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Sequential Monte Carlo (SMC) is a methodology for sampling ap-
proximately from a sequence of probability distributions of increasing
dimension and estimating their normalizing constants. We propose here
an alternative methodology named Sequentially Interacting Markov Chain
Monte Carlo (SIMCMC). SIMCMC methods work by generating interact-
ing non-Markovian sequences which behave asymptotically like independent
Metropolis—Hastings (MH) Markov chains with the desired limiting distri-
butions. Contrary to SMC, SIMCMC allows us to iteratively improve our
estimates in an MCMC-like fashion. We establish convergence results under
realistic verifiable assumptions and demonstrate its performance on several
examples arising in Bayesian time series analysis.

1. Introduction. Let us consider a sequence of probability distributions
{mn}ner where T = (1,2, ..., P}, which we will refer to as “target” distributions.
We shall also refer to n as the time index. For ease of presentation, we shall as-
sume here that , (dx,) is defined on a measurable space (E,, F,) where E| = E,
Fi=Fand E,=E,_| xE, F, =F,_1 x F. Wedenote x,, = (x1, ..., x,) where
x; € Efori=1,...,n. Each m,(dx,) is assumed to admit a density m, (X,) with
respect to a o-finite dominating measure denoted dx, and dx, = dx,—1 X dx,.
Additionally, we have

Vn (Xn)
Zy,

70 (Xp) = )
where y, : E, — R™ is known pointwise and the normalizing constant Z,, is un-
known.

In a number of important applications, it is desirable to be able to sample from
the sequence of distributions {m, },eT and to estimate their normalizing constants
{Z,}neT; the most popular statistical application is the class of nonlinear non-
Gaussian state-space models detailed in Section 4. In this context, m;, is the pos-
terior distribution of the hidden state variables from time 1 to n given the obser-
vations from time 1 to n and Z, is the marginal likelihood of these observations.
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Many other applications, including contingency tables and population genetics, are
discussed in [7, 12] and [21].

A standard approach to solve this class of problems relies on Sequential Monte
Carlo (SMC) methods; see [12] and [21] for a review of the literature. In the SMC
approach, the target distributions are approximated by a large number of random
samples, termed particles, which are carried forward over time by using a com-
bination of sequential importance sampling and resampling steps. These methods
have become the tools of choice for sequential Bayesian inference but, even when
there is no requirement for “real-time” inference, SMC algorithms are increasingly
used as an alternative to MCMC; see, for example, [6, 9] and [21] for applications
to econometrics models, finite mixture models and contingency tables. They also
allow us to implement goodness-of-fit tests easily in a time series context whereas
a standard MCMC implementation is cumbersome [14]. Moreover, they provide
an estimate of the marginal likelihood of the data.

The SMC methodology is now well established and many theoretical conver-
gence results are available [7]. Nevertheless, in practice, it is typically impossible
to, a priori, determine the number of particles necessary to achieve a fixed preci-
sion for a given application. In such scenarios, users typically perform multiple
runs for an increasing number of particles until stabilization of the Monte Carlo
estimates is observed. Moreover, SMC algorithms are substantially different from
MCMC algorithms and can appear difficult to implement for nonspecialists.

In this paper, we propose an alternative to SMC named Sequentially Interacting
Markov Chain Monte Carlo (SIMCMC). SIMCMC methods allow us to compute
Monte Carlo estimates of the quantities of interest iteratively as they are, for in-
stance, when using MCMC methods. This allows us to refine the Monte Carlo esti-
mates until a suitably chosen stopping time. Furthermore, for people familiar with
MCMC methods, SIMCMC methods are somewhat simpler than SMC methods to
implement, because they only rely on MH steps. However, SIMCMC methods are
not a class of MCMC methods. These are non-Markovian algorithms which can be
interpreted as an approximation of P “ideal” standard MCMC chains. It is based
on the same key idea as SMC methods; that is as 7,41 (X,) = [ Tp+1(Xn+1) dXpt1
is often “close” to 7, (X;,), it is sensible to use m; (x;) as part of a proposal distribu-
tion to sample 7,41 (X,+1). In SMC methods, the correction between the proposal
distribution and the target distribution is performed using Importance Sampling
whereas in SIMCMC methods it is performed using an MH step. Such a strategy
is computationally much more efficient than sampling separately from each target
distribution using standard MCMC methods and also provides direct estimates of
the normalizing constants {Z; },cT-

The potential real-time applications of SIMCMC methods are also worth com-
menting on. SMC methods have been used in various real-time engineering appli-
cations, for example, in neural decoding [4] and in target tracking [15, 27]. In these
problems, it is important to be able to compute functionals of the posterior distri-
butions of some quantity of interest, but it must also be done in real-time. SMC
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methods work with collections of particles that are updated sequentially to reflect
these distributions. Clearly, in such real-time problems it is important that the col-
lections of particles are not too large, or else the computational burden can cause
the SMC algorithm to fall behind the system being analyzed. SIMCMC methods
provide a very convenient way to make optimal use of what computing power is
available. Since SIMCMC works by adding one particle at a time to collections
representing distributions, we can simply run it continually in between arrival of
successive observations, and it will accrue as many particles as it can in whatever
amount of time is taken.

Related ideas where we also have a sequence of nested MCMC-like chains
“feeding” each other and targeting a sequence of increasingly complex distribu-
tions have recently appeared in statistics [19] and physics [23]. In the equi-energy
sampler [19], the authors consider a sequence of distributions indexed by a temper-
ature and an energy truncation whereas in [23] the authors consider a sequence of
coarse-grained distributions. It is also possible to think of SIMCMC methods and
the algorithms in [19] and [23] as nonstandard adaptive MCMC schemes [2, 26]
where the parameters to be adapted are probability distributions instead of finite-
dimensional parameters. Our convergence results rely partly on ideas developed in
this field [2].

