The Annals of Statistics

2010, Vol. 38, No. 4, 2047-2091

DOI: 10.1214/09-A0S770

© Institute of Mathematical Statistics, 2010

TESTING CONDITIONAL INDEPENDENCE USING MAXIMAL
NONLINEAR CONDITIONAL CORRELATION!?23

BY TZEE-MING HUANG
National Chengchi University

In this paper, the maximal nonlinear conditional correlation of two
random vectors X and Y given another random vector Z, denoted by
p1(X, Y|Z), is defined as a measure of conditional association, which sat-
isfies certain desirable properties. When Z is continuous, a test for testing the
conditional independence of X and Y given Z is constructed based on the
estimator of a weighted average of the form ZZil fz (zk),olz(X, Y|Z =zg),
where f7 is the probability density function of Z and the z;’s are some points
in the range of Z. Under some conditions, it is shown that the test statistic is
asymptotically normal under conditional independence, and the test is con-
sistent.

1. Introduction. In this paper, the problem of interest is testing the condi-
tional independence between two random vectors X and Y given a third random
vector Z. The study of the problem of testing conditional independence has a long
history. However, there are relatively few results on nonparametric tests when the
vectors X, Y and Z are continuous. Some examples of such tests can be found in
Su and White [12, 13], where they also proposed conditional independence tests
based on a weighted Hellinger distance between the conditional densities or the
difference between the conditional characteristic functions.

As mentioned in Daudin [2], X and Y are conditionally independent given Z
means that for every f (X, Z) and g(Y, Z) such that EfZ(X, Z) and Egz(Y, Z) are
finite

E(f(X,Z)g(Y,Z)|2) = E(f (X, Z)|2)E(g(Y, 2)|Z).

Thus, the problem of testing conditional independence, as the problem of testing
unconditional independence, is invariant when one-to-one transforms are applied
to the marginals X and Y, respectively. Various authors have taken this invariant
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property into consideration when constructing conditional or unconditional inde-
pendence tests. For example, Su and White [13] used Hellinger distance in their
test statistic for testing conditional independence, so that the test statistic is invari-
ant. Dauxois and Nkiet [3] used measures of association to construct independence
tests, and the measures are invariant under the above transforms. In this paper, to
take invariance into account, the proposed test is based on the maximal nonlinear
conditional correlation, which can be viewed as a measure of conditional associa-
tion and satisfies the above invariance property.

To choose a reasonable measure of conditional association between X and Y,
the following properties are considered.

(P1) The measure can be defined for all types of random vectors, including both
discrete and continuous ones.

(P2) The measure is symmetric, that is, it remains the same when (X, Y) is re-
placed by (Y, X).

(P3) The measure is invariant when one-to-one transforms are applied to X and Y,
respectively.

(P4) The measure is between 0 and 1.

(P5) The measure is O if and only if conditional independence holds.

The above properties are adapted from some of the conditions for a good measure
of association proposed by Rényi [9]. In [9], the conditional independence in (P5)
is replaced by the unconditional independence. Note that the symmetric property
(P2) is not always required. For instance, Hsing et al. [6] proposed to use the
coefficient of intrinsic dependence as a measure of dependence, which does not
satisfy (P2). Here, (P2) is considered.

Many measures of conditional association satisfying (P1)—(P5) can be con-
structed. Dauxois and Nkiet [4] showed that a class of measures of association be-
tween two Hilbertian subspaces can be obtained by properly combining the canon-
ical coefficients of the canonical analysis (CA) between the spaces. In particular,
take the two subspaces to be H) = {(f(X,Z2)—E(f(X,2)|Z): Efz(X, Z) < oo}
and H, = {g(Y,Z)—E(g(Y, Z)|Z): Eg*(Y, Z) < oo}, then a class of measures of
conditional association between X and Y given Z satisfying properties (P1)—(P5)
can be obtained using the canonical coefficients. Denote the canonical coefficients
(arranged in descending order) by p;(X,Y|Z):i =1,2,.... When X and Y are
not functions of Z, the largest canonical coefficient p;(X, Y|Z) is the maximal
partial correlation defined by Romanovic [10], which is

supcorr(f (X, Z) — E(f(X, 2)12),8(Y, Z) — E(g(Y, 2)|2)).
fg
Another approach to construct measures of conditional association is to mod-

ify the CA between the spaces Hy = {f(X) — Ef(X): Efz(X) < oo} and Hy, =
{g(Y) — Eg(Y): Egz(Y) < 00} to obtain a conditional version of it. That is, to
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find pairs of functions (f;, g;):i =0, 1,..., such that for each i, (f;, g;) maxi-
mizes E(f(X, Z)g(Y, Z)|Z) subject to

(L) E(fA(X, DI 20,00/ E(fA(X, 2)|1Z)) = L0,00)(E(f*(X, 2)|2)),
(12)  E@Q* (Y. 2)|2)](0,00)(E@Q*(Y. 2)|1Z)) = L0,00)(E(*(Y. Z)|Z))
and

E(f(X.2)fj(X,2)|Z)=0=E(g(Y,2)g;(Y.2)|Z)  for0<j <i.

Here, 14 denotes the indicator function on a set A, thatis, [4(x) =1ifx € A
and I4(x) = 0, otherwise. If the above (f;, g;)’s exist, then one can define
0i(X,Y|Z)=E(fi(X,2)gi(Y,Z)|Z) for each i and the p;(X, Y|Z)’s can serve
as a conditional version of canonical coefficients. A measure of conditional as-
sociation satisfying (P1)—(P5) can be obtained by taking a proper combination of
the p; (X, Y|Z)’s, following the approach in [4]. Examples of such combinations
include p1(X,Y|Z) and 1 — exp(—; ,ol.z(X, Y|Z)). The measure of conditional
association used in this paper is p1(X, Y|Z), which will be called the maximal
nonlinear conditional correlation of two random vectors X and Y given Z from
now on.

In the above definition of p; (X, Y|Z)’s, it is assumed that the (f;, g;)’s ex-
ist. However, it is not clear what conditions can guarantee the existence of the
(fi, gi)’s. To avoid the problem of finding such conditions, a more general defini-
tion for p1 (X, Y|Z) is given in Section 2. To construct a test based on p1(X, Y|Z),
it is assumed that Z has a Lebesgue probability density function fz. An estimator
of Y fz (zk),olz(X, Y|Z = z;) is then used as the test statistic, where the z;’s are
some points in the range of Z. To study the asymptotic behavior of the test statis-
tic under the hypothesis that X and Y are conditionally independent given Z, we
follow the approach in [3] for finding the asymptotic distribution of a statistic for
testing the independence between X and Y, which is based on estimators of the
canonical coefficients from the CA of H; and H,. To make the approach work for
the conditional case, some strong approximation results for kernel estimators of
certain conditional expectations are also established.

This paper is organized as follows. The new definition of p1(X, Y|Z) is given
in Section 2. Section 3 deals with the estimation of p{(X, Y|Z = z) and test con-
struction. An example is in Section 4 and proofs are given in Section 7.

2. Maximal nonlinear conditional correlation. In this section, a more gen-
eral definition of the maximal nonlinear conditional correlation p{(X, Y|Z) will
be given. Note that in the definition of p; (X, Y|Z)’s in Section 1, one can take
Jfo(X,Z)=1=go(Y, Z), which gives that po(X, Y|Z) =1, and then p; (X, Y|Z)
can be defined as E(fi1(X, Z2)g1(Y, Z)|Z) if there exists (fi, g1) € So such that

E(f(X,2)g(Y,2)|2) = E(i(X, 2)g1(Y, 2)|Z)  forevery (f, g) € So,
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where Sy is the collection of pairs of functions ( f, g)’s that satisfy (1.1), (1.2) and
E(f(X,2)|Z2)=0= E(g(Y, Z)|Z). Without assuming the existence of (f1, g1),
it is reasonable to define p{ (X, Y|Z) as

2.1 sup E(f(X, 2)g(Y, 2)|2),
(f,8)€S0

if the supremum can be defined.

The above approach can be considered as a “pointwise” approach. Indeed,
when Z takes values in a countable set Z, for each z € Z, one may define
01(X,Y|Z =7) as

(2.2) sup E(f(X,2)g(Y,2)|Z =2),
(f,8)€S0

then the p1 (X, Y|Z) defined using (2.2) is a measurable function and can serve as
the supremum in (2.1). However, if Z is uncountable, then it is not clear whether
the p1(X, Y|Z) defined using (2.2) is measurable. Therefore, we use the following
fact to define the supremum in (2.1) so that it is well defined and is a measurable
function.

FACT 1. There exists a sequence {(«,, Bn)} in So such that:

(1) The sequence {E (o (X, Z2)B,(Y, Z)|Z)} is nondecreasing, and
(i) for every (f,g) € So.

E(f(X, 2)g(Y, 2)|Z) < lim E(an(X, Z)Bn(Y, Z)|2).
Furthermore, lf (1) and (11) hOldfOl" {(al’h ,Bn)} = {(O‘n,lv ,Bn,l)} or {(an,Za ,Bn,Z)}a
where {(otn.1, Bn.1)} and {(a, 2, Bn.2)} are sequences in Sy, then

(23)  lim E@1(X, 2)Bu1(Y, 2)|2) = lim E(ey2(X, 2)Ba2(Y, 2)|2).

For the sake of brevity, from now on, some functions of (X, Z) or (¥, Z) may
be expressed without the arguments (X, Z) or (Y, Z). For distinguishing purpose,
functions of (X, Z) may have names starting with only o or f, and functions of
(Y, Z) may have names starting with only g or g.

PROOF FOR FACT 1. We will first establish (2.3) if (i) and (ii) hold for
{(an, Bn)} = {(otn,1, Bn,1)} or {(@tn,2, Bn,2)}. Note that for each n, from (ii), we
have that

E(Oln,Zﬁn,le) < lim E(an,l,Bn,”Z)
n— 00
and

E(an,llgn,ﬂz) < lim E(O‘n,ZIBn,2|Z)-
n— 00
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Take the limits in these two inequalities as n — oo, and we have (2.3).

It remains to find a sequence {(«y, B,)} in So that satisfies (i) and (ii). Let
{(otn,0, Bn,0)} be a sequence in Sy so that the sequence {E(c,.08r,0)} is nonde-
creasing and converges to sup £.8)€5 E(fg). We will construct {(c, B,)} using
{(tn,0, Bn.0)} as follows. For n = 1, define (a1, B1) = (1,0, B1.0). For n > 2, de-
fine

_ { (on,0(X, Z), Bno(Y, Z)), if E(etn,08n,012) > E(otn—1Bn-112);
(a1 (X, 2), Bua1 (Y, 2)), otherwise.

Then {(oy, B,)} is a sequence in Sy that satisfies (i), and the sequence {Eo;, S}
converges t0 Sup s )5, E(fg) since E(a,Bu|Z) > E(an,08n.0lZ). To see that
{(an, Br)} also satisfies (ii), for («, B) in Sp, define

. ﬂ:):{(a,ﬁ), if E(@f|Z) > lim E(enfnl2);
(on, Br), otherwise.
Then {(«;, )} is a sequence in Sy such that
24) lim E(@;512) = max| E@B|Z), lim E(@.f:12)}.
From the monotone convergence theorem, we have
. * % I * Q%
(2.5) E lim E(a}f12)= lim E(a}f})
and
2.6) E lim E(@,f:|Z) = lim E(eafn).
so (2.4) implies that
sup E(f¢)> lim E(@:B) > lim E(@fa)= sup E(fg),
(f.8)S0 n=oo T o0 T o es
which gives
2.7 Tim E(a;f7) = lim_E(@nf).

If E(aB|Z) > lim,, . E(a,Br|Z) with positive probability, then (2.4), (2.5) and
(2.6) together implies that lim,_, o E(a;; B;;) > lim, 0 E (e, Br), which contra-
dicts (2.7). Thus, (ii) holds. The proof of Fact 1 is complete. [

With Fact 1, the maximal nonlinear conditional correlation p;(X, Y|Z) can be
redefined as follows.

DEFINITION 1. p1(X,Y|Z) = SUP( £, ¢)e S, E(f(X,Z)g(Y, Z)|Z), which is
defined as lim,,_, o E (o0, (X, Z) B, (Y, Z)|Z), where {(a;,, B,)} is a sequence in Sy
that satisfies (i) and (i1) in Fact 1.
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Below are some remarks for the p1 (X, Y|Z).

