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EFFICIENT ESTIMATION FOR A SUBCLASS OF SHAPE
INVARIANT MODELS

BY MYRIAM VIMOND

CREST-ENSAI, IRMAR

In this paper, we observe a fixed number of unknown 2π -periodic func-
tions differing from each other by both phases and amplitude. This semipara-
metric model appears in literature under the name “shape invariant model.”
While the common shape is unknown, we introduce an asymptotically effi-
cient estimator of the finite-dimensional parameter (phases and amplitude)
using the profile likelihood and the Fourier basis. Moreover, this estimation
method leads to a consistent and asymptotically linear estimator for the com-
mon shape.

1. Introduction. In many studies, the response of interest is not a random
variable but a noisy function for each experimental unit, resulting in a sample of
curves. In such studies, it is often adequate to assume that the data Yi,j , the ith
observation on the j th experimental unit, satisfies the regression model

Yi,j = f ∗
j (ti,j ) + σ ∗

j εi,j , i = 1, . . . , nj , j = 1, . . . , J.(1.1)

Here, the unknown regression functions f ∗
j are 2π -periodic and may depend non-

linearly on the known regressors ti,j ∈ [0,2π ]. The unknown error terms σ ∗
j εi,j

are independent zero mean random variables with variance σ ∗
j

2.
The sample of individual regression curves will show a certain homogeneity in

structure, in the sense that curves coincide if they are properly scaled and shifted.
In other words, the structure would be represented by the nonlinear mathematical
model

f ∗
j (t) = a∗

j f ∗(t − θ∗
j ) + υ∗

j ∀t ∈ R,∀j = 1, . . . , J,(1.2)

where the shift θ∗ = (θ∗
j )j=1,...,J , the scale a∗ = (a∗

j )j=1,...,J and the level υ∗ =
(υ∗

j )j=1,...,J are vectors of R
J and the function f ∗ is 2π -periodic. This semipara-

metric model was introduced by Lawton, Sylvestre and Maggio [7] under the name
of shape invariant model. We have both a finite-dimensional parameter (θ∗, a∗, υ∗)
and an infinite-dimensional nuisance parameter f ∗ which is a member of some
given large set of functions. A general feature of semiparametric methods is to
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“eliminate” the nonparametric component f ∗, thus reducing the original semi-
parametric problem to a suitably chosen parametric one.

Such models have been used to study child growth curves (see [6]) or to improve
a forecasting methodology [8] based on speed data of vehicles on a main trunk road
(see [2] for more details). Since the common shape is assumed to be periodic, the
model is particularly well adapted for the study of circadian rhythms (see [15]).
Our model and our estimation method are illustrated with the daily temperature of
several cities.

The main goal of this paper is to present a method for the efficient estimation of
the parameter (θ∗, a∗, υ∗) without knowing f ∗. The question of estimation of pa-
rameters for the shape invariant model was studied by several authors. First, Law-
ton, Sylvestre and Maggio [7] proposed an empirical procedure, SEMOR, based on
polynomial approximation of the common shape f ∗ on a compact set. The con-
vergence and the consistency for SEMOR was proved by Kneip and Gasser [6].
Härdle and Marron [5] built a

√
n -consistent estimator and an asymptotically

normal estimator using a kernel estimator for the function f ∗. Similar to Guard-
abasso, Rodbard and Munson [4], Wang and Brown [15] and Luan and Li [9] used
a smoothing spline for the estimation of f ∗. The method of Gamboa, Loubes and
Maza [2] provides a

√
n-consistent estimator and an asymptotically normal esti-

mator for the shift parameter θ∗. This procedure is based on the discrete Fourier
transform of data. Our estimation method is related to the method of Gamboa,
Loubes and Maza [2]: The common shape f ∗ is approximated by trigonometric
polynomials.

The efficiency of the estimators is to be understood as asymptotic unbiased-
ness and minimum variance. To avoid the phenomena of super-efficiency (e.g.,
Hodges estimators), the efficiency is studied in a local asymptotic sense, under
the local asymptotic normality (LAN) structure. The usual approach for determin-
ing the efficiency is to specify a least favorable parametric submodel of the full
semiparametric model (it is a submodel for which the Fisher information is the
smallest), locally in a neighborhood of f ∗, and to estimate (θ∗, a∗, υ∗) in such a
model (see [12, 13]). Here, we consider the parametric submodel where f ∗ is a
trigonometric polynomial. The method which is used is close to the procedure of
Gassiat and Lévy-Leduc [3] where the authors estimate efficiently the period of an
unknown periodic function. The profile log-likelihood is used in order to “elimi-
nate” the nuisance parameter and to build an M-estimation criterion. Moreover the
efficiency of the M-estimator of (θ∗, a∗, υ∗) is proved by using the theory devel-
oped by McNeney and Wellner [10]: The authors develop tools for nonindependent
identically distributed data that are similar in spirit to those for independent iden-
tically distributed data. Thus the notions of tangent space and of differentiability
of the parameter (θ∗, a∗, υ∗) are used in order to specify the characteristics of an
efficient estimator. Under the assumptions listed in Theorem 3.1, the estimator of
(θ∗, a∗, υ∗) is asymptotically efficient. This follows the conclusions of Murphy
and Van der Vaart [11]: Semiparemetric profile likelihoods, where the nuisance
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parameter has been profiled out, behave like ordinary likelihoods in that they have
a quadratic expansion.

The profile log-likelihood induces the definition of an estimator for the common
shape. Corollary 3.1 establishes the consistency of this estimator. The rate of the
regression function estimator is the optimal rate in nonparametric estimation [12],
Chapter 24. Using the theory developed by McNeney and Wellner [10], we discuss
its efficiency: the estimator is asymptotically linear. But the Fourier coefficients’
estimators are efficient if and only if the common shape f ∗ is odd or even. Even
if this condition is satisfied, we can not deduce that the estimator of f ∗ is efficient
because it is not regular.

This work is related to [14], Chapter 3, where we propose another criterion
which allows us to estimate efficiently the parameter (θ∗, a∗, υ∗). This criterion,
which is similar by its definition to the criterion proposed by Gamboa, Loubes and
Maza [2] and [14], Chapter 2, allows us to build a test procedure for the model.

The rest of the paper is organized as follows: Section 2 describes the model and
the estimation method. In Section 3, we discuss the efficiency of the estimator. All
technical lemmas and proofs are in Section 4.

2. The estimation method.

The description of the model. The data (Yi,j ) are the observations of J curves
at the observation times (ti,j ). We assume that each curve is observed at the same
set of equidistant points

ti = ti,j = i − 1

n
2π ∈ [0,2π [, i = 1, . . . , n.

The choice of the observation times ti is related with the choice of quadrature
formula (see Remark 2.1). The studied model is

Yi,j = a∗
j f ∗(ti − θ∗

j ) + υ∗
j + σ ∗εi,j , j = 1, . . . , J, i = 1, . . . , n.(2.1)

The common shape f ∗ is an unknown real 2π -periodic continuous function. We
denote by F the set of 2π -periodic continuous functions. The noises (εi,j ) are
independent standard Gaussian random variables. For the sake of simplicity, we
get a common variance σ ∗2 = σ ∗

j
2, j = 1, . . . , J. However, all our results are still

valid for a general variance.
The model is semiparametric: α∗ = (θ∗, a∗, υ∗, σ ∗) is the finite-dimensional

parameter and f ∗ is the nuisance parameter. Our aim is to estimate efficiently
the internal shift θ∗ = (θ∗

j )j=1,...,J , the scale parameter a∗ = (a∗
j )j=1,...,J and the

external shift υ∗ = (υ∗
j )j=1,...,J without knowing either the shape f ∗ or the noise

level σ ∗. We denote A = [0,2π ]J × R
J × [−υmax, υmax]J as the set where the

parameter (θ∗, a∗, υ∗) lies.
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The identifiability constraints. Before considering the estimation of parame-
ters, we have to study the uniqueness of their definition. Indeed, the shape invariant
model has some inherent unidentifiability: for a given parameter (θ0, a0, υ0) ∈ R

3

and a shape function f0 we can always find another parameter (θ1, a1, υ1) ∈ R
3

and another shape function f1 such that a0f0(t − θ0) + υ0 = a1f1(t − θ1) + υ1
holds for all t .