The rest of the paper is organized as follows. In Section 2, we describe
SIMCMC methods, give some guidelines for the design of efficient algorithms
and discuss implementation issues. In Section 3, we present some convergence
results. In Section 4, we demonstrate the performance of this algorithm for vari-
ous Bayesian time series problems and compare it to SMC. Finally, we discuss a
number of further potential extensions in Section 5. The proofs of the results in
Section 3 can be found in Appendix.

2. Sequentially interacting Markov chain Monte Carlo.

2.1. The SIMCMC algorithm. Let i be the iteration counter. The SIMCMC
algorithm constructs P sequences {Xg')}, {Xg)}, N {X%’,) }. In Section 3, we es-
tablish weak necessary conditions ensuring that as i approaches infinity, the dis-
tribution of Xfli) approaches m,; we will assume here that these conditions are
satisfied to explain the rationale behind our algorithm. To specify the algorithm,
we require a sequence of P proposal distributions, specified by their densities

q1(x1), q2(X1,x2),....,qp(Xp—1,XpP).

Each ¢,: E,_1 x E — RT (E_| = @) is a probability density in its last argument
xp With respect to dx,, which may depend (forn =2, ..., P) on the first argument.
Proposals are drawn from ¢ (-) for updates of the sequence {XY)}, from g5 (-) for

updates of the sequence {X<2i)}, and so on. (Selection of proposal distributions is



3390 A. BROCKWELL, P. DEL MORAL AND A. DOUCET

discussed in Section 2.2.) Based on these proposals, we define the weights
y1(X1)
q1(x1)’

¥n (Xn)
Vn—1Xn—1)qn (Xn—1, Xn)’

For any measure u,_; on (E,_1, F,—1), we define

wi (X)) =
2.1)
n=2,...,P.

wp (Xy) =

(n—1 X gn)(dXy) = pp—1(dXn—1)qn (X1, dxy)

and
(2.2) S, =1{x, € E, :m,(x,) > 0}.
We also denote by 7\ the empirical measure approximation of the target distrib-

ution 7, given by

i L5
(2.3) A (dx) = —— Y Sy (dXy).
i1 =&

Intuitively, the SIMCMC algorithm proceeds as follows. At each iteration i of
the algorithm, the algorithm samples Xf,i) for n € T by first sampling X\ then
Xg) and so on. Forn =1, {X§’>} is a standard Markov chain generated using an
independent MH sampler of invariant distribution 7 (x;) and proposal distribution
q1(x1). For n = 2, we would like to approximate an independent MH sampler of
invariant distribution 77> (x3) and proposal distribution (771 xXg2)(X2). As it is impos-
sible to sample from 7| exactly, we replace | at iteration i by its current empirical

measure approximation J?I(i). Similarly for n > 2, we approximate an MH sampler
of invariant distribution m;,(x,) and proposal distribution (7,1 X¢qy)(X,) by re-
placing m,_1 at iteration i by its current empirical measure approximation J’fn’_)l.

The sequences {Xg)}, e, {Xg)} generated this way are clearly non-Markovian.

Sequentially interacting Markov chain Monte Carlo
o Initialization, i =0
e Forn € T, set randomly Xf,o) = xﬁ,o) € S,.
e For iterationi > 1
eForn=1 .
e Sample XT(') ~q1().

e With probability

. . X*(l)

2.4) ar (XU X D) = 1 A L(}_D)
U)1(X1 )

set Xgi) = XT(i), otherwise set X(li) = X(li_l).
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eForn=2,..., P .
e Sample X;) ~ (7’7\,5’21 X qn) ().
e With probability
Wn (X:(i))

(2.5) ap (XU, XEO) = | A
X wy (XY )

set X = X:@  otherwise set X\ = XU~

The (ratio of) normalizing constants can easily be estimated by

PP
Zil) = l— Z wl(XT(m)),

m=1
(/Zn\>
Zn_y
Equation (2.6) follows from the identity

Zy
Zn—l

(2.6) 0

1 i
=3 w, (X2),
! m=1

= [ wa )Gt x ) )
and the fact that asymptotically (as i — 00) Xz(i) is distributed according to
(7r,—1Xgqn)(X,) under weak conditions given in Section 3.

2.2. Algorithm settings. In a similar manner to SMC methods, the per-
formance of the SIMCMC algorithm depends on the proposal distributions.
However, it is possible to devise some useful guidelines for this sequence of
(pseudo-)independent samplers, using reasoning similar to that adopted in the
SMC framework. Asymptotically, Xﬁ(i) is distributed according to (77,,—1 Xgy) (Xp)
and wy, (x,) is just the importance weight (up to a normalizing constant) between
7, (X,) and (7r,—1 Xqn)(Xn). The proposal distribution minimizing the variance of
this importance weight is simply given by

2.7) qut(xn—l’xn) =T, Xn—1, Xn),
where 7, (X,—1, X) is the conditional density of x, given X,_| under 7, that is,

7T (Xn)

(2.8) Tn(Xn—1,Xn) = m

In the SMC literature, ,(X,—1,x,) is called the “optimal” importance den-
sity [11]. This yields

(2.9) wgpt(xn) O(Wn/n—l(xn—l)»
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where
7Tn (Xn—1)
(2.10) T jn—1 (Xn—1) = ————
Hn—l(xn—l)
with

nn(xn—1)=/;ﬂn(xn) dxy,.

In this case, as wgpt(xn) is independent of x,, the algorithm described above can
be further simplified. It is indeed possible to decide whether to accept or reject a
candidate even before sampling it. This is more computationally efficient because
if the move is to be rejected there is no need to sample the candidate. In most
applications, it will be difficult to sample from (2.7) and/or to compute (2.9) as it
involves computing 7, (X,—1) up to a normalizing constant. In this case, we rec-
ommend approximating (2.7). Similar strategies have been developed successfully
in the SMC framework [5, 11, 22, 25]. The advantages of such sampling strategies
in the SIMCMC case will be demonstrated in the simulation section.

