrated around (1 − √

p/n0)
2 when p < n0, and

P
(√

λp <
(
1 −√p/n0

)− t
)≤ exp(−n0t

2).

This gives our result in the case where � = Idn. Let us now investigate what
happens when � is not Idn.

The matrix M = �′H� is a rank-1 perturbation of �′� and is positive semi-
definite, because H is. Therefore, for any k ≥ 2, λk−1(�

′H�) = λk−1(M) ≥
λk(�

′�), by the interlacing Theorem 4.3.4 in Horn and Johnson (1990). M has
rank n − 1 matrix since, M�−1δ = 0 and rank(M) ≥ rank(�′�) − 1 = n − 1.

We can diagonalize M = ODO ′, where D has (n−1) nonzero coefficients, and

because O ′Y L= Y , we have

Y ′MY = Y ′�′H�Y
L= Y ′DY =

n−1∑
i=1

diYiY
′
i ,

where di are the nonzero diagonal entries of D. Because M is positive semi-
definite, we have di ≥ 0 for all i. In other respects, because for all k ≤ n − 1,
dk ≥ λk+1(�

′�) = τk+1 by our remark on interlacing inequalities. Hence, we
have, if � denotes positive-semidefinite ordering,

n−1∑
i=1

diYiY
′
i �

N−1∑
i=1

diYiY
′
i � τN

N−1∑
i=1

YiY
′
i = τN Wp(Idp,N − 1).

Therefore, we have in law,

1

n − 1
Y ′�′H�Y � C

N − 1

n − 1

1

N − 1
Wp(Idp,N − 1).

As we recalled above, the smallest eigenvalue of Wp(Idp,N −1)/(N −1) remains
bounded away from 0 with high-probability in our setting because p/N remains
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bounded away from 1 by assumption. We also assumed that N/n and C were
bounded away from 0. If we call C = lim infn→∞ C N−1

n−1 , we have C > 0, and, for
any η > 0, according to the result of Davidson and Szarek (2001) we have, for
λp = λp( 1

n−1Y ′�′H�Y) and Cn = C(N − 1)/(n − 1),

P
(√

λp ≤√Cn

[(
1 −
√

p/(N − 1)
)− t

])≤ exp
(−(N − 1)t2).

In particular, when p/N is such that p/N ≤ 1 − ε,

P
(√

λp ≤√Cn

[(
1 − √

1 − ε
)− t

])≤ exp
(−(N − 1)t2).

Interestingly, this bound is “quite uniform” in �, in the sense that the only
characteristics of � that matter are Cn = C N−1

n−1 and N . �

APPENDIX C: GENERALIZATIONS OF THE PROOF OF THEOREM 4.3

This part of the Appendix explains how to appropriately modify the proofs of
Theorems 4.1 and 4.6 to obtain the results we need in the case of correlated obser-
vations (Section 4.3) and the bootstrap.

C.1. On v′�̂−1v when the observations are correlated. We explain in this
subsection how to modify the proof of Theorem 4.1 in the case where the vectors
of observations Xi and Xj are potentially correlated. The data was assumed to
have the following representation, in matrix form:

X = eμ′ + �Y�1/2,

where � is n × n, deterministic but not necessarily diagonal and Y has i.i.d.
N (0,1) entries. We also wrote the SVD of � as � = ADB ′, where A and B

are orthogonal.
If we call H = Idn − ee′/n, we have, of course,

�̂ = 1

n − 1
X′HX = 1

n − 1
�1/2Y ′�′H�Y�1/2.

The orthogonality of B implies BY
L= Y , and we have

�̂
L= 1

n − 1
�1/2Y ′D(A′HA)DY�1/2.

If we now call δ = A′e, we see that ‖δ‖2
2 = n, because A is orthogonal. It can

also easily be seen that A′HA = Idn − δδ′/n = Hδ . Because of the remark we just
made on the norm of δ, Hδ is clearly an orthogonal projection matrix. So we have
to understand

�̂
L= 1

n − 1
�1/2Y ′DHδDY�1/2,
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which is extremely close to the situation of Theorem 4.1, where we had to work
with

�̂
L= 1

n − 1
�1/2Y ′DHeDY�1/2.

D now plays the role � played in Theorem 4.1 and the main modification is that
H = He is now replaced by Hδ .

An examination of the proof of Theorem 4.1 shows that we never relied on
the fact that we used specifically He (instead of Hδ) in that proof. All we used
was the fact that our H there was a rank-1 perturbation of Idn and an orthogonal
projection matrix. Similarly, Lemma B.1, on which we relied in the course of the
proof of Theorem 4.1, handles Hδ for general δ with squared norm n without any
problems, so it is still usable in the course of the current study.