1. If there exists ( f1, g1) in So such that E(f1g1|Z) > E(fg|Z) forall (f, g) € Sop,
then p1(X,Y|Z) = E(f1g1|Z) using Definition 1. To see this, let {(c«y, Bn)}
be a sequence in Sp that satisfies (i) and (ii) in Fact 1. Then p((X, Y|Z) =
limy,— 00 E(atn Bl Z), so E(f1811Z) < p1(X, Y|Z) by (i1). Also, E(f1811Z) >
E(apB,1Z) forevery n,so E(f1g11Z) > p1(X, Y|Z). Therefore, p (X, Y|Z) =
E(f1g11Z) and Definition 1 can be viewed as a generalized version of the defi-
nition of p (X, Y|Z) given in Section 1.

2. p1(X, Y|Z) satisfies properties (P1)—(P5).

3. When X is a function of Y and Z or Y is a function of X and Z, it is not neces-
sary that p; (X, Y|Z) = 1. For instance, suppose that X and Z are independent
standard normal random variables and ¥ = X1 ,00)(Z), then p1(X,Y|Z) =
1(0,00)(Z).

4. Let p1(X,Y) be the largest canonical coefficient from the CA between H| =
{f(X) — Ef(X):Ef*(X) < oo} and Hy = {g(Y) — Eg(Y): E¢g*(Y) < oo}.
Then p1 (X, Y|Z) = p1(X,Y) if (X, Y) and Z are independent.

5. Let p1(X,Y) be as defined in item 4. It is stated in [3] that when the joint
distribution of X and Y is bivariate normal

0 1 p
() 1)
p1(X,Y) = |p|. This result implies that, when the joint distribution for X, Y
and Z is multivariate normal and X and Y are both univariate,
E(X - EX|2)(Y — E(Y|Z))|2)

(E(X —E(X|Z2)*|1Z)\2(E(Y — E(Y|2))*|1Z2)'/?
. E(X — E(X|Z)(Y — E(Y|2)) ‘

- (E(X —EXI|Z2)HV2EQY — E(Y|Z2)2)'/2]

which also equals the absolute value of the usual partial correlation coefficient.

p1(X,Y|Z) =

3. A test of conditional independence. Testing conditional independence is
equivalent to testing Hp: p1(X, Y|Z) = 0, which involves testing Hy ;: p1(X, Y|
Z = z) =0 for different z’s in the range of Z. Let Z be the range of Z. In this
section, an estimator p(z) is proposed for estimating p;(X, Y|Z = z) for each
z € Z, and for distinct points z1, ..., z,, in Z, the asymptotic joint distribution of
p(z1), ..., p(zn,) under Hy is derived to construct a test for testing Hy.

3.1. Estimation of p1(X,Y|Z =z). To estimate

p1(X,Y|Z)= sup E(fglZ)
(f,8)€S0

for (f,g) € So, f and g are approximated using basis functions. Suppose that
there exist A1, A, and A3: subsets of the set of all positive integers and three sets
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of functions {¢,;:1 <i <p,pe A}, {Vy,;j:1 <j=<qg,q€ A} and {0, ;:1 =<
k <r,k € A3} such that for «(X, Z) and B(Y, Z) with finite second moments,

2
3.1 lim inf E(a(X, Z)— Z a(i,k)¢p,,-(X)t9r,k(Z)) =0

Pr—00a(i k) |<i<o]<k<r

and

2
(3.2) lim %%)E(,B(Y,Z)— > b(j,k)wq,j(Y)er,k(Z)> =0.

,F—>00
4 b 1<j=<q,1<k<r

=J=4,1=r=

Also, suppose that for each (p, ), there exist coefficients a, ¢ ;’s and by ¢, ;’s such
that

(3.3) Y. p0itpi)=1= Y byojg;()
I<i<p 1<j=q
for every x in the range of X and every y in the range of Y.

Let S; be the collection of all (f, g)’s with finite second moments and let Sy, 4
be the collection of all (f, g)’s in S7 such that f(X, Z) = ;.Dzl ap,i(Z)pp,i(X)
for some a,;(Z)’s, and g(¥, Z) = 7‘:1 by, i(Z)Yy,;(Y) for some by j(Z)’s.
Then (3.1) and (3.2) together imply that $; can be approximated by Sy ,, for
large p and g. Since Sy C S1, So can be approximated by S; , , as well. With
the additional condition (3.3), So can be easily approximated using the subspace
S0,p,.q = SoNS1,p,q- Note that (3.1), (3.2) and (3.3) hold for certain basis functions,
for example, the tensor product splines in [11].

Assuming (3.1), (3.2) and (3.3), it is reasonable to define

sup  E(fgl|2)
(f,8)€50,p.q
and use it to approximate p1(X, Y|Z). To define SUD(f.6)eS0.p.q E(fg|Z), one may
follow the same approach for defining sup s oy, E(fg|Z), or simply note that
there exists (f1, g1) € So,p,q such that

(3.4 E(f18112) = E(fg|Z)  forall (f,g) € So0.p.q

and define SUD( 1. 6)eSo.p.q E(fg|lZ) = E(f1g11Z). The pair ( f1, g1) can be obtained
as follows. Let

2y, p(Z) = (E(@p,i(X)¢p,;(X)|Z) — E(¢p,i (X Z2)E($p,;(X)|2)) s s
2yq(2) = (E(Wq,i V)V, ;(NIZ) — EWrq,i DIZ)EWy,j (V)| 2)) 1,

and

2p.v.p.q(2) = (E(@p,i X)Vyq,j(VIZ) — E(p,i XNZ)E(Wrq,j(Y)IZ)) -

Consider the following two cases:
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(1) Xy, p(Z) and Xy ,(Z) are not zero matrices, and
(ii) atleast one of Xy ,(Z) and Xy ,(Z) is a zero matrix.

In case (i), let a1 = (a1,1(2), ..., a1,p(Z)T and by = (b1,1(2Z), ..., b1,4(Z))T be
such that (ay, by) is the pair of (a, b) that maximizes

a' Sy p.q(Z)b

subject to
a'$y p(Z)a=1=b"%y ,(Z)b,
and then take
p
[i(X.2)=)_a1i(Z)($p.i(X) — E(¢p.,i(X)|2))
i=1
and

q
§1(Y. 2) =3 b1 j(Z) (g j (V) — E(Wq.(Y)|2)).
j=1
In case (i), take f1(X, Z) =0=gi(Y, Z). Then (f1, g1) € So,p,q and (3.4) holds.

Denote SUD(£.¢)eS0.p.q E(fglZ) by pp4(Z).
The following fact states that p1(X, Y|Z) can be reasonably approximated by
Pp,q(Z) if p and g are large.

FACT 2. Suppose that (3.1), (3.2) and (3.3) hold and {p,} and {q,} are se-
quences of positive integers that tend to oo as n — 0o. Then

Tim E(1p1(X, Y1Z) = pp, 4,(2)]) =0.

PROOF. Since p1(X, Y|Z) = pp,.q,(Z) for every n, Fact 2 holds if for every
& > 0, there exists Ny such that for n > Ny,

(3.5 P1(X, Y1Z) < pp,.q.(Z) + A1
for some Aj such that E|Aq| < . To find such a A, we will first look for a

pair (fu, &m) € So such that E(f,gm|Z) ~ p1(X,Y|Z), and then find (f,7, g;) €
SO,pn,q,, such that (fn*’ g;zk) ~ (fm» gm)- Take

3.6)  A1=E(fugmlZ) — E(f,;8y12) + p1(X. Y|Z) — E(fingm|Z),

then (3.5) holds and E|A | can be made small if m and n are large enough.

To find (fiu, gm) € So such that E(fingmlZ) ~ p1(X, Y|Z), let {(fn, gn)}5=y
be a sequence in Sp such that {E(f,g,|Z)} is an increasing sequence and
lim,— 00 E(fngnlZ) = p1(X, Y|Z). Let Az = p1(X, Y|Z) — E(fngnlZ), then
lim,— 00 E|A2 | =0, which implies that for every § > 0, there exists m such that

(3.7) E|Ay | <38.



TESTING CONDITIONAL INDEPENDENCE 2055

To find (f,, &%) € S0,p,.q, Such that (£, gr) 2~ (fim, gm), note that it follows
from (3.1) and (3.2) that for n > N, there exists some (fy,1, gn,1) € S1,p,.q, Such
that

(3.8) E(fm — fa,1)?> <8 and (JE(gm — gn,1)> <8.
Let fu2(X, Z) = fu1 (X, Z) — E(fu,1lZ), gn2(Y, Z) = gu1(Y, Z) — E(gn,112),
w2(X, Z
MX,z2)= LQ)I(o,oo)(E(f,izlz))
VEU21Z)
and
n2(Y, Z
g (Y, Z)= gn2, 2) I(O,oo)(E(g;%,ﬂZ)),

VE(@&r,12)

then it follows from (3.3) that (f,", g) € So, p,,,¢,- T0 see that (f,, g7) ~ (fin, &m)»
let A3 = f,, — f,F and Ay = g,, — g\, then it can be shown that

(3.9) EA} < 168% 485
and
(3.10) EAZ < 168% +85.

Below we will verify (3.9) only since the verification for (3.10) is similar. Write
A3 = fm = fo2+ fn2— f;, then by (3.8),

(3.11) E(fm — fa2)? <48?

since E(fin — fn,2)* < 2(E(fn = fu.1)> + E(fa1 — fr2)?) and (fu1 = fn2)* =
(E((fn = fa.DIZ))* < E((fm — fa.1)*|1Z). Also,

E((f = f1221Z) = (1 = VE(f2112)) 10,00 (E(£2,12))
<|1—E(f;,2)]

=E((fn — [1.2)*1Z) = 2E(fu(fn — fa.2)|Z)|
< E((for = fa?12) + 2 E((fin — fa212).

SO

(1D E(for— £ < E(fm — fo2)? +20ECm — fan)? S 482 + 45,

Therefore, (3.9) follows from (3.11), (3.12) and the inequality £ A% <2(E(fm —

fa2)* + E(fu2— £D7).
Finally, the Ay in (3.6)is E(f,)A4|Z) + E(gA3|Z) + E(A3A4]Z) + Ay, SO
it follows from (3.9), (3.10), (3.7) and the Cauchy inequality that

E|A1] <3y/1652 + 85 + 6.
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For ¢ > 0, one can choose § so that 34/1682 +88 + 8§ < ¢, then E|A| < ¢ as
required. The proof of Fact 2 is complete. [

Based on Fact 2, it is reasonable to estimate p; (X, Y |Z) using an estimator for
Pp,q(Z), where p and g are large. To estimate p, ,(Z), the following assumption
is made:

(A1) There exists a version of the conditional distribution of (X, Y) given Z such
that for every bounded function g(X, Y), E(g(X, Y)|Z) calculated using that
version is a continuous function of Z.

From now on, we will use the version of conditional distribution in (A1) to obtain

E(g(X,Y)|Z = 7) for every bounded g and every z in the range of Z. It for each

(p,q), 1<i<p, 1=<j=<gq,|¢pil <1and |y ;| <1, then each element in

Xp,p(2), Xy q(2) and Xy y p 4(2) is a continuous function of z, and p 4(2) is
T . .

maxg pa’ Ly y, p.q(2)b, where the maximum is taken over all vectors a and b such

that

a' Ty ,(2)a=1=b"%y ,(2)b.

