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TESTING CONDITIONAL INDEPENDENCE USING MAXIMAL
NONLINEAR CONDITIONAL CORRELATION1,2,3

BY TZEE-MING HUANG

National Chengchi University

In this paper, the maximal nonlinear conditional correlation of two
random vectors X and Y given another random vector Z, denoted by
ρ1(X,Y |Z), is defined as a measure of conditional association, which sat-
isfies certain desirable properties. When Z is continuous, a test for testing the
conditional independence of X and Y given Z is constructed based on the
estimator of a weighted average of the form

∑nZ
k=1 fZ(zk)ρ

2
1 (X,Y |Z = zk),

where fZ is the probability density function of Z and the zk’s are some points
in the range of Z. Under some conditions, it is shown that the test statistic is
asymptotically normal under conditional independence, and the test is con-
sistent.

1. Introduction. In this paper, the problem of interest is testing the condi-
tional independence between two random vectors X and Y given a third random
vector Z. The study of the problem of testing conditional independence has a long
history. However, there are relatively few results on nonparametric tests when the
vectors X, Y and Z are continuous. Some examples of such tests can be found in
Su and White [12, 13], where they also proposed conditional independence tests
based on a weighted Hellinger distance between the conditional densities or the
difference between the conditional characteristic functions.

As mentioned in Daudin [2], X and Y are conditionally independent given Z

means that for every f (X,Z) and g(Y,Z) such that Ef 2(X,Z) and Eg2(Y,Z) are
finite

E(f (X,Z)g(Y,Z)|Z) = E(f (X,Z)|Z)E(g(Y,Z)|Z).

Thus, the problem of testing conditional independence, as the problem of testing
unconditional independence, is invariant when one-to-one transforms are applied
to the marginals X and Y , respectively. Various authors have taken this invariant
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property into consideration when constructing conditional or unconditional inde-
pendence tests. For example, Su and White [13] used Hellinger distance in their
test statistic for testing conditional independence, so that the test statistic is invari-
ant. Dauxois and Nkiet [3] used measures of association to construct independence
tests, and the measures are invariant under the above transforms. In this paper, to
take invariance into account, the proposed test is based on the maximal nonlinear
conditional correlation, which can be viewed as a measure of conditional associa-
tion and satisfies the above invariance property.

To choose a reasonable measure of conditional association between X and Y ,
the following properties are considered.

(P1) The measure can be defined for all types of random vectors, including both
discrete and continuous ones.

(P2) The measure is symmetric, that is, it remains the same when (X,Y ) is re-
placed by (Y,X).

(P3) The measure is invariant when one-to-one transforms are applied to X and Y ,
respectively.

(P4) The measure is between 0 and 1.
(P5) The measure is 0 if and only if conditional independence holds.

The above properties are adapted from some of the conditions for a good measure
of association proposed by Rényi [9]. In [9], the conditional independence in (P5)
is replaced by the unconditional independence. Note that the symmetric property
(P2) is not always required. For instance, Hsing et al. [6] proposed to use the
coefficient of intrinsic dependence as a measure of dependence, which does not
satisfy (P2). Here, (P2) is considered.

Many measures of conditional association satisfying (P1)–(P5) can be con-
structed. Dauxois and Nkiet [4] showed that a class of measures of association be-
tween two Hilbertian subspaces can be obtained by properly combining the canon-
ical coefficients of the canonical analysis (CA) between the spaces. In particular,
take the two subspaces to be H̃1 = {f (X,Z) − E(f (X,Z)|Z) :Ef 2(X,Z) < ∞}
and H̃2 = {g(Y,Z)−E(g(Y,Z)|Z) :Eg2(Y,Z) < ∞}, then a class of measures of
conditional association between X and Y given Z satisfying properties (P1)–(P5)
can be obtained using the canonical coefficients. Denote the canonical coefficients
(arranged in descending order) by ρ̃i(X,Y |Z) : i = 1,2, . . . . When X and Y are
not functions of Z, the largest canonical coefficient ρ̃1(X,Y |Z) is the maximal
partial correlation defined by Romanovič [10], which is

sup
f,g

corr
(
f (X,Z) − E(f (X,Z)|Z),g(Y,Z) − E(g(Y,Z)|Z)

)
.

Another approach to construct measures of conditional association is to mod-
ify the CA between the spaces H1 = {f (X) − Ef (X) :Ef 2(X) < ∞} and H2 =
{g(Y ) − Eg(Y ) :Eg2(Y ) < ∞} to obtain a conditional version of it. That is, to
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find pairs of functions (fi, gi) : i = 0,1, . . . , such that for each i, (fi, gi) maxi-
mizes E(f (X,Z)g(Y,Z)|Z) subject to

E(f 2(X,Z)|Z)I(0,∞)(E(f 2(X,Z)|Z)) = I(0,∞)(E(f 2(X,Z)|Z)),(1.1)

E(g2(Y,Z)|Z)I(0,∞)(E(g2(Y,Z)|Z)) = I(0,∞)(E(g2(Y,Z)|Z))(1.2)

and

E(f (X,Z)fj (X,Z)|Z) = 0 = E(g(Y,Z)gj (Y,Z)|Z) for 0 ≤ j < i.

Here, IA denotes the indicator function on a set A, that is, IA(x) = 1 if x ∈ A

and IA(x) = 0, otherwise. If the above (fi, gi)’s exist, then one can define
ρi(X,Y |Z) = E(fi(X,Z)gi(Y,Z)|Z) for each i and the ρi(X,Y |Z)’s can serve
as a conditional version of canonical coefficients. A measure of conditional as-
sociation satisfying (P1)–(P5) can be obtained by taking a proper combination of
the ρi(X,Y |Z)’s, following the approach in [4]. Examples of such combinations
include ρ1(X,Y |Z) and 1 − exp(−∑

i ρ
2
i (X,Y |Z)). The measure of conditional

association used in this paper is ρ1(X,Y |Z), which will be called the maximal
nonlinear conditional correlation of two random vectors X and Y given Z from
now on.

In the above definition of ρi(X,Y |Z)’s, it is assumed that the (fi, gi)’s ex-
ist. However, it is not clear what conditions can guarantee the existence of the
(fi, gi)’s. To avoid the problem of finding such conditions, a more general defini-
tion for ρ1(X,Y |Z) is given in Section 2. To construct a test based on ρ1(X,Y |Z),
it is assumed that Z has a Lebesgue probability density function fZ . An estimator
of

∑
k fZ(zk)ρ

2
1(X,Y |Z = zk) is then used as the test statistic, where the zk’s are

some points in the range of Z. To study the asymptotic behavior of the test statis-
tic under the hypothesis that X and Y are conditionally independent given Z, we
follow the approach in [3] for finding the asymptotic distribution of a statistic for
testing the independence between X and Y , which is based on estimators of the
canonical coefficients from the CA of H1 and H2. To make the approach work for
the conditional case, some strong approximation results for kernel estimators of
certain conditional expectations are also established.

This paper is organized as follows. The new definition of ρ1(X,Y |Z) is given
in Section 2. Section 3 deals with the estimation of ρ1(X,Y |Z = z) and test con-
struction. An example is in Section 4 and proofs are given in Section 7.

2. Maximal nonlinear conditional correlation. In this section, a more gen-
eral definition of the maximal nonlinear conditional correlation ρ1(X,Y |Z) will
be given. Note that in the definition of ρi(X,Y |Z)’s in Section 1, one can take
f0(X,Z) = 1 = g0(Y,Z), which gives that ρ0(X,Y |Z) = 1, and then ρ1(X,Y |Z)

can be defined as E(f1(X,Z)g1(Y,Z)|Z) if there exists (f1, g1) ∈ S0 such that

E(f (X,Z)g(Y,Z)|Z) ≤ E(f1(X,Z)g1(Y,Z)|Z) for every (f, g) ∈ S0,
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where S0 is the collection of pairs of functions (f, g)’s that satisfy (1.1), (1.2) and
E(f (X,Z)|Z) = 0 = E(g(Y,Z)|Z). Without assuming the existence of (f1, g1),
it is reasonable to define ρ1(X,Y |Z) as

sup
(f,g)∈S0

E(f (X,Z)g(Y,Z)|Z),(2.1)

if the supremum can be defined.
The above approach can be considered as a “pointwise” approach. Indeed,

when Z takes values in a countable set Z , for each z ∈ Z , one may define
ρ1(X,Y |Z = z) as

sup
(f,g)∈S0

E
(
f (X, z)g(Y, z)|Z = z

)
,(2.2)

then the ρ1(X,Y |Z) defined using (2.2) is a measurable function and can serve as
the supremum in (2.1). However, if Z is uncountable, then it is not clear whether
the ρ1(X,Y |Z) defined using (2.2) is measurable. Therefore, we use the following
fact to define the supremum in (2.1) so that it is well defined and is a measurable
function.

FACT 1. There exists a sequence {(αn,βn)} in S0 such that:

(i) The sequence {E(αn(X,Z)βn(Y,Z)|Z)} is nondecreasing, and
(ii) for every (f, g) ∈ S0,

E(f (X,Z)g(Y,Z)|Z) ≤ lim
n→∞E(αn(X,Z)βn(Y,Z)|Z).

Furthermore, if (i) and (ii) hold for {(αn,βn)} = {(αn,1, βn,1)} or {(αn,2, βn,2)},
where {(αn,1, βn,1)} and {(αn,2, βn,2)} are sequences in S0, then

lim
n→∞E(αn,1(X,Z)βn,1(Y,Z)|Z) = lim

n→∞E(αn,2(X,Z)βn,2(Y,Z)|Z).(2.3)

For the sake of brevity, from now on, some functions of (X,Z) or (Y,Z) may
be expressed without the arguments (X,Z) or (Y,Z). For distinguishing purpose,
functions of (X,Z) may have names starting with only α or f , and functions of
(Y,Z) may have names starting with only β or g.

PROOF FOR FACT 1. We will first establish (2.3) if (i) and (ii) hold for
{(αn,βn)} = {(αn,1, βn,1)} or {(αn,2, βn,2)}. Note that for each n, from (ii), we
have that

E(αn,2βn,2|Z) ≤ lim
n→∞E(αn,1βn,1|Z)

and

E(αn,1βn,1|Z) ≤ lim
n→∞E(αn,2βn,2|Z).
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Take the limits in these two inequalities as n → ∞, and we have (2.3).
It remains to find a sequence {(αn,βn)} in S0 that satisfies (i) and (ii). Let

{(αn,0, βn,0)} be a sequence in S0 so that the sequence {E(αn,0βn,0)} is nonde-
creasing and converges to sup(f,g)∈S0

E(fg). We will construct {(αn,βn)} using
{(αn,0, βn,0)} as follows. For n = 1, define (α1, β1) = (α1,0, β1,0). For n ≥ 2, de-
fine

(αn(X,Z),βn(Y,Z))

=
{

(αn,0(X,Z),βn,0(Y,Z)), if E(αn,0βn,0|Z) > E(αn−1βn−1|Z);
(αn−1(X,Z),βn−1(Y,Z)), otherwise.

Then {(αn,βn)} is a sequence in S0 that satisfies (i), and the sequence {Eαnβn}
converges to sup(f,g)∈S0

E(fg) since E(αnβn|Z) ≥ E(αn,0βn,0|Z). To see that
{(αn,βn)} also satisfies (ii), for (α,β) in S0, define

(α∗
n,β∗

n) =
{

(α,β), if E(αβ|Z) > lim
n→∞E(αnβn|Z);

(αn,βn), otherwise.

Then {(α∗
n,β∗

n)} is a sequence in S0 such that

lim
n→∞E(α∗

nβ∗
n |Z) = max

{
E(αβ|Z), lim

n→∞E(αnβn|Z)
}
.(2.4)

From the monotone convergence theorem, we have

E lim
n→∞E(α∗

nβ∗
n |Z) = lim

n→∞E(α∗
nβ∗

n)(2.5)

and

E lim
n→∞E(αnβn|Z) = lim

n→∞E(αnβn),(2.6)

so (2.4) implies that

sup
(f,g)∈S0

E(fg) ≥ lim
n→∞E(α∗

nβ∗
n) ≥ lim

n→∞E(αnβn) = sup
(f,g)∈S0

E(fg),

which gives

lim
n→∞E(α∗

nβ∗
n) = lim

n→∞E(αnβn).(2.7)

If E(αβ|Z) > limn→∞ E(αnβn|Z) with positive probability, then (2.4), (2.5) and
(2.6) together implies that limn→∞ E(α∗

nβ∗
n) > limn→∞ E(αnβn), which contra-

dicts (2.7). Thus, (ii) holds. The proof of Fact 1 is complete. �

With Fact 1, the maximal nonlinear conditional correlation ρ1(X,Y |Z) can be
redefined as follows.

DEFINITION 1. ρ1(X,Y |Z) = sup(f,g)∈S0
E(f (X,Z)g(Y,Z)|Z), which is

defined as limn→∞ E(αn(X,Z)βn(Y,Z)|Z), where {(αn,βn)} is a sequence in S0
that satisfies (i) and (ii) in Fact 1.
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Below are some remarks for the ρ1(X,Y |Z).

1. If there exists (f1, g1) in S0 such that E(f1g1|Z) ≥ E(fg|Z) for all (f, g) ∈ S0,
then ρ1(X,Y |Z) = E(f1g1|Z) using Definition 1. To see this, let {(αn,βn)}
be a sequence in S0 that satisfies (i) and (ii) in Fact 1. Then ρ1(X,Y |Z) =
limn→∞ E(αnβn|Z), so E(f1g1|Z) ≤ ρ1(X,Y |Z) by (ii). Also, E(f1g1|Z) ≥
E(αnβn|Z) for every n, so E(f1g1|Z) ≥ ρ1(X,Y |Z). Therefore, ρ1(X,Y |Z) =
E(f1g1|Z) and Definition 1 can be viewed as a generalized version of the defi-
nition of ρ1(X,Y |Z) given in Section 1.

2. ρ1(X,Y |Z) satisfies properties (P1)–(P5).
3. When X is a function of Y and Z or Y is a function of X and Z, it is not neces-

sary that ρ1(X,Y |Z) = 1. For instance, suppose that X and Z are independent
standard normal random variables and Y = XI(0,∞)(Z), then ρ1(X,Y |Z) =
I(0,∞)(Z).

4. Let ρ1(X,Y ) be the largest canonical coefficient from the CA between H1 =
{f (X) − Ef (X) :Ef 2(X) < ∞} and H2 = {g(Y ) − Eg(Y ) :Eg2(Y ) < ∞}.
Then ρ1(X,Y |Z) = ρ1(X,Y ) if (X,Y ) and Z are independent.