Then we assume that the true parameters lie in the following spaces:

f ∗ ∈ F0 =
{
f ∈ F , c0(f ) =

∫ 2π

0
f (t)

dt

2π
= 0

}
and (θ∗, a∗, υ∗) ∈ A0,

where A0 =
{
(θ, a,υ) ∈ A, θ1 = 0,

J∑
j=1

a2
j = J and a1 > 0

}
.

The constraint on the common shape allows us to uniquely define the parameter
υ∗ [υ∗

j = c0(f
∗
j ), j = 1, . . . , J ] and to build asymptotically independent estimators

(see Remark 3.1). The constant υmax is a user-defined (strictly positive) parameter
which reflects our prior knowledge on the level parameter. The constraints θ1 = 0
and a1 > 0 mean that the first unit (j = 1) is taken as “reference” to estimate the
shift parameter and the scale parameter. At last, the constraint

∑J
j=1 a2

j = J means
that the common shape is defined as the weighted sum of the regression functions
f ∗

j (1.1). This condition is well adapted to our estimation criterion (see the next
paragraph on the profile likelihood).

The profile log-likelihood. Maximizing the likelihood function directly is not
possible for higher-dimensional parameters, and fails particularly for semipara-
metric models. Frequently, this problem is overcome by using a profile likelihood
rather than a full likelihood. If ln(α, f ) is the full log-likelihood, then the profile
likelihood for α ∈ A0 is defined as

pln(α) = sup
f ∈F0

ln(α,f ).

The maximum likelihood estimator for α, the first component of the pair (α̂n, f̂n)

that maximizes ln(α, f ), is the maximizer of the profile likelihood function α →
pln(α). Thus we maximize the likelihood in two steps. With the assumptions on
the model, we shall use the Gaussian log-likelihood,

ln(α, f ) = −1

2σ 2

n∑
i=1

J∑
j=1

(
Yi,j − ajf (ti − θj ) − νj

)2 − nJ

2
logσ 2.(2.2)

Generally, the problem of minimization on a large set is solved by the consid-
eration of a parametric subset. Here, the semiparametric problem is reduced to a
parametric one: f is approximated by its truncated Fourier series. Thus the profile
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likelihood is approximated by minimizing the likelihood ln on a subset of trigono-
metric polynomials. More precisely, let (mn)n be an increasing integer’s sequence,
and let F0,n be the subspace of F0 of trigonometric polynomials whose degree is
less than mn. In order to preserve the orthogonality of the discrete Fourier basis,

∀|l| < n

2
,∀|p| < n

2

1

n

n∑
r=1

ei(l−p)tr =
{

1, if l = p,
0, if l �= p,

we choose mn and n such that

2|mn| < n, lim
n→+∞mn = +∞ and n is odd.(2.3)

After some computations, the likelihood maximum is reached in the space F0,n by
the trigonometric polynomial

f̂α(t) = ∑
1≤|l|≤mn

ĉl(α)eilt ∀t ∈ R,(2.4)

where for l ∈ Z, 1 ≤ |l| ≤ mn,

ĉl(α) =
(
n

J∑
j=1

a2
j

)−1 J∑
j=1

aj

n∑
i=1

(Yi,j −υj )e
−il(ti−θj ) ∀α ∈ A0 ×R

∗+.(2.5)

Finally, using the orthogonality of the discrete Fourier basis, the following equality
holds:

J∑
j=1

n∑
i=1

(
Yi,j − aj

∑
1≤|l|≤mn

ĉl(α)eil(ti−θj ) − νj

)2

=
J∑

j=1

n∑
i=1

(Yi,j − νj )
2 −

(
n

J∑
j=1

a2
j

) ∑
1≤|l|<mn

|ĉl(α)|2

+ n
∑

1≤|l|,|p|<mn,l �=p

ĉl(α)ĉp(α)ϕn

(
l − p

n

) J∑
j=1

a2
j e

(p−l)θj ,

where ϕn(t) = ∑n
s=1 e2iπst /n. Let Mn be the function of α = (θ, a, ν) defined as

Mn(α) = 1

nJ

J∑
j=1

n∑
i=1

(Yi,j − νj )
2 − ∑

1≤|l|≤mn

|ĉl(α)|2.

With the identifiability constraints of the model, the profile log-likelihood pln is
equal to

pln(α) = −(nJ )
Mn(α)

2σ 2 − nJ

2
logσ 2.(2.6)
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REMARK 2.1. The estimation method requires the estimation of the Fourier
coefficients of the common shape. A natural approach for estimating an integral is
to use a quadrature formula which is associated with the observation times ti . In
this paper, the observation times are equidistant. Therefore the quadrature formula
is the well-known Newton–Cotes formula. Even if another choice of the observa-
tion times is possible (see [14], Chapter 2), this formula defines the discrete Fourier
coefficients cn

l (f ) which are an accurate approximation of cl(f ):

cn
l (f ∗) = 1

n

n∑
s=1

f ∗(ts)e−ilts −→ cl(f
∗) =

∫ 2π

0
f ∗(t)e−ilt dt

2π
.

Moreover, the stochastic part of the coefficients (2.5) are linear combinations of
the complex variables wj,l,

wj,l = 1

n

n∑
r=1

e−iltr εi,j , j = 1, . . . , J, |l| ≤ mn.

Due to Cochran’s theorem, these variables are independent centered complex
Gaussian variables whose the variance is equal to 1/n. This property is related
to the convergence rate of the estimators (see [14], Chapter 2, for more details, and
[3] to compare).

The estimation procedure. Consequently, the maximum likelihood estimator
of the finite-dimensional parameter is defined as

β̂n = arg min
β∈A0

Mn(β) or α̂n = (β̂n, σ̂n) = arg max
α∈A0×R

∗+
pln(α).

Then, the estimators of the common shape are the trigonometric polynomials,
which maximize the likelihood when α = α̂n:

f̂n(t) = f̂α̂n
(t) = ∑

1≤|l|≤mn

ĉl(α̂n)e
ilt ∀t ∈ R.

First, we study the consistency of the estimator of (θ∗, a∗, υ∗). The consistency of
the common shape estimator is studied in the next section.

THEOREM 2.1 (Consistency). Assume that 2π is the minimal period of f ∗,
and that ∑

|l|>m

|cl(f
∗)| = o

(
1√
m

)
and

mn

n
= o(1).(2.7)

Then α̂n converges in probability to α∗.

The assumption regarding the common shape means that the function f ∗ is a
1/2-holder function. The assumption on the number of Fourier coefficients means
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that mn has to be small in relation to the number of observation n. Notice that
Theorem 2.1 is still valid if the noises (εi,j ) are (centered) independent identically
distributed with finite variance.

PROOF OF THEOREM 2.1. The proof of this theorem follows the classical
guidelines of the convergence of M-estimators (see, e.g., Theorem 5.7 of Van der
Vaart [12]). Indeed, to ensure consistency of β̂n, it suffices to show that:

(i) The uniform convergence of Mn to a contrast function M + σ ∗2 (Lem-
ma 4.1):

sup
β∈A

|Mn(β) − M(β) − σ ∗2| = oP ∗
α
(1),

where M is defined as

M(β) =
∫ 2π

0

1

J

J∑
j=1

(
f ∗

j (t) − υj

)2 dt

2π
−

∫ 2π

0

(
J∑

j=1

aja
∗
j f ∗(t − θ∗

j + θj )

)2
dt

2π
.

(ii) M(·) has a unique minimum at β∗ (Lemma 4.2). �

The daily temperatures of cities. The estimation method is applied to daily
average temperatures (the average daily temperatures are the average of 24 hourly
temperature readings). The data come from of the University of Dayton (http://
www.engr.udayton.edu/weather/). In order to illustrate the method, we limit the
study to three cities which have a temperature range of an oceanic climate: Juneau
(Alaska, city j = 1), Auckland (New Zealand, city j = 2) and Bilbao (Spain, city
j = 3). An oceanic climate is the climate typically found along the west coasts
at the middle latitudes of all the world’s continents, and in southeastern Australia.
Similar climates are also found on coastal tropical highlands and tropical coasts on
the leeward sides of mountain ranges. Figure 1(a) plots the sample of temperature
curves.