To estimate p, 4(z), we consider the estimator
A T &
Pp.q (z) = n;llabxa Eqﬁ,lp,p,q (2)b,

where the maximum is taken over all vectors a and b such that
alS¢ p(a=1=b"%y ,(2)b,

and EA]¢, »(2), EAJ¢,¢, p.q(2) and f)w,q (z) are obtained by replacing the conditional
expectations in Xy ,(z), Ly y, p,q(z) and Xy 4(z) by their kernel estimators.
Specifically, each element in Xy ,(z), X¢ y, p,q(z) and Xy ,(z) is of the form
EWUV|Z=2z)— (EWU|Z=2)(E(V|Z =2z)), where U and V are functions of
XorY,soeachof E(UV|Z=2), E(U|Z=z) and E(V|Z = 7) is of the form
E(g(X,Y)|Z = z), which is estimated by
n
(3.13) E(g(X, Y)|Z=Z) déf Zi:l gn(XtaYz)kh(Z Zl)’
i=1 kn(z —Z;)

where kj,(z) = h~%ko(z/ h) and kg is a kernel function on R? satisfying certain
conditions which will be specified later. For each z € Z, to make p, 4(z) a rea-
sonable estimator for p1(X, Y|Z = z), we will take p = p,, g =g, and h = h,,,
where p, — 00, g, — oo and h, — 0 as n — oo. The estimator p, 4, (z) will be
abbreviated as p(z) foreach z € Z.

The estimator p(z) can be expressed in a different form that is easier to analyze.
Let X, and Y, be random vectors of length p,, and g,, respectively, such that given
the data (X1, Y1, Z1), ..., (X, Yu, Z,),

X, ¥y = @p, 1 (X0)s oo B pn (XD Wi 1 (Ye), < s Y gn (Ye))
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with probability k,(z — Z¢)/ >} kn(z — Z;) for 1 < £ <n. Then f]¢,,¢,,p,q (1) =
EX. Y] —EX.EY!, Sy ,(2) = EX. X — EX,EXI and £, ,(z) = EY,Y] —
EY.EY], where the expectations are conditional expectations given the data.
Therefore, the estimator p(z) is the largest canonical coefficient from the centered
canonical analysis between X, and Y,. Note that it follows from (3.3) that

T T
(3.14) ay Xx=1=b, Y,
where
= T and b,.=( b T
An,« = (Ap,,0,1, -+ -+dp,.0,p,) an nx = (bg,,015 -5 Dg,.0.4,)"

s0 p(z) can also be obtained from the noncentered canonical analysis between X
and Y,. Let

Vi,1(2) = (E($p,,i X)$p,. (XIZ=2)), s
Vi22) = (E(p,,i X)Wq,, i NIZ=2)), 0,
V2.2(2) = (E(Yg,.i V)Y, i (VZ =2))

forl<i,j<2,let ‘71 j(z) be the estimator of V; ;(z) obtained by replacing the
conditional expectations in V; ;(z) by their kernel estimators as in (3.13). Then

Vl,l(z) = EX*Xf, \71,2(2) = EX*Y*T, \72,2(1) = EY*Y*T, so p(z) is the square
root of the largest eigenvalue of the matrix
V2@ Vs (@ Vo 1@ V112" = Vii(@)ansar .

Also, pp, 4,(2) is the square root of the largest eigenvalue of the matrix

Vi2(@) V55 (@ V2 1@ V11(2) ™" = Vi1(R)an sar,.

To simplify the above matrix expressions, some notation is introduced as fol-
lows. For a (p, + qn) X (pn + gn) matrix U, express U as

(Ul,l U1,2)
Ui Uapn)’
where the dimension of Uy 1 is p, X p,. For 1 <i, j <2, let g; ; be the mapping

that maps U to U; ;. For a p, x 1 vector a and a (p, + g») X (pn + q,) matrix U,
define

_ T
Gn Xqn and V5 1(2) =V12(2)

gU,a) =g12(U)g22(U) g2 1 (U)g11(U) ' = g1.1(U)aaT,
if g2.2(U) and g1,1(U) are invertible. Let
Viiz) Wi 2(2))
V@) =( . ’
@ (V2,1(Z) Vas(2)
and

5oL Vi@ Vip@)
Ve = (Vz,l(z) \72,2(1)) ’
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then p(z) is the square root of the largest eigenvalue of g(V(z), an,x) and pp, 4. (2)
is the square root of the largest eigenvalue of g(V (z), ay.+).

The matrix g(V(z), an.x) can be replaced by a different matrix if basis change
is performed. That is, suppose that

¢=(¢pn,1’---’¢pn,pn)T and =Yg, 15, quqn)T

are replaced by ¢* = Pj¢ and ¥* = Q1 respectively, and V (z) becomes V*(z)
after such a change is made. Then p(z) is also the square root of the largest eigen-
value of the matrix g(V*(z),a*), where o™ = (Pl_l)Tan,* is a vector such that
(@*)T¢* = 1. To make the expression for g(V*(z), «*) simple, the matrices P,
and Q1 are chosen so that

(3.15) pi=1=y7.
81.1(V*(z)) and g2.2(V*(z)) are identity matrices, and for 1 <i < p,and 1 <j <
dn,

(3.16) E(¢f(X)Wi(N)|Z=2)=8;;

where ¢ and w;‘ denote the ith element in ¢* and the jth element in ¥*, re-
spectively, 8; ; denotes the Kronecker symbol and the A;’s are the eigenvalues of
g(V*(z), a®). Note that («*)T = (1,0, ..., 0) with the above choice of P; and Q.

3.2. Asymptotic properties and a test of conditional independence. In this sec-
tion, we will give asymptotic properties of the estimators p(zx): 1 < k < nz, where
the zx’s are distinct points in Z. First, we will establish the consistency of the esti-
mators, which relies on the fact that for each k, the two matrlces g(V* (zk) ™) and
g(V*(zx), @) are close, and their largest eigenvalues are p 2(zx) and 'Opm an (zx).

The difference between g(V*(zk), a*) and g(V*(zx), @*) depends on the differ-
ence of V*(zk) and V*(zr), and the difference between some conditional ex-
pectation E(g(X,Y, Z)|Z = z) and its kernel estimator E(g(X, Y,Z)|Z=2) =
Y wo,i(2)g(Xi, Yi, 2)/ X wo,i(z), where woi(z) = ko(h,'(z — Z;)). To
make it easier to derive the asymptotic properties of E (g(X,Y,2)|Z =z), some
regularity conditions on the distribution of (X, Y, Z) are imposed as follows.

(R1) There exists a o-finite measure y such that for every z € Z, the conditional
distribution of (X, Y) given Z = z has a p.d.f. f(-|z) with respect to i. Also,
Z has a Lebesgue p.d.f. fz,and f(x, y|z) and fz(z) are twice differentiable
with respect to z.
(R2) There exists a function z on X’ x ) such that
)

f(x yI2)|, o7

supmax(|f(x y|2)|, max

€2 <i=d

<h(x,y)

.f(x, y12)
Zj

_Jd

and [h(x,y)du(x,y) < oo.



(R3) There exist constants cg and ¢ such that
2

0
B_ZifZ(Z)

fz(2)
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sup maX(I fz(z)], max
€2 I<i<d

)SCo
and 1/fz(z) <cjforze Z.

Note that (R2) implies condition (A1) in Section 3.1. For the kernel function kg,
conditions (K1) and (K2) are assumed. The notation | - | denotes the Euclidean
norm for a vector or the Frobenius norm for a matrix.

(K1) ko > 0, sup, ko(u) < oo, [ko(u)du =1, [uko(u)du = 0 and crg =

[ lulPko(u) du < oco.
(K2) There exists positive constants > and y3 that does not depend on d such that

’

X
1<i,j<d|0z; 0Z;

ko(a) < ()/z)de_y3||"||2 for every a € RY.
REMARK. If kg is a product kernel of the form ko(z1,...,zq4) = koo(z1) - -
koo(z4), and
koo(x) < yze_y3x2 for every x € R,

then condition (K2) holds.
Assume the above conditions, then it is possible to control the difference be-
tween V*(zx) and V*(zx) using the following result.

LEMMA 1. Suppose that conditions (R1)—(R3) and (K1)—(K2) hold. Sup-
pose that fu1,..., fak, are functions defined on X x Y x Z, where X, Y
and Z are the ranges of X, Y and Z, respectively. Let fz be the p.d.f. of Z,
fz(2) = hH=' 0 ko(hy Y (z — Z0)) for z € Z and cx = 1/ [k} (s)ds. For
z€ Z,let w;(z) = n_lh;dwo,i(z)/fz(z)for 1<i<nand

Wh,j(2) = \/”hﬁchz(Z)«Z w; (2) fn,j (Xi, Yi, Z)) —E(fu,;j(X.Y,2)|Z= Z))

i=1

for 1 < j <ky. Suppose that {h,};° , and {e,}°2 | are sequences of positive num-
bers such that
c3n”* <h, <czon™“

for some positive constants ¢3,1 and c32 and 1/(d +4) <o < 1/d, and h, /e, =
O (n=P) for some B > 0. Let

3.17) Z(en):{zeZ:{z/eRd:||z/—z|| <en} C Z}
and suppose that z1, . .., z,, are points in Z(&,) such that

(3.18) lzk — zix |l = hn for 1 <k,k* <nz and k # k*
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for large n and

(3.19) max sup | fn,j(x,y, 20| < Cp for some Cp, > 1.
l<k=nz (x,y)EX XY

Suppose that k,nzC, = O((lnn)]/lé). Then there exist Wy 1 jx and Wy 2 ji:1 <
J < kn, 1 <k < nz such that the joint distribution of Wy 1 jx + Wn2 ji’s
is the same as the joint distribution of Wy j(zk)’s, ZI;”: LD RE W,%z ik =

0p(exp(—(lnn)l/9)), and Wy 1 j i’s are jointly normal with EW,, 1 j =0 and
for1 <jl<k,andl <k, k*<nyz

CovWy.1,j.k> Wa,t,e.k%)

_ {COV(fn,j(Xv Y, z21), fu (X, Y, 20)|Z = zx), ifk=k*;
0, otherwise.

The proof of Lemma 1 is given in Section 7.1.

The differences between V*(zx)’s and V*(zx)’s can be controlled by apply-
ing Lemma 1 and taking the f, ;(X,Y,z)’s to be the functions ¢;(X)¢; (X),
¢ (X) Y, (Y) and ¥, (Y)Y, (Y), where | <€ < < p, and 1 <m <m’ <g,.
In such case, (3.19) holds under the following conditions.

(B1) Foreach (p,q), |¢ppil <land |y ¢l <1forl<k<pandl=<{=<gqg.

(B2) There exists {§,}: a sequence of positive numbers such that for 1 <k <ng,
the smallest eigenvalues of the matrices Vi 1(zx) and V;2(zx) are greater
than or equal to §,,.

Under the above conditions, the p(zx)’s are consistent, as stated in Theorem 3.1.

THEOREM 3.1. Suppose that (3.1), (3.2), (3.3), conditions (R1)—(R3), (K1)—
(K2) and (B1)—(B2) hold. Suppose that {h,};° | and {&,}7° | are sequences of
positive numbers such that

c3n ¥ <h, <czon™®

for some positive constants ¢3,1 and c32 and 1/(d +4) <a <1/d, and hy, /e, =
O(n_ﬂ)for some > 0. Suppose that z1, ..., z,, are points in Z(¢,) [defined in
(3.17)] such that (3.18) holds and

(3.20) nz(pn+gn)> max{1, 8, (pn + gn)} = O((Inm)'/'%).

Then

(3.21) HZZ(ﬁ%zw — 020 @) = Op((hD) ™ (Inn) /%)

and -

(3.22) (l; a0 - kZI 200k, (Zk)>2 —0p (%)
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The proof of Theorem 3.1 is given in Section 7.2. .
The next result deals with the asymptotic distribution of ZZi 1 Jz(zi) ﬁz(zk)
when X and Y are conditionally independent given Z.

THEOREM 3.2.  Suppose that the conditions in Theorem 3.1 hold and X and
Y are conditionally independent given Z. Then there exist random variables f,
p5%(z) and i1 <k < nyz such that ZZil fip>(zx) has the same distribution as

PR fz(z)p2(zx) and

nz ny
nhick 3 fip*(zx) — Y A = Op(exp(—0.5(Inn)" /%) (Inn)*/32),
k=1 k=1

where the Ay ’s are independent and each Ay has the same distribution as the largest
eigenvalue of a matrix CCT, where C is a (pn — 1) x (gn — 1) matrix whose
elements are i.i.d. N(O, 1).

The proof of Theorem 3.2 is given in Section 7.3. The result in Theorem 3.2
is similar to that in Lemma 7.2 in [3]. The difference is that the asymptotic result
here is derived as the sample size n, p, and g, all tend to oo, while in [3], the
result is derived as n tends to oo, but p, and g, are held fixed.