5. Let ρ1(X,Y ) be as defined in item 4. It is stated in [3] that when the joint
distribution of X and Y is bivariate normal

N

((
0
0

)
,

(
1 ρ

ρ 1

))
,

ρ1(X,Y ) = |ρ|. This result implies that, when the joint distribution for X, Y

and Z is multivariate normal and X and Y are both univariate,

ρ1(X,Y |Z) =
∣∣∣∣ E((X − E(X|Z))(Y − E(Y |Z))|Z)

(E(X − E(X|Z))2|Z)1/2(E(Y − E(Y |Z))2|Z)1/2

∣∣∣∣
=

∣∣∣∣ E(X − E(X|Z))(Y − E(Y |Z))

(E(X − E(X|Z))2)1/2(E(Y − E(Y |Z))2)1/2

∣∣∣∣,
which also equals the absolute value of the usual partial correlation coefficient.

3. A test of conditional independence. Testing conditional independence is
equivalent to testing H0 :ρ1(X,Y |Z) = 0, which involves testing H0,z :ρ1(X,Y |
Z = z) = 0 for different z’s in the range of Z. Let Z be the range of Z. In this
section, an estimator ρ̂(z) is proposed for estimating ρ1(X,Y |Z = z) for each
z ∈ Z , and for distinct points z1, . . . , znZ

in Z , the asymptotic joint distribution of
ρ̂(z1), . . . , ρ̂(znZ

) under H0 is derived to construct a test for testing H0.

3.1. Estimation of ρ1(X,Y |Z = z). To estimate

ρ1(X,Y |Z) = sup
(f,g)∈S0

E(fg|Z)

for (f, g) ∈ S0, f and g are approximated using basis functions. Suppose that
there exist �1, �2 and �3: subsets of the set of all positive integers and three sets
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of functions {φp,i : 1 ≤ i ≤ p,p ∈ �1}, {ψq,j : 1 ≤ j ≤ q, q ∈ �2} and {θr,k : 1 ≤
k ≤ r, k ∈ �3} such that for α(X,Z) and β(Y,Z) with finite second moments,

lim
p,r→∞ inf

a(i,k)
E

(
α(X,Z) − ∑

1≤i≤p,1≤k≤r

a(i, k)φp,i(X)θr,k(Z)

)2

= 0(3.1)

and

lim
q,r→∞ inf

b(j,k)
E

(
β(Y,Z) − ∑

1≤j≤q,1≤k≤r

b(j, k)ψq,j (Y )θr,k(Z)

)2

= 0.(3.2)

Also, suppose that for each (p, q), there exist coefficients ap,0,i ’s and bq,0,j ’s such
that ∑

1≤i≤p

ap,0,iφp,i(x) = 1 = ∑
1≤j≤q

bq,0,jψq,j (y)(3.3)

for every x in the range of X and every y in the range of Y .
Let S1 be the collection of all (f, g)’s with finite second moments and let S1,p,q

be the collection of all (f, g)’s in S1 such that f (X,Z) = ∑p
i=1 ap,i(Z)φp,i(X)

for some ap,i(Z)’s, and g(Y,Z) = ∑q
j=1 bq,j (Z)ψq,j (Y ) for some bq,j (Z)’s.

Then (3.1) and (3.2) together imply that S1 can be approximated by S1,p,q for
large p and q . Since S0 ⊂ S1, S0 can be approximated by S1,p,q as well. With
the additional condition (3.3), S0 can be easily approximated using the subspace
S0,p,q = S0 ∩S1,p,q . Note that (3.1), (3.2) and (3.3) hold for certain basis functions,
for example, the tensor product splines in [11].

Assuming (3.1), (3.2) and (3.3), it is reasonable to define

sup
(f,g)∈S0,p,q

E(fg|Z)

and use it to approximate ρ1(X,Y |Z). To define sup(f,g)∈S0,p,q
E(fg|Z), one may

follow the same approach for defining sup(f,g)∈S0
E(fg|Z), or simply note that

there exists (f1, g1) ∈ S0,p,q such that

E(f1g1|Z) ≥ E(fg|Z) for all (f, g) ∈ S0,p,q(3.4)

and define sup(f,g)∈S0,p,q
E(fg|Z) = E(f1g1|Z). The pair (f1, g1) can be obtained

as follows. Let

	φ,p(Z) = (
E(φp,i(X)φp,j (X)|Z) − E(φp,i(X)|Z)E(φp,j (X)|Z)

)
p×p,

	ψ,q(Z) = (
E(ψq,i(Y )ψq,j (Y )|Z) − E(ψq,i(Y )|Z)E(ψq,j (Y )|Z)

)
q×q

and

	φ,ψ,p,q(Z) = (
E(φp,i(X)ψq,j (Y )|Z) − E(φp,i(X)|Z)E(ψq,j (Y )|Z)

)
p×q.

Consider the following two cases:
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(i) 	φ,p(Z) and 	ψ,q(Z) are not zero matrices, and
(ii) at least one of 	φ,p(Z) and 	ψ,q(Z) is a zero matrix.

In case (i), let a1 = (a1,1(Z), . . . , a1,p(Z))T and b1 = (b1,1(Z), . . . , b1,q(Z))T be
such that (a1, b1) is the pair of (a, b) that maximizes

aT 	φ,ψ,p,q(Z)b

subject to

aT 	φ,p(Z)a = 1 = bT 	ψ,q(Z)b,

and then take

f1(X,Z) =
p∑

i=1

a1,i(Z)
(
φp,i(X) − E(φp,i(X)|Z)

)
and

g1(Y,Z) =
q∑

j=1

b1,j (Z)
(
ψq,j (Y ) − E(ψq,j (Y )|Z)

)
.

In case (ii), take f1(X,Z) = 0 = g1(Y,Z). Then (f1, g1) ∈ S0,p,q and (3.4) holds.
Denote sup(f,g)∈S0,p,q

E(fg|Z) by ρp,q(Z).
The following fact states that ρ1(X,Y |Z) can be reasonably approximated by

ρp,q(Z) if p and q are large.

FACT 2. Suppose that (3.1), (3.2) and (3.3) hold and {pn} and {qn} are se-
quences of positive integers that tend to ∞ as n → ∞. Then

lim
n→∞E

(|ρ1(X,Y |Z) − ρpn,qn(Z)|) = 0.

PROOF. Since ρ1(X,Y |Z) ≥ ρpn,qn(Z) for every n, Fact 2 holds if for every
ε > 0, there exists N0 such that for n ≥ N0,

ρ1(X,Y |Z) ≤ ρpn,qn(Z) + �1(3.5)

for some �1 such that E|�1| < ε. To find such a �1, we will first look for a
pair (fm,gm) ∈ S0 such that E(fmgm|Z) ≈ ρ1(X,Y |Z), and then find (f ∗

n , g∗
n) ∈

S0,pn,qn such that (f ∗
n , g∗

n) ≈ (fm,gm). Take

�1 = E(fmgm|Z) − E(f ∗
n g∗

n|Z) + ρ1(X,Y |Z) − E(fmgm|Z),(3.6)

then (3.5) holds and E|�1| can be made small if m and n are large enough.
To find (fm,gm) ∈ S0 such that E(fmgm|Z) ≈ ρ1(X,Y |Z), let {(fn, gn)}∞n=1

be a sequence in S0 such that {E(fngn|Z)} is an increasing sequence and
limn→∞ E(fngn|Z) = ρ1(X,Y |Z). Let �2,n = ρ1(X,Y |Z) − E(fngn|Z), then
limn→∞ E|�2,n| = 0, which implies that for every δ > 0, there exists m such that

E|�2,m| < δ.(3.7)
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To find (f ∗
n , g∗

n) ∈ S0,pn,qn such that (f ∗
n , g∗

n) ≈ (fm,gm), note that it follows
from (3.1) and (3.2) that for n ≥ N0, there exists some (fn,1, gn,1) ∈ S1,pn,qn such
that √

E(fm − fn,1)2 < δ and
√

E(gm − gn,1)2 < δ.(3.8)

Let fn,2(X,Z) = fn,1(X,Z) − E(fn,1|Z), gn,2(Y,Z) = gn,1(Y,Z) − E(gn,1|Z),

f ∗
n (X,Z) = fn,2(X,Z)√

E(f 2
n,2|Z)

I(0,∞)(E(f 2
n,2|Z))

and

g∗
n(Y,Z) = gn,2(Y,Z)√

E(g2
n,2|Z)

I(0,∞)(E(g2
n,2|Z)),

then it follows from (3.3) that (f ∗
n , g∗

n) ∈ S0,pn,qn . To see that (f ∗
n , g∗

n) ≈ (fm,gm),
let �3 = fm − f ∗

n and �4 = gm − g∗
n , then it can be shown that

E�2
3 ≤ 16δ2 + 8δ(3.9)

and

E�2
4 ≤ 16δ2 + 8δ.(3.10)

Below we will verify (3.9) only since the verification for (3.10) is similar. Write
�3 = fm − fn,2 + fn,2 − f ∗

n , then by (3.8),

E(fm − fn,2)
2 ≤ 4δ2(3.11)

since E(fm − fn,2)
2 ≤ 2(E(fm − fn,1)

2 + E(fn,1 − fn,2)
2) and (fn,1 − fn,2)

2 =
(E((fm − fn,1)|Z))2 ≤ E((fm − fn,1)

2|Z). Also,

E
(
(f ∗

n − fn,2)
2|Z) = (

1 −
√

E(f 2
n,2|Z)

)2
I(0,∞)(E(f 2

n,2|Z))

≤ |1 − E(f 2
n,2|Z)|

= ∣∣E(
(fm − fn,2)

2|Z) − 2E
(
fm(fm − fn,2)|Z)∣∣

≤ E
(
(fm − fn,2)

2|Z) + 2
√

E
(
(fm − fn,2)2|Z)

,

so

E(fn,2 − f ∗
n )2 ≤ E(fm − fn,2)

2 + 2
√

E(fm − fn,2)2
(3.11)≤ 4δ2 + 4δ.(3.12)

Therefore, (3.9) follows from (3.11), (3.12) and the inequality E�2
3 ≤ 2(E(fm −

fn,2)
2 + E(fn,2 − f ∗

n )2).
Finally, the �1 in (3.6) is E(f ∗

n �4|Z)+E(g∗
n�3|Z)+E(�3�4|Z)+�2,m, so

it follows from (3.9), (3.10), (3.7) and the Cauchy inequality that

E|�1| ≤ 3
√

16δ2 + 8δ + δ.



2056 T.-M. HUANG

For ε > 0, one can choose δ so that 3
√

16δ2 + 8δ + δ < ε, then E|�1| < ε as
required. The proof of Fact 2 is complete. �

Based on Fact 2, it is reasonable to estimate ρ1(X,Y |Z) using an estimator for
ρp,q(Z), where p and q are large. To estimate ρp,q(Z), the following assumption
is made:

(A1) There exists a version of the conditional distribution of (X,Y ) given Z such
that for every bounded function g(X,Y ), E(g(X,Y )|Z) calculated using that
version is a continuous function of Z.

From now on, we will use the version of conditional distribution in (A1) to obtain
E(g(X,Y )|Z = z) for every bounded g and every z in the range of Z. It for each
(p, q), 1 ≤ i ≤ p, 1 ≤ j ≤ q , |φp,i | ≤ 1 and |ψq,j | ≤ 1, then each element in
	φ,p(z), 	ψ,q(z) and 	φ,ψ,p,q(z) is a continuous function of z, and ρp,q(z) is
maxa,b aT 	φ,ψ,p,q(z)b, where the maximum is taken over all vectors a and b such
that

aT 	φ,p(z)a = 1 = bT 	ψ,q(z)b.

To estimate ρp,q(z), we consider the estimator

ρ̂p,q(z) = max
a,b

aT 	̂φ,ψ,p,q(z)b,

where the maximum is taken over all vectors a and b such that

aT 	̂φ,p(z)a = 1 = bT 	̂ψ,q(z)b,

and 	̂φ,p(z), 	̂φ,ψ,p,q(z) and 	̂ψ,q(z) are obtained by replacing the conditional
expectations in 	φ,p(z), 	φ,ψ,p,q(z) and 	ψ,q(z) by their kernel estimators.
Specifically, each element in 	φ,p(z), 	φ,ψ,p,q(z) and 	ψ,q(z) is of the form
E(UV |Z = z) − (E(U |Z = z))(E(V |Z = z)), where U and V are functions of
X or Y , so each of E(UV |Z = z), E(U |Z = z) and E(V |Z = z) is of the form
E(g(X,Y )|Z = z), which is estimated by

Ê
(
g(X,Y )|Z = z

) def=
∑n

i=1 g(Xi, Yi)kh(z − Zi)∑n
i=1 kh(z − Zi)

,(3.13)

where kh(z) = h−dk0(z/h) and k0 is a kernel function on Rd satisfying certain
conditions which will be specified later. For each z ∈ Z , to make ρ̂p,q(z) a rea-
sonable estimator for ρ1(X,Y |Z = z), we will take p = pn, q = qn and h = hn,
where pn → ∞, qn → ∞ and hn → 0 as n → ∞. The estimator ρ̂pn,qn(z) will be
abbreviated as ρ̂(z) for each z ∈ Z .

The estimator ρ̂(z) can be expressed in a different form that is easier to analyze.
Let X∗ and Y∗ be random vectors of length pn and qn, respectively, such that given
the data (X1, Y1,Z1), . . . , (Xn,Yn,Zn),

(XT∗ , Y T∗ ) = (φpn,1(X
), . . . , φpn,pn(X
),ψqn,1(Y
), . . . ,ψqn,qn(Y
))
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with probability kh(z − Z
)/
∑n

i=1 kh(z − Zi) for 1 ≤ 
 ≤ n. Then 	̂φ,ψ,p,q(z) =
EX∗YT∗ − EX∗EYT∗ , 	̂φ,p(z) = EX∗XT∗ − EX∗EXT∗ and 	̂ψ,q(z) = EY∗YT∗ −
EY∗EYT∗ , where the expectations are conditional expectations given the data.
Therefore, the estimator ρ̂(z) is the largest canonical coefficient from the centered
canonical analysis between X∗ and Y∗. Note that it follows from (3.3) that

aT
n,∗X∗ = 1 = bT

n,∗Y∗,(3.14)

where

an,∗ = (apn,0,1, . . . , apn,0,pn)
T and bn,∗ = (bqn,0,1, . . . , bqn,0,qn)

T ,

so ρ̂(z) can also be obtained from the noncentered canonical analysis between X∗
and Y∗. Let

V1,1(z) = (
E

(
φpn,i(X)φpn,j (X)|Z = z

))
pn×pn

,

V1,2(z) = (
E

(
φpn,i(X)ψqn,j (Y )|Z = z

))
pn×qn

,

V2,2(z) = (
E

(
ψqn,i(Y )ψqn,j (Y )|Z = z

))
qn×qn

and V2,1(z) = V1,2(z)
T

for 1 ≤ i, j ≤ 2, let V̂i,j (z) be the estimator of Vi,j (z) obtained by replacing the
conditional expectations in Vi,j (z) by their kernel estimators as in (3.13). Then
V̂1,1(z) = EX∗XT∗ , V̂1,2(z) = EX∗YT∗ , V̂2,2(z) = EY∗YT∗ , so ρ̂(z) is the square
root of the largest eigenvalue of the matrix

V̂1,2(z)V̂
−1
2,2 (z)V̂2,1(z)V̂1,1(z)

−1 − V̂1,1(z)an,∗aT
n,∗.