If we assume that the data fit the model (2.1), the parameters θ∗, a∗ and υ∗ have
the following meanings:

• υ∗
j is the annual temperature average of the ith city,

• a∗
j indicates whether the city is in the same hemisphere as the first city (a∗

j > 0)
and measures the differences between the winter and summer temperatures,

• θ∗
j is the seasonal phase of the ith city,

• f ∗ describes the general behavior of the temperature evolution of the oceanic
climate.

The estimators of these parameters are given in Table 1.
Figure 1(b) plots the estimator of the common shape. The number of the Fourier

coefficients used to estimate the common shape is mn = 5. Further study will yield
the most accurate number mn, and leads to studying the estimation problem from
the point of view of the selection model.

http://www.engr.udayton.edu/weather/
http://www.engr.udayton.edu/weather/
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TABLE 1
Estimators of the parameters θ∗

2 , θ∗
3 , a∗

1 , a∗
2 , a∗

3 , υ∗
1 , υ∗

2 and υ∗
3

City j j = 1 j = 2 j = 3

θ̂j,n (days) 0 12.5182 25.35381
âj,n 1.2421 −0.5833 1.0569
υ̂j,n (Fahrenheit) 43.9874 58.5312 60.1814

3. Efficient estimation.

3.1. The LAN property. Before studying the asymptotic efficiency of the esti-
mators, we have to establish the local asymptotic normality of the model. First, let
us introduce some notation. The model is semiparametric. The finite-dimensional
parameter α∗ lies in A0 × R

∗+. The nuisance parameter f ∗ lies in F0. For
(α,f ) ∈ A0 × R+ × F0 and t ∈ R, we denote by Pα,f (t) the Gaussian distrib-
ution in R

J with variance σ 2IJ and mean (ajf (t − θj ) + νj )j=1,...,J . Then the
model of the observations is

Pn =
{

P
(n)
α,f =

n⊗
i=1

P(α,f )(ti), (α, f ) ∈ A0 × R+ × F0

}
.

To avoid the phenomenon of super efficiency, we study the model on a local
neighborhood of (α∗, f ∗). Let (αn(h), fn(h)) be close to (α∗, f ∗) in the direc-
tion h. The LAN property requires that the log-likelihood ratio for the two points
(α∗, f ∗) and (αn(h), fn(h)) converges in distribution to a Gaussian variable which
depends only on h.

(a) (b)

FIG. 1. (a) Plots of the temperature curves associated with Juneau (Alaska), Auckland (New
Zealand) and Bilbao (Spain) in 2004. (b) Plot of the estimator of the common shape f̂n.
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Since the observations of our model are not identically distributed, we shall fol-
low the semiparametric analysis developed by McNeney and Wellner [10]. The
LAN property allows identification of the least favorable direction h that ap-
proaches the model, and thus allows us to know whether the estimator is efficient.
Let us denote the log-likelihood ratio for the two points (α∗, f ∗) and (α,f )

�n(α,f ) = log
dP

(n)
α,f

dP
(n)
α∗,f ∗

.

PROPOSITION 3.1 (LAN property). Assume that the function f ∗ is not con-
stant and is differentiable with a continuous derivative denoted by ∂f ∗. As-
sume that the reals a∗

j , j = 1, . . . , J, are nonnull. Considering the vector space

H = R
J−1 × R

J−1 × R
J × R+ × F0, the coordinates of a vector h ∈ H are de-

noted as follows:

h = (hθ,2, . . . , hθ,J , ha,2, . . . , ha,J , hυ,2, . . . , hυ,J , hσ ,hf ).

Then the space H is an inner-product space endowed with the inner product 〈·, ·〉,

〈h,h〉 = J
hσh′

σ

σ ∗2 + 1

σ ∗2

〈
a∗

1hf −
J∑

j=2

ha,j

a∗
j

a∗
1
f ∗

+ υ1, a
∗
1h′

f −
J∑

j=2

h′
a,j

a∗
j

a∗
1
f ∗ + υ ′

1

〉
L2

+ 1

σ ∗2

J∑
j=2

〈a∗
1hf + ajf

∗ − hθ,j a
∗
j ∂f ∗

+ hυ,j , a
∗
1h′

f + h′
a,j f

∗ − h′
θ,j a

∗
j ∂f ∗ + h′

υ,j 〉L2,

where 〈·, ·〉L2 is the inner product in L
2[0,2π ]. Moreover, the model (2.1) is LAN

at (α∗, f ∗) indexed by the tangent space H. In other words, for each h ∈ H, there
exists a sequence (αn(h), fn(h)) such that

�n(αn(h), fn(h)) = n(h) − 1
2‖h‖2

H + oP(1).

Here, the central sequence n(h) is linear with h,

n(h) = 1√
n

n∑
i=1

J∑
j=1

{(hσ /σ ∗)(ε2
i,j − 1) + An

i,j (h)εi,j /σ
∗},

where for all i = 1, . . . , n,

An
i,j (h) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h∗
a,1f (ti) −

J∑
k=2

ha,k

a∗
k

a∗
1
f ∗(ti), if j = 1,

a∗
j hf (ti − θ∗

j ) + ha,jf
∗(ti − θ∗

j )

− hθ,j a
∗
j ∂f ∗(ti − θ∗

j ) + νj , if j = 2, . . . , J .



1894 M. VIMOND

Notice that for the independent identically distributed semiparametric models,
the fact that the tangent space would not be complete does not imply the existence
of a least favorable direction. In our model the tangent space H is a subset of the
Hilbert space

H = R
J−1 × R

J−1 × R
J × R × {f ∈ L

2[0,2π ], c0(f ) = 0},
endowed with the inner product 〈·, ·〉. Consequently, it is easier to determine the
least favorable direction using the Riesz representation theorem.

3.2. The efficiency. The goal of this paper may be stated as the semiparametric
efficient estimation of the parameter νn(P

(n)
α∗,f ∗) = (θ∗

2 , . . . , θ∗
J , a∗

2 , . . . , a∗
J , υ∗

1 , . . . ,

υ∗
J ). This parameter is differentiable relative to the tangent space H,

lim
n→∞

√
n
(
νn

(
P

(n)
αn(h),fn(h)

)− νn

(
P

(n)
α∗,f ∗

))
= (hθ,2, . . . , hθ,J , ha,2, . . . , ha,J , hυ,2, . . . , hυ,J ).

Consequently, there exists a continuous linear map ν̇ from H3J−2 on to R
3J−2. Ac-

cording to the Riesz representation theorem, there exist 3J − 2 vectors (ν̇θ
j )2≤j≤J ,

(ν̇a
j )2≤j≤J and (ν̇υ

j )1≤j≤J of H such that

∀h ∈ H 〈ν̇θ
j , h〉 = hθ,j , 〈ν̇a

j , h〉 = ha,j and 〈ν̇υ
j , h〉 = hυ,j .

These vectors are defined in Lemma 4.3. Using the linearity with h of n(h),

the following proposition, which is an application of Proposition 5.3 of McNeney
and Wellner [10], links the notion of asymptotic linearity of an estimator and the
efficiency.

PROPOSITION 3.2 (Asymptotic linearity and efficiency). Let Tn be an asymp-
totically linear estimator of νn(P

(n)
α∗,f ∗) with the central sequence(

n(h̃
θ
2), . . . ,n(h̃

θ
J ),n(h̃

a
2), . . . ,n(h̃

a
J ), . . . ,n(h̃

υ
J )
)
.

Tn is regular efficient if and only if for all j h̃θ
j = ν̇θ

j , h̃a
j = ν̇a

j and h̃υ
j = ν̇υ

j .

From Lemma 4.3, if the assumptions of Proposition 3.1 hold and if the estimator
β̂n = (θ̂n, ân, υ̂n) is asymptotically linear, it is efficient if and only if

√
n(θ̂n − θ∗) = σ ∗

‖∂f ∗‖L2

n∑
i=1

[
I

a∗
1

......
−D−1

]
∂F ∗(ti)εi,· + oP(1),

√
n(ân − a∗) = σ ∗

‖f ∗‖L2

n∑
i=1

{[
−a∗

1

J
A

......
IJ−1 − 1

J
A tA

]
F ∗(ti)

}
εi,· + oP(1),

√
n(υ̂n − υ∗) = σ ∗

n∑
i=1

εi,· + oP(1) where t εi,· = t (εi1, . . . , εi,J ),
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where D is the diagonal matrix diag(a∗
2 , . . . , a∗

J ) and A = t (a∗
2 , . . . , a∗

J ) a vec-
tor in R

J−1. F ∗(t) and ∂F ∗(t) are, respectively, the diagonal matrix diag(f ∗ ×
(t − θ∗

1 ), . . . , f ∗(t − θ∗
J )) and diag(∂f ∗(t − θ∗

1 ), . . . , ∂f ∗(t − θ∗
J )) for all t ∈ R.