Theorem 3.2 suggests the test that rejects the conditional independence hypoth-
esis at approximate level a if

nz

(3.23) nhick Y f20p* @) > F,), (1 —a),
k=1

where F,, , 4 is the cumulative distribution function of Y}, A¢.

One can estimate Fn_z1 », q(l — a) in (3.23) using simulated data, but it is also
possible to use a normal approximation. Since the Ax’s are i.i.d., the central limit
theorem suggests the asymptotic normality of > ;% Ax and >}%, fz ) p*(z0).
The following corollary gives the conditions that guarantee the asymptotic nor-

mality of 3347, fz(zi)A* @)-
COROLLARY 1. Suppose that the conditions in Theorem 3.1 hold

3.3
lim Dol =0
n—>00  /nz(max(pn, gn)'/3

(3.24)

and (1) or (ii) holds:

(1) gn = h(pn), where h is an increasing function such that lim,_, h(p)/p
exists and is greater than or equal to 1.

(i1) pn = h(qn), where h is an increasing function such that limy_, o h(q)/q
exists and is greater than or equal to 1.
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2
Pn>qn

matrix CCT in Theorem 3.2, respectively, and let the \;’s be as in Theorem 3.2,
then

Let jup, 4, and o be the mean and variance of the largest eigenvalue of the

1/6
(3.25) (max(pn, qn)) —0()

Opn.gn

and

nz
Zk:l )“k - nZMPnJ]n

2
V2O b, gn

If X and Y are conditionally independent given Z, then

(3.26) BENO D) asn— .

l’lthK ZZil fZ(Zk)b\z(Zk) - nZl’me%l

2
nZO_pn,Qn

(3.27) ENO, 1) asn— 0.

The proof of Corollary 1 is given in Section 7.4. Corollary 1 gives the test that
rejects the conditional independence hypothesis if

nhZCK ZZi] fZ(Zk)ﬁz(Zk) - nZ“qun

2
V129, qn

where & is the cumulative distribution function for the standard normal distri-
bution. Here, wp, 4, and ‘71%”, ¢, can be approximated by the sample mean and
variance of a random sample from the distribution of the largest eigenvalue of the
matrix CCT.

To distinguish the two tests mentioned above, we will refer to the test with
rejection region in (3.28) as test 1N and the test with rejection region in (3.23) as
test 1. Note that under the conditions in Corollary 1, test 1 does not differ from

test 1N much since the rejection region for test 1 can be written as

(3.28) >d (1-a),

nhick 32 f2@0) @) —nzitp, q,

[
nZUp’l’qll

>+ o (1 -a),

where
F-l (1—a)—ny
(3.29) [ = 1zPd Rovdn _ =11 — a) = o(1)
nzagnvqn

by (3.26). Therefore, both tests 1 and 1N are of asymptotic significance level a.
Below we will discuss the consistency and asymptotic power of test 1N only since
the same properties of test 1 can be established similarly using (3.29).
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Suppose all the conditions in Theorem 3.1 hold, then test that 1N is also con-
sistent if the z;’s are chosen in a way such that there exist a constant ¢3 > 0 and a
sequence {1y}, such that n; , > 0 for every n, lim, s 11,, =0 and

nz

1 2 _p2 _
(3.30) s Z fz(zi) 03, 4. (@) — c3Ep;, o (Z) =0p(N1,n).
k=1

To see that test IN is consistent, note that 0 < up, 4, < Etr(C CTy and al%m P

E(tr(CCT))2, where CCT is as in Theorem 3.2. Therefore, M ppgn = O(Pnqn)
and o) = O(ppqy). Then it follows from (3.22), (3.30) and Fact 2

that n,' Y02, fz(z)p* () — c3Ep}(X,Y|Z) = Op((nn)>3/nz /nhd) +
op(nn) +3Epy o (Z) — c3Epf(X,Y|Z) = 0p(1), 50

nhfch ZZi] fZ(Zk)ﬁz(Zk) —NZHp,.q,

2
VIZOp, gn

- Jz(nhick (c3Epf(X,Y|Z) +0p(1) + O(pagn))
- €2,1Pnqn ’
where c¢2.1 > 0 is a constant. Thus, the left-hand side in (3.28) tends to oo as
n — oo when E,olz(X ,Y|Z) > 0, which implies that the probability that (3.28)
holds tends to 1 if X and Y are not conditionally independent given Z.
Test 1N can also reject an alternative where Eplz% q”(Z) is small under the

conditions in Theorem 3.1. Indeed, for {n; ,}°; such that n;, > 0 for every n,
lim,,— 00 711,» = 0 and (3.30) holds, if

max(n1 ., (Inn)>32/(nz,/nhd))
2
Eppn J{n (Z)
then the probability that (3.28) holds tends to 1 since

(3.31) =o(l),

nhdckx Y02 f2(z0)p*(2k) — nzihp,. g,

nZO_l%Vlsqn
> (./nz (nhch <C3 E'Ol%n»Qn (2)

0 ( (1nn)5/32

nz1/nhg
x (c2,1Pnan) ",

where pugn/(nhyEpy, 4. (2)) = O((nm)'/'%/(nznhEp}, . (Z))) = o(1) by
(3.20) and (3.31), and puqn/(y/AznhiEps , (Z)) = o(1). In summary, test IN

) + op(m,n)) + 0(pnqn>))
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can reject an alternative where E ’012711 n (Z) tends to zero at a rate that is slower than

max(n1 n, (lnn)5/32/(nz,/nhﬂ)), where 11, is determined by (3.30). An example
that satisfies (3.30) and the conditions in Corollary 1 will be given in Section 4. In

that example, 1 , = Pilngl/d'

4. An example. In this section, an example is given to illustrate the verifica-
tion of the conditions in Corollary 1, assuming (R1)—(R3) and the condition that
there exists a positive constant ¢ 1 such that

fxiz(xlz) >c1,1 and  fy;z(ylz) > c11

forall (x,y,2) e X x Y x Z,

(4.1)

where fx|z(-|z) and fy|z(-|z) are conditional probability densities of X and Y,
respectively, given Z = z, with respect to Lebesgue measures.

EXAMPLE 1. Suppose that X, Y and Z are random vectors that take values in
[0, 119, [0, 11% and [0, 11¢, respectively. Suppose that (R1)—(R3), and (4.1) hold.
Choose the basis functions as follows. Let A be the set of all positive integers and
A k) ={mk:m €A} forke A. Fork,iy,...,ir € A and hg > 0, let

k
Rk hgsitsnis 1 - xi) =[] La; 4y (xj)  for (a1, ;) €10, 1,
j=1
where
Ain :{<h0(ij_1)»h0ij], ifij>1;
R0 Tho(ij — 1), hoij], ifij=1.

For p,q,r € A, let

(bpitl <i<pYy=1{hg pvae i 1 <it....igq, < p'%),
Wojil<j=al="{hy vy g, 1 S0t ia, <q"'™)
and
Ol <k <ry={hg,va; i 1<it,....iq <r'/?).

Take kg to be the product kernel function such that

ko(z1, ..., za) =koo(z1) - - - koo(za),

where koo is the probability density function for the standard normal distribution.
Let hy, =n"?, where 1/(d +4) <a < 1/d. Let n% to be the largest number in
A(d) such that n% < (Inn)'/32, and let

. _ 2 id . . . x~\1/d
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sonz = ((n})l/d — 14, Suppose that {py} is a sequence in A(dy) N A(dy) such
that lim,,_, 5, py, = 00 and q, = py. If

(4.2) Py <nz,
then all the conditions in Corollary 1 hold. If
(4.3) Pyt <n)?,

then (3.30) holds with 1 , = pilngl/d.

PROOF. We will first show that all the conditions in Corollary 1 hold assuming
(4.2). Itis clear that (3.1), (3.2) and (3.3), and conditions (B1), (K1) and (K2) hold.
To find the &, in condition (B2), note that for z € Z, the smallest eigenvalue
of Vi,1(z) is the minimum of {E (¢, i(X)|Z =z):1 <i < p,}, which is the min-
imum of {E(h, ya, . (OIZ=2):1<i1,.... g, < /%) Under (4.1),

formeAand1<iy,...,ig <m,

E(hay 1 /m.iy...iq, X Z =2)

i1/m ig,/m c1q

— / fx|Z(x1,...,XdX|Z)dxdx..-dx1 > L’Z’ .
r=0/m Jlig=1)/m "

Take m = p,i/ d‘, and we have that the smallest eigenvalue of V7 1(z) is at least

¢1,1/pn. Similarly, ¢1,1/ps is also a lower bound for the smallest eigenvalue of
V».2(2) and (B2) holds with 8, = c1,1/ p,. Furthermore, (3.20) holds since

nz(pn + qn)? max{1,8, (pp +qn)} = O(nzp}) = 0(n%).

Finally, the z;’s are in Z(g,) with &, = (n%)~Y4 and h,/e, = O(n™F) for
O0<pB<a. Forl<kk*<ngz, and k #k*, ||zx — zx*|| = (n})_l/d >n"% so
(3.18) holds. Also, (3.24) holds since

Pf,%}{ — 13 P_%zzo(l)
nz(max(pn, g.)'/3 " nz '
v Pnq

Therefore, all the conditions in Corollary 1 hold for this example.
The verification of (3.30) is based on the fact that there exist positive constants
c4,1 and 7o such that

@4 pp 0@ =05 o @I <caipytlz—21 if pillz—2ll <no.

Below we will first check (3.30) assuming that (4.4) holds and then prove (4.4).
Suppose that (4.3) holds. Let g,(z) = fz(2) ,of,n’ n (z). Since fz is Lipschitz con-
tinuous, (4.4) implies that there exists a constant c4 2 > 0 such that

lgn(2) — gn (@) <cappilz =2 if plllz— 2l < no.
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Let {z14n,, - .,zn*z} be the set
i id . . 1/d ¢
1 <iy,...,.ig < (nZ) }ﬂ{Zk:ISkSnz},
K(n})'/d (n})‘/d> d
then

<Zk>(( *)1/d>d—fzgn(z)dz

if pg (n})_l/ d - no. Since |g,(z)| < cg by (R3) and there exists a positive constant
c4,3 depending on d such that

1 1/d
< 2C4,2P,111\/3<n—*> )
Z

T
=1 ifd=1,

we have

L [z f2()p> . (2)dz
1 2 _ Pnsqn
nz ;fzm)p,,,,,%(zm i

oz (nz ;gnm) /Z gn(z>dz)

_M+<_Z_ )/ gn(2)dz

nz
ny—nz
e+ [ 1a’z)<7>
Z nz

Zgn(zm [ antraz

nz ”Zk 1
C4,4Pn
for some constant ¢4 4 > 0 if pg(n})_l/d < 19. Since pn < nlz/d, Pn”z =o(1),
SO
o Jz f2)p}, 4, () dz I
~1 2 ZJZ )P pyogn Pn
ny D fz@py, 4. (k) — = OP( )
]g Pn.q fz 1dz nlz/d

and pl'n;"" = o(1). Take 01, = p}'n, " and c3 = (f5 1dz)™" = 1, then (3.30)
holds.

It remains to prove (4.4). Recall that for z € Z, ,012)”, g, (2) 1s the largest eigen-
value of g(V(z2), ay.+), as mentioned in Section 3.1. Thus, |'0127n,qn () — p[%mq” ()|
is bounded by [|g(V(2), an.«) — g(V(Z'),ans)|l. For 1 <i,j <2, let g;fj be as
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defined in (7.8) and let A; j = g;‘jj(V(z/)) — g;fj(V(z)) for 1 <i,j <2, then from
the fact that ||AB|| < ||A|||| B|| for two matrices A and B, we have

Ig(V (@), an,) — g(V (2, an )l
2 2

2 2
(4.5) <[I1TTxUs ;cvent+iai;)—TTTT eV el
i=1j=1

i=1j=1
+ g1 (V@) — g1V @)llllanl1*.