Also, ρpn,qn(z) is the square root of the largest eigenvalue of the matrix

V1,2(z)V
−1
2,2 (z)V2,1(z)V1,1(z)

−1 − V1,1(z)an,∗aT
n,∗.

To simplify the above matrix expressions, some notation is introduced as fol-
lows. For a (pn + qn) × (pn + qn) matrix U , express U as(

U1,1 U1,2
U2,1 U2,2

)
,

where the dimension of U1,1 is pn × pn. For 1 ≤ i, j ≤ 2, let gi,j be the mapping
that maps U to Ui,j . For a pn × 1 vector a and a (pn + qn) × (pn + qn) matrix U ,
define

g(U,a) = g1,2(U)g2,2(U)−1g2,1(U)g1,1(U)−1 − g1,1(U)aaT ,

if g2,2(U) and g1,1(U) are invertible. Let

V (z) =
(

V1,1(z) V1,2(z)

V2,1(z) V2,2(z)

)
and

V̂ (z) =
(

V̂1,1(z) V̂1,2(z)

V̂2,1(z) V̂2,2(z)

)
,
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then ρ̂(z) is the square root of the largest eigenvalue of g(V̂ (z), an,∗) and ρpn,qn(z)

is the square root of the largest eigenvalue of g(V (z), an,∗).
The matrix g(V̂ (z), an,∗) can be replaced by a different matrix if basis change

is performed. That is, suppose that

φ = (φpn,1, . . . , φpn,pn)
T and ψ = (ψqn,1, . . . ,ψqn,qn)

T

are replaced by φ∗ = P1φ and ψ∗ = Q1ψ , respectively, and V̂ (z) becomes V̂ ∗(z)
after such a change is made. Then ρ̂(z) is also the square root of the largest eigen-
value of the matrix g(V̂ ∗(z), α∗), where α∗ = (P −1

1 )T an,∗ is a vector such that
(α∗)T φ∗ = 1. To make the expression for g(V ∗(z), α∗) simple, the matrices P1
and Q1 are chosen so that

φ∗
1 = 1 = ψ∗

1 ,(3.15)

g1,1(V
∗(z)) and g2,2(V

∗(z)) are identity matrices, and for 1 ≤ i ≤ pn and 1 ≤ j ≤
qn,

E
(
φ∗

i (X)ψ∗
j (Y )|Z = z

) = δi,j

√
λi,(3.16)

where φ∗
i and ψ∗

j denote the ith element in φ∗ and the j th element in ψ∗, re-
spectively, δi,j denotes the Kronecker symbol and the λi ’s are the eigenvalues of
g(V ∗(z), α∗). Note that (α∗)T = (1,0, . . . ,0) with the above choice of P1 and Q1.

3.2. Asymptotic properties and a test of conditional independence. In this sec-
tion, we will give asymptotic properties of the estimators ρ̂(zk) : 1 ≤ k ≤ nZ , where
the zk’s are distinct points in Z . First, we will establish the consistency of the esti-
mators, which relies on the fact that for each k, the two matrices g(V̂ ∗(zk), α

∗) and
g(V ∗(zk), α

∗) are close, and their largest eigenvalues are ρ̂2(zk) and ρ2
pn,qn

(zk).

The difference between g(V̂ ∗(zk), α
∗) and g(V ∗(zk), α

∗) depends on the differ-
ence of V̂ ∗(zk) and V ∗(zk), and the difference between some conditional ex-
pectation E(g(X,Y,Z)|Z = z) and its kernel estimator Ê(g(X,Y,Z)|Z = z) =∑n

i=1 w0,i (z)g(Xi, Yi, z)/
∑n

i=1 w0,i (z), where w0,i (z) = k0(h
−1
n (z − Zi)). To

make it easier to derive the asymptotic properties of Ê(g(X,Y,Z)|Z = z), some
regularity conditions on the distribution of (X,Y,Z) are imposed as follows.

(R1) There exists a σ -finite measure μ such that for every z ∈ Z , the conditional
distribution of (X,Y ) given Z = z has a p.d.f. f (·|z) with respect to μ. Also,
Z has a Lebesgue p.d.f. fZ , and f (x, y|z) and fZ(z) are twice differentiable
with respect to z.

(R2) There exists a function h on X × Y such that

sup
z∈Z

max
(
|f (x, y|z)|, max

1≤i≤d

∣∣∣∣ ∂

∂zi

f (x, y|z)
∣∣∣∣, max

1≤i,j≤d

∣∣∣∣ ∂2

∂zi ∂zj

f (x, y|z)
∣∣∣∣
)

≤ h(x, y)

and
∫

h(x, y) dμ(x, y) < ∞.
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(R3) There exist constants c0 and c1 such that

sup
z∈Z

max
(
|fZ(z)|, max

1≤i≤d

∣∣∣∣ ∂

∂zi

fZ(z)

∣∣∣∣, max
1≤i,j≤d

∣∣∣∣ ∂2

∂zi ∂zj

fZ(z)

∣∣∣∣
)

≤ c0

and 1/fZ(z) ≤ c1 for z ∈ Z .

Note that (R2) implies condition (A1) in Section 3.1. For the kernel function k0,
conditions (K1) and (K2) are assumed. The notation ‖ · ‖ denotes the Euclidean
norm for a vector or the Frobenius norm for a matrix.

(K1) k0 ≥ 0, supu k0(u) < ∞,
∫

k0(u) du = 1,
∫

uk0(u) du = 0 and σ 2
0 =∫ ‖u‖2k0(u) du < ∞.

(K2) There exists positive constants γ2 and γ3 that does not depend on d such that

k0(a) ≤ (γ2)
de−γ3‖a‖2

for every a ∈ Rd.

REMARK. If k0 is a product kernel of the form k0(z1, . . . , zd) = k00(z1) · · ·
k00(zd), and

k00(x) ≤ γ2e
−γ3x

2
for every x ∈ R,

then condition (K2) holds.
Assume the above conditions, then it is possible to control the difference be-

tween V̂ ∗(zk) and V ∗(zk) using the following result.

LEMMA 1. Suppose that conditions (R1)–(R3) and (K1)–(K2) hold. Sup-
pose that fn,1, . . . , fn,kn are functions defined on X × Y × Z , where X , Y
and Z are the ranges of X, Y and Z, respectively. Let fZ be the p.d.f. of Z,
f̂Z(z) = (nhd

n)−1 ∑n
i=1 k0(h

−1
n (z − Zi)) for z ∈ Z and cK = 1/

∫
k2

0(s) ds. For
z ∈ Z , let wi(z) = n−1h−d

n w0,i (z)/f̂Z(z) for 1 ≤ i ≤ n and

Wn,j (z) =
√

nhd
ncKfZ(z)

((
n∑

i=1

wi(z)fn,j (Xi, Yi, z)

)
− E

(
fn,j (X,Y, z)|Z = z

))

for 1 ≤ j ≤ kn. Suppose that {hn}∞n=1 and {εn}∞n=1 are sequences of positive num-
bers such that

c3,1n
−α ≤ hn ≤ c3,2n

−α

for some positive constants c3,1 and c3,2 and 1/(d + 4) < α < 1/d , and hn/εn =
O(n−β) for some β > 0. Let

Z(εn) = {
z ∈ Z : {z′ ∈ Rd :‖z′ − z‖ < εn} ⊂ Z

}
(3.17)

and suppose that z1, . . . , znZ
are points in Z(εn) such that

‖zk − zk∗‖ ≥ hn for 1 ≤ k, k∗ ≤ nZ and k �= k∗(3.18)
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for large n and

max
1≤k≤nZ

sup
(x,y)∈X ×Y

|fn,j (x, y, zk)| ≤ Cn for some Cn ≥ 1.(3.19)

Suppose that knnZCn = O((lnn)1/16). Then there exist Wn,1,j,k and Wn,2,j,k : 1 ≤
j ≤ kn, 1 ≤ k ≤ nZ such that the joint distribution of Wn,1,j,k + Wn,2,j,k’s

is the same as the joint distribution of Wn,j (zk)’s,
∑kn

j=1
∑nZ

k=1 W 2
n,2,j,k =

OP (exp(−(lnn)1/9)), and Wn,1,j,k’s are jointly normal with EWn,1,j,k = 0 and
for 1 ≤ j, 
 ≤ kn and 1 ≤ k, k∗ ≤ nZ

Cov(Wn,1,j,k,Wn,1,
,k∗)

=
{

Cov
(
fn,j (X,Y, zk), fn,
(X,Y, zk)|Z = zk

)
, if k = k∗;

0, otherwise.

The proof of Lemma 1 is given in Section 7.1.
The differences between V̂ ∗(zk)’s and V ∗(zk)’s can be controlled by apply-

ing Lemma 1 and taking the fn,j (X,Y, z)’s to be the functions φ∗

 (X)φ∗


′(X),
φ∗


 (X)ψ∗
m(Y ) and ψ∗

m(Y )ψ∗
m′(Y ), where 1 ≤ 
 ≤ 
′ ≤ pn and 1 ≤ m ≤ m′ ≤ qn.

In such case, (3.19) holds under the following conditions.

(B1) For each (p, q), |φp,k| ≤ 1 and |ψq,
| ≤ 1 for 1 ≤ k ≤ p and 1 ≤ 
 ≤ q .
(B2) There exists {δn}: a sequence of positive numbers such that for 1 ≤ k ≤ nZ ,

the smallest eigenvalues of the matrices V1,1(zk) and V2,2(zk) are greater
than or equal to δn.

Under the above conditions, the ρ̂(zk)’s are consistent, as stated in Theorem 3.1.

THEOREM 3.1. Suppose that (3.1), (3.2), (3.3), conditions (R1)–(R3), (K1)–
(K2) and (B1)–(B2) hold. Suppose that {hn}∞n=1 and {εn}∞n=1 are sequences of
positive numbers such that

c3,1n
−α ≤ hn ≤ c3,2n

−α

for some positive constants c3,1 and c3,2 and 1/(d + 4) < α < 1/d , and hn/εn =
O(n−β) for some β > 0. Suppose that z1, . . . , znZ

are points in Z(εn) [defined in
(3.17)] such that (3.18) holds and

nZ(pn + qn)
2 max{1, δ−1

n (pn + qn)} = O((lnn)1/16).(3.20)

Then
nZ∑
k=1

(
ρ̂2(zk) − ρ2

pn,qn
(zk)

)2 = OP ((nhd
n)−1(lnn)1/4)(3.21)

and (
nZ∑
k=1

f̂Z(zk)ρ̂
2(zk) −

nZ∑
k=1

fZ(zk)ρ
2
pn,qn

(zk)

)2

= OP

(
(lnn)5/16

nhd
n

)
.(3.22)
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The proof of Theorem 3.1 is given in Section 7.2.
The next result deals with the asymptotic distribution of

∑nZ

k=1 f̂Z(zk)ρ̂
2(zk)

when X and Y are conditionally independent given Z.

THEOREM 3.2. Suppose that the conditions in Theorem 3.1 hold and X and
Y are conditionally independent given Z. Then there exist random variables f̃k ,
ρ̃2(zk) and λk : 1 ≤ k ≤ nZ such that

∑nZ

k=1 f̃kρ̃
2(zk) has the same distribution as∑nZ

k=1 f̂Z(zk)ρ̂
2(zk) and

nhd
ncK

nZ∑
k=1

f̃kρ̃
2(zk) −

nZ∑
k=1

λk = OP (exp(−0.5(lnn)1/9)(lnn)3/32),

where the λk’s are independent and each λk has the same distribution as the largest
eigenvalue of a matrix CCT , where C is a (pn − 1) × (qn − 1) matrix whose
elements are i.i.d. N(0,1).

The proof of Theorem 3.2 is given in Section 7.3. The result in Theorem 3.2
is similar to that in Lemma 7.2 in [3]. The difference is that the asymptotic result
here is derived as the sample size n, pn and qn all tend to ∞, while in [3], the
result is derived as n tends to ∞, but pn and qn are held fixed.

Theorem 3.2 suggests the test that rejects the conditional independence hypoth-
esis at approximate level a if

nhd
ncK

nZ∑
k=1

f̂Z(zk)ρ̂
2(zk) > F−1

nZ,p,q(1 − a),(3.23)

where FnZ,p,q is the cumulative distribution function of
∑nZ

k=1 λk .
One can estimate F−1

nZ,p,q(1 − a) in (3.23) using simulated data, but it is also
possible to use a normal approximation. Since the λk’s are i.i.d., the central limit
theorem suggests the asymptotic normality of

∑nZ

k=1 λk and
∑nZ

k=1 f̂Z(zk)ρ̂
2(zk).

The following corollary gives the conditions that guarantee the asymptotic nor-
mality of

∑nZ

k=1 f̂Z(zk)ρ̂
2(zk).

COROLLARY 1. Suppose that the conditions in Theorem 3.1 hold

lim
n→∞

p3
nq

3
n√

nZ(max(pn, qn))1/3 = 0(3.24)

and (i) or (ii) holds:

(i) qn = h(pn), where h is an increasing function such that limp→∞ h(p)/p

exists and is greater than or equal to 1.
(ii) pn = h(qn), where h is an increasing function such that limq→∞ h(q)/q

exists and is greater than or equal to 1.
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Let μpn,qn and σ 2
pn,qn

be the mean and variance of the largest eigenvalue of the

matrix CCT in Theorem 3.2, respectively, and let the λk’s be as in Theorem 3.2,
then

(max(pn, qn))
1/6

σpn,qn

= O(1)(3.25)

and ∑nZ

k=1 λk − nZμpn,qn√
nZσ 2

pn,qn

D→ N(0,1) as n → ∞.(3.26)

If X and Y are conditionally independent given Z, then

nhd
ncK

∑nZ

k=1 f̂Z(zk)ρ̂
2(zk) − nZμpn,qn√

nZσ 2
pn,qn

D→ N(0,1) as n → ∞.(3.27)

The proof of Corollary 1 is given in Section 7.4. Corollary 1 gives the test that
rejects the conditional independence hypothesis if

nhd
ncK

∑nZ

k=1 f̂Z(zk)ρ̂
2(zk) − nZμpn,qn√

nZσ 2
pn,qn

≥ �−1(1 − a),(3.28)

where � is the cumulative distribution function for the standard normal distri-
bution. Here, μpn,qn and σ 2

pn,qn
can be approximated by the sample mean and

variance of a random sample from the distribution of the largest eigenvalue of the
matrix CCT .