Because we know that the squared singular values of � (and hence the eigen-
values of D) satisfy (Assumption-BB), the proof of Theorem 4.1 goes through
without further modifications and Proposition 4.7 holds.

C.2. On quadratic forms involving random projection matrices. A recur-
rent issue in the questions we addressed was the understanding of statistics of the
form

1

n
u′Pu,

where P is a random projection matrix and u a (generally deterministic) vector of
dimension n. In particular, the projection matrices we dealt with were of the form

P = �Y(Y ′�2Y)−1Y ′�,

for � a (possibly random) n × n diagonal matrix and Y an n × p matrix with i.i.d.
N (0,1) entries. We also assume that � and u are independent of Y . Finally, we
assume that ‖u‖2/

√
n = 1.

In the course of the text, we carried out successfully computations when u = e,
but relied to do so on properties of trace(P ). The case of general u is more involved
and is treated here.

LEMMA C.1. Assume that � and u (which is deterministic) are such that

1

n2

n∑
i=1

u4
i → 0 and

1

n2

n∑
i=1

λ4
i → 0

and that (Assumption-BB) holds for � for a certain sequence N(n).
Under the preceding assumptions, we have, if Z(u) = 1

n
u′Pu,

Z(u) − 1

n

n∑
i=1

u2
i E(P (i, i)|�) → 0 in probability

conditionally on �.
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PROOF. We simply sketch the modifications to the proof given after the state-
ment of Theorem 4.3. As noted in Lemma 4.4, the off-diagonal elements of P have
mean 0 conditionally on �. Now, using the same notations as in Theorem 4.3, we
have, using equation (7) there, if Zi(u) is the quantity obtained by replacing λi by
0 in Z, ri = Wi S −1

i Yi , wi = r ′
iu/n and ui is the ith coordinate of u,

Z(u) = Zi(u) + 1

n

1

1 + λ2
i qi

(−λ2
i w

2
i + 2λiuiwi + λ2

i uiwi).

The expression between the parentheses is easily seen to be equal to (1+λ2
i qi)u

2
i −

(λiwi − ui)
2. We get an analog of equation (8)

Z(u) = Zi(u) + u2
i

n
− 1

n

(λiwi − ui)
2

1 + λ2
i qi

.

Clearly, from the definition of wi , wi |{Y(−i),�} ∼ N (0, u′Wi S −2
i W ′

i u/n2). Since
by assumption ‖u‖2 = √

n, we have

0 ≤ u′Wi S −1
i W ′

i u/n2 = u′Wi(W
′
iWi)

−1W ′
i u/n ≤ 1

because Wi(W
′
iWi)

−1W ′
i is an orthogonal projection matrix (hence its eigenvalues

are only 0 and 1) and ‖u/
√

n‖2 = 1.
So we are exactly in the situation we were in during the proof of Theorem 4.3,

except for a term in u4
i that now appears in our bound on the variance. Hence, with

our extra assumption on ‖u‖4
4/n2, we conclude similarly (after a regularization

step) that Z(u) converges in probability, conditional on � to its conditional mean
which is simply

1

n
u2

i E(P (i, i)|�). �

We remark that to get an analog of Theorem 4.5, where now

ζ = 1

n
u′�Y S −1v,

one just needs to go through the proof and replace the wi appearing there by
the “new” wi = u′Wi S −1

i Yi/n. Exactly the same arguments go through when∑n
i=1 u2

i λ
2
i /n remains bounded. So under this condition, ζ tends to zero in proba-

bility.
With the help of the previous lemma, we can now prove the gist of Proposi-

tion 4.8.

FACT C.1. Proposition 4.8 holds.
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PROOF. We note that Proposition 4.8 is essentially an application of the pre-
vious lemma, with appropriate change of notation. Recall the notations from the
proposition. We have X̃ = �Y�1/2 and �, which is n × n, has singular value de-
composition ADB ′. Also, S = X̃′X̃/n, Ỹ = B ′Y , F = Ỹ ′D2Ỹ /n. Hence, in the
language of the proposition,

m̂′S −1m̂ = 1

n2 e′ADỸF−1Ỹ ′DAe = ω′Pω,

where P = DỸ (Ỹ ′D2Ỹ )−1Ỹ ′D and ω = A′e. When the assumptions of the propo-
sition are in force, � is deterministic and Lemma C.1 applies; from which we
conclude

m̂′S −1m̂ − 1

n

n∑
i=1

ω2
i E(P (i, i)) → 0 in probability.