We deduce the following theorem:

THEOREM 3.1 (Efficiency). Assume that the assumptions of Proposition 3.1
hold and that ∑

l∈Z

|l||cl(f
∗)| < ∞,(3.1)

m4
n/n = o(1).(3.2)

Then (θ̂n, ân, υ̂n) is asymptotically efficient and
√

n(θ̂n − θ∗, ân − a∗, υ̂n − υ∗)
converges in distribution to a Gaussian vector N3J−2(0, σ ∗2H−1), where H is
the matrix defined as

H =

⎛
⎜⎜⎜⎜⎝

‖∂f ∗‖2
L2

(
D2 − 1

J
A2 tA2

)
0 0

0 ‖f ∗‖2
L2

(
I + 1

a∗
1

2 A tA

)
0

0 0 IJ

⎞
⎟⎟⎟⎟⎠

and its inverse matrix H−1 is equal to

H−1 =

⎛
⎜⎜⎜⎜⎜⎝

1

‖∂f ∗‖2
L2

(
D−2 + 1

a∗
1

2 IJ−1
t
IJ−1

)
0 0

0
1

‖f ∗‖2
L2

(
IJ−1 − 1

J
A tA

)
0

0 0 IJ

⎞
⎟⎟⎟⎟⎟⎠ .

PROOF. Recall that the M-estimator is defined as the minimum of the criterion
function Mn(·). Hence, we get

∇Mn(β̂n) = 0,

where ∇ is the gradient operator. Thanks to a second-order expansion, there exists
β̄n in a neighborhood of β∗ such that

∇2Mn(β̄n)
√

n(β̂n − β∗) = −√
n∇Mn(β

∗),
where ∇2 is the Hessian operator. Now, using two asymptotic results from Propo-
sition 4.1 and from Proposition 4.2, we obtain

√
n(θ̂n − θ∗) = σ ∗

‖∂f ∗‖2
L2

(
D−2 + 1

a∗
1

2 IJ−1
t
IJ−1

)
Gθ

n + oP(1),

√
n(ân − a∗) = σ ∗

‖f ∗‖2
L2

(
IJ−1 − 1

J
A tA

)
Ga

n + oP(1),

√
n(υ̂n − υ∗) = σ ∗Gυ

n + oP(1). �
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REMARK 3.1. The choice of the identifiability constraints is important for the
relevancy of the estimation. For example, if we no longer assume that c0(f ) is null,
we may consider the following parameter space:

A1 =
{
(θ, a, ν) ∈ A, such that θ1 = 0,

J∑
j=1

a2
j = J and a1 > 0

}
and f ∈ F .

Consequently we have to estimate 3J − 3 parameters: θ∗
2 , . . . , θ∗

J , a∗
2 , . . . , a∗

J ,
and υ∗

2 , . . . , υ∗
J . This choice modifies the estimation criterion and the tangent

space, too. Nevertheless, if the assumptions of Theorem 3.1 hold, the estimator
is asymptotically efficient. But its covariance matrix is not block diagonal any
more:

� = σ ∗2

⎛
⎜⎜⎜⎜⎜⎝

1

‖∂f ∗‖2
L2

(
D−2 + 1

a∗
1

2 IJ−1
t
IJ−1

)
0 0

0
1

‖f ∗‖2
L2 − c0(f ∗)2

B
−c0(f ∗)

‖f ∗‖2
L2 − c0(f ∗)2

IJ−1

0
−c0(f ∗)

‖f ∗‖2
L2 − c0(f ∗)2

IJ−1
‖f ∗‖2

L2

‖f ∗‖2
L2 − c0(f ∗)2

B−1

⎞
⎟⎟⎟⎟⎟⎠,

where B = IJ−1 − 1
J
A tA with B−1 = IJ−1 + 1

a∗
1

2 A tA. In other words, ân and

υ̂n are not asymptotically independent: modifying the identifiability constraint
c0(f

∗) = 0 damages the quality of the estimation.
To illustrate this phenomenon, we present the boxplots of the estimators which

are relatively associated with the parameter space A0 [Figure 2(a)] and A1 [Fig-
ure 2(b)]. Let (α∗, f ∗) be a parameter of the model. With the constraints associated
with the parameter space A0, we have to estimate θ∗

2 , a∗
2 , υ∗

1 and υ∗
2 for the fol-

lowing model (J = 2):{
Yi,1 = a∗

1f ∗(ti) + υ∗
1 + εi,1, i = 1, . . . , n,

Yi,2 = a∗
2f ∗(ti − θ∗

2 ) + υ∗
2 + εi,2, i = 1, . . . , n.

With the constraints associated with the parameter space A1, we have to estimate
θ∗

2 , a∗
2 and υ2. The data may be rewritten as{

Yi,1 = a∗
1g∗(ti) + εi,1, i = 1, . . . , n,

Yi,2 = a∗
2g∗(ti − θ∗

2 ) + υ2 + εi,2, i = 1, . . . , n,

where g∗ = f ∗ + υ∗
1 and υ2 = υ∗

2 − a∗
2υ∗

1 . After generating several sets of data
from a parameter (α∗, f ∗) which we have chosen, we have computed the estima-
tors of θ∗

2 , a∗
2 and υ∗

2 for every set of data. Figure 2 presents the boxplots of the
estimators of θ∗

2 , a∗
2 and υ∗

2 for these two models.

As a consequence of the previous theorem, the Gaussian vector Gn converges
in distribution to a centered Gaussian vector N3J−2(0,H), and the equation
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FIG. 2. Boxplots of the estimators of θ∗
2 a∗

2 and υ∗
2 associated with the space parameter A0

(a) and A1 (b). The data are generated with f ∗(t) = 20 ∗ t/(2π)(1 − t/(2π)), θ∗ = (0 0.8),
a∗ = (0.75 1.1990), ν∗ = (7.5/3 0.5) and n = 201. The boxplots are computed from 100 sets
of data.

holds:
√

n(β̂n − β∗) = (H/σ ∗2
)−1σ ∗Gn + oP(1).

Comparing this formula with the results of the independent identically distributed
semiparametric model (see [12]), we identify the efficient information matrix as
H/σ ∗2 and the efficient score as σ ∗Gn.

Indeed, let X1, . . . ,Xn be a random sample from a distribution P that is known
to belong to a set of probabilities {Pθ,η, θ ∈ � ⊆ R

d, η ∈ G}. Then an estimator
sequence Tn is asymptotically efficient for estimating θ if

√
n(Tn − θ) = (Ĩθ,η)

−1

(
1√
n

n∑
i=1

l̃θ,η(Xi)

)
+ oP(1),

where l̃θ,η is the efficient score function, and Ĩθ,η is the efficient information ma-
trix.

Moreover, our result follows Murphy and Van der Vaart [11]. The authors
demonstrate that if the entropy of the nuisance parameters is not too large and
the least favorable direction exists, the profile likelihood behaves very much like
the ordinary likelihood and the profile likelihood correctly selects a least favorable
direction for the independent identically distributed semiparametric model. This
holds if the profile log-likelihood pln verifies the following equation:

pln(θ̂n) − pln(θ)

=
n∑

i=1

l̃θ,η(Xi)(θ̂n − θ) − 1
2n t(θ̂n − θ)Ĩθ,η(θ̂n − θ) + oP

(√
n‖θ̂n − θ‖ + 1

)2
,
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where θ̂n maximizes pln. Then, if Ĩθ,η is invertible, and θ̂n is consistent, θ̂n is
asymptotically efficient.

For our model, a similar asymptotic expansion holds. Indeed, by a Taylor ex-
pansion, there exists α̃n such that

pln(α̂n) − pln(α
∗)

= n1/2Gn(β̂n − β∗) − n

2
t(β̂n − β∗) H

σ ∗2 (β̂n − β∗)

+oP(n1/2‖β̂n − β∗‖ + 1)2.