To distinguish the two tests mentioned above, we will refer to the test with
rejection region in (3.28) as test 1N and the test with rejection region in (3.23) as
test 1. Note that under the conditions in Corollary 1, test 1 does not differ from
test 1N much since the rejection region for test 1 can be written as

nhd
ncK

∑nZ

k=1 f̂Z(zk)ρ̂
2(zk) − nZμpn,qn√

nZσ 2
pn,qn

≥ I + �−1(1 − a),

where

I = F−1
nZ,p,q(1 − a) − nZμpn,qn√

nZσ 2
pn,qn

− �−1(1 − a) = o(1)(3.29)

by (3.26). Therefore, both tests 1 and 1N are of asymptotic significance level a.
Below we will discuss the consistency and asymptotic power of test 1N only since
the same properties of test 1 can be established similarly using (3.29).
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Suppose all the conditions in Theorem 3.1 hold, then test that 1N is also con-
sistent if the zk’s are chosen in a way such that there exist a constant c3 > 0 and a
sequence {η1,n}∞n=1 such that η1,n > 0 for every n, limn→∞ η1,n = 0 and

1

nZ

nZ∑
k=1

fZ(zk)ρ
2
pn,qn

(zk) − c3Eρ2
pn,qn

(Z) = oP (η1,n).(3.30)

To see that test 1N is consistent, note that 0 ≤ μpn,qn ≤ E tr(CCT ) and σ 2
pn,qn

≤
E(tr(CCT ))2, where CCT is as in Theorem 3.2. Therefore, μpn,qn = O(pnqn)

and σ 2
pn,qn

= O(p2
nq

2
n). Then it follows from (3.22), (3.30) and Fact 2

that n−1
Z

∑nZ

k=1 f̂Z(zk)ρ̂
2(zk) − c3Eρ2

1(X,Y |Z) = OP ((lnn)5/32/nZ

√
nhd

n) +
oP (η1,n) + c3Eρ2

pn,qn
(Z) − c3Eρ2

1(X,Y |Z) = oP (1), so

nhd
ncK

∑nZ

k=1 f̂Z(zk)ρ̂
2(zk) − nZμpn,qn√

nZσ 2
pn,qn

≥
√

nZ(nhd
ncK(c3Eρ2

1(X,Y |Z) + oP (1)) + O(pnqn))

c2,1pnqn

,

where c2,1 > 0 is a constant. Thus, the left-hand side in (3.28) tends to ∞ as
n → ∞ when Eρ2

1(X,Y |Z) > 0, which implies that the probability that (3.28)
holds tends to 1 if X and Y are not conditionally independent given Z.

Test 1N can also reject an alternative where Eρ2
pn,qn

(Z) is small under the
conditions in Theorem 3.1. Indeed, for {η1,n}∞n=1 such that η1,n > 0 for every n,
limn→∞ η1,n = 0 and (3.30) holds, if

max(η1,n, (lnn)5/32/(nZ

√
nhd

n))

Eρ2
pn,qn

(Z)
= o(1),(3.31)

then the probability that (3.28) holds tends to 1 since

nhd
ncK

∑nZ

k=1 f̂Z(zk)ρ̂
2(zk) − nZμpn,qn√

nZσ 2
pn,qn

≥
(√

nZ

(
nhd

ncK

(
c3Eρ2

pn,qn
(Z)

+ OP

(
(lnn)5/32

nZ

√
nhd

n

)
+ oP (η1,n)

)
+ O(pnqn)

))

× (c2,1pnqn)
−1,

where pnqn/(nhd
nEρ2

pn,qn
(Z)) = O((lnn)1/16/(nZnhd

nEρ2
pn,qn

(Z))) = o(1) by
(3.20) and (3.31), and pnqn/(

√
nZnhd

nEρ2
pn,qn

(Z)) = o(1). In summary, test 1N
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can reject an alternative where Eρ2
pn,qn

(Z) tends to zero at a rate that is slower than

max(η1,n, (lnn)5/32/(nZ

√
nhd

n)), where η1,n is determined by (3.30). An example
that satisfies (3.30) and the conditions in Corollary 1 will be given in Section 4. In
that example, η1,n = p11

n n
−1/d
Z .

4. An example. In this section, an example is given to illustrate the verifica-
tion of the conditions in Corollary 1, assuming (R1)–(R3) and the condition that
there exists a positive constant c1,1 such that

fX|Z(x|z) ≥ c1,1 and fY |Z(y|z) ≥ c1,1
(4.1)

for all (x, y, z) ∈ X × Y × Z,

where fX|Z(·|z) and fY |Z(·|z) are conditional probability densities of X and Y ,
respectively, given Z = z, with respect to Lebesgue measures.

EXAMPLE 1. Suppose that X, Y and Z are random vectors that take values in
[0,1]dx , [0,1]dy and [0,1]d , respectively. Suppose that (R1)–(R3), and (4.1) hold.
Choose the basis functions as follows. Let � be the set of all positive integers and
�(k) = {mk :m ∈ �} for k ∈ �. For k, i1, . . . , ik ∈ � and h0 > 0, let

hk,h0,i1,...,ik (x1, . . . , xk) =
k∏

j=1

IAij ,h0
(xj ) for (x1, . . . , xk) ∈ [0,1]k ,

where

Aij ,h0 =
{

(h0(ij − 1), h0ij ], if ij > 1;
[h0(ij − 1), h0ij ], if ij = 1.

For p, q , r ∈ �, let

{φp,i : 1 ≤ i ≤ p} = {hdx,p−1/dx ,i1,...,idx
: 1 ≤ i1, . . . , idx ≤ p1/dx },

{ψq,j : 1 ≤ j ≤ q} = {hdy,q−1/dy ,i1,...,idy
: 1 ≤ i1, . . . , idy ≤ q1/dy }

and

{θr,k : 1 ≤ k ≤ r} = {hd,r−1/d ,i1,...,id
: 1 ≤ i1, . . . , id ≤ r1/d}.

Take k0 to be the product kernel function such that

k0(z1, . . . , zd) = k00(z1) · · ·k00(zd),

where k00 is the probability density function for the standard normal distribution.
Let hn = n−a , where 1/(d + 4) < a < 1/d . Let n∗

Z to be the largest number in
�(d) such that n∗

Z ≤ (lnn)1/32, and let

{zk : 1 ≤ k ≤ nZ} =
{(

i1

(n∗
Z)1/d

, . . . ,
id

(n∗
Z)1/d

)
: 1 ≤ i1, . . . , id < (n∗

Z)1/d

}
,
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so nZ = ((n∗
Z)1/d − 1)d . Suppose that {pn} is a sequence in �(dx) ∩ �(dy) such

that limn→∞ pn = ∞ and qn = pn. If

p12
n ≤ nZ,(4.2)

then all the conditions in Corollary 1 hold. If

p12
n ≤ n

1/d
Z ,(4.3)

then (3.30) holds with η1,n = p11
n n

−1/d
Z .

PROOF. We will first show that all the conditions in Corollary 1 hold assuming
(4.2). It is clear that (3.1), (3.2) and (3.3), and conditions (B1), (K1) and (K2) hold.

To find the δn in condition (B2), note that for z ∈ Z , the smallest eigenvalue
of V1,1(z) is the minimum of {E(φpn,i(X)|Z = z) : 1 ≤ i ≤ pn}, which is the min-

imum of {E(h
dx,p

−1/dx
n ,i1,...,idx

(X)|Z = z) : 1 ≤ i1, . . . , idx ≤ p
1/dx
n }. Under (4.1),

for m ∈ � and 1 ≤ i1, . . . , idx ≤ m,

E
(
hdx,1/m,i1,...,idx

(X)|Z = z
)

=
∫ i1/m

(i1−1)/m
· · ·

∫ idx /m

(idx −1)/m
fX|Z(x1, . . . , xdx |z) dxdx · · ·dx1 ≥ c1,1

mdx
.

Take m = p
1/dx
n , and we have that the smallest eigenvalue of V1,1(z) is at least

c1,1/pn. Similarly, c1,1/pn is also a lower bound for the smallest eigenvalue of
V2,2(z) and (B2) holds with δn = c1,1/pn. Furthermore, (3.20) holds since

nZ(pn + qn)
2 max{1, δ−1

n (pn + qn)} = O(nZp4
n) = O(n2

Z).

Finally, the zk’s are in Z(εn) with εn = (n∗
Z)−1/d and hn/εn = O(n−β) for

0 < β < α. For 1 ≤ k, k∗ ≤ nZ , and k �= k∗, ‖zk − zk∗‖ ≥ (n∗
Z)−1/d ≥ n−a , so

(3.18) holds. Also, (3.24) holds since

p3
nq

3
n√

nZ(max(pn, qn))1/3 = p−1/3
n

√
p12

n

nZ

= o(1).

Therefore, all the conditions in Corollary 1 hold for this example.
The verification of (3.30) is based on the fact that there exist positive constants

c4,1 and η0 such that

|ρ2
pn,qn

(z) − ρ2
pn,qn

(z′)| ≤ c4,1p
11
n ‖z − z′‖ if p3

n‖z − z′‖ < η0.(4.4)

Below we will first check (3.30) assuming that (4.4) holds and then prove (4.4).
Suppose that (4.3) holds. Let gn(z) = fZ(z)ρ2

pn,qn
(z). Since fZ is Lipschitz con-

tinuous, (4.4) implies that there exists a constant c4,2 > 0 such that

|gn(z) − gn(z
′)| ≤ c4,2p

11
n ‖z − z′‖ if p3

n‖z − z′‖ < η0.
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Let {z1+nZ
, . . . , zn∗

Z
} be the set{(

i1

(n∗
Z)1/d

, . . . ,
id

(n∗
Z)1/d

)
: 1 ≤ i1, . . . , id ≤ (n∗

Z)1/d

}
∩ {zk : 1 ≤ k ≤ nZ}c,

then ∣∣∣∣∣
n∗

Z∑
k=1

gn(zk)

(
1

(n∗
Z)1/d

)d

−
∫

Z
gn(z) dz

∣∣∣∣∣ ≤ 2c4,2p
11
n

√
d

(
1

n∗
Z

)1/d

,

if p3
n(n

∗
Z)−1/d < η0. Since |gn(z)| ≤ c0 by (R3) and there exists a positive constant

c4,3 depending on d such that

n∗
Z − nZ

{≤ c4,3(n
∗
Z)1/d, if d ≥ 2;

= 1, if d = 1,

we have∣∣∣∣∣n−1
Z

nZ∑
k=1

fZ(zk)ρ
2
pn,qn

(zk) −
∫

Z fZ(z)ρ2
pn,qn

(z) dz∫
Z 1dz

∣∣∣∣∣
=

∣∣∣∣∣n
∗
Z

nZ

(
1

n∗
Z

n∗
Z∑

k=1

gn(zk) −
∫

Z
gn(z) dz

)

−
∑n∗

Z

k=1+nZ
gn(zk)

nZ

+
(

n∗
Z

nZ

− 1
)∫

Z
gn(z) dz

∣∣∣∣∣
≤ n∗

Z

nZ

∣∣∣∣∣ 1

n∗
Z

n∗
Z∑

k=1

gn(zk) −
∫

Z
gn(z) dz

∣∣∣∣∣ + c0

(
1 +

∫
Z

1dz

)(
n∗

Z − nZ

nZ

)

≤ c4,4p
11
n

n
1/d
Z

for some constant c4,4 > 0 if p3
n(n

∗
Z)−1/d < η0. Since p12

n ≤ n
1/d
Z , p3

nn
−1/d
Z = o(1),

so ∣∣∣∣∣n−1
Z

nZ∑
k=1

fZ(zk)ρ
2
pn,qn

(zk) −
∫

Z fZ(z)ρ2
pn,qn

(z) dz∫
Z 1dz

∣∣∣∣∣ = OP

(
p11

n

n
1/d
Z

)

and p11
n n

−1/d
Z = o(1). Take η1,n = p11

n n
−1/d
Z and c3 = (

∫
Z 1dz)−1 = 1, then (3.30)

holds.
It remains to prove (4.4). Recall that for z ∈ Z , ρ2

pn,qn
(z) is the largest eigen-

value of g(V (z), an,∗), as mentioned in Section 3.1. Thus, |ρ2
pn,qn

(z) − ρ2
pn,qn

(z′)|
is bounded by ‖g(V (z), an,∗) − g(V (z′), an,∗)‖. For 1 ≤ i, j ≤ 2, let g∗

i,j be as
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defined in (7.8) and let �i,j = g∗
i,j (V (z′)) − g∗

i,j (V (z)) for 1 ≤ i, j ≤ 2, then from
the fact that ‖AB‖ ≤ ‖A‖‖B‖ for two matrices A and B , we have

‖g(V (z), an,∗) − g(V (z′), an,∗)‖

≤
2∏

i=1

2∏
j=1

(‖g∗
i,j (V (z))‖ + ‖�i,j‖) −

2∏
i=1

2∏
j=1

‖g∗
i,j (V (z))‖(4.5)

+ ‖g1,1(V (z′)) − g1,1(V (z))‖‖an,∗‖2.

The bounds for the ‖g∗
i,j (V (z))‖’s are derived as follows. Since the elements in

V (z) are bounded by 1 and the smallest eigenvalue of gi,i(V (z)) is at least c1,1/pn

for 1 ≤ i ≤ 2, we have

max(‖g∗
1,2(V (z))‖,‖g∗

2,1(V (z))‖) ≤ pn,

‖g∗
1,1(V (z))‖2 ≤ p2

n

(c1,1/pn)2 = p4
n

c2
1,1

and

‖g∗
2,2(V (z))‖ ≤ p2

n

c1,1
.

To find bounds for ‖g1,1(V (z′)) − g1,1(V (z))‖ and ‖�i,j‖’s, note that from (R3),
each element in gi,j (V (z′))−gi,j (V (z)) is bounded by

√
d

∫
h(x, y) dμ(x, y)‖z−

z′‖, so

max
(‖�1,2‖,‖�2,1‖,‖g1,1(V (z′)) − g1,1(V (z))‖)
≤ pn

√
d

∫
h(x, y) dμ(x, y)‖z − z′‖.

For 1 ≤ i ≤ 2, by Fact 4,

‖�i,i‖ ≤ ‖g∗
i,i(V (z))‖2‖gi,i(V (z′)) − gi,i(V (z))‖

1 − ‖g∗
i,i(V (z))‖‖gi,i(V (z′)) − gi,i(V (z))‖ ,

if ‖g∗
i,i(V (z))‖‖gi,i(V (z′)) − gi,i(V (z))‖ < 1, so

‖�i,i‖ ≤ 2
√

dp5
n

c2
1,1

∫
h(x, y) dμ(x, y)‖z − z′‖,

if
√

dp3
n

c1,1

∫
h(x, y) dμ(x, y)‖z − z′‖ <

1

2
.(4.6)
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To give a bound for ‖an,∗‖, note that the smallest eigenvalue of g1,1(V (z)) is at
least c1,1/pn and at most

aT
n,∗g1,1(V (z))an,∗

aT
n,∗an,∗

= 1

‖an,∗‖2 ,

so

‖an,∗‖ ≤
√

pn

c1,1
.