This gives us the analog of Theorem 4.3.
To get the analog of Theorem 4.5, we just need

∑n
i=1 ω2

i d
2
i /n to remain

bounded, which is an assumption stated in Proposition 4.8. �

C.3. Bootstrap specific results.

Bootstrapping mean 0 Gaussian data. Our analysis of the bootstrap problem
requires an analysis similar to the one we performed in the previous subsection.
In particular, there we have u = �1/2e, where � contains the bootstrap weights.
Since those add-up to n, the assumption ‖u‖2

2 = n was clearly satisfied. Also, in
the situation where p/n → ρ ∈ (0,1 − 1/e), we are guaranteed that

P ∗ = �1/2Y(Y ′�Y)−1Y ′�1/2

is well defined with high-probability. When conditioning on �, we see that we can
work only with the submatrix �∗ (of size n∗) whose diagonal entries are nonzero.
This submatrix has its diagonal entries bounded away from 0 as they are at least
equal to 1. Also, using arguments similar to those given in the proof of Lemma B.1,
we see that we can get a uniform (in �) lower bound on the smallest singular value
of �Y , which holds with probability exponentially [in (n∗ − p)] close to 1.

So now we assume that we are dealing with � such that n∗ − p tends to
∞, the empirical distribution of � goes to Po(1) and

∑
λ2

i /n2 → 0. We also
assume that (Assumption-BB) are satisfied for this �. Finally, we assume that
{∑n

i=1 λ2
i /n ≤ 10}. We call the corresponding set of matrices GBn . When the diag-

onal entries of � are drawn from a multinomial( 1
n
, . . . , 1

n
, n) it is clear that these

conditions are satisfied with probability going to 1. The only thing that might re-
quire an explanation is why the condition {∑n

i=1 λ2
i /n ≤ 10} holds with probability

going to 1. The mean of
∑n

i=1 λ2
i /n clearly goes to 2, using the marginal distribu-

tion of λi . On the other hand, the arguments we gave in Proposition 4.10 show that
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its variance goes to 0, so this quantity goes to 2 in probability and therefore is less
than 10 with probability going to 1.

The main question that we still have to address is that of the behavior of

1

n

n∑
i=1

u2
i E(P ∗(i, i)|�)

when u2
i = λi . By definition,

P ∗(i, i) = 1

n
λiY

′
i

(
1

n

n∑
i=1

λiYiY
′
i

)−1

Yi = 1 − 1

1 + λiY
′
i S −1

i Yi/n
,

where Si = 1
n

∑
j �=i λjYjY

′
j . Now concentration arguments (see, e.g., Section 5.6)

show that, if σp(Si ) is the smallest singular value of Si ,

P

(∣∣∣∣Y ′
i S −1

i Yi

p
− trace(S −1

i )

p

∣∣∣∣> t
∣∣S −1

i

)
= O
(
exp
(−pt2σ 2

p(Si )/2
))

.

We also know that with overwhelming probability (measured over Y(−i) =
{Y1, . . . , Yi−1, Yi+1, . . . , Yn}), σp(Si ) is bounded away from 0, conditionally on
�, when � is such that (Assumption-BB) holds. (Note for instance that Si �∑

i �=j YjY
′
j /n and use Lemma B.1.) Hence, we conclude that

Y ′
i S −1

i Yi

p
� trace(S −1

i )

p
.

Hence, conditionally on �,

P ∗(i, i) � 1 − 1

1 + λi(p/n)(trace(S −1
i )/p)

,

with very high-probability, that is, the probability that the difference between the
two is greater than λi(p/n)t is O(exp(−C(n∗ − p)t2)) for a fixed C (by argu-
ments similar to those given in Lemma B.1). In other respects, we note that rank-1
perturbation arguments give, if S = 1

n
Y ′�Y ,

trace(S −1
i ) − trace(S −1) = λi

n

Y ′
i S −2

i Yi

1 + λiY
′
i S −1

i Yi/n
.

In particular, when � is such that (Assumption-BB) holds, by using a union bound
argument,

P

(
max

i=1,...,n

∣∣∣∣ trace(S −1
i ) − trace(S −1)

p

∣∣∣∣> ε
∣∣�)→ 0.

We also note that trace(S −1)/p → s conditionally on �, if � is such that its em-
pirical distribution goes to Po(1), � ∈ GBn and p/n → ρ.
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Therefore, we also have by a simple union bound argument, conditional on �,
and assuming that � is such that its empirical distribution goes to Po(1), � ∈ GBn

and hence
∑

λ2
i /n is less than 10,

1

n

n∑
i=1

λiP
∗(i, i) � 1 − 1

n

n∑
i=1

λi

1 + λiρns
.

