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MONOTONIC CONVERGENCE OF A GENERAL ALGORITHM
FOR COMPUTING OPTIMAL DESIGNS

BY YAMING YU

University of California, Irvine

Monotonic convergence is established for a general class of multiplica-
tive algorithms introduced by Silvey, Titterington and Torsney [Comm. Sta-
tist. Theory Methods 14 (1978) 1379–1389] for computing optimal designs.
A conjecture of Titterington [Appl. Stat. 27 (1978) 227–234] is confirmed as
a consequence. Optimal designs for logistic regression are used as an illus-
tration.

1. A general class of algorithms. Optimal experimental design (approximate
theory) is a well-developed area, and we refer to Kiefer (1974), Silvey (1980),
Pázman (1986) and Pukelsheim (1993) for a general introduction and basic results.
We consider computational aspects of optimal designs, focusing on a finite design
space X = {x1, . . . , xn}. Suppose the probability density or mass function of the
response is specified as p(y|x, θ) where θ = (θ1, . . . , θm)� is the parameter of
interest. Let Ai denote the m × m expected Fisher information matrix from a unit
assigned to xi with the (j, k) entry [the expectation is with respect to p(y|xi, θ)]

Ai(j, k) = E

[
∂ logp(y|xi, θ)

∂θj

∂ logp(y|xi, θ)

∂θk

]
.

The moment matrix, as a function of the design measure w = (w1, . . . ,wn), is
defined as

M(w) =
n∑

i=1

wiAi

which is proportional to the Fisher information for θ when the number of units
assigned to xi is proportional to wi . Here w ∈ �̄, and �̄ denotes the closure of
� = {w :wi > 0,

∑n
i=1 wi = 1}. Throughout we assume that Ai are well defined

and hence nonnegative definite. The set

�+ ≡ {w ∈ �̄ :M(w) > 0 (positive definite)},
is assumed nonempty. Our approach may conceivably extend to the case where
M(w) is allowed to be singular, by using generalized inverses, although we do not
pursue this here.
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Given an optimality criterion φ defined on positive definite matrices, the goal
is to maximize φ(M(w)) with respect to w ∈ �+. Typical optimality criteria in-
clude:

(i) the D-criterion φ0(M) = log det(M),
(ii) the A-criterion φ−1(M) = − tr(M−1),

(iii) more generally, the pth mean criterion φp(M) = − tr(Mp),p < 0 and
(iv) the c-criterion φ−1,c(M) = −c�M−1c, where c is a nonzero constant vec-

tor.

Often only a linear combination K�θ , for example, a subvector of θ , is of in-
terest. The Fisher information for K�θ is naturally defined as (K�M−1K)−1,
assuming invertibility [Pukelsheim (1993)]. We may therefore consider the D- and
A-criteria for K�θ defined, respectively, as

φ0,K(M) = − log det(K�M−1K);
(1)

φ−1,K(M) = − tr(K�M−1K).

The c-criterion is a special case of φ−1,K(M). Motivations for such optimality
criteria are well known. In a linear problem, the A-criterion seeks to minimize the
sum of variances of the best linear unbiased estimators (BLUEs) for all coordinates
of θ while the c-criterion seeks to minimize the variance of the BLUE for c�θ .
Similar interpretations (with asymptotic arguments) apply to nonlinear problems.

In general M(w) also depends on the unknown parameter θ which compli-
cates the definition of an optimality criterion. A simple solution is to maximize
φ(M(w)) with θ fixed at a prior guess θ∗; this leads to local optimality [Chernoff
(1953)]. Local optimality may be criticized for ignoring uncertainty in θ . However,
in a situation where real prior information is available, or where the dependence
of M on θ is weak, it is nevertheless a viable approach and has been adopted rou-
tinely [see, e.g., Li and Majumdar (2008)]. Henceforth we assume a fixed θ∗ and
suppress the dependence of M on θ . Possible extensions are mentioned in Sec-
tion 5.

Optimal designs do not usually come in closed form. As early as Wynn (1972),
Fedorov (1972), Atwood (1973) and Wu and Wynn (1978), and as late as Torsney
(2007), Harman and Pronzato (2007) and Dette, Pepelyshev and Zhigljavsky
(2008), various procedures have been studied for numerical computation. We shall
focus on the following multiplicative algorithm [Titterington (1976, 1978), Silvey,
Titterington and Torsney (1978)] which is specified through a power parameter
λ ∈ (0,1].