The bounds for the || g;f j(V(Z))H ’s are derived as follows. Since the elements in
V (z) are bounded by 1 and the smallest eigenvalue of g; ;(V(z)) is atleast ¢1,1/pn
for 1 <i <2, we have

max(llg7 (V@) llg2,1 (V@)D < pa,

p2 Py

(cri/p)?

g (VE)I? <

and

p2

gz, (V@I < —.
cr.1

To find bounds for | g1.1(V(z')) — g1.1(V(2))| and | A;, jII’s, note that from (R3),
each elementin g; ;(V (z')) —gi,j(V (2)) is bounded by Vd [ h(x,y)du(x, y)|z—
7', s0

max( A1zl 1Azl g1 (VED) — gra (VD)
spnﬁfha,y)du(x,wnz—z/n.
For 1 <i <2, by Fact 4,

g (V@I gii (V@) = gi.i(V ()]
— g (V@ gi (V) — gii (V@)

if lg7; (V@) lllgii(V () — gii(V () < 1,50

1Al < 1

2/dp?
10l = =522 [ by dpte iz =2
1,1
if
Vdp} 1
(4.6) — [ h ez =1 < 5,
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To give a bound for ||a, «||, note that the smallest eigenvalue of g1 1(V(z)) is at
least ¢1,1/p, and at most

ap g1 1(V(@)ans 1
a;{*an,* ”an,*”z’
SO
Pn
lan, |l < .
1,1

From (4.5) and the above bounds for ||a,_ «||, the ||g;f/-(V(z))||’s and [|A; ;|I’s, we
have '

lg(V(2), ans) —g(V (@), an)ll < carpitlz = 2|l

for some constant cy4,1 if (4.6) holds. Therefore, (4.4) holds and the proof for the
results in Example 1 is complete. [J

5. Simulation studies. In this section, results of several simulation experi-
ments are presented. Those experiments are designed to demonstrate the perfor-
mance of test 1 introduced in Section 3.2.

In Section 3.2, test 1IN is also introduced, but no simulation studies are done
for it in this section. The reason is as follows. Test 1N is constructed based on
the normal approximation for ) ;Z, Ax. Using the parameter set-up in Table 2,
the selected nz is only 4 or 5 and the normal approximation for ZZi | Ak 18 not
expected to work well.

For simplicity, in all the simulation experiments here, X, Y, Z are one dimen-
sional and only the following distributions for (X, Y, Z) are considered.

M1) (X,Y) = (®(Zey), D(Zer)), where €1, €2 and Z are independent, Z fol-
lows the uniform distribution on [0, 1], and ¢; follows the standard normal
distribution fori =1, 2.

(M2) Z follows the standard normal distribution, and the conditional distribution
of (X, Y) given Z = z is bivariate normal with mean p and covariance ma-
trix X2, where

(0 (1 p(
©-1) “‘<0>’ E_<p(z) 1>

and the p(z) in (5.1) is taken to be a(]1 — 2®(z)|) with a € {0, 0.1, 0.3}.

M3) (X,Y,Z) = (®(Xg), D(Yy), P(Zg)), where Zj follows the z-distribution
with degree of freedom 1, and the conditional distribution of (Xy, Yp) given
®(Zp) = z is bivariate normal with mean p and covariance matrix X, where
@ and X are as in (5.1) and the p(z) in (5.1) is taken to be a(|1 — 2z|) with
a €{0,0.1,0.3}.
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Here, (M1) is used for parameter selection and (M2) and (M3) are used for check-
ing the power of test 1. In (M1), X and Y are conditionally independent given Z.
In (M2) and M3), p1(X, Y |Z =2) = p(z) and Ep;(X, Y|Z) is proportional to a.

The details of parameter selection are given in Section 5.1 and the experimental
results are given in Section 5.2.

5.1. Parameter selection. To apply test 1, certain parameters need to be cho-
sen, including the kernel function kg, the kernel bandwidth #,,, the basis functions
¢p,.i’s and ¥4, ;’s and the evaluation points z’s, which are chosen as follows.

(S1) ko and the basis functions ¢, ;’s and ¥, ;’s are chosen as in Example 1 in
Section 4 with p, = g, = 2. Since the basis functions are supported on [0, 1],
if X, Y and Z do not take values in [0, 1] [such as in (M2)], then the data
{(X;,Y:, Z;)}}_, will be transformed to {(®(X;), ®(Y;), P(Z;))}/_, before
applying test 1. The bandwidth #,, is chosen to be the / that minimizes

1-0.143p0121 )
(52) /O o EFz@ =1z

over (0, 0.5], where fz is the kernel density estimator based on a sample of
size n from the uniform distribution on [0, 1] with kernel kg and bandwidth /.
Below are the £,,’s used for different n’s.

The zi’s are points in [, = [0.143h2'121, 1-— 0.143h2'121] such that z; =
0. 143hg‘121 + (k—1)ho », where hg , is a given positive number. Here, the ¢,
is taken to be 0.143h0-121 5o the z;’s are chosen so that they are 0.1434912!
away from the boundary and the integral in (5.2) is over [0.1431%121 1 —
0.14340-1217,

With the parameter set-up in (S1), it remains to choose hg ,. The A, is chosen
to be the smallest multiple of 0.01 such that the distribution for the test 1 statistic
nhzc K ZZi | fk 5% (zx) based on 1000 samples of size n from (M1) is similar to the
distribution of ZZi 1 A (X 2 withny degrees of freedom), as stated in Theorem 3.2.
The one-sample Kolmogorov—Smirnov test is used to determine whether the two
distributions are similar. Below are the % ,’s used for n = 10,000 and n = 5000.

For the above procedure for selecting A ,, when n = 500 or n = 1000, it seems
that the distribution of nhcg 377, fxp?(zx) cannot be approximated well by the
distribution of Z',Zi | Ak» regardless what ho ; is used. To overcome this problem,
one may use local bootstrap to determine the rejection region.

The idea of using local bootstrap is to draw samples {(X[, Y*, Z)}!_, from
the distribution of (X*, Y*, Z*), where Z*’s distribution is close to the distrib-
ution of Z and the conditional distributions of X* given Z* = z and Y™ given
Z* = z are close to the conditional distributions of X given Z = z and Y given
Z =z, yet X* and Y* are conditionally independent given Z*. Therefore, if X
and Y are conditionally independent given Z, then the local bootstrap resamples
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TABLE 1
Selected hy,’s for different n’s

n 10,000 5000 1000 500

hy,  0.05935281  0.06525282  0.08533451  0.0983018

{(XF,YF, Z¥)}"_, should behave like a random sample from (X, Y, Z). One can

then compute the test 1 statistic nhfl CK ZZi | fk 02 (zx) for the original sample and
for each local bootstrap resample. If the statistic computed based on the origi-
nal sample is larger than (1 — a)% of the statistics computed based on the local
bootstrap resamples, then the conditional independence hypothesis is rejected at
level a.

The local bootstrap procedure used here is the same as the one proposed by
Paparoditis and Politis [8] except that here the Z;’s are not lagged variables. For
a given sample {(X;, Y;, Z;)}?_,, a local bootstrap resample {(X}, Y*, Z¥)}/_, is
generated as follows.

e Step 1. Draw a random sample (Z7, ..., Z) from the empirical cumulative dis-

tribution function F' 7, where
~ 1
Fz(z) = . Y M(—c0.21(2)
i=1

e Step 2. For 1 <i <n, for each Z; from Step 1, draw X} and Y;* independently
from the empirical conditional cumulative distribution functions F X|Z=2} and

Fy\z=zy, respectively, where

1y ko((ZF = Z)/5) ] o0.x,1(x)

ﬁ = *(x) = n *k
xXiz=z " ko((ZF — Zi)/b)
and
- i1 ko((ZF = Z) /D) —o0,v,1(Y)
Fyjz=z:(y) = =" L : : Coo Wil

iz1ko((Z7 — Zi)/b)

The parameters for test 1 with local bootstrap are chosen as follows. The band-
width b is taken to be h2'4, Pn =¢qn =2 and hg, = 0.4, where h, is as in
Table 1.

TABLE 2
ho,n’s for different n’s

n 10,000 5000

ho.n 0.16 0.2
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5.2. Experiments. The objective of the first experiment is to compare the
power of test 1 with that of a Hellinger distance-based test proposed by Su and
White [13]. The critical value for Su and White’s test can be determined using the
asymptotic distribution of the test statistic or using local bootstrap. To distinguish
between the two cases, we use test 2A to denote the asymptotic distribution-based
version of Su and White’s test and test 2B to denote the local bootstrap version.
While test 2B is recommended by Su and White [13], test 2A is used here to save
time for computation.

In this experiment, both tests 1 and 2A are carried out for 1000 random sam-
ples of size n = 10*, where the distribution of (X, Y, Z) is as in (M2) or (M3).
Under (M2), test 1 is applied to transformed data, as mentioned in Section 5.1.
Test 2A is applied to normalized data and the bandwidth parameter in the kernel
estimators in the test statistic is taken to be n~1/8, as in [13]. The power esti-
mates based on data from (M2) and (M3) with n = 10* are given in Table 3. The
asymptotic significance level is 0.05. It is shown in Table 3 that power estimates
for test 1 when @ = 0 and @ = 0.1 are larger that those for test 2A.

To explore the power performance of test 2B without actually running the local
bootstrap procedure, approximate critical values for test 2B under (M2) and (M3)
are used. To obtain these approximate critical values, note that under (M2) or (M3),
for large n, a local bootstrap resample for a = 0.1 or @ = 0.3 is approximately
distributed as a random sample for the a = 0 case, so the critical value for test 2B
can be approximated by the 95% sample quantile of the 1000 test 2A statistics
from the first experiment for the a = 0 case. Then the power estimates for test 2B
can be approximated by the proportions of the 1000 test 2A statistics from the first
experiment under different alternatives that exceed the approximate critical values.
The approximate power estimates are given in Table 4. Note that the approximate
power estimates for test 2B are often larger than the power estimates for test 2A in
Table 3, which suggests that test 2B is more powerful than test 2A.

To investigate the performance of test 1 when the sample size is smaller, in the
next experiment, power estimates for test 1 are computed based on 1000 random
samples of size n = 5000 from (M2) and (M3). The results are given in Table 5.
The results for n = 10* from the first experiment are also included for comparison.
The asymptotic significance level is 0.05 as before. Table 5 shows that test 1 is
more powerful when r is larger.

TABLE 3
Power comparison between tests 1 and 2A

a=0 a=0.1 a=0.3

Test 1 Test 2A Test 1 Test 2A Test 1 Test 2A

(M2) 0.049 0.028 0.65 0.076 1 0.95
(M3) 0.041 0.029 0.572 0.119 1 1
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TABLE 4
Approximated power estimates for test 2B

a=0.1 a=0.3
M2) 0.128 0.971
M3) 0.241 1

Finally, for smaller sample size such as n = 500 or n = 1000, since the approx-
imation in Theorem 3.2 does not work well, the local bootstrap version of test 1 is
considered. Here 1000 samples of size n from (M2) are used, and for each sam-
ple, 1000 local bootstrap resamples are used to determine the rejection region. The
level is 0.05. The power estimates for the test are given in Table 6.

In the above results, the power estimates for test 1 are larger when a is larger.
This is expected. Under (M2) or (M3), E,olzjm qn(Z) = E,og’z(Z) increases as a
increases (a € [0, 1]), so test 1 should be more powerful for larger a, if the ap-
proximation in (3.22) and (3.30) work. Table 7 gives the values of E,of,m n (Z) for

a = 0.1 and 0.3. For (M2), the calculation of Eplz,m n (Z) is done for the trans-
formed (X, Y, Z), which is obtained by applying the function & to the original
(X,Y, 2).

6. Concluding remarks. A test statistic for testing conditional independence
based on maximal nonlinear conditional correlation is proposed. Two tests, tests 1
and 1N, are constructed using the test statistic. Both tests are consistent and have
similar asymptotic properties, as discussed in Section 3.2. Some simulation exper-
iments are carried out to check the performance of test 1. The simulation results
show that when the sample size n = 10, the power of test 1 is comparable with
that of test 2A. The simulation results also indicate that test 1 has better power
when E,olz,m 4. (Z) 1s larger, as expected.

Below are a few remarks.