From (4.5) and the above bounds for ‖an,∗‖, the ‖g∗
i,j (V (z))‖’s and ‖�i,j‖’s, we

have

‖g(V (z), an,∗) − g(V (z′), an,∗)‖ ≤ c4,1p
11
n ‖z − z′‖

for some constant c4,1 if (4.6) holds. Therefore, (4.4) holds and the proof for the
results in Example 1 is complete. �

5. Simulation studies. In this section, results of several simulation experi-
ments are presented. Those experiments are designed to demonstrate the perfor-
mance of test 1 introduced in Section 3.2.

In Section 3.2, test 1N is also introduced, but no simulation studies are done
for it in this section. The reason is as follows. Test 1N is constructed based on
the normal approximation for

∑nZ

k=1 λk . Using the parameter set-up in Table 2,
the selected nZ is only 4 or 5 and the normal approximation for

∑nZ

k=1 λk is not
expected to work well.

For simplicity, in all the simulation experiments here, X, Y , Z are one dimen-
sional and only the following distributions for (X,Y,Z) are considered.

(M1) (X,Y ) = (�(Zε1),�(Zε2)), where ε1, ε2 and Z are independent, Z fol-
lows the uniform distribution on [0,1], and εi follows the standard normal
distribution for i = 1, 2.

(M2) Z follows the standard normal distribution, and the conditional distribution
of (X,Y ) given Z = z is bivariate normal with mean μ and covariance ma-
trix 	, where

μ =
(

0
0

)
, 	 =

(
1 ρ(z)

ρ(z) 1

)
(5.1)

and the ρ(z) in (5.1) is taken to be a(|1 − 2�(z)|) with a ∈ {0,0.1,0.3}.
(M3) (X,Y,Z) = (�(X0),�(Y0),�(Z0)), where Z0 follows the t-distribution

with degree of freedom 1, and the conditional distribution of (X0, Y0) given
�(Z0) = z is bivariate normal with mean μ and covariance matrix 	, where
μ and 	 are as in (5.1) and the ρ(z) in (5.1) is taken to be a(|1 − 2z|) with
a ∈ {0,0.1,0.3}.
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Here, (M1) is used for parameter selection and (M2) and (M3) are used for check-
ing the power of test 1. In (M1), X and Y are conditionally independent given Z.
In (M2) and (M3), ρ1(X,Y |Z = z) = ρ(z) and Eρ1(X,Y |Z) is proportional to a.

The details of parameter selection are given in Section 5.1 and the experimental
results are given in Section 5.2.

5.1. Parameter selection. To apply test 1, certain parameters need to be cho-
sen, including the kernel function k0, the kernel bandwidth hn, the basis functions
φpn,i ’s and ψqn,j ’s and the evaluation points zk’s, which are chosen as follows.

(S1) k0 and the basis functions φp,i ’s and ψq,j ’s are chosen as in Example 1 in
Section 4 with pn = qn = 2. Since the basis functions are supported on [0,1],
if X, Y and Z do not take values in [0,1] [such as in (M2)], then the data
{(Xi, Yi,Zi)}ni=1 will be transformed to {(�(Xi),�(Yi),�(Zi))}ni=1 before
applying test 1. The bandwidth hn is chosen to be the h that minimizes∫ 1−0.143h0.121

0.143h0.121
E

(
f̂Z(z) − 1

)2
dz(5.2)

over (0,0.5], where f̂Z is the kernel density estimator based on a sample of
size n from the uniform distribution on [0,1] with kernel k0 and bandwidth h.
Below are the hn’s used for different n’s.

The zk’s are points in In = [0.143h0.121
n ,1 − 0.143h0.121

n ] such that zk =
0.143h0.121

n + (k−1)h0,n, where h0,n is a given positive number. Here, the εn

is taken to be 0.143h0.121
n , so the zk’s are chosen so that they are 0.143h0.121

n

away from the boundary and the integral in (5.2) is over [0.143h0.121,1 −
0.143h0.121].

With the parameter set-up in (S1), it remains to choose h0,n. The h0,n is chosen
to be the smallest multiple of 0.01 such that the distribution for the test 1 statistic
nhd

ncK

∑nZ

k=1 f̂kρ̂
2(zk) based on 1000 samples of size n from (M1) is similar to the

distribution of
∑nZ

k=1 λk (χ2 with nZ degrees of freedom), as stated in Theorem 3.2.
The one-sample Kolmogorov–Smirnov test is used to determine whether the two
distributions are similar. Below are the h0,n’s used for n = 10,000 and n = 5000.

For the above procedure for selecting h0,n, when n = 500 or n = 1000, it seems
that the distribution of nhd

ncK

∑nZ

k=1 f̂kρ̂
2(zk) cannot be approximated well by the

distribution of
∑nZ

k=1 λk , regardless what h0,n is used. To overcome this problem,
one may use local bootstrap to determine the rejection region.

The idea of using local bootstrap is to draw samples {(X∗
i , Y

∗
i ,Z∗

i )}ni=1 from
the distribution of (X∗, Y ∗,Z∗), where Z∗’s distribution is close to the distrib-
ution of Z and the conditional distributions of X∗ given Z∗ = z and Y ∗ given
Z∗ = z are close to the conditional distributions of X given Z = z and Y given
Z = z, yet X∗ and Y ∗ are conditionally independent given Z∗. Therefore, if X

and Y are conditionally independent given Z, then the local bootstrap resamples
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TABLE 1
Selected hn’s for different n’s

n 10,000 5000 1000 500

hn 0.05935281 0.06525282 0.08533451 0.0983018

{(X∗
i , Y

∗
i ,Z∗

i )}ni=1 should behave like a random sample from (X,Y,Z). One can
then compute the test 1 statistic nhd

ncK

∑nZ

k=1 f̂kρ̂
2(zk) for the original sample and

for each local bootstrap resample. If the statistic computed based on the origi-
nal sample is larger than (1 − a)% of the statistics computed based on the local
bootstrap resamples, then the conditional independence hypothesis is rejected at
level a.

The local bootstrap procedure used here is the same as the one proposed by
Paparoditis and Politis [8] except that here the Zi’s are not lagged variables. For
a given sample {(Xi, Yi,Zi)}ni=1, a local bootstrap resample {(X∗

i , Y
∗
i ,Z∗

i )}ni=1 is
generated as follows.

• Step 1. Draw a random sample (Z∗
1 , . . . ,Z∗

n) from the empirical cumulative dis-
tribution function F̂Z , where

F̂Z(z) = 1

n

n∑
i=1

I(−∞,Zi ](z).

• Step 2. For 1 ≤ i ≤ n, for each Z∗
i from Step 1, draw X∗

i and Y ∗
i independently

from the empirical conditional cumulative distribution functions F̂X|Z=Z∗
i

and

F̂Y |Z=Z∗
i
, respectively, where

F̂X|Z=Z∗
i
(x) =

∑n
i=1 k0((Z

∗
i − Zi)/b)I(−∞,Xi ](x)∑n

i=1 k0((Z
∗
i − Zi)/b)

and

F̂Y |Z=Z∗
i
(y) =

∑n
i=1 k0((Z

∗
i − Zi)/b)I(−∞,Yi ](y)∑n

i=1 k0((Z
∗
i − Zi)/b)

.

The parameters for test 1 with local bootstrap are chosen as follows. The band-
width b is taken to be h0.4

n , pn = qn = 2 and h0,n = 0.4, where hn is as in
Table 1.

TABLE 2
h0,n’s for different n’s

n 10,000 5000

h0,n 0.16 0.2
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5.2. Experiments. The objective of the first experiment is to compare the
power of test 1 with that of a Hellinger distance-based test proposed by Su and
White [13]. The critical value for Su and White’s test can be determined using the
asymptotic distribution of the test statistic or using local bootstrap. To distinguish
between the two cases, we use test 2A to denote the asymptotic distribution-based
version of Su and White’s test and test 2B to denote the local bootstrap version.
While test 2B is recommended by Su and White [13], test 2A is used here to save
time for computation.

In this experiment, both tests 1 and 2A are carried out for 1000 random sam-
ples of size n = 104, where the distribution of (X,Y,Z) is as in (M2) or (M3).
Under (M2), test 1 is applied to transformed data, as mentioned in Section 5.1.
Test 2A is applied to normalized data and the bandwidth parameter in the kernel
estimators in the test statistic is taken to be n−1/8.5, as in [13]. The power esti-
mates based on data from (M2) and (M3) with n = 104 are given in Table 3. The
asymptotic significance level is 0.05. It is shown in Table 3 that power estimates
for test 1 when a = 0 and a = 0.1 are larger that those for test 2A.

To explore the power performance of test 2B without actually running the local
bootstrap procedure, approximate critical values for test 2B under (M2) and (M3)
are used. To obtain these approximate critical values, note that under (M2) or (M3),
for large n, a local bootstrap resample for a = 0.1 or a = 0.3 is approximately
distributed as a random sample for the a = 0 case, so the critical value for test 2B
can be approximated by the 95% sample quantile of the 1000 test 2A statistics
from the first experiment for the a = 0 case. Then the power estimates for test 2B
can be approximated by the proportions of the 1000 test 2A statistics from the first
experiment under different alternatives that exceed the approximate critical values.
The approximate power estimates are given in Table 4. Note that the approximate
power estimates for test 2B are often larger than the power estimates for test 2A in
Table 3, which suggests that test 2B is more powerful than test 2A.

To investigate the performance of test 1 when the sample size is smaller, in the
next experiment, power estimates for test 1 are computed based on 1000 random
samples of size n = 5000 from (M2) and (M3). The results are given in Table 5.
The results for n = 104 from the first experiment are also included for comparison.
The asymptotic significance level is 0.05 as before. Table 5 shows that test 1 is
more powerful when n is larger.

TABLE 3
Power comparison between tests 1 and 2A

a = 0 a = 0.1 a = 0.3

Test 1 Test 2A Test 1 Test 2A Test 1 Test 2A

(M2) 0.049 0.028 0.65 0.076 1 0.95
(M3) 0.041 0.029 0.572 0.119 1 1
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TABLE 4
Approximated power estimates for test 2B

a = 0.1 a = 0.3

(M2) 0.128 0.971
(M3) 0.241 1

Finally, for smaller sample size such as n = 500 or n = 1000, since the approx-
imation in Theorem 3.2 does not work well, the local bootstrap version of test 1 is
considered. Here 1000 samples of size n from (M2) are used, and for each sam-
ple, 1000 local bootstrap resamples are used to determine the rejection region. The
level is 0.05. The power estimates for the test are given in Table 6.

In the above results, the power estimates for test 1 are larger when a is larger.
This is expected. Under (M2) or (M3), Eρ2

pn,qn
(Z) = Eρ2

2,2(Z) increases as a

increases (a ∈ [0,1]), so test 1 should be more powerful for larger a, if the ap-
proximation in (3.22) and (3.30) work. Table 7 gives the values of Eρ2

pn,qn
(Z) for

a = 0.1 and 0.3. For (M2), the calculation of Eρ2
pn,qn

(Z) is done for the trans-
formed (X,Y,Z), which is obtained by applying the function � to the original
(X,Y,Z).

6. Concluding remarks. A test statistic for testing conditional independence
based on maximal nonlinear conditional correlation is proposed. Two tests, tests 1
and 1N, are constructed using the test statistic. Both tests are consistent and have
similar asymptotic properties, as discussed in Section 3.2. Some simulation exper-
iments are carried out to check the performance of test 1. The simulation results
show that when the sample size n = 104, the power of test 1 is comparable with
that of test 2A. The simulation results also indicate that test 1 has better power
when Eρ2

pn,qn
(Z) is larger, as expected.

Below are a few remarks.

1. Equation (3.20) requires that pn, qn and nZ grow slowly comparing to n. The
parameter selection result in Table 2 in Section 5 seems to agree with such a

TABLE 5
Test 1 power estimates for n = 5000 and n = 104

a = 0 a = 0.1 a = 0.3

(M2) (M3) (M2) (M3) (M2) (M3)

n = 5000 0.052 0.039 0.373 0.321 0.998 1
n = 104 0.049 0.041 0.65 0.572 1 1
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TABLE 6
Power estimates for test 1 with local bootstrap

a = 0 a = 0.1 a = 0.3

n = 500 0.041 0.071 0.309
n = 1000 0.033 0.099 0.531

requirement. With n = 104, nZ is only 5 and pn = qn = 2. When pn = qn = 3,
even with h0,n = 0.4 (this corresponds to the smallest nZ for n = 104), the
distribution of the test statistic cannot be approximated well by the distribution
of

∑nZ

k=1 λk .
2. The parameter selection criteria given in Section 5 needs to be studied to see

whether the asymptotic properties of test 1 still hold using such a criteria.
3. When the distribution of the test statistic cannot be approximated well by the

distribution of
∑nZ

k=1 λk , it is possible to use local bootstrap version of test 1.
However, it takes a lot of time to obtain the bootstrap resamples, so this ap-
proach is recommended when the sample size n is small.

4. In all theorems proved in this paper, it is assumed that the (Xi, Yi,Zi)’s are
i.i.d. It is also expected that test 1 works for some stationary weakly dependent
data such as the vector ARMA processes, where the central limit theorem for
the i.i.d. case still applies. However, to carry out the details in the proofs, one
needs the strong approximation result in Lemma 2, which is a stronger result
than the central limit theorem and requires a version of Lemma 5 that works for
dependent data.

5. Test 1 can be modified to work for discrete Z. Modification is necessary since
the rate of convergence for each ρ̂(zk) is faster in the discrete case.

6. In Lemma 1 and Theorems 3.1 and 3.2, the zk’s are chosen in Z(εn) so that
they are εn-away from the boundary, and it is assumed that hn/εn = O(n−β)

to ensure that certain error terms in the bias/variance calculation are negligible.
For implementation, the condition hn/εn = O(n−β) still leaves some room for
choosing εn. This problem can be eliminated by using a kernel function with
compact support, as pointed out by a reviewer. In particular, if the kernel func-
tion k0 is supported on [−1,1]d , then one can simply take εn = hn. In such

TABLE 7
Eρ2

pn,qn
(Z) under (M2) and (M3)

a = 0.1 a = 0.3

(M2) 0.001345575 0.01908246
(M3) 0.002044604 0.01765322
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case, even though the condition hn/εn = O(n−β) does not hold, the results in
Lemma 1 and Theorems 3.1 and 3.2 remain valid.