3.3. Asymptotic linearity of the common shape estimator. In this subsection,
we study the consistency and the characteristics of the estimator of the common
shape which is defined in Section 2. We show that the convergence rate of this
estimator is the optimal rate for the nonparametric estimation.

COROLLARY 3.1. Assume that f ∗ is k times continuously differentiable with∫ 2π
0 |f (k)(t)|2 dt < ∞ and k ≥ 1. Furthermore, suppose that the assumptions of

Theorem 3.1 hold; then there exists a constant C such that for a large mn

sup
t∈R

|f̂n(t) − f ∗(t)| = OP

(
1

m
k−1/2
n

+ mn√
n

)
,

∫ 2π

0
E
(
f̂n(t) − f ∗(t)

)2 ≤ C

(
1

m2k
n

+ mn

n

)
.

Consequently, for mn ∼ n1/(2k+1), we have MISEf ∗(f̂n) = O(n−2k/(2k+1)).

Let B represent the Banach space defined as the closure of F for the L
2-norm

B = {f ∈ L
2[0,2π ] such that c0(f ) = 0}.

Here, the studied sequence of parameter νn is not (θ∗, a∗, υ∗) any more, but it is
the truncated Fourier series of f ∗:

νn

(
P

(n)
α∗,f ∗

) = ∑
|l|≤mn

cl(f
∗)eil(·).

The parameter sequence νn is differentiable:

lim
n→∞

√
n
(
νn

(
P

(n)
αn(h),fn(h)

)− νn

(
P

(n)
α∗,f ∗

)) = hf .

Thus, there exists a continuous linear map ν̇ from H on to B. To have a represen-
tation of the derivative ν̇, we consider the dual space B

∗ of B. In other words, for
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b∗ ∈ B
∗, b∗ν̇ is represented by ν̇b∗ ∈ H:

∀h ∈ H b∗ν̇(h) = 〈ν̇b∗
, h〉 = b∗hf .

Furthermore, the dual space B
∗ is generated by the following linear real func-

tions:

b∗
1l :f ∈ F0 →

∫ 2π

0
f (t) cos(lt)

dt

2π
and

b∗
2l :f ∈ F0 →

∫ 2π

0
f (t) sin(lt)

dt

2π
, l ∈ Z

∗.

Thus it suffices to know ν̇b∗
1l and ν̇b∗

2l for all l ∈ Z
∗ in order to determine all

{ν̇b∗, b∗ ∈ B
∗}. After straightforward computations, these vectors are

ν̇b∗
1l

= (0, cos(l·)/J ) and ν̇b∗
2l

= (0, sin(l·)/J ).

The estimator of the common shape is asymptotically linear. This means that
for all b∗ ∈ B

∗ there exists hb∗ ∈ H such that
√

nb∗(Tn − νn(P
n
α∗,f ∗)

) = n(h
b∗

) + oP(1).(3.3)

Since {b∗
1l , b

∗
2l , l ∈ Z

∗} generates the dual space of B, Lemma 4.4 ensures the as-
ymptotic linearity of f̂n.

Now, we discuss the regularity and the efficiency of this estimator. We deduce
from Proposition 5.4 of McNeney and Wellner [10] that:

COROLLARY 3.2. b∗f̂n is a regular efficient estimator of b∗f ∗ for all b∗ ∈ B
∗

if and only if the function f ∗ is odd or even. In particular, in this case, the estimator
of the Fourier coefficients of f ∗ is efficient.

Consequently, f̂n is eventually regular and efficient if the common shape f ∗
is odd or even. But the fluctuations

√
n(Tn − νn(P

(n)
αn(h),fn(h))) do not converge

weakly under P
(n)
αn(h),fn(h) to a tight limit in B for each {αn(h), fn(h)} [e.g., take

h = (0,0)]. Thus, even if f ∗ is odd or even, f̂n is not efficient.

REMARK 3.2. The model where the function f ∗ is assumed to be odd or
even has been studied by Dalalyan, Golubev and Tsybakov [1]. In this model,
the identifiability constraint “θ1 = 0” is not necessary: The shift parameters are
defined from the symmetric point 0. Thus the estimator of θ∗

1 , . . . , θ∗
J would be

asymptotically independent. Moreover the estimation method would be adapta-
tive.
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4. The proofs.

4.1. Proof of Theorem 2.1.

REMARK 4.1. Let us introduce some notation. First the deterministic part of
ĉl (2.5) is equal to

1

nJ

J∑
j=1

n∑
i=1

aja
∗
j f ∗(ti − θ∗

j )eil(ti−θj )

= ∑
p∈Z

cp(f ∗)ϕn

(
l − p

n

)
φ(lθ − pθ∗, a)

= cl(f
∗)φ(lθ − lθ∗, a) + gl

n(β)(4.1)

where gl
n(β) = ∑

|p|≥m

p−l∈nZ

cp(f ∗)φ(lθ − pθ∗, a) and

φ(θ, a) =
J∑

j=1

aja
∗
j eiθj /J.

Since assumption (2.3) holds, the term gl
n is bounded by

|gl
n(β)| ≤ ∑

2|p|≥n

|cp(f ∗)|.(4.2)

For j = 1, . . . , J and |l| ≤ mn, let us denote the variable ξj,l as wj,l = ξj,l/
√

n.

Then the variables ξj,l are independent standard complex Gaussian variables from
Remark 2.1. Thus the stochastic part of ĉl is equal to

σ ∗
√

n
ξl(β) = σ ∗

J
√

n

J∑
j=1

aj e
ilθj ξj,l with |ξl(β)| ≤ σ ∗

J
√

n

J∑
j=1

|ξj,l|.(4.3)

LEMMA 4.1 (The uniform convergence in probability). Under the assump-
tions of Theorem 2.1, we have

sup
β∈A0

|Mn(β) − M(β) − σ ∗2| = oP ∗
β
(1),

where M(β) = M1(β) + M2(β),

M1(β) = ∑
l∈Z∗

|cl(f )|2(1 − |φ(lθ − lθ∗, a)|2) and M2(β) = 1

J

J∑
j=1

(υ∗
j − υj)2.

PROOF. The contrast process may rewritten as the sum of three terms:

Mn(β) = Dn(β) + σ ∗Ln(β) + σ ∗2
Qn(β).
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The term Dn(β) = D1
n(β) − D2

n(β) is the deterministic part where

D1
n(β) = 1

Jn

J∑
j=1

{
n∑

i=1

a∗
j f ∗(ti − θ∗

j ) + υ∗
j − υj

}
,

D2
n(β) = ∑

1≤|l|≤mn

∣∣∣∣∣
∑
p∈Z

cp(f ∗)ϕn

(
l − p

n

)
φ(lθ − pθ∗, a)

∣∣∣∣∣
2

.

The term Ln(β) = L1
n(β) − L2

n(β) is the linear part with noise, where

L1
n(β) = 2

nJ

J∑
j=1

n∑
i=1

(
a∗
j f ∗(ti − θ∗

j ) + υ∗
j − υj

)
σ ∗εi,j ,

L2
n(β) = 2√

n

∑
1≤|l|≤mn

�
{∑

p∈Z

cp(f ∗)ϕn

(
l − p

n

)
φ(lθ − pθ∗, a)ξl(β)

}
.

The term Qn(β) = Q1
n(β) − Q2

n(β) is the quadratic part with noise:

Q1
n(β) = 1

nJ

J∑
j=1

n∑
i=1

ε2
i,j and Q2

n(β) = 1

n

∑
1≤|l[<mn

|ξl(β)|2.

From the weak law of large numbers, Q1
n does not depend on β and converges

in probability to 1. Furthermore, Q2
n is bounded by

0 ≤ Q2
n(β) ≤ QB

n where nJQB
n = ∑

|l|<mn

J∑
j=1

|ξj,l|2.

Then assumption (2.7) induces that supβ∈A0
|Qn(β) − 1| converges to 0 in proba-

bility.
Using the fact that f ∗ is continuous and that |υj | ≤ υmax, there exists a constant

c > 0 such that for all β ∈ A0 we have

|L1
n(β)| ≤ cL1B

n where L1B
n = 1

nJ

∣∣∣∣∣
J∑

j=1

n∑
i=1

εi,j

∣∣∣∣∣.
Then we deduce that L1

n converges uniformly in probability to 0. Concerning the
term L2

n, it may be written as the sum of two variables L21
n and L22

n :

√
nL21

n (β) = 2�
{ ∑

1≤|l|≤mn

cl(f
∗)φ(lθ − lθ∗, a)ξl(β)

}
,

√
nL22

n (β) = 2�
{ ∑

1≤|l|≤mn

gl
n(β)ξl(β)

}
.
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Due to assumption (2.7),
√

nL21
n (·) is bounded by the following variable, which is

tight:

2
σ ∗

J

∑
1≤|l|≤mn

|cl(f
∗)|

J∑
j=1

|ξj,l|.