1. Equation (3.20) requires that p,, g, and nz grow slowly comparing to n. The

parameter selection result in Table 2 in Section 5 seems to agree with such a

TABLE 5
Test 1 power estimates for n = 5000 and n = 104

a=0 a=0.1 a=0.3

(M2) (M3) (M2) (M3) (M2) (M3)

n = 5000 0.052 0.039 0.373 0.321 0.998 1
n=10* 0.049 0.041 0.65 0.572 1 1
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TABLE 6
Power estimates for test 1 with local bootstrap

a=0 a=0.1 a=0.3
n =500 0.041 0.071 0.309
n = 1000 0.033 0.099 0.531

requirement. With n = 10%, nz is only 5 and p, = ¢, = 2. When p, =g, =3,
even with hg, = 0.4 (this corresponds to the smallest nz for n = 10%), the
distribution of the test statistic cannot be approximated well by the distribution
of Y02, Ak.

. The parameter selection criteria given in Section 5 needs to be studied to see
whether the asymptotic properties of test 1 still hold using such a criteria.

. When the distribution of the test statistic cannot be approximated well by the
distribution of >}Z, A, it is possible to use local bootstrap version of test 1.
However, it takes a lot of time to obtain the bootstrap resamples, so this ap-
proach is recommended when the sample size n is small.

. In all theorems proved in this paper, it is assumed that the (X;, Y;, Z;)’s are
i.i.d. It is also expected that test 1 works for some stationary weakly dependent
data such as the vector ARMA processes, where the central limit theorem for
the i.i.d. case still applies. However, to carry out the details in the proofs, one
needs the strong approximation result in Lemma 2, which is a stronger result
than the central limit theorem and requires a version of Lemma 5 that works for
dependent data.

. Test 1 can be modified to work for discrete Z. Modification is necessary since
the rate of convergence for each p(zy) is faster in the discrete case.

. In Lemma 1 and Theorems 3.1 and 3.2, the z;’s are chosen in Z(g;) so that
they are &,-away from the boundary, and it is assumed that k, /e, = O (n=P)
to ensure that certain error terms in the bias/variance calculation are negligible.
For implementation, the condition A, /&, = O (n=P) still leaves some room for
choosing &,. This problem can be eliminated by using a kernel function with
compact support, as pointed out by a reviewer. In particular, if the kernel func-
tion kg is supported on [—1, 114, then one can simply take &, = hj,. In such

TABLE 7
Ep},. 4, (Z) under (M2) and (M3)

a=0.1 a=0.3

M2) 0.001345575 0.01908246
M3) 0.002044604 0.01765322
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case, even though the condition 4, /¢, = O (n—"?) does not hold, the results in
Lemma 1 and Theorems 3.1 and 3.2 remain valid.

7. Proofs.

7.1. Proof of Lemma 1. Recall thatfor 1 < j <k,,

Wh,j(2) = \/”h%CKfZ(Z)(<Z w; (2) fn, j (Xi, Yi, z)) —E(fnj(X,Y,2)|Z= z)>.
i=1

To prove the asymptotic normality of W), ;(zx)’s, we will approximate W), ;(z)
using sums of i.i.d. random variables. For 1 <i <n, let wo;(z) = ko(h,jl(z -

Z;))and let fz(z) =n~'h 43" wo,(z). Then w;(z) = n~'h, wo i (2)/ fz(2).
For1 < j <k,,let

n

Wa,j (@) = (nhd f2(2) ")y (wo,i (@) f,j (Xi, Vi, 2)
i=1

— Ewi(2) fn.j(Xi, Yi,2))

and Wy x,+1(2) = /nhdck (f2(2)~V2(fz(z) — E f2(2)), then

Wi i) = 2 S @)+ e F2OE (X Y01z = (£ 1)
z\Z

fz(2)
ynhick f2(z)
+ - OO

(i E(wo,1 () fr.; (X1, Y1,2))

fz(z)
- E(fn,j(Xv Ya Z)|Z :Z)fZ(Z))
4
=Waj @+ Renj (@),
=1
where Wy, j(2) = Wy (2) = Wo k11 R E (fa j (X, Y, 2| Z = 2),
Rin,j(2) = ({Z(Z) - I)Wn,_f(z),
fz(2)
yrhick fz)
Ry, j(z) = —————(h, “E(w0,1(2) fu,j (X1, Y1, 2))
fz(2)

— E(fnj(X.Y,2D|Z=2) f2(2)),

Jnhdek E(fu (XY, 2N Z = 2)(f2(2) — f2(2))
f2@NTz@)

R3,n,j(Z) =
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and
d
nhécg

N fz(2)

We will complete the proof by showing that the following results hold for 7, =
exp(—(lnn)l/g).

(C1) X4 S02 (Chy Rew,j @) = Op(T).

(C2) There exist random variables Ny j; and €1 jx:1 < j <k,, 1 <k <ngz
such that the joint distribution of (Ny jx + €1,jx)jk 1s the same as
that of (Wn i(ZK))jks Niji’s are jointly normal with ENy jx = 0 and
COV(N1,jk Nie.kr) = Cov(Wi j(2i), Wae(zie)) and 47 302 62 =
0,(Ty).

(C3) There exist random variables Ny jx and &3 jr:1 < j <k,, 1 <k <ngz
such that the joint distribution of (N2 j x + €2,jx)j« is the same as that of
(N1,j,k)j k> Naji’s are jointly normal with EN jx = 0 and

Ryn () =— E(fu (X, Y, 2)|Z=2)(Efz(z) — fz(2)).

Cov(Ny,j ks N2 k)

_ {COV(fn,j(Xs Y, z21), fuo(X, Y, 20| Z = 2k), if k =k*;
0, otherwise,

anle 12 Ezjk—Op(T)

Note that Lemma 1 follows from (C1)—(C3) since one can construct random vari-
ables N2k, 82.jk» 81.jk and Rs . jx:1 < j <ky, 1 <k <nz on the same prob-
ability space such that the joint distribution of (1\72, j.ks€2,j,k)jk is the same as
that of (N, j k, €2.j.k) j.k» the joint distribution of (81 jx, Na.j.x + &2.j.k) .k is the
same as that of (1 j«, N1, jk);jk,» and the joint distribution of (Rs5 ;. Nz,j,k +
€, jk + €1,j,k)jk 18 the same as that of (ZL] Ry n,j(zk), Wn,j(zk))j,k. Take
Wal,jk= Nzijk and Wy, 2 jx =&, jk + &1,k + Rs5n,jk, then we have Lemma 1.

To establish (C1)—(C3), we need certain expectations and covariances, which
are computed below. Under (R1)—(R3) and the conditions that [ uko(u)du =0
and o = [ ||lull*ko(u) du < oo, for z € Z(s,), we have

(h) ™ E(wo,1(2) fu.j (X1, Y1, 2))

(7.1)
= E(f.j(X, Y, 2)|Z =2) f2(2) +7n.j.1(2)Cuh2,

where

w1 (2) =co/h<x,y>du<x,y>

X (2dc7020n,j,1 + Gn,j,zh;2(2 + hn))/f' CXP(—VSS%hZZ))v
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|6, 7,115 160n,j,2] < 1, and y4 and ys are positive constants that depend on y; and y3
only. Also, for k # k*, z, z; € Z(e,), we have

(h) ™% Cov(wo,1(zk) fu, j (X1, Y1, 26), wo,1(z6) fue (X1, Y1, 2k+))

= 0j 0.k (D) 72 (12)* exp(=0.5y3h, % |2k — 2|1 Cr
— 2@ fz@)E(fu, j (X, Y, 2 Z = 2) E(fa,e (X, Y, 23) | Z = zp+)
— f2@)E(fn,j (X, Y, 20)|Z = 2 )n.e.1(zks) Coht
— f2@)E(foe(X, Y, 2k)|Z = z-)rn, 1 () Cuy

— Fn j1 @O0 k) Cohy,
where [0 ¢k k+| < 1. Finally, for z € Z(ep),

(hH~ Cov(wo 1(2) fu. j (X1, Y1, 2), wo.1(2) fue (X1, Y1, 2))

(7.2)

= f2RE(fn,j(X, Y, 2) fe(X, Y, Z)|Z:Z)/k§(u)du+rn,j,€,2(z)cy%hn

— e f2E(fuj (X, Y, 2)IZ =2)E(fae(X, Y, 2)|Z =2)

o —hd2Cry 1) f2QE(fa (X, Y, 2)|Z =2)
— h32Cur12) 2 E(fu ) (X, Y.2)|Z = 2)
— A2 1 (@D (2)
and
(7.4) By E(wo 1 () fr (X1, Y1,2))° < Cleg / K (w) du,
where

.02 = 260 [ B, ) dnta, y><f/||u||k0(u)du+h 1y d e /h2>

for some positive constants y and y;7 that depend on y» and y3 only. Below we
will prove (C1)—(C3).

PROOF OF (C1). Let S, = Y3, (fz(z0) — fz(z1))? and A, = {/Sy <
min{1, (2c;)~'}}. From (7.1) and (7.3), ES, = O (nz(h} + (nh?)~1)) = O (nz(n x
hd) 1) and 1/fz(zx) <c forall k, P(A})) — 0 as n — oo. From (7.1), on A,,

inzz(DRenj(zm)

j=lk=1 \t=1

n Nz
< 0(1)( (Z > W,f,j(zk)) + kanzC(nhd*%) 4 k,,C%hﬁSﬁ),

j=1k=1
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and it follows from (7.3) that

kn nz
E(Z > W ,<Zk)) = 0(kunzCy).

j=lk=1
Take

k nZC2

Ty = + kynzC2nh@+4,

n

then (C1) holds with T, = exp(—(Inn)'/%) since Ty, = O(T},). O

The proof of (C2) is based on the following lemma, which deals with the normal
approximation of sum of i.i.d. random vectors.

LEMMA 2. Suppose that X1, ..., X, are i.i.d. random vectors in R with
mean O and variance X.. Suppose that there exist positive constants C, ay and a3
such that 1 < ar < a3 < C, | X1]| < C and E| X;||* < a,f for k =2, 3. Then for
T > 1, there exist random vectors S and Y on the same probability space such that
S is distributed as (X1 + - - -+ X)) //n, Y is multivariate normal with mean 0 and
variance ¥ and for n > (25/(16a3) + 25d;/12)C*T* exp(3T>/16),

P(S=Y[za)<a,
if

3
o DT gy TS gy o312
—_— ﬁ

_ The proof of Lemma 2 is given in Section 7.1.1. To prove (C2), note that
Wi, j(zk) = D01 (gn, jk(Xi, Yi, Zi) — Egn,j k(Xi, Yi, Z;))/</n, where

gn.j.k(Xi, Yi, Z;)
V€K (Zk - Zi)
J fz(ziohd n
X (fn,j (Xi, Yi,zk) — E(fn, j (X, Y, 2| Z = 2x)).
From (7.1)—(7.4), we have

n Nz 1/2
2 O(I)C «/k nz
(Z > (gn.jk(Xiu Yi, Zi) — Egn,jk(Xi. Yi, Z1)) ) < s

i=1k=1 hd

ke nz 1/2
2
(ZZ (gn.jk(Xi, Yi, Zi) — Egn,,,-,k(xl-,yi,z,»))> < O0()Cpknnz
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and

ky nz , 3/2\ 1/3

(E<Z Z(gn,j,k(Xi, Yi,Zi) — Egn,jx(Xi, Yi, Zy)) ) )

j=1k=1

< Covkanzh ;7 0(1).
Note that for every constant M > 0, the condition

2
n> <§ 4 25]?12”2 ) (Mcn\/ kn”Z) T3‘tne3T32’”/16
Jid

holds for large n with T3, = (Inn)'/8, so Lemma 2 is applicable. From Lemma 2,
(C2) holds with any 7}, such that 7> , = O(T,,), where

2k, knnz+3)TE, /4
(Cn’\/ knnZ)612 Zze( nz+3) 3 / T (48)2k””ze_yT3%"/(C’W knnZ)2
nh§ ’

T2,n =

y > 0 is a constant. Since 73 , = O (exp(—y1(In n)'/8)) for some constant y; > 0,
(C2) holds with T, = exp(—(Inn)'/%).
The proof of (C3) is based on the following result.