Generally speaking, most of the methodology developed in the SMC setting
can be directly reapplied here. This includes the use of Rao-Blackwellisation tech-
niques to reduce the dimensionality of the target distributions [11, 22] or of auxil-
iary particle-type ideas where we build target distributions biased toward “promis-
ing” regions of the space [3, 25].

2.3. Implementation issues.

2.3.1. Burn-in and storage requirements. We have presented the algorithm
without any burn-in. This can be easily included if necessary by considering at
iteration i of the algorithm

‘ 1 i
=(i) _ § :
T[n (dxn) - . . Sx(””) (an),
i+1—1(,B) et By

where
[i,B)=0V ((i — B) /\B),

where B is an appropriate number of initial samples to be discarded as burn-in.
Note that when i > 2B, we have [(i, B) = B

Note that in its original form, the SIMCMC algorithm requires storing the se-
quences {X,(f)},,eqr. This could be expensive if the number of target distributions
P and/or the number of iterations of the SIMCMC are large. However, in many
scenarios of interest, including nonlinear non-Gaussian state-space models or the
scenarios considered in [9], it is possible to drastically reduce these storage re-
quirements as we are only interested in estimating the marginals {m,(x,)} and we
have w, (x,) = w, (xn 1 Xxy) and g, (Xp—1, Xn) = qn(Xp—1, X). In such cases, we

only need to store {X }ne'ﬂ‘, resulting in significant memory savings.
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2.3.2. Combining sampling strategies. In practice, it is possible to combine
the SIMCMC strategy with SMC methods; that is we can generate say N (ap-
proximate) samples from {m,},cT using SMC then use the SIMCMC strategy to
increase the number of particles until the Monte Carlo estimates stabilize. We em-
phasize that SIMCMC will be primarily useful in the context where we do not
have a predetermined computational budget. Indeed, if the computational budget
is fixed, then better estimates could be obtained by switching the iteration i and
time n loops in the SIMCMC algorithm.

2.4. Discussion and extensions. Standard MCMC methods do not address the
problem solved by SIMCMC methods. Trans-dimensional MCMC methods [17]
allow us to sample from a sequence of “related” target distributions of different di-
mensions but require the knowledge of the ratio of normalizing constants between
these target distributions. Simulated tempering and parallel tempering require all
target distributions to be defined on the same space and rely on MCMC kernels
to explore each target distribution; see [20] for a recent discussion of such tech-
niques. As mentioned earlier in the Introduction, ideas related to SIMCMC where
a sequence of “ideal” MCMC algorithms is approximated have recently appeared
in statistics [19] and physics [23]. However, contrary to these algorithms, the tar-
get distributions considered here are of increasing dimension and the proposed
interacting mechanism is simpler. Whereas the equi-energy sampler [19] allows
“swap” moves between chains, we only use the samples of the sequence {Xﬁ,’)} to
feed {X,(;J)r]} but {X,(l'J)rl} is never used to generate {Xff)}.

There are many possible extensions of the SIMCMC algorithm. In this respect,
the SIMCMC algorithm is somehow a proof-of-concept algorithm demonstrating
that it is possible to make sequences targeting different distributions interact with-
out the need to define a target distribution on an extended state space. For example,
a simple modification of the SIMCMC algorithm can be easily parallelized. Instead
of sampling our candidate Xz(i) at iteration i according to (ﬁ,&’_) 1 X gn)(-) we can

sample it instead from (ﬁ,ii__ll) X qn)(-): this allows us to simulate the sequences

{X,(f)} on P parallel processors. It is straightforward to adapt the convergence re-
sults given in Section 3 to this parallel version of SIMCMC.

In the context of real-time applications where 7, (X,) is typically the posterior
distribution p(x,|y1.,) of some states X, given the observations y;.,, SIMCMC
methods can also be very useful. Indeed, SMC methods cannot easily address sit-
uations where the observations arrive at random times whereas SIMCMC meth-
ods allow us to make optimal use of what computing power is available by
adding as many particles as possible until the arrival of a new observation. In
such cases, a standard implementation would consist of updating our approxima-
tion of m,(x,) at “time” n by adding iteratively particles to the approximations
Tn—L+1Xn—L+1), > Tn—1(Xn—1), Tn(X,) for alag L > 1 until the arrival of data
Yn+1. For L = 1, such schemes have been recently proposed independently in [27].
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3. Convergence results. We now present some convergence results for
SIMCMC. Despite the non-Markovian nature of this algorithm, we are here able
to provide realistic verifiable assumptions ensuring the asymptotic consistency of
the SIMCMC estimates. Our technique of proof rely on Poisson’s equation [16];
similar tools have been used in [2] to study the convergence of adaptive MCMC
schemes and in [10] to study the stability of self-interacting Markov chains.

Let us introduce B(E,) = {f,: E, — R such that || f,|| < 1} where || f,|| =
supy <, | fn(Xn)|. We denote by Exﬁq)" [-] the expectation with respect to the dis-

tribution of the simulated sequences initialized at Xg():)n = (X(IO),Xg)), .. .,X,(go))

and Ng = N U {0}. For any measure pu and test function f, we write u(f) =
S dx) f (x).

Our proofs rely on the following assumption.

ASSUMPTION Al. Foranyn € T, there exists B,, < oo such that for any x,, €
Sn

(3.1 Wy (Xp) < By.

This assumption is quite weak and can be easily checked in all the examples pre-
sented in Section 4. Note that a similar assumption also appears when IL, bounds
are established for SMC methods [7].

Our first result establishes the convergence of the empirical averages toward the
correct expectations at the standard Monte Carlo rate.

THEOREM 3.1. Given Assumption Al, for any n € T and any p > 1, there
exist Cy, Cy,, < 00 such that for any Xio:)n €S x -+ xS, fu € B(E,) and
i € N()

i/p — C1nCap

Eyo %7 = w17 < e

Using (2.6), a straightforward corollary of Theorem 3.1 is the following result.