Now when � �⇒ Po(1), which we write G, and ρn → ρ,

1

n

n∑
i=1

λi

1 + λiρns
→
∫

τ dG(τ)

1 + τρs
.

But in light of the Marčenko–Pastur equation, we have, under these circumstances,

1

n

n∑
i=1

λiP
∗(i, i) → 1 − 1

s
= s − 1

s
.

We finally conclude that conditional on � being in GBn (whose probability goes
to 1),

(μ̂∗)′(�̂∗)−1μ̂∗ → (s − 1)/s

1 − (s − 1)/s
= s − 1 ≥ ρ

1 − ρ
,

since we know that s ≥ 1/(1 − ρ) when G is Po(1), since its mean is 1.
Similar arguments as the ones used in the proofs in the main body of the paper

show that the same convergence in probability result holds unconditionally on �,
the problem being to get bounds that are uniform in �, when � ∈ GBn .

Hence, an analog of Theorem 4.3 follows (with Pn probability going to 1),
where the ratio ρ/(1 −ρ) is replaced by s− 1. The analog of Theorem 4.5 follows
from the arguments given in Appendix C.2, if we can show, in the notation used
there that

∑n
i=1(uidi)

2/n remains bounded with probability going to 1. Note that
ui = di = √

λi here, where λi are the bootstrap weights, so we just need to show
that
∑n

i=1 λ2
i /n remains bounded. But we did this when describing GBn .

We therefore have an analog of Theorem 4.5 and also of Theorem 4.6 when
bootstrapping Gaussian data.

Bootstrapping elliptically distributed data. Finally, let us say a few words
about what would happen if we replaced the normality assumption for the Xi’s by
an elliptical distribution assumption. We focus on the case where Xi = λi�

1/2Yi ,
that is, the mean of the Xi’s is 0. The previous analyses make clear that the key
questions concern v′(�̂∗)−1v and (μ̂∗)′(�̂∗)−1μ̂∗.

The questions concerning v′(�̂∗)−1v fall pretty much directly under the study
we have made of elliptical distributions, since we know, according to the proof of
Theorem 4.12, that

�̂∗ = 1

n − 1
�1/2Y ′�′D1/2(Idn − δδ′/n)D1/2�Y�1/2,
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where D is the diagonal matrix containing the bootstrap weights and δ = D1/2e.
So, as long as D1/2� satisfies (Assumption-BB), results similar to Theorem 4.12
will hold.

The questions dealing with (μ̂∗)′(�̂∗)−1μ̂∗ are more involved. Analyses similar
to the ones performed above show that the key quantity to understand is now

1

n
e′D�Y(Y ′�′D�Y)−1Y ′�′De = 1

n
u′PD1/2�,Y u,

where PD1/2�,Y = D1/2�Y(Y ′�′D�Y)−1Y ′�D1/2 and u = D1/2e. The analysis
of this quadratic form can be carried out just like we did above in the Gaussian
case, that is, � = Idn. However, the remarks we made to get simplified expressions
for the limit do not seem to apply anymore: quantities of the type

1

n

n∑
i=1

di

1 + λ2
i diρs

,

appear, where s is the solution of equation (4) with G being the limit (if it exists)
of the empirical distribution of the random variables λ2

i di . These quantities do not
appear to simplify any further to yield a clearer and more exploitable expression.

Acknowledgments. I am very grateful to Nizar Touzi and Nicole El Karoui
for several very interesting discussions at the beginning of this project and for
their interest in it. I would also like to thank two anonymous referees for their
constructive comments and insightful questions.

REFERENCES

ANDERSON, T. W. (2003). An Introduction to Multivariate Statistical Analysis, 3rd ed. Wiley, Hobo-
ken, NJ. MR1990662

BAI, Z. D. (1999). Methodologies in spectral analysis of large-dimensional random matrices, a re-
view. Statist. Sinica 9 611–677. With comments by G. J. Rodgers and Jack W. Silverstein; and a
rejoinder by the author. MR1711663

BAI, Z., LIU, H. and WONG, W.-K. (2009). Enhancement of the applicability of Markowitz’s port-
folio optimization by utilizing random matrix theory. Math. Finance 19 639–667. MR2583523

BICKEL, P. J. and LEVINA, E. (2008a). Covariance regularization by thresholding. Ann. Statist. 36
2577–2604. MR2485008

BICKEL, P. J. and LEVINA, E. (2008b). Regularized estimation of large covariance matrices. Ann.
Statist. 36 199–227. MR2387969

BIROLI, G., BOUCHAUD, J.-P. and POTTERS, M. (2007). The student ensemble of correlation ma-
trices: Eigenvalue spectrum and Kullback–Leibler entropy. Acta Phys. Polon. B 38 4009–4026.
MR2372771

BLACK, F. and LITTERMAN, R. (1990). Asset allocation: Combining investor views with market
equilibrium. Golman Sachs Fixed Income Research.