FACT 3. Suppose that A and B are d| x di nonnegative definite matrices.
Then
|VA—B| <d*/IIA=BI.
The proof of Fact 3 is given at the end of the proof of (C3). Note that Fact 3
implies the following: suppose that X and Yq are two d; x 1 normal vectors of
mean 0 and covariance matrices A and B, respectively. Let Z be a d; x 1 normal

vector whose elements are i.i.d. N (0, 1). Then VAZ is distributed as X and vBZ
is distributed as Y and

IVAZ - VBZ|* < |VA-VB|*12I? < &)*)1A - BIlIZ)?
= 0,(d*|A - BI).
Therefore, (C3) holds if Cov( Wn,_,- (zk), Wn,g(zk*)) is close to
Cov(fn, j (X, Y, 2k)s fn,e(X, Y, 2| Z = z) Sk i,
where & ¢+ is 1 if k = k™ and is 0 otherwise. From (7.1)—(7.4), we have

> (Cov(Wi, j(zk), Wae(zkr))
J.l,k,k*

— Cov(fu j (X, Y, 2, Fut (X Y, 201 Z = 2)8ka+)”
= h,C2(kanz)*O(1),
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so (C3) holds with T, = exp(—(Inn)!/?) since (kynz)*?\/hyC2(kynz)? =
O (exp(—(Inn)'/?%)).

PROOF OF FACT 3. Consider first the case where A is diagonal. Let D be a
diagonal matrix such that B = 0T DQ for some Q such that 0QT =1.Let D=
diag(Aq,...,Aq), A=diag(ay,...,0q,), Q=(qi,j)and E =B — A= (¢; ;). Let
g; be the ith column of Q, then qiTqu =aq;; j +e; j, where §; j =1fori =j
and §; ; =0, otherwise. Write Dg; = Z‘;l:l(qkT Dgj)q;, then

d

IVDax — owar|* = Z(\/qu‘j,k — Vaxg;x)

=l
d

:Z\/x q;k] — \/aqujkl ) lg;.x]

j=1

di
ZM ikl — aklqjxl|lg;l

di 1/2 , q 1/2
(Z i)k — OlkCIj,k)z) (Z 61,2',1()
j=1

IA

d 12
j=1

and

dy di
IVOTDO —VAI> =33 (¢! VDq; — 4l yajq;)’

i=1j=1
dy dy

<> IVDa; - vaia;|’

i=1j=1

dogdi \12
=di )] (Z eié)

j=1\e=1

di 172
§(d1)3/2(22e§,e) :

j=le=1

so the result in Fact 3 holds if A (or B) is diagonal. For general A and B, write A =
PTAgP and B = QT DQ, where Ag and D are diagonal and PTP = QT Q =1.



2080 T.-M. HUANG

Let By=PQOTDQPT, then we have

|vVA-+VB|=|P"VAP - 0"VDOQ|
= |VAo— POTVDOPT| <d}'*\/TAg — Byl

3/4 3/4
=d;’ \/||PTA0P — PTByP| =d;"*\/[A— B

The proofs of Fact 3 and Lemma 1 are complete. [J

7.1.1. Proof of Lemma 2. The proof Lemma 2 is based on several facts, which
are taken directly or adapted from some existing results and are stated/proved be-
low in Lemmas 3-5.

In the statements of Lemmas 3 and 4, (Sy, dp) is a metric space, I3 denotes the
collection of Borel sets in (Sy, dp), and for two measures 11 and o defined on B,
po(1e1, o) denotes the Prohorov distance of w1 and pp, which is defined as

po(i1, m2) =inf{e > 0: w1 (A) < ur(A€) + €, for all A € B},
where A€ = {x:d*(x, A) < ¢} and d*(x, A) = inf{dy(x, y):y € A}. Here are
Lemmas 3-5.

LEMMA 3 (Lemma 2.1 in Berkes and Philipp [1]). Suppose that P, and P>
are two measures defined on B and po( Py, P2) < o. Then there exists a probability
measure Q on the Borel sets of So x So with marginals Py and P, such that

Of(x,y):do(x,y) >a} <a.

LEMMA 4 (Adapted from Lemma 2.2 in [1]). Suppose that F and G are two
distributions on R with characteristic functions f and g, respectively. Then for
o €(0,1] and T > 0, the Prohorov distance po(F, G) < o, where

diy,—3T2/32 T\ —o?||ul?/2
a=0T +32")e + | — | f(u) —gu)le du
T

+F (s = 7).

PROOF. Let H be the N (0, 0%]) distribution on R, where I is the identity
matrix and o > 0. Let F be the convolution of F and H and G be the convolution
of G and H. Then
(1.5)  po(F,G) < po(Fi,G1) +2max{r, H({x:||x]| > r}} for every r > 0.

Let f1, g1 and & be the characteristic functions of F1, G| and H, respectively, and
let yr and y be the densities of F7 and G, respectively. Then

e = 7o) = @)~ [ e (fiw) - 1) du

< @m)~ f ) — g )| du,



TESTING CONDITIONAL INDEPENDENCE 2081

which implies that for every borel set B in R%!,
F1(B) — G1(B)
sFiBN{x:ix=TH -GiBN{x:llx =TH + Fi({x: x| =T}

< / vr () — yo @)l dx + F({x: x| = T/2})
{x:llxI<T}
+ H(lx:x] = T/2})

T\
< (;) flf(u) —g)lh)|du+ F({x:|x||>T/2}) + H({x: x|l = T/2}).

11

Note that /I is an upper bound for the Prohorov distance po(F1, G1), so for r <
T /2, it follows from (7.5) that

po(F,G) <II+2r+2H{x:|x| >r})
T\%
< (—) /If(u)—g(u)llh(u)ldu+F({x1||x|| >T/2}) +2r
T

+3P(x%(d1) = (r/o)?).

—o?|ull?/2

Since h(u) =e and

P(x2(dy) = A) < e M ES @)y
(7.6)
=348 (2‘11) for every A > 0.

Lemma 4 holdsif r =0T /2 and o € (0,1]. O

LEMMA 5 (Adapted from Theorem 1(a) in pages 204-208 in Gnedenko and
Kolmogorov [5]). Suppose that X1, ..., X, are i.i.d. random vectors with mean 0
and variance X.. Suppose that C and a are positive constants such that || X1| < C,
a < C and E|X1|* < d* for k =2, 3. Let f, be the characteristic function of
(X1+ -+ X,)//n. Then

0.25||u|?a?
N

Jn(u) —exp(—%uTZuM <
if lull < 0.4y/n)/C.

PROOF. Consider first the case where X is univariate. Let U = fj(u//n) —
1, then

e;kEX%( u )2
U= —
2 Jn
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and

EX%( iu >2 01E|X1|3< u >3
U:— - = +— - = ’
2 \J/n 3! Jn

where |6'] <1 and |0;| < 1. Suppose that |u| < (0.4/n)/C, then |U| < 0.1 and
log(1+U)=U +0.626,U2,
where 02| < 1. Let V = log f,(u) + E(X?)u?/2 = E(X?)u?/2 + nlog(1 + U),

then
v no E|X2u? (0628 (EX%( iu >2+01E|X1|3< u >3>2
= . n — | — —_—\| —
31n3/2 A2\ 3 \Vn

AlulPa’ ratut ama|ul rsa®ub
=———+0.62
6./n 4n 6(/n)3 36n2

_ lul3a? (M <A2a|u| ratu? A4a3|u|3>>

— +0.62
AR s T Ten 36y
where |Ax| <1 fork =1, 2,3, 4. Since alu|//n <0.4,

_ 63(0.25)|ul?a’

14

NI
where |63] < 1. Since ¢¥ =1+ 64|V |e!V!, where |64] < 1,
E X2 2
fMu):exp(—%)(l+94|V|e|V|)
_ exp(_E(Xlz)ul) +95<0.25|u|3a3)eIW_E(X%)uz/Z
2 Jn ’

where |65| < 1. To find an upper bound for | V| — E(X,z)uz/z, note that

U+ E(X?)u? _ 1611E X113 ul? - CEX3ul? - (0.4)u2E(X12)’
2 6/ RN 6
n|U|= 0§ [u’E(X?})/2 <u’E(X?)/2 and
In(log(1 +U) — U)| =0.62n|6,U?| < 0.62(0.1)(%)
since |U| < 0.1. Therefore,
w?E(X7)  |E(XDu? u?E(X?)

V-

> 5 +nU+n(log(1+U)—U)‘— 5

- 0.Hu’E(X?) N 0.062E(XDu® u’E(X?) <0

- 6 2 2
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and Lemma 5 holds for the univariate case. The result for the general case can
be obtained by applying the univariate result with # and X; replaced by |lu| and
Yi=u"X;/ul. O

Now we are ready to prove Lemma 2.

PROOF OF LEMMA 2. Let f, be the characteristic function of (X{ 4+ --- +
X,,)/+/n and g be the characteristic function of G, the N (0, ¥) distribution. From
Lemmas 3-5, there exist random vectors S and Y on the same probability space
such that S is distributed as (X + --- + X,)/+/n, Y is multivariate normal with
mean 0 and variance X and

P(IS =Y =) =a,

where
3 di)2 d
_ diy 312732 0-25a3 (2 T 200 W3/2
aj =0T +32%)e +—ﬁ - ca3 EOCd)
o\G2Td 0.16n0?
+2( = — P\ x"(d1) = + P(IIN(0, 2)|| = T/2).
T odi C?

From the facts that E (x%(d1))3/? < (E(x%(d1))?)?/* and P(IN(0, £)|| > T/2) <
P(x*(d1) > T?/(4a3)), (7.6) and the condition ay > 1, we have

0.25a3 /2\4/2 Tdi
w1 S 0T +4@ie T 4 22 (5) samCa+a

/2 7d
P 2\ £(2a’1)e—0.06n02/(C2)
T o '

Seto =T 1e3T°/32 then 0 <o < 1, T/o < 12¢7°/8 and 1/o < 3eT°/8, which,
together with the fact that 2/m)N/22d, + d12)3/ 4 <5, gives that

3
ap < (1+ 4(2d1))e—3T2/(32a§) + %(12)%@&3)#/8
n

+2(19. 15)d1 ed1T2/8670.06n02/(C2)

33.75a3
< — =
="

if 0.06n0%/(C?) > d\T?/8 + 3T?/(3243), which corresponds to n > (25/(16 x
a3) +25d1/12)C*T* exp(3T?/16) and we have Lemma 2. [

(lz)dle(lers)Tz/s+(48)d16—3T2/(32a§) <a,
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7.2. Proof of Theorem 3.1. To prove Theorem 3.1, we apply Lemma 1 by
taking the f, ;j(X,Y,z)’s to be the functions ¢;(X)¢} (X), ¢; (X)), (Y) and
U (V)Y (Y), where 1 <€ <€ < p, and 1 <m <m’ < g,. In such case,
(3.19) holds under conditions (B1) and (B2). To see this, for each 1 <k <ngz
and 1 < j < p,, let ¢;Z“’ ik be the jth component of ¢* when z = z;. Then

O ik =20 an i jkn,i(x) for some ay ; j i’s and

1=E((¢) ;s XNZ =2z)
Z= Zk)

Pn 2
=F ((Z an,i,j,k¢n,i (X)>

i=1

Pn
2
= On Zan,i,j,k’
i=1

50 |¢ ;L ()] < \/Zf’gl ay ;. j,k\/Zf’il ¢z (x) < v/pn/5,. Similarly, for each 1 <
k<nzand1<j<gqy,let w:,j,k be the jth component of ¥* when z = zi, then
|¢;‘7j’k(x)| < /qn/bn. Thus, (3.19) holds with C,, = max{1, (p, + ¢»)/é,} and it
follows from Lemma 1 that ZZi 1 V*(zi) — V*(zx) || has the same distribution
as Y32 (nhlck f7(z) " Witk + Wa2kll?, where the W, 1 ’s and W, 04’s
are random matrices such that each element in W, 1 is normal with mean zero
and variance bounded by C,% = (max{l, (p, + qn)/én})z, and ZZil ||Wn,2,k||2 =
OP(exp(—(lnn)l/g)). Therefore,

nz

(7.7) Y IV — VFEo P = 0p((mhd) ™ (Inn)'/®).
k=1

To control the difference between g(V*(zk), a®)and g(V*(zx), a®) for 1 <k <
nz,fora (p, + qn) X (pn + qn) matrix U, let

8i.j(U), if (@, j) = (1,2) or (2, 1);

(7.8) g (U) = g W), ifG, )=, Dor(2,2).