THEOREM 3.2. Given Assumption Al, for any n € T and any p > 1, there
exist C1,, Ca,p < 00 such that for any xg():)n €S X -+ X8y, fu€ B(E,) and
i eNp
B1C1,1Cy,p

Z(0) 1
EXEO)HZIZ _Zlyp] /pf i1/2 ’

and forn e T \ {1}

——

(Z5) —%
Zn—l Zn—l

pyl/p Bn Cl,n C2,p
= i1/2 :
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By the Borel-Cantelli lemma, Theorems 3.1 and 3.2 also ensure almost sure
convergence of the empirical averages and of the normalizing constant estimates.

Our final result establishes that each sequence {X,(f)} converges toward 7.

THEOREM 3.3. Given Assumption Al, for any n € T, X(l():)n
and f, € B(E,) we have

€S X - xS,

lim Exiq) [fn (X,(;))] =10 (fn).

11— 00

4. Applications. In this section, we will focus on the applications of
SIMCMC to nonlinear non-Gaussian state-space models. Consider an unobserved
E-valued Markov process { X, },eT satisfying

X1~ p(), Xpl{Xn—1=x}~ f(x,).

We assume that we have access to observations {Y,},cr which, conditionally
on {X,}, are independent and distributed according to

4.1 Y [{Xp =x}~g(x,).

This family of models is important, because almost every stationary time se-
ries model appearing in the literature can be cast into this form. Given y;. p,
we are often interested in computing the sequence of posterior distributions
{pXn|¥1:n)}ner to perform goodness-of-fit and/or to compute the marginal likeli-
hood p(y1: p). By defining the unnormalized distribution as

@2)  ya(%a) = p(n, y1:0) = D) gxr, y0) [ ] f G150 Ges y1)
k=2

(which is typically known pointwise), we have m,(x,) = p(Xu|y1:») and Z, =
P(¥1:n) so that SIMCMC can be applied.

We will consider here three examples where the SIMCMC algorithms are com-
pared to their SMC counterparts. For a fixed number of iterations/particles, SMC
and SIMCMC have approximately the same computational complexity. The same
proposals and the same number of samples were thus used to allow for a fair com-
parison. Note that we chose not to use any burn-in period for the SIMCMC and
we initialize the algorithm by picking xflo) = (xflo_)l, x,go)) for any n where X(f(,)) isa
sample from the prior. The SMC algorithms were implemented using a stratified
resampling procedure [18]. The first two examples compare SMC to SIMCMC
in terms of log-likelihood estimates. The third example demonstrates the use of
SIMCMC in a real-time tracking application.
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TABLE 1
RMSE for SMC and SIMCMC algorithms over 100 realizations for prior proposal

N 1000 2500 5000 10,000 25,000
SMC,d =2 1.66 0.98 0.63 0.52 0.29
SIMCMC, d =2 1.57 0.97 0.75 0.59 0.41
SMC,d =5 4.84 4.76 3.06 2.18 1.59
SIMCMC, d =5 5.57 5.41 4.12 2.36 1.83
SMC, d =10 16.91 14.57 11.14 10.61 8.91
SIMCMC, d =10 18.22 16.78 14.56 12.46 11.25

4.1. Linear Gaussian model. We consider a linear Gaussian model where E =
RY:

Xn=AXy—1+0yVy,
4.3)

Yy =Xy + oW,
with X1 ~ N0, A), V,, "% N0, A), W, "X N0, A), A = diag(1,...,1) and A
is a random (doubly stochastic) matrix. Here A (u, X) is a Gaussian distribution
of mean u and variance-covariance matrix X. For this model we can compute the
marginal likelihood Zp = p(y;. p) exactly using the Kalman filter. This allows us
to compare our results to the ground truth.

We use two proposal densities: the prior density f(x,—_1,x,) and the optimal
density (4.3) given by q,?pt(xn_l, Xn) X f(Xn—1, Xn)g(xy, yn) which is a Gaussian.
In both cases, it is easy to check that Assumption A1l is satisfied.

For d =2, 5, 10, we simulated a realization of P = 100 observations for o, = 2
and o, = 0.5. In Tables 1 and 2, we present the performance of both SIMCMC
and SMC for a varying d, a varying number of samples and the two proposal
distributions in terms on Root Mean Square Error (RMSE) of the log-likelihood
estimate.

TABLE 2
RMSE for SMC and SIMCMC algorithms over 100 realizations for optimal proposal

N 1000 2500 5000 10,000 25,000
SMC,d =2 0.33 0.17 0.09 0.06 0.04
SIMCMC, d =2 0.37 0.19 0.14 0.11 0.06
SMC,d =5 0.28 0.16 0.10 0.07 0.06
SIMCMC, d =5 0.29 0.23 0.15 0.12 0.07
SMC, d =10 0.18 0.14 0.09 0.05 0.07

SIMCMC, d =10 0.31 0.20 0.16 0.12 0.10
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As expected, the performance of our estimates is very significantly improved
when the optimal distribution is used as the observations are quite informative.
Unsurprisingly, SMC outperform SIMCMC for a fixed computational complexity.

4.2. A nonlinear non-Gaussian state-space model. We now consider a non-
linear non-Gaussian state-space model introduced in [18] which has been used in
many SMC publications:

Xn—1 25X5,1

X, = + + 8cos(1.2n) + V,,,

8 2 1+ X2, (1.2m) + Vu
X2

Yn=28+”n,

where X1 ~ N'(0,5), Vu " N(0,02) and W, " A/(0, 02). As the sign of the

state X, is not observed, the posterior distributions { p(x1:,|y1: )} are multimodal.
SMC approximations are able to capture properly the multimodality of the poste-
riors. This allows us to assess here whether SIMCMC can also explore properly
these multimodal distributions by comparing SIMCMC estimates to SMC esti-
mates.