7. Proofs.

7.1. Proof of Lemma 1. Recall that for 1 ≤ j ≤ kn,

Wn,j (z) =
√

nhd
ncKfZ(z)

((
n∑

i=1

wi(z)fn,j (Xi, Yi, z)

)
−E

(
fn,j (X,Y, z)|Z = z

))
.

To prove the asymptotic normality of Wn,j (zk)’s, we will approximate Wn,j (z)

using sums of i.i.d. random variables. For 1 ≤ i ≤ n, let w0,i (z) = k0(h
−1
n (z −

Zi))and let f̂Z(z) = n−1h−d
n

∑n
i=1 w0,i(z). Then wi(z) = n−1h−d

n w0,i (z)/f̂Z(z).
For 1 ≤ j ≤ kn, let

W̃n,j (z) = (nhd
nfZ(z))−1/2(cK)1/2

n∑
i=1

(
w0,i (z)fn,j (Xi, Yi, z)

− Ew0,i (z)fn,j (Xi, Yi, z)
)

and W̃n,kn+1(z) =
√

nhd
ncK(fZ(z))−1/2(f̂Z(z) − Ef̂Z(z)), then

Wn,j (z) = fZ(z)

f̂Z(z)
W̃n,j (z) +

√
nhd

ncKfZ(z)E
(
fn,j (X,Y, z)|Z = z

)(fZ(z)

f̂Z(z)
− 1

)

+
√

nhd
ncKfZ(z)

f̂Z(z)

(
h−d

n E(w0,1(z)fn,j (X1, Y1, z))

− E
(
fn,j (X,Y, z)|Z = z

)
fZ(z)

)
= Ŵn,j (z) +

4∑

=1

R
,n,j (z),

where Ŵn,j (z) = W̃n,j (z) − W̃n,kn+1(z)E(fn,j (X,Y, z)|Z = z),

R1,n,j (z) =
(

fZ(z)

f̂Z(z)
− 1

)
W̃n,j (z),

R2,n,j (z) =
√

nhd
ncKfZ(z)

f̂Z(z)

(
h−d

n E(w0,1(z)fn,j (X1, Y1, z))

− E
(
fn,j (X,Y, z)|Z = z

)
fZ(z)

)
,

R3,n,j (z) =
√

nhd
ncKE(fn,j (X,Y, z)|Z = z)(fZ(z) − f̂Z(z))2

f̂Z(z)
√

fZ(z)
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and

R4,n,j (z) = −
√

nhd
ncK√

fZ(z)
E

(
fn,j (X,Y, z)|Z = z

)(
Ef̂Z(z) − fZ(z)

)
.

We will complete the proof by showing that the following results hold for Tn =
exp(−(lnn)1/9).

(C1)
∑kn

j=1
∑nZ

k=1(
∑4


=1 R
,n,j (zk))
2 = Op(Tn).

(C2) There exist random variables N1,j,k and ε1,j,k : 1 ≤ j ≤ kn, 1 ≤ k ≤ nZ

such that the joint distribution of (N1,j,k + ε1,j,k)j,k is the same as
that of (Ŵn,j (zk))j,k , N1,j,k’s are jointly normal with EN1,j,k = 0 and
Cov(N1,j,k,N1,
,k∗) = Cov(Ŵn,j (zk), Ŵn,
(zk∗)) and

∑kn

j=1
∑nZ

k=1 ε2
1,j,k =

Op(Tn).
(C3) There exist random variables N2,j,k and ε2,j,k : 1 ≤ j ≤ kn, 1 ≤ k ≤ nZ

such that the joint distribution of (N2,j,k + ε2,j,k)j,k is the same as that of
(N1,j,k)j,k , N2,j,k’s are jointly normal with EN2,j,k = 0 and

Cov(N2,j,k,N2,
,k∗)

=
{

Cov
(
fn,j (X,Y, zk), fn,
(X,Y, zk)|Z = zk

)
, if k = k∗;

0, otherwise,

and
∑kn

j=1
∑nZ

k=1 ε2
2,j,k = Op(Tn).

Note that Lemma 1 follows from (C1)–(C3) since one can construct random vari-
ables Ñ2,j,k , ε̃2,j,k , ε̃1,j,k and R5,n,j,k : 1 ≤ j ≤ kn, 1 ≤ k ≤ nZ on the same prob-
ability space such that the joint distribution of (Ñ2,j,k, ε̃2,j,k)j,k is the same as
that of (N2,j,k, ε2,j,k)j,k , the joint distribution of (ε̃1,j,k, Ñ2,j,k + ε̃2,j,k)j,k is the
same as that of (ε1,j,k,N1,j,k)j,k , and the joint distribution of (R5,n,j,k, Ñ2,j,k +
ε̃2,j,k + ε̃1,j,k)j,k is the same as that of (

∑4

=1 R
,n,j (zk), Ŵn,j (zk))j,k . Take

Wn,1,j,k = Ñ2,j,k and Wn,2,j,k = ε̃2,j,k + ε̃1,j,k + R5,n,j,k , then we have Lemma 1.
To establish (C1)–(C3), we need certain expectations and covariances, which

are computed below. Under (R1)–(R3) and the conditions that
∫

uk0(u) du = 0
and σ 2

0 = ∫ ‖u‖2k0(u) du < ∞, for z ∈ Z(εn), we have

(hd
n)−1E(w0,1(z)fn,j (X1, Y1, z))

(7.1)
= E

(
fn,j (X,Y, z)|Z = z

)
fZ(z) + rn,j,1(z)Cnh

2
n,

where

rn,j,1(z) = c0

∫
h(x, y) dμ(x, y)

× (
2dσ 2

0 θn,j,1 + θn,j,2h
−2
n (2 + hn)γ

d
4 exp(−γ5ε

2
nh

−2
n )

)
,
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|θn,j,1|, |θn,j,2| ≤ 1, and γ4 and γ5 are positive constants that depend on γ2 and γ3
only. Also, for k �= k∗, zk , z∗

k ∈ Z(εn), we have

(hd
n)−2 Cov(w0,1(zk)fn,j (X1, Y1, zk),w0,1(zk∗)fn,
(X1, Y1, zk∗))

= θj,
,k,k∗(hd
n)−2(γ2)

2d exp(−0.5γ3h
−2
n ‖zk − zk∗‖2)C2

n

− fZ(zk)fZ(zk∗)E
(
fn,j (X,Y, zk)|Z = zk

)
E

(
fn,
(X,Y, zk∗)|Z = zk∗

)
(7.2)

− fZ(zk)E
(
fn,j (X,Y, zk)|Z = zk

)
rn,
,1(zk∗)Cnh

2
n

− fZ(zk∗)E
(
fn,
(X,Y, zk∗)|Z = zk∗

)
rn,j,1(zk)Cnh

2
n

− rn,j,1(zk)rn,
,1(zk∗)C2
nh4

n,

where |θj,
,k,k∗| ≤ 1. Finally, for z ∈ Z(εn),

(hd
n)−1 Cov(w0,1(z)fn,j (X1, Y1, z),w0,1(z)fn,
(X1, Y1, z))

= fZ(z)E
(
fn,j (X,Y, z)fn,
(X,Y, z)|Z = z

) ∫
k2

0(u) du + rn,j,
,2(z)C
2
nhn

− hd
nf 2

Z(z)E
(
fn,j (X,Y, z)|Z = z

)
E

(
fn,
(X,Y, z)|Z = z

)
(7.3)

− hd+2
n Cnrn,j,1(z)fZ(z)E

(
fn,
(X,Y, z)|Z = z

)
− hd+2

n Cnrn,
,1(z)fZ(z)E
(
fn,j (X,Y, z)|Z = z

)
− hd+4

n C2
nrn,j,1(z)rn,
,1(z)

and

h−d
n E(w0,1(z)fn,j (X1, Y1, z))

3 ≤ C3
nc0

∫
k3

0(u) du,(7.4)

where

|rn,j,
,2(z)| ≤ 2c0

∫
h(x, y) dμ(x, y)

(√
d

∫
‖u‖k2

0(u) du + h−1
n γ d

6 e−γ7ε
2
n/h2

n

)
for some positive constants γ6 and γ7 that depend on γ2 and γ3 only. Below we
will prove (C1)–(C3).

PROOF OF (C1). Let Sn = ∑nz

k=1(f̂Z(zk) − fZ(zk))
2 and An = {√Sn <

min{1, (2c1)
−1}}. From (7.1) and (7.3), ESn = O(nZ(h4

n+(nhd
n)−1)) = O(nZ(n×

hd
n)−1) and 1/fZ(zk) ≤ c1 for all k, P(Ac

n) → 0 as n → ∞. From (7.1), on An,

kn∑
j=1

nZ∑
k=1

( 4∑

=1

|R
,n,j (zk)|
)2

≤ O(1)

(
Sn

(
kn∑

j=1

nZ∑
k=1

W̃ 2
n,j (zk)

)
+ knnZC2

n(nhd+4
n ) + knC

2
nnhd

nS2
n

)
,
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and it follows from (7.3) that

E

(
kn∑

j=1

nZ∑
k=1

W̃ 2
n,j (zk)

)
= O(knnZC2

n).

Take

T1,n = knn
2
ZC2

n

nhd
n

+ knnZC2
nnhd+4

n ,

then (C1) holds with Tn = exp(−(lnn)1/9) since T1,n = O(Tn). �

The proof of (C2) is based on the following lemma, which deals with the normal
approximation of sum of i.i.d. random vectors.

LEMMA 2. Suppose that X1, . . . ,Xn are i.i.d. random vectors in Rd1 with
mean 0 and variance 	. Suppose that there exist positive constants C, a2 and a3
such that 1 ≤ a2 ≤ a3 ≤ C, ‖X1‖ ≤ C and E‖X1‖k ≤ ak

k for k = 2, 3. Then for
T ≥ 1, there exist random vectors S and Y on the same probability space such that
S is distributed as (X1 +· · ·+Xn)/

√
n, Y is multivariate normal with mean 0 and

variance 	 and for n ≥ (25/(16a2
2) + 25d1/12)C2T 4 exp(3T 2/16),

P(‖S − Y‖ ≥ α) ≤ α,

if

α ≥ 33.75a3
3√

n
(12)d1e(d1+3)T 2/8 + (48)d1e−3T 2/(32a2

2).

The proof of Lemma 2 is given in Section 7.1.1. To prove (C2), note that
W̃n,j (zk) = ∑n

i=1(gn,j,k(Xi, Yi,Zi) − Egn,j,k(Xi, Yi,Zi))/
√

n, where

gn,j,k(Xi, Yi,Zi)

=
√

cK√
fZ(zk)hd

n

k0

(
zk − Zi

hn

)

× (
fn,j (Xi, Yi, zk) − E

(
fn,j (X,Y, zk)|Z = zk

))
.

From (7.1)–(7.4), we have(
kn∑

j=1

nZ∑
k=1

(
gn,j,k(Xi, Yi,Zi) − Egn,j,k(Xi, Yi,Zi)

)2
)1/2

≤ O(1)Cn

√
knnZ√

hd
n

,

(
kn∑

j=1

nZ∑
k=1

E
(
gn,j,k(Xi, Yi,Zi) − Egn,j,k(Xi, Yi,Zi)

)2
)1/2

≤ O(1)Cn

√
knnZ
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and (
E

(
kn∑

j=1

nZ∑
k=1

(
gn,j,k(Xi, Yi,Zi) − Egn,j,k(Xi, Yi,Zi)

)2
)3/2)1/3

≤ Cn

√
knnZh−d/6

n O(1).

Note that for every constant M > 0, the condition

n ≥
(

25

16
+ 25knnZ

12

)(
MCn

√
knnZ√

hd
n

)2

T 4
3,ne

3T 2
3,n/16

holds for large n with T3,n = (lnn)1/8, so Lemma 2 is applicable. From Lemma 2,
(C2) holds with any Tn such that T2,n = O(Tn), where

T2,n = (Cn

√
knnZ)6122knnZe

(knnZ+3)T 2
3,n/4

nhd
n

+ (48)2knnZe
−γ T 2

3,n/(Cn

√
knnZ)2

,

γ > 0 is a constant. Since T2,n = O(exp(−γ1(lnn)1/8)) for some constant γ1 > 0,
(C2) holds with Tn = exp(−(lnn)1/9).

The proof of (C3) is based on the following result.

FACT 3. Suppose that A and B are d1 × d1 nonnegative definite matrices.
Then ∥∥√A − √

B
∥∥ ≤ d

3/4
1

√‖A − B‖.
The proof of Fact 3 is given at the end of the proof of (C3). Note that Fact 3

implies the following: suppose that X0 and Y0 are two d1 × 1 normal vectors of
mean 0 and covariance matrices A and B , respectively. Let Z be a d1 × 1 normal
vector whose elements are i.i.d. N(0,1). Then

√
AZ is distributed as X0 and

√
BZ

is distributed as Y0 and∥∥√AZ − √
BZ

∥∥2 ≤ ∥∥√A − √
B

∥∥2‖Z‖2 ≤ d
3/2
1 ‖A − B‖‖Z‖2

= Op(d
5/2
1 ‖A − B‖).

Therefore, (C3) holds if Cov(Ŵn,j (zk), Ŵn,
(zk∗)) is close to

Cov
(
fn,j (X,Y, zk), fn,
(X,Y, zk)|Z = zk

)
δk,k∗,

where δk,k∗ is 1 if k = k∗ and is 0 otherwise. From (7.1)–(7.4), we have∑
j,
,k,k∗

(
Cov(Ŵn,j (zk), Ŵn,
(zk∗))

− Cov
(
fn,j (X,Y, zk), fn,
(X,Y, zk)|Z = zk

)
δk,k∗

)2

= hnC
2
n(knnZ)2O(1),
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so (C3) holds with Tn = exp(−(lnn)1/9) since (knnZ)5/2
√

hnC2
n(knnZ)2 =

O(exp(−(lnn)1/9)).