Thus, L21
n converges uniformly in probability to 0. Similarly, L22

n is bounded by

L2B
n = 1√

n

( ∑
|2p|>n

|cp(f ∗)|
) ∑

|l|≤mn

J∑
j=1

|ξj,l|.

Consequently, from assumption (2.7), L22
n converges uniformly in probability to 0.

Therefore, Ln converges uniformly in probability to 0.
It remains to prove that Dn converges uniformly to M . First it is easy to prove

that D1
n converges to D1 and D2

n converges to D2, where

D1(β) = 1

J

J∑
j=1

∫ 2π

0

(
f ∗

j (t) − νj

)2 dt

2π
and

D2(β) = ∑
l∈Z∗

|cl(f
∗)φ(lθ − lθ∗, a)|2.

Consequently, Dn pointwise converges to M = D1 − D2. We prove now that the
convergence is uniform. For all β ∈ A0, we have

|D1
n − D1|(β) ≤ 1

J

J∑
j=1

{∣∣∣∣∣
∫ 2π

0
f ∗

j (t)
2 dt

2π
− 1

n

n∑
i=1

f ∗(ti)2

∣∣∣∣∣
+ 2υmax

∣∣∣∣∣c0(f
∗
j ) − 1

n

n∑
i=1

f ∗(ti)
∣∣∣∣∣
}
,

|D2
n − D2|(β) ≤ ∑

|l|>mn

|cl(f
∗)|2 + |D2B

n (β)|

where D2B
n = 2

∑
1≤|l|<m

�{cl(f
∗)φ(lθ − lθ∗, a)gl

n(β)} + ∑
1≤|l|<m

|gl
n(β)|2.

Using the Cauchy–Schwarz inequality and inequality (4.2), we have that

|D2B
n (β)| ≤ 2

∑
|l|<m

|cl(f
∗)| ∑

|p|>mn

|cp(f ∗)| + 2mn

∣∣∣∣∣
∑

|p|>mn

|cp(f ∗)|
∣∣∣∣∣
2

.

The assumption (2.7) ensures the uniform convergence of D2B
n . Consequently,

since f ∗ is continuous, we deduce the uniform convergence of D1
n and D2

n. �
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LEMMA 4.2 (Uniqueness of minimum). M has a unique minimum reached in
point β = β∗.

PROOF. First, M2, M1 are nonnegative functions and we have that M(β∗) = 0.
Consequently, the minimum of M is reached in β = (θ, a,υ) ∈ A0 if and only if
M1(β) = M2(β) = 0.

But if M2 is equal to 0, this implies that υ = υ∗.
Furthermore, using the Cauchy–Schwarz inequality, we have for all l ∈ Z

∗ that
|φ(lθ, a)| ≤ 1. Since there exist l ∈ Z

∗ such that cl(f
∗) �= 0 (f ∗ is not constant),

M1 is equal to 0 if and only if the vectors (a∗
j )j=1,...,J and (aj e

il(θj−θ∗
j )

)j=1,...,J

are proportional for such l. From the identifiability constraints on the model, we
deduce that

a = a∗ and ∀l ∈ Z such |cl(f )| �= 0 l(θ∗ − θ) ≡ 0 (2π).

Thus it suffices that c1(f ) �= 0, or there exist two relatively prime integers l, k

such that cl(f
∗) �= 0, ck(f

∗) �= 0 in order that θ = θ∗. In other words, 2π is the
minimal period of the function f ∗. In conclusion, M1(β) is equal to zero if and
only if a = a∗ and θ = θ∗. �

4.2. Proof of Proposition 3.1. The proof is divided in two parts. First, we
prove that 〈·, ·〉 is an inner product. Next, we have to choose suitable points
(αn(h), fn(h)) in order to establish the LAN property.

〈·, ·〉 is an inner product in H. The form 〈·, ·〉H is bilinear, symmetric and
positive. In order to be an inner product, the form 〈·, ·〉H has to be definite. In other
words, if h ∈ H is such that ‖h‖H = 0, we want to prove that h = 0. Let h be such
a vector; then we have that hσ = 0 and for all j = 2, . . . , J ,

‖a∗
j hf + ha,jf

∗ − hθ,j a
∗
j ∂f ∗ + hυ,j‖L2 = 0 and

(4.4) ∥∥∥∥∥a∗
1hf − ρ

a∗
1
f ∗ + hυ,1

∥∥∥∥∥
L2

= 0,

where ρ = ∑J
k=2 ha,ka

∗
k . Since the functions hf , f ∗ and ∂f ∗ are orthogonal to 1

in L
2[0,2π ], we deduce that hυ,j = 0 for all j. Moreover, the functions hf and

f ∗ are continuous and the equation (4.4) implies that a∗
1

2hf = ρf ∗ and that for all
j = 2, . . . , J (f ∗ and ∂f ∗ are orthogonal),∥∥∥∥

(a∗
j ρ

a∗
1

2 + ha,j

)
f ∗

∥∥∥∥
L2

= 0 and ‖hθ,j a
∗
j ∂f ∗‖L2 = 0.

Since f ∗ is not constant, we deduce that for all j = 2, . . . , J that hθ,j = 0 and

a∗
j ρ/a∗

1
2 + ha,j = 0. Consequently, ρ verifies the equation ρ

J−a∗
1

2

a∗
1

2 + ρ = 0. Then

ρ is equal to zero and h = 0.
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The LAN property. Let h be in H. In order to satisfy the identifiability con-
straints of the model, we choose the sequences (αn(h), fn(h)) [with αn(h) =
((θ

(j)
n (h))1≤j≤J , (a

(j)
n (h))1≤j≤J , (υ

(j)
n (h))1≤j≤J , σn(h))] such that

θ(j)
n (h) = θ∗

j + 1√
n
hθ,j and a(j)

n (h) = a∗
j + 1√

n
ha,j ∀j = 2, . . . , J,

θ(1)
n (h) = 0, a(1)

n (h) =
√√√√√J −

J∑
j=2

a
(j)
n (h)2 and σn(h) = σ ∗ + hσ√

n
,

fn(h) = fn = f ∗ + 1√
n
hf and υ(j)

n (h) = υ∗
j + 1√

n
hυ,j ∀j = 1, . . . , J.

Using the uniform continuity of ∂f ∗ and hf , we uniformly establish for i =
1, . . . , n that

fn

(
ti − θ(j)

n (h)
)− fn(ti − θ∗

j ) = hθ,j√
n

∂f ∗(ti − θ∗
j ) + o

(
1/

√
n
) ∀j = 1, . . . , J,

(
a(1)
n (h) − a∗

1
)
f ∗

n (ti) = −
∑J

j=2 ha,j a
∗
j

a∗
1
√

n
f ∗(ti) + o

(
1/

√
n
)
,

log
(

1 + hσ /σ ∗
√

n

)
= hσ /σ ∗

√
n

− (hσ /σ ∗)2

n
+ o(n−1).

Then, with the notation of the proposition, we may deduce that

�n(αn(h), fn(h)) = n(h) − 1

2n

n∑
i=1

J∑
j=1

An
i,j (h)

2 − J

2

σ 2

σ ∗2 + oP(1).

∑n
i=1

∑J
j=1 An

i,j (h)2/n is a Riemann sum which converges to ‖h‖2
H. Moreover,

from the Lindeberg–Feller central limit theorem (see [12], Chapter 2) n(h) con-
verges in distribution to N (0,‖h‖2

H).