We use as a proposal density the prior density f(x,_1, x,). In this case, it is
easy to check that Assumption Al is satisfied.

In Table 3, we present the performance of both SIMCMC and SMC for a vary-
ing number of samples and a varying o> whereas we set o> = 5. Both SMC and
SIMCMC are performing better as the signal to noise ratio degrades. This should
not come as a surprise. As we are using the prior as a proposal, it is preferable to
have a diffuse likelihood for good performance. Experimentally we observed that
SIMCMC and SMC estimates coincide for large N. However for a fixed computa-
tional complexity, SIMCMC is outperformed by SMC in terms of RMSE.

TABLE 3
Average RMSE of log-likelihood estimates for SMC and SIMCMC algorithms over 100 realizations

N 2500 5000 10,000 25,000 50,000
SMC, ‘71% =1 0.80 0.55 0.40 0.24 0.17
SIMCMC, 03} =1 0.95 0.60 0.75 0.59 0.41
SMC, al% =2 0.33 0.23 0.17 0.11 0.07
SIMCMC, 03) =2 0.91 0.70 0.50 0.38 0.29
SMC, 03) =5 0.13 0.10 0.08 0.05 0.03

SIMCMC, 03) =5 0.28 0.21 0.19 0.12 0.08
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4.3. Target tracking. We consider here a target tracking problem [15, 21]. The
target is modeled using a standard constant velocity model

1 T 0 O

(44) Xn = anl + Vn’

S O O

1 0
0 1
0 0

—_ N o

where V, - N, %), withT =1 and

T3/3 T?/2 0 0

T?/2 T 0 0
0 0 T3/3 T?)2
0 0 T2 T

The state vector X, = (X!, X2, X3, X4 T is such that X! (resp., X) corresponds
to the horizontal (resp., vertical) position of the target whereas X ,% (resp., X ﬁ) cor-
responds to the horizontal (resp., vertical) velocity. In many real tracking applica-
tions, the observations are collected at random times [13]. We have the following
measurement equation:

=5

(X
4.5) Y, =tan 1<X—r1l) + Wy,

n

where W, - N(0, 1072); these parameters are representative of real-world track-
ing scenarios. We assume that we only observe Y, at the time indexes n = 4k where
k € N and, when n # 4k, we observe Y,, with probability p = 0.25. We are here
interested in estimating the associated sequence of posterior distributions on-line.

Assume the computational complexity of the SMC method is such that only
N = 1000 particles can be used in one time unit. In such scenarios, we can either
use SMC with N particles to estimate the sequence of posterior distributions of
interest or SMC with say N’ = 4000 particles and chose to ignore observations
that might appear when n # 4k. These are two standard approaches used in appli-
cations. Alternatively, we can use the SIMCMC method to select adaptively the
number of particles as discussed in Section 2.4. If SIMCMC algorithm only adds
particles to the approximation of the current posterior at time 7, it will use approx-
imately mN particles to approximate this posterior if the next observation only
appears at time n + m.

We simulated 50 realizations of P = 100 observations according to the model
(4.4) and (4.5) and use as a proposal density the prior density f(x,—1, x,). This
ensures that Assumption Al is satisfied. In Table 4, we display the performance of
SMC with N particles, N particles (ignoring some observations) and SIMCMC
using an adaptive number of particles in terms of the average RMSE of the estimate
of the conditional expectation E(X,|y1:,). In such scenarios, SIMCMC methods
clearly outperforms SMC methods.
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TABLE 4
Average RMSE of the Monte Carlo state estimate

Algorithm SMC with N SMC with N’ SIMCMC

Average RMSE 2.14 3.21 1.62

5. Discussion. We have described an iterative algorithm based on interact-
ing non-Markovian sequences which is an alternative to SMC and have estab-
lished convergence results validating this methodology. The algorithm is straight-
forward to implement for people already familiar with MCMC. The main strength
of SIMCMC compared to SMC is that it allows us to iteratively improve our esti-
mates in an MCMC-like fashion until a suitable stopping criterion is met. This is
useful as in numerous applications the number of particles required to ensure the
estimates are reasonably precise is unknown. It is also useful in real-time appli-
cations when one is unsure of exactly how much time will be available between
successive arrivals of data points.

As discussed in Section 2.4, numerous variants of SIMCMC can be easily de-
veloped which have no SMC equivalent. The fact that such schemes do not need
to define a target distribution on an extended state-space admitting {m,},cT as
marginals offers a lot of flexibility. For example, if we have access to multiple
processors, it is possible to sample from each m, independently using standard
MCMC and perform several interactions simultaneously. Adaptive versions of the
algorithms can also be proposed by monitoring the acceptance ratio of the MH
steps. If the acceptance probability of the MH move between say w,—1 and 7, is
low, we could, for example, increase the number of proposals at this time index.

From a theoretical point of view, there are a number of interesting questions to
explore. Under additional stability assumptions on the Feynman—Kac semigroup
induced by {7, },eT and {gn}neT [7], Chapter 4, we have recently established in
[8] convergence results ensuring that, for functions of the form f,(x,) = f.(x»),
the bound Cj , in Theorem 3.1 is independent of n. A central limit theorem has
also been established in [3].

APPENDIX: PROOFS OF CONVERGENCE

Our proofs rely on the Poisson equation [16] and are inspired by ideas developed
in [1, 2, 10]. However, contrary to standard adaptive MCMC schemes [2, 26], the
Markov kernels we consider do not necessarily admit the target distribution as
invariant distribution; see [10] for similar scenarios. However, in our context, it
is still possible to establish stronger results than in [10] as we can characterize
exactly these invariant distributions; see Proposition 1.
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A.1. Notation. We denote by P(E,) the set of probability measures on
(En, Fn). We introduce the independent Metropolis—Hastings (MH) kernel K :
E| x F1 — [0, 1] defined by

Ki(x1,dx)) = ai(x1, X})q1(dx})
(A.1)

N (1 - alm,yl)ql(dyl))sxl (@x}).