PROOF OF FACT 3. Consider first the case where A is diagonal. Let D be a
diagonal matrix such that B = QT DQ for some Q such that QQT = I . Let D =
diag(λ1, . . . , λd1), A = diag(α1, . . . , αd1), Q = (qi,j ) and E = B −A = (ei,j ). Let
qi be the ith column of Q, then qT

i Dqj = αiδi,j + ei,j , where δi,j = 1 for i = j

and δi,j = 0, otherwise. Write Dqk = ∑d1
j=1(q

T
k Dqj )qj , then

∥∥√Dqk − √
αkqk

∥∥2 =
d1∑

j=1

(√
λjqj,k − √

αkqj,k

)2

=
d1∑

j=1

(√
λj |qj,k| −

√
αk|qj,k|)2|qj,k|

≤
d1∑

j=1

∣∣λj |qj,k| − αk|qj,k|
∣∣|qj,k|

≤
(

d1∑
j=1

(λjqj,k − αkqj,k)
2

)1/2(
d1∑

j=1

q2
j,k

)1/2

=
(

d1∑
j=1

e2
k,j

)1/2

and

∥∥√
QT DQ − √

A
∥∥2 =

d1∑
i=1

d1∑
j=1

(
qT
i

√
Dqj − qT

i

√
αjqj

)2

≤
d1∑

i=1

d1∑
j=1

∥∥√Dqj − √
αjqj

∥∥2

≤ d1

d1∑
j=1

(
d1∑


=1

e2
j,


)1/2

≤ (d1)
3/2

(
d1∑

j=1

d1∑

=1

e2
j,


)1/2

,

so the result in Fact 3 holds if A (or B) is diagonal. For general A and B , write A =
P T A0P and B = QT DQ, where A0 and D are diagonal and P T P = QT Q = I .
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Let B0 = PQT DQP T , then we have∥∥√A − √
B

∥∥ = ∥∥P T
√

A0P − QT
√

DQ
∥∥

= ∥∥√
A0 − PQT

√
DQP T

∥∥ ≤ d
3/4
1

√‖A0 − B0‖
= d

3/4
1

√
‖P T A0P − P T B0P‖ = d

3/4
1

√‖A − B‖.
The proofs of Fact 3 and Lemma 1 are complete. �

7.1.1. Proof of Lemma 2. The proof Lemma 2 is based on several facts, which
are taken directly or adapted from some existing results and are stated/proved be-
low in Lemmas 3–5.

In the statements of Lemmas 3 and 4, (S0, d0) is a metric space, B denotes the
collection of Borel sets in (S0, d0), and for two measures μ1 and μ2 defined on B,
ρ0(μ1,μ2) denotes the Prohorov distance of μ1 and μ2, which is defined as

ρ0(μ1,μ2) = inf{ε > 0 :μ1(A) < μ2(A
ε) + ε, for all A ∈ B},

where Aε = {x :d∗(x,A) < ε} and d∗(x,A) = inf{d0(x, y) :y ∈ A}. Here are
Lemmas 3–5.

LEMMA 3 (Lemma 2.1 in Berkes and Philipp [1]). Suppose that P1 and P2
are two measures defined on B and ρ0(P1,P2) < α. Then there exists a probability
measure Q on the Borel sets of S0 × S0 with marginals P1 and P2 such that

Q{(x, y) :d0(x, y) > α} ≤ α.

LEMMA 4 (Adapted from Lemma 2.2 in [1]). Suppose that F and G are two
distributions on Rd1 with characteristic functions f and g, respectively. Then for
σ ∈ (0,1] and T > 0, the Prohorov distance ρ0(F,G) ≤ α, where

α = σT + 3(2d1)e−3T 2/32 +
(

T

π

)d1 ∫
|f (u) − g(u)|e−σ 2‖u‖2/2 du

+ F

({
x :‖x‖ ≥ T

2

})
.

PROOF. Let H be the N(0, σ 2I ) distribution on Rd1 , where I is the identity
matrix and σ > 0. Let F1 be the convolution of F and H and G1 be the convolution
of G and H . Then

ρ0(F,G) ≤ ρ0(F1,G1) + 2 max
{
r,H({x :‖x‖ ≥ r})} for every r > 0.(7.5)

Let f1, g1 and h be the characteristic functions of F1, G1 and H , respectively, and
let γF and γG be the densities of F1 and G1, respectively. Then

|γF (x) − γG(x)| = (2π)−d1

∣∣∣∣
∫

e−iuT x(
f1(u) − g1(u)

)
du

∣∣∣∣
≤ (2π)−d1

∫
|f (u) − g(u)||h(u)|du,
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which implies that for every borel set B in Rd1 ,

F1(B) − G1(B)

≤ F1(B ∩ {x :‖x‖ ≤ T }) − G1(B ∩ {x :‖x‖ ≤ T }) + F1({x :‖x‖ ≥ T })
≤

∫
{x : ‖x‖≤T }

|γF (x) − γG(x)|dx + F({x :‖x‖ ≥ T/2})
+ H({x :‖x‖ ≥ T/2})

≤
(

T

π

)d1 ∫
|f (u) − g(u)||h(u)|du + F({x :‖x‖ ≥ T/2}) + H({x :‖x‖ ≥ T/2})︸ ︷︷ ︸

II

.

Note that II is an upper bound for the Prohorov distance ρ0(F1,G1), so for r ≤
T/2, it follows from (7.5) that

ρ0(F,G) ≤ II + 2r + 2H({x :‖x‖ ≥ r})

≤
(

T

π

)d1 ∫
|f (u) − g(u)||h(u)|du + F({x :‖x‖ ≥ T/2}) + 2r

+ 3P
(
χ2(d1) ≥ (r/σ )2)

.

Since h(u) = e−σ 2‖u‖2/2 and

P
(
χ2(d1) ≥ A

) ≤ e−tAEetχ2(d1)|t=3/8
(7.6)

= e−3A/8(2d1) for every A > 0.

Lemma 4 holds if r = σT/2 and σ ∈ (0,1]. �

LEMMA 5 (Adapted from Theorem 1(a) in pages 204–208 in Gnedenko and
Kolmogorov [5]). Suppose that X1, . . . ,Xn are i.i.d. random vectors with mean 0
and variance 	. Suppose that C and a are positive constants such that ‖X1‖ ≤ C,
a ≤ C and E‖X1‖k ≤ ak for k = 2, 3. Let fn be the characteristic function of
(X1 + · · · + Xn)/

√
n. Then∣∣∣∣fn(u) − exp

(
−1

2
uT 	u

)∣∣∣∣ ≤ 0.25‖u‖3a3
√

n
,

if ‖u‖ ≤ (0.4
√

n)/C.

PROOF. Consider first the case where X1 is univariate. Let U = f1(u/
√

n) −
1, then

U = θ∗
1 EX2

1

2

(
u√
n

)2
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and

U = EX2
1

2

(
iu√
n

)2

+ θ1E|X1|3
3!

(
u√
n

)3

,

where |θ∗
1 | ≤ 1 and |θ1| ≤ 1. Suppose that |u| ≤ (0.4

√
n)/C, then |U | < 0.1 and

log(1 + U) = U + 0.62θ2U
2,

where |θ2| ≤ 1. Let V = logfn(u) + E(X2
1)u

2/2 = E(X2
1)u

2/2 + n log(1 + U),
then

V = nθ1E|X1|3u3

3!n3/2 + (0.62)nθ2

(
EX2

1

2

(
iu√
n

)2

+ θ1E|X1|3
3!

(
u√
n

)3)2

= λ1|u|3a3

6
√

n
+ 0.62

(
λ2a

4u4

4n
+ λ3a

5|u|5
6(

√
n)3 + λ4a

6u6

36n2

)

= |u|3a3
√

n

(
λ1

6
+ 0.62

(
λ2a|u|
4
√

n
+ λ3a

2u2

6n
+ λ4a

3|u|3
36(

√
n)3

))
,

where |λk| ≤ 1 for k = 1, 2, 3, 4. Since a|u|/√n ≤ 0.4,

V = θ3(0.25)|u|3a3
√

n
,

where |θ3| ≤ 1. Since eV = 1 + θ4|V |e|V |, where |θ4| ≤ 1,

fn(u) = exp
(
−E(X2

1)u
2

2

)(
1 + θ4|V |e|V |)

= exp
(
−E(X2

1)u
2

2

)
+ θ5

(
0.25|u|3a3

√
n

)
e|V |−E(X2

1)u2/2,

where |θ5| ≤ 1. To find an upper bound for |V | − E(X2
1)u

2/2, note that∣∣∣∣nU + E(X2
1)u

2

2

∣∣∣∣ = |θ1|E|X1|3|u|3
6
√

n
≤ CEX2

1|u|3
6
√

n
≤ (0.4)u2E(X2

1)

6
,

n|U | = |θ∗
1 |u2E(X2

1)/2 ≤ u2E(X2
1)/2 and

∣∣n(
log(1 + U) − U

)∣∣ = 0.62n|θ2U
2| ≤ 0.62(0.1)

(
E(X2

1)u
2

2

)
since |U | < 0.1. Therefore,

|V | − u2E(X2
1)

2
=

∣∣∣∣E(X2
1)u

2

2
+ nU + n

(
log(1 + U) − U

)∣∣∣∣ − u2E(X2
1)

2

≤ (0.4)u2E(X2
1)

6
+ 0.062E(X2

1)u
2

2
− u2E(X2

1)

2
≤ 0
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and Lemma 5 holds for the univariate case. The result for the general case can
be obtained by applying the univariate result with u and Xi replaced by ‖u‖ and
Yi = uT Xi/‖u‖. �

Now we are ready to prove Lemma 2.

PROOF OF LEMMA 2. Let fn be the characteristic function of (X1 + · · · +
Xn)/

√
n and g be the characteristic function of G, the N(0,	) distribution. From

Lemmas 3–5, there exist random vectors S and Y on the same probability space
such that S is distributed as (X1 + · · · + Xn)/

√
n, Y is multivariate normal with

mean 0 and variance 	 and

P(‖S − Y‖ ≥ α1) ≤ α1,

where

α1 = σT + 3(2d1)e−3T 2/32 + 0.25a3
3√

n

(
2

π

)d1/2 T d1

σd1+3 E(χ2(d1))
3/2

+ 2
(

2

π

)d1/2 T d1

σd1
P

(
χ2(d1) ≥ 0.16nσ 2

C2

)
+ P

(‖N(0,	)‖ ≥ T/2
)
.

From the facts that E(χ2(d1))
3/2 ≤ (E(χ2(d1))

2)3/4 and P(‖N(0,	)‖ ≥ T/2) ≤
P(χ2(d1) ≥ T 2/(4a2

2)), (7.6) and the condition a2 ≥ 1, we have

α1 ≤ σT + 4(2d1)e−3T 2/(32a2
2) + 0.25a3

3√
n

(
2

π

)d1/2 T d1

σd1+3 (2d1 + d2
1 )3/4

+ 2
(

2

π

)d1/2 T d1

σd1
(2d1)e−0.06nσ 2/(C2).

Set σ = T −1e−3T 2/32, then 0 < σ ≤ 1, T/σ < 12eT 2/8 and 1/σ < 3eT 2/8, which,
together with the fact that (2/π)d1/2(2d1 + d2

1 )3/4 < 5, gives that

α1 ≤ (
1 + 4(2d1)

)
e−3T 2/(32a2

2) + 33.75a3
3√

n
(12)d1e(d1+3)T 2/8

+ 2(19.15)d1ed1T
2/8e−0.06nσ 2/(C2)

≤ 33.75a3
3√

n
(12)d1e(d1+3)T 2/8 + (48)d1e−3T 2/(32a2

2) ≤ α,

if 0.06nσ 2/(C2) ≥ d1T
2/8 + 3T 2/(32a2

2), which corresponds to n ≥ (25/(16 ×
a2

2) + 25d1/12)C2T 4 exp(3T 2/16) and we have Lemma 2. �
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7.2. Proof of Theorem 3.1. To prove Theorem 3.1, we apply Lemma 1 by
taking the fn,j (X,Y, z)’s to be the functions φ∗


 (X)φ∗

′(X), φ∗


 (X)ψ∗
m(Y ) and

ψ∗
m(Y )ψ∗

m′(Y ), where 1 ≤ 
 ≤ 
′ ≤ pn and 1 ≤ m ≤ m′ ≤ qn. In such case,
(3.19) holds under conditions (B1) and (B2). To see this, for each 1 ≤ k ≤ nZ

and 1 ≤ j ≤ pn, let φ∗
n,j,k be the j th component of φ∗ when z = zk . Then

φ∗
n,j,k(x) = ∑pn

i=1 an,i,j,kφn,i(x) for some an,i,j,k’s and

1 = E
(
(φ∗

n,j,k(X))2|Z = zk

)

= E

(( pn∑
i=1

an,i,j,kφn,i(X)

)2∣∣∣∣∣Z = zk

)

≥ δn

pn∑
i=1

a2
n,i,j,k,

so |φ∗
n,j,k(x)| ≤

√∑pn

i=1 a2
n,i,j,k

√∑pn

i=1 φ2
n,i(x) ≤ √

pn/δn. Similarly, for each 1 ≤
k ≤ nZ and 1 ≤ j ≤ qn, let ψ∗

n,j,k be the j th component of ψ∗ when z = zk , then
|ψ∗

n,j,k(x)| ≤ √
qn/δn. Thus, (3.19) holds with Cn = max{1, (pn + qn)/δn} and it

follows from Lemma 1 that
∑nZ

k=1 ‖V̂ ∗(zk) − V ∗(zk)‖2 has the same distribution
as

∑nZ

k=1(nhd
ncKfZ(zk))

−1‖Wn,1,k + Wn,2,k‖2, where the Wn,1,k’s and Wn,2,k’s
are random matrices such that each element in Wn,1,k is normal with mean zero
and variance bounded by C2

n = (max{1, (pn + qn)/δn})2, and
∑nZ

k=1 ‖Wn,2,k‖2 =
OP (exp(−(lnn)1/9)). Therefore,

nZ∑
k=1

‖V̂ ∗(zk) − V ∗(zk)‖2 = OP ((nhd
n)−1(lnn)1/8).(7.7)

To control the difference between g(V̂ ∗(zk), α
∗) and g(V ∗(zk), α

∗) for 1 ≤ k ≤
nZ , for a (pn + qn) × (pn + qn) matrix U , let

g∗
i,j (U) =

{
gi,j (U), if (i, j) = (1,2) or (2,1);
g−1

i,j (U), if (i, j) = (1,1) or (2,2).(7.8)

For 1 ≤ k ≤ nZ , let �i,j,k = g∗
i,j (V̂

∗(zk)) − g∗
i,j (V

∗(zk)) for 1 ≤ i, j ≤ 2. Then
from the fact that ‖AB‖ ≤ ‖A‖‖B‖ for two matrices A and B , we have

‖g(V̂ ∗(zk), α
∗) − g(V ∗(zk), α

∗)‖

≤
2∏

i=1

2∏
j=1

(‖g∗
i,j (V

∗(zk))‖ + ‖�i,j,k‖) −
2∏

i=1

2∏
j=1

‖g∗
i,j (V

∗(zk))‖(7.9)

+ ‖g1,1(V̂
∗(zk)) − g1,1(V

∗(zk))‖‖α∗(α∗)T ‖.
To control the �1,1,k and �2,2,k in (7.9), the following result is needed.
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FACT 4. Suppose that A is a p × p invertible matrix and � = A − Ip . Then
‖A−1 − Ip + �‖ ≤ ‖A−1 − Ip‖‖�‖ and

‖A−1 − Ip‖ ≤ ‖�‖
1 − ‖�‖ if ‖�‖ < 1.