BOYD, S. and VANDENBERGHE, L. (2004). Convex Optimization. Cambridge Univ. Press, Cam-
bridge. MR2061575

CAMPBELL, J., LO, A. and MACKINLAY, C. (1996). The Econometrics of Financial Markets.
Princeton Univ. Press, Princeton, NJ.

http://www.ams.org/mathscinet-getitem?mr=1990662
http://www.ams.org/mathscinet-getitem?mr=1711663
http://www.ams.org/mathscinet-getitem?mr=2583523
http://www.ams.org/mathscinet-getitem?mr=2485008
http://www.ams.org/mathscinet-getitem?mr=2387969
http://www.ams.org/mathscinet-getitem?mr=2372771
http://www.ams.org/mathscinet-getitem?mr=2061575


HIGH-DIMENSIONAL QUADRATIC PROGRAMS 3565

CHIKUSE, Y. (2003). Statistics on Special Manifolds. Lecture Notes in Statistics 174. Springer, New
York. MR1960435

CHOW, Y. S. and TEICHER, H. (1997). Probability Theory: Independence, Interchangeability, Mar-
tingales, 3rd ed. Springer, New York. MR1476912

DAVIDSON, K. R. and SZAREK, S. J. (2001). Local operator theory, random matrices and Banach
spaces. In Handbook of the Geometry of Banach Spaces, Vol. I 317–366. North-Holland, Amster-
dam. MR1863696

EATON, M. L. (1983). Multivariate Statistics: A Vector Space Approach. Wiley, New York.
MR0716321

EL KAROUI, N. (2007). Tracy–Widom limit for the largest eigenvalue of a large class of complex
sample covariance matrices. Ann. Probab. 35 663–714. MR2308592

EL KAROUI, N. (2008). Operator norm consistent estimation of large dimensional sparse covariance
matrices. Ann. Statist. 36 2717–2756. MR2485011

EL KAROUI, N. (2009a). Concentration of measure and spectra of random matrices: Applications
to correlation matrices, elliptical distributions and beyond. Ann. Appl. Probab. 19 2362–2405.
MR2588248

EL KAROUI, N. (2009b). On the realized risk of high-dimensional Markowitz portfolios. Technical
Report No. 784, Dept. Statistics, Univ. California, Berkeley.

FANG, K. T., KOTZ, S. and NG, K. W. (1990). Symmetric Multivariate and Related Distributions.
Monographs on Statistics and Applied Probability 36. Chapman and Hall, London. MR1071174

FRAHM, G. and JAEKEL, U. (2005). Random matrix theory and robust covariance matrix estimation
for financial data. Available at arXiv:physics/0503007.

HORN, R. A. and JOHNSON, C. R. (1990). Matrix Analysis. Cambridge Univ. Press, Cambridge.
Corrected reprint of the 1985 original. MR1084815

HORN, R. A. and JOHNSON, C. R. (1994). Topics in Matrix Analysis. Cambridge Univ. Press,
Cambridge. Corrected reprint of the 1991 original. MR1288752

JOBSON, J. D. and KORKIE, B. (1980). Estimation for Markowitz efficient portfolios. J. Amer.
Statist. Assoc. 75 544–554. MR0590686

JOHNSTONE, I. (2001). On the distribution of the largest eigenvalue in principal component analysis.
Ann. Statist. 29 295–327. MR1863961

KAN, R. and SMITH, D. R. (2008). The distribution of the sample minimum-variance frontier. Man-
agement Science 54 1364–1380.

LAI, T. L. and XING, H. (2008). Statistical Models and Methods for Financial Markets. Springer
Texts in Statistics. Springer, New York. MR2434025

LALOUX, L., CIZEAU, P., BOUCHAUD, J.-P. and POTTERS, M. (2000). Random matrix theory and
financial correlations. Internat. J. Theoret. Appl. Finance 3 391–397.

LEDOIT, O. and WOLF, M. (2004). A well-conditioned estimator for large-dimensional covariance
matrices. J. Multivariate Anal. 88 365–411. MR2026339

LEDOUX, M. (2001). The Concentration of Measure Phenomenon. Mathematical Surveys and
Monographs 89. Amer. Math. Soc., Providence, RI. MR1849347

LUGOSI, G. (2006). Concentration of measure inequalities. Lecture notes available online.
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