For n € {2,..., P}, we associate with any u,—1 € P(E,—1) the Markov kernel
Kn,[Ln,1 :En X fn — [0, 1] deﬁned by

Kn,u,,,l (X, dX;;) = an (Xp, X;)(Mn—l X Qn)(dX;l)
(A.2)

+ (1 — [an(xna V) (Mn—1 X Qn)(dYn))‘SXn (dXZ),

where X, = (x,_;,x;).In (A.1) and (A.2), we have forn € T

/
wy (X
o (X, X)) =1 A n (%) .
Wy (Xn)
We use | - ||tv to denote the total variation norm and for any Markov kernel

K'(x,dx)) ::/K"—l(x, dy)K (y, dx)).

A.2. Preliminary results. We establish here the expression of the invariant
distributions of the kernels K(xi, dx/l) and K, ,, ,(Xn,dx)) and establish that
these kernels are geometrically ergodic. We also provide some perturbation bounds
for K, (Xu, dX;,) and its invariant distribution.

LEMMA 1. Given Assumption Al, K1(X1, dX)) is uniformly geometrically er-
godic of invariant distribution 7 (dXy).

By construction, Ki(xq, dx/l) is an MH algorithm of invariant distribution
m1(dx1). Uniform ergodicity follows from Assumption A1; see, for example, The-
orem 2.1. in [24].

PROPOSITION 1. Given Assumption Al, for any n € {2,..., P} and any
n—1 € P(Ep—1), Kn,pu, ,(Xn, dX))) is uniformly geometrically ergodic of invari-
ant distribution
TTn/n—1 (Xp—1) - (Mn—1 X Tp)(dXp)

Mn—l(nn/n—l)

(A.3) wn (n—1)(dXp) =

’

where T, (Xy—1,dx,) and 1y/n—1(Xy—1) are defined, respectively, in (2.8) and
(2.10).
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PROOF. To establish the result, it is sufficient to rewrite

Zn 70 (X0) /701 (Xp—1) hn—1(Xn—1)

() = Zn—1 (Mn—l X Qn)(xn)
_ Zn ”n/n—l(xn—l)(,un—l X TTn)(Xn)
Zn—1 (Un—1 X qn)(Xn)

This shows that K, ,,, , (X, dX)) is nothing but a standard MH algorithm of pro-
posal distribution (w®,—1 X g,)(X;) and target distribution given by (A.3). This dis-
tribution is always proper because Assumption Al implies that 77, /, —1(X;—1) < 00
over E,_1. Uniform ergodicity follows from Theorem 2.1. in [24]. [

COROLLARY. It follows that for any n € {2, ..., P} there exists p, < 1 such
that for any m € Ng and x,, € E,,
(A4) 1K (s ) — 0 (=) Olles < 211

PROPOSITION 2. Given Assumption Al, for any n € {2, ..., P}, we have for

any pn—1, vp—1 € P(En—1), X, € E,, and m € N

(AS) K, 060 ) = K3y Gl < 77—t = Vil
— Fn

and

(A.6) lwn (n—1) — @p(Vp—1) llev < len—1 — va—1llev.

1 - Pn
PrROOF. For any f, € B(E,), we have the following decomposition:

Ky, () Xn) — Ky, (f) (%)

m—1
YK (Knyy = Ko, DK () (%)
j=0

m—1
= Z K,{,M,F] (Kn,u,,_l - Kn,vn_l)(Kz;n{Tl(fn)(xn) - wn(”n—l)(fn))-
j=0

From Assumption A1, we know that for any v, € P(E,—1)
KT~ X, ) = 0 (g ) lly < o0 7!

and from (A.2) for any x,, € E,, and f,, € B(E},)
Kn,un,l (fn)(xn) - Kn,v,,,l (fn)(xn)

- f o, 0t % X (-1 — V1) X ) (dX,)

+ fu () / ot s Y2 (Un—1 — 1) X @) (dY),)
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thus
”Kn,un,l (Xn, ) — Kn,v,l,l Xy IMlev <2 n—1 — vt llev-

So

m—1 )
||Kyrlrfﬂn71(xn’ )= n Vp— 1(Xn’ Mev < 2lpn—1 — va—1llev Z /On —i=1
j=0
1—p
=2 - ltn—1 — V-1l

1— Pn
Hence, (A.5) follows and we obtain (A.6) by taking the limit as m — co. [

A.3. Convergence of averages. For any n € {2,..., P}, p>1 and f, €
B(E,) we want to study

Eyo [0 () =7 ()] "7
We have
A7) 7P = 1) =L () = SO ) + SO(f) — 70 (f),
where
1 i
() _ - ~(m )
Si) () = = i 2 wn (7, 21) (fn)-

To study the first term on the right—hand side of (A.7), we introduce the Poisson
equation [16]

Fo ) = 0n O (f) = Fpe(6) = Ko () (),
whose solution, if K, , is geometrically ergodic, is given by
(A8) Fan@) = 31K, () (@) = 0n () ()]

ieNp
We have
@+ D[ED o) = 5]

(A.9) MOH)(f )+ Z A(m+1) X(m+1)) - f;l 7 (Xr(zm+1))]

»n—1

+f, 20 (x{ )) 1, A0 1>(X(’+l))

where
i—1
A10) MO =307, con (XEHD) = Koo (7, o) (X))

m=0
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is a Gi-martingale with G\ = o(X{""?, X0
X =xV, L XD,

We remind the reader that B(E,) = {f,: E, — R such that || ;|| < 1} where
| full = supy cg, |fn(Xn)|. We establish the following propositions.