4.3. The efficient estimation of θ∗, a∗ and υ∗.

LEMMA 4.3 (The derivative of ν). The representant of the νn’s derivative is

ν̇ = ((ν̇θ
j )2≤j≤J , (ν̇a

j )2≤j≤J , (ν̇υ
j )1≤j≤J ∈ H3J−2

, where

ν̇θ
j = σ ∗2

‖∂f ∗‖L2

(
θ̇ j ,0,0,0,

1

a∗
1

2 ∂f ∗
)

forj = 2, . . . , J,

ν̇a
j = σ ∗2

‖f ∗‖2
L2

(0, ȧj ,0,0,0) forj = 2, . . . , J,

ν̇υ
j = (0,0, ej ,0,0) forj = 1, . . . , J,
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where the vector ej is the j th vector of canonical basis of R
J , and the vectors

θ̇ j = (θ̇
j
k )k=2,...,J and ȧj = (ȧ

j
k )k=2,...,J are defined as

θ̇
j
k =

{
1/a∗

1
2, if k �= j ,

1/a∗
1

2 + 1/a∗
j

2, if k = j ,

ȧ
j
k =

{−a∗
2a∗

k /J, if k �= j ,
1 − a∗

k
2/J, if k = j .

PROOF. For h ∈ H and h′ ∈ H, we may rewrite the inner product of the tan-
gent space under the following form:

σ ∗2〈h,h′〉 = Jhσh′
σ + 〈hf , Jh′

f − λ∂f ∗〉

+
J∑

k=2

hθ,k〈∂f ∗,−a∗
kh′

f + hθ,ka
∗
k ∂f ∗〉

+
J∑

k=2

ha,k

〈
f ∗, h′

a,kf
∗ + a∗

k

a∗
1

2 ρf ∗
〉
+

J∑
k=2

hυ,kh
′
υ,k,

where λ = ∑J
k=2 h′

θ,ka
∗
k and ρ = ∑J

k=2 h′
a,ka

∗
k . Let k ∈ {2, . . . , J } be a fixed in-

teger; we want to find h′ such that for all h ∈ H, 〈h,h′〉 = hθ,k. Consequently,
such h′ verifies these equations:

hf = λ∂f ∗/J, h′
σ = 0 and h′

υ,j = 0, ∀j = 1, . . . , J,(4.5)

(h′
a,j + ρa∗

j /a∗
1

2
)‖f ∗‖2 = 0, ∀j = 2, . . . , J,(4.6)

(−λ/J + hθ,j )‖∂f ∗‖2 =
{

σ ∗2, if j = k,
0, if j �= k.

(4.7)

Combining equations (4.6) and (4.7), we have that

λa∗
1

2‖∂f ∗‖2/J = σ ∗2 and ρJ‖f ∗‖2/a∗
1

2 = 0.

Thus we deduce that ρ = 0 and λ = Jσ ∗2/(a∗
1

2‖∂f ∗‖2). Consequently, h′ is equal
to ν̇θ

k .
We likewise solve the equation 〈h,h′〉 = ha,k. Finally, we have that ‖f ∗‖2ρ =

σ ∗2a∗
1

2a∗
k /J and λ = 0. Hence the solution is h′ = ν̇a

k . �

PROPOSITION 4.1. Under the assumptions and notation of Theorem 3.1, we
have that

√
n∇Mn(β

∗) = −2σ ∗

J
Gn + oP(1) where tGn = t(Gθ

n,G
a
n,G

υ
n).
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Gn is a Gaussian vector which converges in distribution to N3J−2(0,H) and is
defined as

Gθ
n = 1√

n

n∑
i=1

[
a∗

1

J
A2

......
−D + 1

J
A2 tA

]
∂F ∗(ti)εi,·,

Ga
n = 1√

n

n∑
i=1

[−1

a∗
1

A

......
IJ−1

]
F ∗(ti)εi,·,

Gυ
n = 1√

n

n∑
i=1

εi,· and t εi,· = t (εi,1, . . . , εi,J ) for i = 1, . . . , n.

PROOF. In order to prove that proposition, we proceed in two steps. First,
using the notation of Proposition 4.1, we show that

√
n∇Mn(β

∗) = √
n
(∇L1

n(β
∗) − L21

n (β∗)
) = −2σ ∗

J
Gn + oP(1).

At the end, we prove that (Gθ
n,G

a
n,G

υ
n) is a Gaussian vector which converges to

N3J−2(0,H).
First, we study singly the gradient of Gn, Ln and Qn. Let k ∈ {2, . . . , J } be

fixed. The partial derivative with respect to the variable θk is

∂Qn

∂θk

(β∗) = −2

n

∑
1≤|l|<mn

�
(

ila∗
k eilθ∗

k

J
ξk,lξl(β∗)

)
.

It is bounded by∣∣∣∣∣√n
∂Qn

∂θk

(β∗)
∣∣∣∣∣ ≤ 2

J 2
√

n

∑
1≤|l|<mn

|l||ξk,l|
J∑

j=1

|ξj,l|.

Thus
√

n∂Qn

∂θj
(β∗) converges in probability to 0 if m4

n/n = o(1). Similarly, the
partial derivative with respect to the variable ak converges in probability to 0, too.
Consequently,

√
n∇Qn(β

∗) converges to 0 in probability.
Concerning the deterministic part, the partial derivative with respect to θk

is

∂Dn

∂θk

(β∗) = − 2

J

∑
1≤|l|<mn

�
{
il
∑
p∈Z

cp(f ∗)ϕn

(
l − p

n

)
a∗
k

2
ei(l−p)θ∗

k

×
(∑

p∈Z

cp(f ∗)ϕn

(
p − l

n

)
ϕ
(
(p − l)θ∗, a∗))}.
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Using the inequality (4.2), it is bounded by

√
n
∂Dn

∂θk

(β∗) = 2a∗
k

2

J

√
n

{
2

∑
|l|≤mn

|lcl(f
∗)| ∑

2|p|≥n

|cp(f ∗)|

+ ∑
|l|≤mn

|l|
( ∑

2|p|≥n

|cp(f ∗)|
)2}

.

Consequently, we deduce from the assumptions of the theorem that
√

n∂Dn

∂θk
(β∗)

converges in probability to 0. In like manner,
√

n∂Dn

∂ak
(β∗) converges in probability

to 0, too. For the partial derivative with respect to υk , we have

√
n
∂Dn

∂υk

(β∗) = −2
√

n

Jn

(
n∑

i=1

f ∗
k (ti) − υ∗

k

)
= −2a∗

k

J

√
n

∑
p∈nZ∗

cp(f ∗)e−ipθ∗
k .

Thus from assumption (3.2), we deduce that
√

n∂Dn/∂νk in β∗ converges to 0.
Finally,

√
n∇Dn(β

∗) converges to 0 in probability.
Therefore, we have that

√
n∇Mn(β

∗) = √
n∇Ln(β

∗) + oP(1). With the nota-
tion of Lemma 4.1, we have

√
n
∂L22

n

∂θk

(β∗) = 2

J

∑
1≤|l|<mn

�
{
ila∗

k

(−eilθ∗
k ξk,l + a∗

k ξ̄l(β)
) ∑

2|p|≥n

p−l∈nZ

cp(f ∗)
}
.

The centered Gaussian variable
√

n
L22

n

dθk
(β∗) has a variance bounded by

( ∑
2|p|>n

|cp(f ∗)|
)2

2m3
n.

From assumption (3.2), we conclude that
√

n
∂L22

n

dθk
(β∗) converges to 0 in probabil-

ity. In like manner,
√

n
∂L22

n

∂ak
(β∗) converges in probability to 0, too. Thus we have

that
√

n∇Mn(β
∗) = √

n∇L1
n(β

∗) − √
n∇L21

n (β∗) + oP(1). After straightforward
computations, we obtain

√
n
∂Mn

∂θk

(β∗) = −2σ ∗

J

∑
1≤|l|≤mn

�{
lcl(f

∗)
(
a∗
k ξl(β∗) − a∗

k e−ilθ∗
k ξk,l

)}
,

√
n
∂Mn

∂ak

(β∗) = −2σ ∗

J

∑
1≤|l|≤mn

�
{
cl(f

∗)
(
e−ilθ∗

k ξk,l − a∗
k

a∗
1
ξ1,l

)}
,

√
n
∂Mn

∂υk

(β∗) = − 2σ ∗

J
√

n

n∑
i=1

εi,k = −2σ ∗

J
ξk,0.
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We can now define (Gθ
n,G

a
n,G

υ
n) as

Gθ
n = ∑

1≤|l|≤mn

�
{
ilcl(f

∗)
(

a∗
1

J
A

2
......
−D + 1

J
A

2 t
A

)
X∗

l

}
+ oP(1),

Ga
n = ∑

1≤|l|≤mn

�
{
cl(f

∗)
(−1

a∗
1

A

......
IJ−1

)
X∗

l

}
+ oP(1) and

Gυ
n = �{X∗

0} + oP(1),

where X∗
l denote the independent identically distributed complex Gaussian vectors

defined as

tX∗
l = t(e−ilθ∗

k ξ1,l , . . . , e
−ilθ∗

k ξJ,l).