PROOF. Let B = A−1 − Ip . Then B = −� − B�, so ‖B + �‖ = ‖B�‖ ≤
‖B‖‖�‖. Also,

‖B‖ ≤ ‖�‖(1 + ‖B‖).(7.10)

Apply (7.10) and we have

‖B‖ ≤ ‖�‖
1 − ‖�‖ if ‖�‖ < 1.

Since ‖α∗‖ = 1 and for 1 ≤ k ≤ nZ , g1,1(V
∗(zk)) = Ipn , g2,2(V

∗(zk)) = Iqn

and ‖g1,2(V
∗(zk))‖2 = ‖g2,1(V

∗(zk))‖2 ≤ (pn + qn), from (7.9) and Fact 4, we
have

nZ∑
k=1

‖g(V̂ ∗(zk), α
∗) − g(V ∗(zk), α

∗)‖2

= OP

(
(nhd

n)−1(lnn)1/8n2
Z(pn + qn)

3)
= OP ((nhd

n)−1(lnn)1/4),

which gives (3.21) since |ρ̂2(zk)−ρ2
pn,qn

(zk)| ≤ ‖g(V̂ ∗(zk), α
∗)−g(V ∗(zk), α

∗)‖
for 1 ≤ k ≤ nZ . (3.22) follows from (3.21) and the fact that

∑nZ

k=1(f̂Z(zk) −
fZ(zk))

2 is OP (nZ(nhd
n)−1). The proof of Theorem 3.1 is complete. �

7.3. Proof of Theorem 3.2. From Lemma 1, the joint distribution of V̂ ∗(zk) :
1 ≤ k ≤ nZ is the same as that of V ∗(zk) + (nhd

ncKfZ(zk))
−1/2(Wn,1,k +

Wn,2,k) : 1 ≤ k ≤ nZ , where

nZ∑
k=1

‖Wn,2,k‖2 = OP (exp(−(lnn)1/9))(7.11)

and Wn,1,k’s are independent symmetric normal matrices of mean zero. To de-
scribe the covariance structure of each Wn,1,k , let φ∗ = (φ∗

1 , . . . , φ∗
pn

)T , ψ∗ =
(ψ∗

1 , . . . ,ψ∗
qn

)T and let V0 be the (pn + qn) × (pn + qn) symmetric matrix
such that g1,1(V0) = φ∗(X)φ∗(X)T , g1,2(V0) = φ∗(X)ψ∗(Y )T and g2,2(V0) =
ψ∗(Y )ψ∗(Y )T . For 1 ≤ k ≤ nZ and 1 ≤ m,
 ≤ pn + qn, let Uk,m,
 and V0,m,


be the (m, 
)th elements of Wn,1,k and V0, respectively, then

Cov(Uk,m,
,Uk,m′,
′) = Cov(V0,m,
,V0,m′,
′ |Z = zk)
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for (m, 
), (m′, 
′) ∈ {(i, j) : 1 ≤ i ≤ j ≤ (pn + qn)}. For 1 ≤ k ≤ nZ , let Ṽk =
V ∗(zk) + (nhd

ncKfZ(zk))
−1/2(Wn,1,k + Wn,2,k) and

A1(zk) = g(Ṽk, α
∗)g1,1(Ṽk)

= g1,2(Ṽk)(g2,2(Ṽk))
−1g2,1(Ṽk)

− g1,1(Ṽk)α
∗(α∗)T g1,1(Ṽk),

and let ρ̃2
0(zk) be the largest eigenvalue of A1(zk)(g1,1(Ṽk))

−1, then the joint dis-
tribution of ρ̂2(zk) : 1 ≤ k ≤ nZ is the same as that of ρ̃2

0(zk) : 1 ≤ k ≤ nZ . For
1 ≤ i, j ≤ 2 and 1 ≤ k ≤ nZ , let �i,j,k = gi,j (Ṽk) − gi,j (V

∗(zk)), then from (7.7),

nZ∑
k=1

2∑
i=1

2∑
j=1

‖�i,j,k‖2 = OP ((nhd
n)−1(lnn)1/8)(7.12)

and

A1(zk) = g1,2(V
∗(zk))(g2,2(Ṽk))

−1g2,1(V
∗(zk))

− g1,1(Ṽk)α
∗(α∗)T g1,1(Ṽk) + g1,2(V

∗(zk))�2,1,k

+ �1,2,kg2,1(V
∗(zk)) + �1,2,k�2,1,k(7.13)

− g1,2(V
∗(zk))�2,2,k�2,1,k

− �1,2,k�2,2,kg2,1(V
∗(zk)) + R1,n,k,

where

R1,n,k = �1,2,k

(
g2,2(Ṽk)

−1 − Iqn

)
�2,1,k

+ g1,2(V
∗(zk))

(
g2,2(Ṽk)

−1 − Iqn + �2,2,k

)
�2,1,k

+ �1,2,k

(
g2,2(Ṽk)

−1 − Iqn + �2,2,k

)
g2,1(V

∗(zk)).

To simplify the expression for A1(zk) in (7.13), we will make use of the following
properties.

(C4) The elements of the matrix g1,2(V
∗(zk)) are zeros except that the (1,1)th

element is 1.
(C5) For (i, j) ∈ {(1,2), (2,1)}, gi,j (V

∗(zk))’s first row (or first column) is either
the first row or the first column of gi′,j ′(V ∗(zk)) for (i ′, j ′) �= (i, j).

(C6) The (1,1)th element in g2,2(V̂
∗(zk)) is 1.

Here (C4) follows from the conditional independence assumption and (3.16), and
(C5) and (C6) follow from (3.15). From (C6), g2,2(Ṽk) can be expressed as

g2,2(Ṽk) =
(

1 BT
k

Bk Dk

)
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for some matrices Bk and Dk , so the (1,1)th element of g2,2(Ṽk)
−1 is (1 +

BT
k (Dk − BkB

T
k )−1Bk). Let J = α∗(α∗)T , then by (C4) and (C5), we have

g1,2(V
∗(zk))(g2,2(Ṽk))

−1g2,1(V
∗(zk)) = (

1 + BT
k (Dk − BkB

T
k )−1Bk

)
J,

g1,2(V
∗(zk))�2,1,k = J�1,1,k and BT

k BkJ = g1,2(V
∗(zk))(�2,2,k)

2g2,1(V
∗(zk)),

so the expression for A1(zk) in (7.13) becomes

BT
k

(
(Dk − BkB

T
k )−1 − Iqn−1

)
BkJ + g1,2(V

∗(zk))(�2,2,k)
2g2,1(V

∗(zk))

− �1,1,kg1,2(V
∗(zk))g2,1(V

∗(zk))�1,1,k + �1,2,k�2,1,k

− g1,2(V
∗(zk))�2,2,k�2,1,k − �1,2,k�2,2,kg2,1(V

∗(zk)) + R1,n,k.

Let

A2(zk) = g1,2(V
∗(zk))(g2,2(W1,n,k))

2g2,1(V
∗(zk))

− g1,1(W1,n,k)g1,2(V
∗(zk))g2,1(V

∗(zk))g1,1(W1,n,k)

+ g1,2(W1,n,k)g2,1(W1,n,k) − g1,2(V
∗(zk))g2,2(W1,n,k)g2,1(W1,n,k)

− g1,2(W1,n,k)g2,2(W1,n,k)g2,1(V
∗(zk))

and

R2,n,k = BT
k

(
(Dk − BkB

T
k )−1 − Iqn−1

)
BkJ

− (nhd
ncKfZ(zk))

−1A2(zk) + g1,2(V
∗(zk))(�2,2,k)

2g2,1(V
∗(zk))

− �1,1,kg1,2(V
∗(zk))g2,1(V

∗(zk))�1,1,k + �1,2,k�2,1,k

− g1,2(V
∗(zk))�2,2,k�2,1,k − �2,1,k�2,2,kg2,1(V

∗(zk)),

then

A1(zk) = A2(zk)

nhd
ncKfZ(zk)

+ R1,n,k + R2,n,k,(7.14)

where
nZ∑
k=1

(‖R1,n,k‖2 + ‖R2,n,k‖2) = OP

(
exp(−(lnn)1/9)(lnn)1/8

(nhd
n)2

)
(7.15)

from Fact 4, (7.11) and (7.12), and a simple expression for A2(zk) can be obtained
as stated below in (C7), which follows from (C4) and (C5).

(C7) For 1 ≤ k ≤ nZ , A2(zk) = CkC
T
k , where Ck is the pn × qn matrix obtained

by replacing elements in the first row and first column of g1,2(W1,n,k) with
zeros.
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Note that from (C7), we have that

nZ∑
k=1

‖A2(zk)‖2 = OP

(
nZ(pn − 1)2(qn − 1)2) = OP ((lnn)1/8),

which, together with (7.14) and (7.15), implies that

nZ∑
k=1

‖A1(zk)‖2 = OP ((nhd
n)−2(lnn)1/8),(7.16)

and then it follows from (7.16), Fact 4 and (7.12) that

nZ∑
k=1

‖A1(zk)(g1,1(Ṽk))
−1 − A1(zk)‖2 = Op((nhd

n)−3(lnn)1/4).(7.17)

For 1 ≤ k ≤ nZ , let λ0,k be the largest eigenvalue of A2(zk) and recall that ρ̃2
0(zk)

is the largest eigenvalue of A1(zk)(g1,1(Ṽk))
−1. Then by (7.14), (7.15) and (7.17),

nZ∑
k=1

(
nhd

ncKfZ(zk)ρ̃
2
0(zk) − λ0,k

)2 = OP (exp(−(lnn)1/9)(lnn)1/8).(7.18)

Let f̃k , ρ̃(zk) and λk : 1 ≤ k ≤ nZ be random variables such that the joint distri-
bution of (f̃k, ρ̃(zk)) : 1 ≤ k ≤ nZ is the same as that of (f̂Z(zk), ρ̂(zk)) : 1 ≤ k ≤
nZ , and the joint distribution of (ρ̃(zk), λk) : 1 ≤ k ≤ nZ is the same as that of
(ρ̃0(zk), λ0,k) : 1 ≤ k ≤ nZ . Note that from (7.18) and the fact that

nZ∑
k=1

‖A2(zk)‖2 = OP

(
nZ(pn − 1)2(qn − 1)2)

,

we have that
nZ∑
k=1

nhd
ncKfZ(zk)ρ̃

2(zk) =
√

OP

(
n2

Z(pn − 1)2(qn − 1)2
) = OP ((lnn)1/16),

so nhd
n

∑nZ

k=1(ρ̂(zk))
2 = OP ((lnn)1/16),∣∣∣∣∣nhd

ncK

nZ∑
k=1

f̂Z(zk)(ρ̂(zk))
2 − nhd

ncK

nZ∑
k=1

fZ(zk)(ρ̂(zk))
2

∣∣∣∣∣
≤ nhd

ncK

(
nZ∑
k=1

(
f̂Z(zk) − fZ(zk)

)2
)1/2 nZ∑

k=1

(ρ̂(zk))
2

= OP ((lnn)1/16)(OP (nZ(nhd
n)−1))1/2

= OP ((nhd
n)−1/2(lnn)3/32)
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and ∣∣∣∣∣nhd
ncK

nZ∑
k=1

f̃k(ρ̃(zk))
2 −

nZ∑
k=1

λk

∣∣∣∣∣
≤ OP ((nhd

n)−1/2(lnn)3/32) +
∣∣∣∣∣nhd

ncK

nZ∑
k=1

fZ(zk)(ρ̃(zk))
2 −

nZ∑
k=1

λk

∣∣∣∣∣
[by (7.18)] ≤ OP ((nhd

n)−1/2(lnn)3/32) + √
nZ(OP (exp(−(lnn)1/9)(lnn)1/8))1/2

= OP (exp(−0.5(lnn)1/9)(lnn)3/32).

The proof of Theorem 3.2 is complete.

7.4. Proof of Corollary 1. To prove Corollary 1, it is sufficient to establish
(3.25) and (3.26). To see this, let f̃k , ρ̃2(zk) and λk : 1 ≤ k ≤ nZ be as in Theo-
rem 3.2, then

nhd
ncK

∑nZ

k=1 f̂Z(zk)ρ̂
2(zk) − nZμpn,qn√

nZσ 2
pn,qn

has the same distribution as

nhd
ncK

∑nZ

k=1 f̃kρ̃
2(zk) − nZμpn,qn√

nZσ 2
pn,qn

= nhd
ncK

∑nZ

k=1 f̃kρ̃
2(zk) − ∑nZ

k=1 λk√
nZσ 2

pn,qn︸ ︷︷ ︸
I

+
∑nZ

k=1 λk − nZμpn,qn√
nZσ 2

pn,qn︸ ︷︷ ︸
II

.

Suppose that (3.25) holds, then I → 0 almost surely by (3.24) and Theorem 3.2.
Also, (3.26) says that II converges to N(0,1) in distribution. Therefore, (3.27)
holds if (3.25) and (3.26) hold.

To establish (3.26), we will verify the Lyapounov condition

lim
n→∞

nZ∑
k=1

E|λk − μpn,qn |3
(nZσ 2

pn,qn
)3/2 = 0,(7.19)

and then apply Lindeberg’s central limit theorem. Let λ be the largest eigenvalue
of CCT . Then λ ≤ tr(CCT ), where tr(CCT ) is the trace of CCT , which follows
the χ2 distribution with degrees of freedom m1,n = (pn − 1)(qn − 1). Therefore,

Eλ3 ≤ E(tr(CCT ))3 = m1,n(m1,n + 2)(m1,n + 4),

which implies that E|λ1 − μpn,qn |3 = O(p3
nq

3
n), so (7.19) follows from (3.25) and

(3.26) holds.
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It remains to prove (3.25). Consider first the case where (i) holds. By Theo-
rem 1.1 in Johnstone [7],

λ1 − μn

σn

converges in distribution as n → ∞,(7.20)

where

μn = (√
qn − 2 +

√
pn − 1

)2

and

σn = (√
qn − 2 +

√
pn − 1

)( 1

qn − 2
+ 1

pn − 1

)1/3

.

Here the limiting distribution is the Tracy–Widom law of order 1. Let F denote its
cumulative distribution function. Suppose that ε, t1 and t2 are real numbers such
that t1 < t1 + ε < t2 − ε, which implies that F(t2) > F(t2 − ε) and F(t1 + ε) >

F(t1). From (7.20),

P
(
λ1 > μn + (t2 − ε)σn

) ≥ 1 − F(t2)

and

P
(
λ1 < μn + (t1 + ε)σn

) ≥ F(t1),

if n is large enough. For such n, we have

σ 2
pn,qn

≥ min(F (t1),1 − F(t2))(t2 − t1 − 2ε)2σ 2
n

4
,

which gives (3.25). The proof of (3.25) for the case where (ii) holds can be done
by reversing the roles of pn and qn. The proof of Corollary 1 is complete.
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