X" D) where we define

PROPOSITION 3. Given Assumption Al, foranyn € {2, ..., P}, X(l():)n, p>1,
fn € B(E,) and m € Ny, we have
~ 1
(m+1)y|p11/p
Evo [, zon X" )T = o e

PROOF. Assumption Al ensures that f;l - 18 given by an expression of the
»n—1
form (A.8). We have

> 1
Ex@ [‘fn,ﬁ(’f) (X2m+1))‘17] /p

< 2B [IK] oo () = 0n @) (|17

ZENQ

<> E <0> [E X0y (|K 2 F)(XIHD) — w0, (@) () 167 )]
lENo

< Z ol =
ZENO ! 1_'0”

using Minkowski’s inequality and the fact that K A0 is an uniformly ergodic

-1

Markov kernel conditional upon G, using Assumptlon Al. O

PROPOSITION 4. Given Assumption Al,for any ne{2,...,P}andany p >
1, there exist By ,, B, < 00 such that for any X1 n, fn € B(E ) andm € N

Byo (1M (f0["]? < BiBo,pm' /2.

PROOF. For p > 1 we use Burkholder’s inequality (e.g., [28], page 499); that
is, there exist constants Cy ,, C2,, < o0 such that

m 1
Ego (1M (l"17?

m—1
(A.11) < CiaCopE 0 [(Z [fnﬁyll(xgwn)
' i=0

5 /291/p
S (F ()
- Kn,ﬁlglll(fn,ﬁrg’jl)(xnl )] ) :| .
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For p € (1,2), we can bound the left-hand side of (A.11)

m—1 . - r/2q1/p
Ego, {(Z a0, 0570 = K, 50, (F, 20 )067)] ) ]

i=0 -

m—1 ) 5 - p/291/p
fExa%[(ZZ[’fnﬁyn<xﬁ“)>\ + 1K, 20, (7, 20 )X)] ]) }

i=0

m—1 12
r o (+1)y|2 (F . ONK
<y | (2207, 0, (I + 1K, 20, o 0501 ) |

using (a —b)? < 2(a® +b?) and Jensen’s inequality. Now using Jensen’s inequality
again, we have

Ego [IK, 20 (7, 20 )X <Eg [K, 2o (F, 2o X))
and using Proposition 3, we obtain the bound
m—1 ' _ o p/2q1/p 2
B, [( 2 Lm0, X = K 20, 20 %3] ) } =i m

i=

For p > 2, we we can bound the left-hand side of (A.11) through Minkowski’s
inequality

m 1
Eyo (1M (ol "177

m—1

< Cl,nclp(z EXEQ)n [|f;lﬁ’§,21 (Xgli—H))
i=0 ’

1/2
~ , )
— Kn,ﬁ,‘,i,)l(fnﬁ,f",)l)(x,(,'))|p] /p> _
Using Minkowski’s inequality again
Eg [1F,z0, ) =K, 0 (7, 70 )XD)I7]
a ‘ 1 ~ , {
= By [17, 70, KT DINY +E [IK, 20 (7, 20 &))"

Now from Proposition 3 and Jensen’s inequality, we can conclude for p > 1. For
p =1, we use Davis’ inequality (e.g., [28], page 499) to obtain the result using
similar arguments which are not repeated here. [

PROPOSITION 5. Given Assumption Al, for any n € {2,..., P} and p > 1
there exists B;,, < oo such that for any xg():)n, fn € B(E,) and m € Ny
By

f (m+1)) _ £ (m+1)\(p11/p
Exgo;)n[}fn,ﬁ:jirl)(xnm ) _ fn’ﬁ:f)l (Xnm )} ] < m——|_2
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PROOF. Our proof is based on the following key decomposition established in
Lemma 3.4. in [10]:

~ ~ 4Dy, 7
fnﬁ@H)(Xf,mH)) = Jzm (XD + 0, (7] ))(f"ﬁy@l)

1
(A.12) = 2 (o — on (@ )))K A<m+1>(K o — K 2on)
i,jeNy

x K7y (o = 0@ ()-

n—1

We have
|(3x$,’"+” — @n (ﬁ(er])))K A<m+1>(K R e Kn,ﬁ,ﬁ'f)l)

n—1

X Ky (o= on(®,2) (f)]

n—1

= |(5X(m+1) - CUn( (m_H)))Kl A(m+1)(K A(m+1) - nﬁ,ﬁ’f{)Kiﬁ,j”j), (fn)|

(A13)  =pf] (‘SX};"H) — @nlT (A;EmTl)))Kn A<rfl+1)(Knﬁn<'jl+l) - K,,ﬁ}yji)”w

~ 1 % ~ 1

SV L D = B e Gy — 0n (@, ))K! s
~ 1 % ~ 1

SV e D = B e x o8y —on (@) g

2/0'! ’ ”A(m—!—l) 2 0m)

n 1

tv?

using Assumptlon Al, (A.5) in Proposition 2 and Assumption Al again.
Now we have

! n(A(mH))(f " )|

on (ﬁ,ﬁ’”?”)(z [K;ﬁﬂ (fa) — o (@™ )(f,»])]

ieNg
(A.14) =Y @@ D) — w0 (@)K iz ()l
IENO
A 1 ~
<an“wn (m+ )) wﬂ(”(m))”tv
IGN()

|A(M+l) = (m)
n—1

tv?