Since Gθ
n and Ga

n do not depend on X∗
0, Gυ

n is independent of Gθ
n and Ga

n.

Moreover, its variance matrix is equal to the identity matrix of R
J . Furthermore,

the imaginary part and the real part of cl(f
∗)X∗

l are independent. Consequently,
Gθ

n and Ga
n are asymptotically independent with covariance matrix ‖∂f ∗‖2 ×

(D2 − A2 tA2/J ) and ‖f ∗‖2(IJ−1 − A tA/a∗
1

2), respectively.
By the definition of (ξk,l) (Remark 4.1), we deduce from assumption (3.1) that

for a fixed k = 1, . . . , J,

�
{ ∑

|l|≤mn

ilcl(f
∗)ξ̄k,le

−ilθ∗
k

}
= 1√

n

n∑
i=1

εi,k�
{ ∑

|l|≤mn

ilcl(f
∗)eil(ti−θ∗

k )

}

= 1√
n

n∑
i=1

εi,k∂f
∗(ti − θ∗

k ) + oP(1).

Thus, (Gθ
n,G

a
n,G

υ
n) are equal to the expression defined in the proposition.

�

PROPOSITION 4.2. Under the assumptions and notation of Theorem 3.1, we
have

∇2Mn(β̄n)
Pβ∗−→

n→∞− 2

J 2 H.

PROOF. The matrix −2H/J 2 is the value of the Hessian matrix of M in
point β∗. We study locally the Hessian matrix of Mn. Consequently, we may as-
sume that the sequences (β̄n) are in the following set:

Aloc
n = {(θ, a,υ) ∈ A0, a1 > r and ‖β − β∗‖ ≤ ‖β̂n − β∗‖},
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where a∗
1 > r > 0. Notice that for ε > 0, we have

P

(
sup

β∈Aloc
n

‖∇2Mn(β) − ∇2M(β∗)‖ > 2ε

)

≤ P

(
sup

β∈Aloc
n

‖∇2Mn(β) − ∇2M(β)‖ > ε

)

+ P

(
sup

β∈Aloc
n

‖∇2M(β) − ∇2M(β∗)‖ > ε

)
.

As in Lemma 4.1, assumptions (3.1) and (3.2) assure the uniform convergence in
probability of ∇2Mn to the Hessian matrix of M on Aloc

n . Thus, the first term of
inequality converges to 0 with n.

Since ∇2M is continuous in β∗, there exists δ > 0 such that

∇2M(B(β∗, δ)) ⊆ B(∇2M(β∗), ε).
Consequently, we have the following inclusion of event:(

sup
β∈Aloc

n

‖∇2M(β) − ∇2M(β∗)‖ > ε

)
⊆ (‖β̂n − β∗‖ > δ).

Thus, from Theorem 2.1, the second term of the inequality converges to 0, too. �

4.3.1. The estimation of the common shape.

REMARK 4.2. If the assumptions of Theorem 3.1 hold, we obtain using the
Cauchy–Schwarz inequality that

∑
|l|>n

|cl(f
∗)| ≤

{∑
|l|>n

|lcl(f
∗)|

}1/2{∑
|l|>n

|lcl(f
∗)|/l2

}1/2

= o(1/n).

Similarly, if f ∗ is k times differentiable and f (k) is squared integrable, we have∑
|l|>n

|cl(f
∗)| = o(n−k+1/2) and

∑
|l|>n

|cl(f
∗)|2 = o(n−2k).

PROOF OF COROLLARY 3.1. Using the notation of Lemma 4.1, we have for
all t ∈ R,

f ∗(t) − fβ∗(t)

= ∑
|l|>mn

cl(f
∗)eilt + ∑

1≤|l|≤mn

eilt
∑

|2p|>n,p−l∈nZ

cp(f ∗)φ(lθ̂ − pθ∗, â)

+ ∑
1≤|l|≤mn

cl(f
∗)
{
φ
(
l(θ̂ − θ∗), â

)− 1
}
eilt(4.8)
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+ σ ∗ ∑
1≤|l|≤mn

ξl(β̂)
eilt

√
n
.(4.9)

Since Theorem 3.1 holds and using the delta method, we have for all j = 1, . . . , J,

e
il(θ̂j−θ∗

j ) − 1 = il(θ̂j − θ∗
j ) + oP

(
l/

√
n
)
.

Moreover, we have

∣∣φ(l(θ̂ − θ∗), â
)− 1

∣∣ ≤ 1

J

J∑
j=1

a∗
j |âj − a∗

j | + 1

J

J∑
j=1

a∗
j

2∣∣eil(θ̂j−θ∗
j ) − 1

∣∣.
Then, we deduce that

sup
t∈R

|(4.8)| = OP

(
1/

√
n
)

and E‖(4.8)‖2
L2 = O(1/n).

Using (4.3) and the Cauchy–Schwarz inequality, we have

Wn =
∣∣∣∣∣

∑
1≤|l|≤mn

ξl(β̂)
eilt

√
n

∣∣∣∣∣ ≤ 1√
Jn

∑
1≤|l|≤mn

J∑
j=1

|ξj,l |,

∫ 2π

0
EW 2

n

dt

2π
= 1

nJ

∑
1≤|l|≤mn

J∑
j=1

|ξj,l|2.

Hence we deduce by the Markov inequality that

Wn = OP

(
mn/

√
n
)

and
∫ 2π

0
EW 2

n

dt

2π
= O(mn/n).

Then, using Remark 4.1, the corollary results. �

LEMMA 4.4. Let l be in Z
∗. For a large n, we have

√
n�(

ĉl(β̂n) − cl(f
∗)
) = n(−�(lcl(f

∗)h̃f ) + n

(
0,0,0,0,

cos(l·)
J

)

+ oP(1),

√
n�(ĉl(β̂n) − cl(f

∗)
) = n(�(lcl(f

∗)h̃f ) + n

(
0,0,0,0,

− sin(l·)
J

)

+ oP(1),

where h̃f = σ ∗2

‖∂f ∗‖
L2

(
IJ−1

a∗
1

2 ,0,0,0,
J−a∗

1
2

a∗
1

2 ∂f ∗).

PROOF. Let l be in Z
∗. For n large enough (such wise |l| ≤ mn), from the con-

tinuous mapping theorem [12], Theorem 2.3, and from assumption (3.1) ensures
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that cn
l (f ∗) converges to cl(f

∗) with a speed
√

n, we obtain
√

ncl(f̂n − f ∗) = √
n
(
ĉl(β̂n) − cl(f

∗)
)
,

= cl(f
∗)

√
n

(
1

J

J∑
j=1

âj,na
∗
j e

il(θ̂j,n−θ∗
j ) − 1

)
+ ξl(θ

∗, a∗) + oP(1).

Since
√

n(θ̂n − θ∗, ân − a∗) converges in distribution (Theorem 3.1), we use the
delta method ([12], Chapter 3):

√
ncl(f̂n − f ∗) = ilcl(f

∗)
J∑

j=2

a∗
j

2

J

√
n(θ̂j − θ∗

j ) + ξl(θ
∗, a∗) + oP(1).

Thus from Theorem 3.1 and Lemma 4.3 and due to the linearity of n(·), we have

√
ncl(f̂n − f ∗) = ilcl(f

∗)
J∑

j=2

a∗
j

2

J
n(h̃

θ
j ) + ξl(θ

∗, a∗) + oP(1)

= ilcl(f
∗)σ ∗2

‖∂f ∗‖L2
n(h̃

f ) + ξl(θ
∗, a∗) + oP(1).

Using the definition of ξl (see Remark 4.1), we have

�(ξl(θ
∗, a∗)) = n

(
0,

cos(l·)
J

)
and �(ξl(θ

∗, a∗)) = n

(
0,

− sin(l·)
J

)
. �
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