For 1 <k <ngz, let A jx = g} ;(V*(z)) — g ;(V*(z)) for 1 <i, j <2. Then
from the fact that ||AB]| < ||A|||| B]| for two matrices A and B, we have

lg(V*(zk), @) — g(V*(z1), )|
2 2 2 2
(7.9) <TT1TT0et;v* @l + 1Akl = T TT e ; (V@
i=1j=1 i=1j=1

+ g1 (V*@) — g1 (V@) lle* @)
To control the Aj 1, and Az 2 in (7.9), the following result is needed.
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FACT 4. Suppose that A is a p X p invertible matrix and A = A — I,. Then
IA=" = I, + Al < |A™" = I, || Al| and

_1 Al .
A _I””STIIAH Al < 1.

PROOF. Let B=A"!—1, Then B=—A — BA,so |B+ Al = |BA| <
[ BIIIIA]l. Also,

(7.10) Bl < [IA[CL+[IB])-
Apply (7.10) and we have

Al

1Bl = ———  ifllAl <L
I—=JA]l

Since |lo*|| =1 and for 1 <k <nz, g1,1(V*(2k)) = Ip,, 822(V*(zx)) = I,
and ||g1 2(V*@)I? = llg2.1 (V*(@)I> < (pn + qn), from (7.9) and Fact 4, we
have

> g (V*(zr), o) — g(VF(zp), ) |12
k=1

= 0p((nh L (nn) BnZ (py + qn)*)
= 0p((nh®)~(Inn)/%),

which gives (3.21) since | 5% (zx) — ,0,2;,,,,1,, (z0)] < llg(V*(zi), o) — g (V*(zx), )|
for 1 <k <nyz. (3.22) follows from (3.21) and the fact that ZZil(fz(zk) —
fz(zi)? is Op(nz(nhﬁ)_l). The proof of Theorem 3.1 is complete. [

7.3. Proof of Theorem 3.2. From Lemma 1, the joint distribution of &*(zk) :
1 <k < ngz is the same as that of V*(zx) + (nhick fz(zk)) " V2(Wy 1k +
Wi2k):1 <k <ngz, where

nz

(7.11) > IWa2kll* = Op(exp(—(Inn)'/?))
k=1

and W, 1 ’s are independent symmetric normal matrices of mean zero. To de-
scribe the covariance structure of each W, 1, let ¢* = (¢}, ..., ;‘,H)T, YUt =
(wf‘,...,w;‘n)T and let Vy be the (p, + ¢») X (pn + gn) Symmetric matrix
such that g1.1(Vo) = ¢*(X0¢* 07, g12(Vo) = ¢*(X)y*(¥)T and g22(Vp) =
VXYY For 1 <k <nzand 1 <m,€ < p, + qn, let Ugm.e and Vo m.¢
be the (i, £)th elements of W,, 1 x and Vj, respectively, then

Cov(Uk,m,e, Uk,m' 0r) = Cov(Vo,m,e, Vo,m 0| Z = z1)



2086 T.-M. HUANG

for (m, €), m', €'y € {(i, j):1 <i < j < (pn+qn)}. For 1 <k <ngz, let V; =
V*(zk) + (nhi ek f2(z0) ™2 (Wi 1k + Wa2,x) and
A1(zi) = g(Vie, @) g1 (Vi)
= g12(Vi) (g2.2(Vi) " g2.1 (Vi)
— g1.1(Ve* @) g1.1 (Vo).

and let ,53 (zx) be the largest eigenvalue of A (zx)(g1.1( Vi)~ !, then the joint dis-
tribution of ﬁz(zk) :1 <k <nyz is the same as that of ﬁg(zk) :1 <k <nyz. For
I<i,j<2and 1 <k=<ngz,letA; ;= g,-,j(Vk) — 8i,j(V*(zx)), then from (7.7),

nz 2 2

(7.12) SN S HAL kP = 0p (k)™ (nn) /¥y

k=1i=1j=1
and
A1(z) = 812V (@) (822(Vi) ™ 82,1 (V*(21))
— g1 (Ve @911 (Vi) + g12(V @) Az, 1k
(7.13) + A124821(V*(zk) + A2k A2 1k
—812(V*(zi) A2k Ao, 1k
— A1 2k8224821(V*(2k)) + Rin ks
where
Ripk=A12x(222Vi)™ = I,) Ao 1k
+812(V* @) (g22(V) ™ = I, + Moo k) Aok
+ A1,2,k(82,2(‘7k)_1 — Iy, + A2 k) 82,1 (V*(z1)).

To simplify the expression for A1(zx) in (7.13), we will make use of the following
properties.

(C4) The elements of the matrix g1 2(V*(zx)) are zeros except that the (1, 1)th
element is 1.

(C5) For (i, j) € {(1,2), (2, 1)}, gi,j (V*(zx))’s first row (or first column) is either
the first row or the first column of g j»(V*(zx)) for (i’, j') # (i, j).

(C6) The (1, 1)th element in g2 2(V*(zx)) is 1.

Here (C4) follows from the conditional independence assumption and (3.16), and
(CS5) and (C6) follow from (3.15). From (C6), g2.2(Vk) can be expressed as

- (1 B
82,2(Vk)—(Bk Dk)
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for some matrices By and Dy, so the (1, 1)th element of g, Z(Vk)_l is (1 +
Bl (Dy — BBl )™1By). Let J = a*(a*)T, then by (C4) and (C5), we have

g1.2(V* (@) (g2.2(Vi)) ' g2.1(V*(zp)) = (1 + Bf (Dx — Bk B{) "' By) J,

g12(V* @)A1k = J A1 1k and B BeJ = g12(V*(21))(A22.0)%82.1 (V*(20))s
so the expression for Ay (zx) in (7.13) becomes

Bl (D — Bk B) ™" — I, 1) Bid + 812(V*(21)) (A22.6)%82.1 (V¥ (2k))
— A1 1k812(VF @) g2 (V@) ALk + A12.k D21k
—812(V* (@) A2k A1k — D12k D22.482.1(V*(2k)) + Rink.
Let

Ar(z) = 812V (@0)(822(Wi 1)) 82,1 (V¥ (21)
— 811 (Wi 812V (@) g2.1(V* (k) 1.1 (Wi n k)
+ 812(W1n1)82.1(Win i) — 212V (2))822(W1n k) 821 (Win k)
— 812(W10.1)8220(W1n0)82.1(V*(21))

and
Roni =Bl (D — BB ™' —Ip,-1)BiJ
— (nhek f7(z)) " Ao (zi) + 812 (VF (@) (A2,2,0)7 82,1 (V (24))
—AL1x812(VF @) g1 (Vi @) A1k + A2k D21k
— 812V (@) A2 2k A2 1k — A21.kA22.k82,1(VF(2k)).

then

Az (zk)
7.14 Ai(zp)) = ————+R +R ,
(7.14) 1(zk) nhiex fr(0) Ln.k 2.0,k
where

exp(—(lnn)1/9)(lnn)1/8>

nz
(7.15) D (IR il + I R il®) = OP( (nh)?2

k=1
from Fact 4, (7.11) and (7.12), and a simple expression for A>(zx) can be obtained
as stated below in (C7), which follows from (C4) and (C5).

(C7) For1 <k <ngz, Ax(zp) = CkaT, where Cy is the p, X g, matrix obtained
by replacing elements in the first row and first column of g1 2(Wj k) with
ZEros.
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Note that from (C7), we have that

nz

Y 1A2@OIP = Op(nz(pn — 1)*(gn — D?) = Op((nn)'/®),
k=1

which, together with (7.14) and (7.15), implies that

nz

(7.16) Y A1) = Op((nhd) "2 (Inn)'/*),
k=1

and then it follows from (7.16), Fact 4 and (7.12) that

717 Y 1AL (Vi) T = A1) 12 = 0,((nh®) 3 (Inn) /).
k=1

For 1 <k <ng, let Ao« be the largest eigenvalue of A2(zx) and recall that ,Eig(zk)
is the largest eigenvalue of A (Zk)(gl,l(f/k))*l. Then by (7.14), (7.15) and (7.17),

nz

(7.18) Y (nhlek f2(z0)A3 @) — hox)’ = Op(exp(—(nn)' /%) (Inn)!/%).
k=1

Let fk, ,o(zk) and A :1 <k <nyz be random variables such that the joint distri-
bution of (fk 0(zx)): 1 <k <ny is the same as that of (fz(zk) o)) 1<k<
nz, and the joint distribution of (p(zx), Ax):1 < k < nyz is the same as that of
(Po(zk)s M0.k) 11 <k <nz.Note that from (7.18) and the fact that

nz

Y A2z 1? = Op(nz(pa — D(gn — 1?),

k=1

we have that

> nhilex 205 @) = O} (py = DX (gn = 1?) = Op((nm)/19),
k=1

so nhi 332, ((zx))* = Op((Inn)'/19),

nhick " f2z0)(p())* —nhicg fz(Zk)(ﬁ(Zk))z‘

k=1 k=1
nyz 1/2
<nhlck (Z(fz(zk) — [z (Zk>)2> Y (Bzr))?
k=1 k=1

= 0p((Inn)'/1%)(0p(nz(nnd)=1)1/2
= 0p((nh)~"*(Inn)>*?)
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and

nhick Y fu(p@))* =D ki

k=1 k=1

nhﬁck Z Fz(z) (P(zi))? — Z Mk

k=1 k=1
[by (7.18)] < Op((nh®)~V2(Inn)*3?) 4+ /nz(O0p(exp(—(nn)/?)(Inn)!/8))1/
= Op(exp(—0.5(Inn)""?)(Inn)*/3?).

< 0p((nh)~12(Inn)**?) +

The proof of Theorem 3.2 is complete.

7.4. Proof of Corollary 1. To prove Corollary 1, it is sufficient to establish
(3.25) and (3.26). To see this, let fk, 0 2(zx) and Ax:1 <k < nz be as in Theo-
rem 3.2, then

nhick Y32, f2@0)p* ) — NZH pn.gn

/ 2
nzapn 4n

d. Nz 7o)
I’lhnCK Zkil fklo (Z]() - nZlu’]’nsQn

/ 2
nZGPna‘]n
n oo~ n n
_ nthK Zkzl kaz(Zk) - Zkil Ak n Zki1 Ak —NzZlp,.q,

/ 2 / 2
nZGpn 4n nZGPn 4n

1 11

Suppose that (3.25) holds, then I — 0 almost surely by (3.24) and Theorem 3.2.
Also, (3.26) says that Il converges to N (0, 1) in distribution. Therefore, (3.27)
holds if (3.25) and (3.26) hold.

To establish (3.26), we will verify the Lyapounov condition

has the same distribution as

& E| 3
(7.19) lim > "‘—”‘P;’zl —0,
ARG (nzop, 4%

and then apply Lindeberg’s central limit theorem. Let A be the largest eigenvalue
of CCT. Then A < tr(CCT), where tr(CCT) is the trace of CCT, which follows
the X2 distribution with degrees of freedom m; , = (p, — 1)(g, — 1). Therefore,

EX < Er(CCTY)? =my p(my 4 2)(m1 0 +4),

which implies that E|A| — ip, 4,1° = O(p3gy), so (7.19) follows from (3.25) and
(3.26) holds.
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It remains to prove (3.25). Consider first the case where (i) holds. By Theo-
rem 1.1 in Johnstone [7],

Al — Un . .. .
(7.20) ——— converges in distribution as n — o9,
On
where
2
Mn:(\/q” _2+\/Pn_1)
and

1 1\
O'n:(\/Qn_2+\/Pn_1)<q _2+ ) .

pn—1
Here the limiting distribution is the Tracy—Widom law of order 1. Let F denote its
cumulative distribution function. Suppose that €, #; and #, are real numbers such
that #; < t; + € <t — €, which implies that F(#) > F(t» —€) and F(t; +¢€) >
F(t1). From (7.20),
P(M > pn + (2 — €)oun) = 1 = F(12)
and
P(h < pn + (11 + €)on) = F(11),

if n is large enough. For such n, we have

> min(F (1), | — F(02)) (12 — 11 — 2€)%0;
Gpn’qn Z 4 b

which gives (3.25). The proof of (3.25) for the case where (ii) holds can be done
by reversing the roles of p, and g;. The proof of Corollary 1 is complete.
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