B (1 )2 |
using Assumption Al and (A.6) in Proposition 2.
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Now for any f,—1 € B(E,—1), we have

A(rn+1)(f )_ﬁ(m) f fn 1(X (m+l)) ﬁ(m) (fn 1)

’

m+2 m+42
thus
2
A15 A(m-i-l) A(m)

The result follows now directly combining (A.12), (A.13), (A.14), (A.15) and us-
ing Minkowski’s inequality. [J

PROPOSITION 6. Given Assumption Al for anyn€{2,..., Plandany p > 1
there exists By ,, By, < 00 such that for X1 n, fn € B(Ey) andl e Ny
Bl nBZ )4

Byp (7 () = SOl < 2

PROOF. Using (A.9) and Minkowski’s inequality, we obtain

Eyo [[7 () = Sl 177

@i+1) ril/p
< Gy B 1M Gl

i

S E o [|F, oo (XIFD) = o _y (XHD) PP

A.16
( ) + (l + 1) =0 XI:n ”’n’nfl n’”nfl

1 = I
s o, DI

1 & @i+ p7l/p
i, Mz )T

The first term on the right-hand side of (A.16) is bounded using Proposition 4, the
term on the last line of the right-hand side are going to zero because of Proposi-
tion 3. For the second term, we obtain using Proposition 5

i
| AL Bn
ZE@UWMQWW Fuaom KT < 30—

m=0

< B,log(i +2).
The result follows. O

PROOF OF THEOREM 3.1. Under Assumption A1, the result is clearly true for
n =1 thanks to Lemma 1. Assume it is true for n — 1 and let us prove it for n. We
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have, using Minkowski’s inequality,
E X0y (RO ) — ma(f)|]V? <E X© (7D = SO (P17
+Eyo [IS9 () =7l "177.

The first term on the right-hand side can be bounded using Proposition 6. For the
second term, we have

Eyo (IS¢ () = ma(f)|71'77

1 i
Sy EOEXE%U“’" @) () = on T (fi) ]2

Using (A.3), we obtain
On (D) () = o (7)) ()

_ (7Tp—1 X ﬁn)(n’n/n—l - fn) . (ﬁygrf)l X ﬁn)(nn/n—l )

nn—l(n'n/n—l) ﬁ,gn:)l(nn/n—l)

(@ =B X T) (gt - f) T\ (Tayn1)

A( )(nn/n 1) Tp— 1(7Tn/n 1)

( Xnn)(nn/n 1+ fn) - ( ﬂnfl)(nn/nfl)

_1(7Tn/n—l) *TTn—1 (nn/n—l)

80, as 1 (p/n—1) = 1, we have
|0n (Ta=1) () = 0 (@) (S|
=< |((7Tn 1 _77,5 )1) X ﬁn)(nn/n—l : fn)|

|(7Tn 1 X nn)(nn/n—l “fn) - (ﬁ,grf)l - nn—l)(nn/n—l)|

ﬁ,ﬁ’f)l (nn/n—l)

Assumption Al implies that there exists D, < oo such that 7/, 1(X,-1) < D,
over E,_1. Thus, we have using the induction hypothesis

Eyo [0 (@) () = onra-0) (|17

~(m) [ Tn/n—1 7Tn/n—l>
T — TTp—
"—‘< D, ) " 1< D,

< 2Dncl,n—ICZ,p
(m+ 112

p}l/p

<20iBp |
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and

2Dy Cip—1Cap Z 1
(i+1 (m—|—1)1/2

Ego (IS5 () —ma(i)|"]7 <

< DnCl,n—ICZ,p
EE

This concludes the proof. [
A.4. Convergence of marginals.

PROOF OF THEOREM 3.3. The proof is adapted from Proposition 4 in [2].
For n = 1 the result follows directly from Assumption Al. Now consider the case
where n > 2. We use the following decomposition for 0 <n(i) <i:

[E o [£2(X5) = 7 (f)]]
< (B [n(X) = K2 (X))
+ Eyo (K)o U (X ) = (7,5 (1)
+ [Ego [0n(@,5 ) () = on(ra-n) (S]]
Assumption A1l implies that
0 K U (55) — o 7 | = 1
For the first term, we use the following decomposition:
By [(XE) = K2 () (X))
n(i)

- ZEX@ A(’ JH)(f”)(XSli_j-H)) A(l J)(fn)( (l j))]
1-: n

n 1
and

E K0 (K’ A(t J+1)(f” )(XY/HD) — KJ - _i (fn) )(XU=)]

n 1
=Ex(19) [EX(IO) [ A(l j+1)(f" (X(l j+1))
n n ” 1
1 i—
—KJAU >(f)(X(’ )G,
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where
1 1
KJ 7 /+l)(fn (X(l JH)) Kj 29 )(fn)(X(l ]+l))
S 1-m—1
- Z K A(l /+1)(K A(l j+]) — K A(l /))KJ A(z m (f )(X(l ]+1))
m=0 _

Jj—
Z nl ,+1>(K =T+ — K, si-0)

-1

X (KI T A (XS0) = 0 (7, 57) ().

nl

Now we have from Proposition 2 that

~ j+1 7
”K}’l ~(i— j+l)(Xn9') Km,\(l j)(X}’l’ )”tV = (1 _ “ (l j ) (l j)”tv

-1

2 1
=< —
(I=pn)i—j+2

and using Assumption Al

B0 [Byo (K7 o ) (XH0) = K, ) (X 40)16,7/])

Jj—2
= |E,0 [E © [Z K" 2 ,+1>(K g0 — K cip)

1:n Xi:n

(K] 1- m l(f )(X(l ]+1))

A(t

— (@) )G H’

2 2 1—pi!

J—m=2 _
—(1—pn)<1—1+2)z" T U—pi—j+2) 1—p,

and
[y, L3 = K 2o U0 ()

2 ’g 1
(l_pn)2 j+2)

- 2 1 i
= U= pn)? Og(i—n<i>+1)'
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Finally, to study the last term E[w), (ﬁrgi__ln(i)))( fn) — on(ma—1)(fn)], we use the
same decomposition used in the proof of Theorem 3.1 to obtain

One
Li%]

(2]
(3]

(9]
(10]
(11]
[12]
(13]
[14]

[15]

[0, (7 ) fa) = onGra—) ()]

~@i—n@) (TTn/n—1Y nn/n—l)u
-1 < D, ) Trn_1<7Dn

2DnC1,n—l
< .
(i —n@)+1)1/2

<2DiEp |

can check that |Ex(o> Lfn (Xf,i)) — 1, (fn)]| converges toward zero for n(i) =
1:n

where 0 <a < 1. O
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