ALGORITHM I. Set λ ∈ (0,1] and w(0) ∈ �. For t = 0,1, . . . , compute

w
(t+1)
i = w

(t)
i

dλ
i (w(t))∑n

j=1 w
(t)
j dλ

j (w(t))
, i = 1, . . . , n,(2)
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where

di(w) = tr(φ′(M(w))Ai), φ′(M) ≡ ∂φ(M)

∂M
.

Iterate until convergence.
For a heuristic explanation, observe that (2) is equivalent to

w
(t+1)
i ∝ w

(t)
i

(
∂φ(M(w))

∂wi

∣∣∣∣
w=w(t)

)λ

, i = 1, . . . , n.(3)

The value of ∂φ(M(w))/∂wi indicates the amount of gain in information, as mea-
sured by φ, by a slight increase in wi , the weight on the ith design point. So (3) can
be seen as adjusting w so that relatively more weight is placed on design points
whose increased weight may result in a larger gain in φ. If φ is increasing and
concave, then a convenient convergence criterion, based on the general equiva-
lence theorem [Kiefer and Wolfowitz (1960), Whittle (1973)], is

max
1≤i≤n

di

(
w(t)) ≤ (1 + δ)d̄

(
w(t)),(4)

where d̄(w) ≡ ∑n
i=1 widi(w) and δ is a small positive constant.

Algorithm I is remarkable in its generality. For example, little restriction is
placed on the underlying model p(y|x, θ). Part of the reason, of course, is that
we focus on Fisher information and local optimality, which essentially reduces the
problem to a linear one.

There exists a large literature on Algorithm I and its relatives [see, e.g., Titter-
ington (1976, 1978), Silvey, Titterington and Torsney (1978), Pázman (1986), Fell-
man (1989), Pukelsheim and Torsney (1991), Torsney and Mandal (2006), Harman
and Pronzato (2007), Dette, Pepelyshev and Zhigljavsky (2008) and Torsney and
Martín-Martín (2009)]. One feature that has attracted much attention is that Algo-
rithm I appears to be monotonic, that is, φ(M(w(t))) increases in t , at least in some
special cases. For example, when φ = φ0 (for D-optimality) and λ = 1, Tittering-
ton (1976) and Pázman (1986) have shown monotonicity using clever probabilistic
and analytic inequalities [see also Dette, Pepelyshev and Zhigljavsky (2008) and
Harman and Trnovská (2009)]. Algorithm I is also known to be monotonic for
φ = φ−1,K as in (1), assuming λ = 1/2 and Ai are rank-one [Fellman (1974),
Torsney (1983)]. Monotonicity is important because convergence then holds un-
der mild assumptions (see Section 4). Results in these special cases suggest a
monotonic convergence theory for a broad class of φ which is also supported by
numerical evidence presented in some of the references above.

2. Main result. We aim to state general conditions on φ that ensure that Al-
gorithm I converges monotonically. As a consequence certain known theoretical
results are unified and generalized, and one particular conjecture [Titterington
(1978)] is confirmed. Define

ψ(M) ≡ −φ(M−1), M > 0.
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The functions φ and ψ are assumed to be differentiable on invertible matrices.
Our conditions are conveniently stated in terms of ψ . As usual, for two symmetric
matrices, M1 ≤ (<)M2 means M2 − M1 is nonnegative (positive) definite.

• ψ(M) is increasing:

0 < M1 ≤ M2 	⇒ ψ(M1) ≤ ψ(M2)(5)

or, equivalently, ψ ′(M) is nonnegative definite for positive definite M .
• ψ(M) is concave:

αψ(M1) + (1 − α)ψ(M2) ≤ ψ
(
αM1 + (1 − α)M2

)
(6)

for α ∈ [0,1],M1,M2 > 0. Equivalently,

ψ(M2) ≤ ψ(M1) + tr
(
ψ ′(M1)(M2 − M1)

)
, M1,M2 > 0.(7)

Condition (5) is usually satisfied by any reasonable information criterion
[Pukelsheim (1993)]. Also note that, if (5) fails, then ∂φ(M(w))/∂wi on the right-
hand side of (3) is not even guaranteed to be nonnegative. The real restriction is the
concavity condition (6). For example, (6) is not satisfied by ψp(M) = −φp(M−1)

(the pth mean criterion) when p < −1. [It is usually assumed that φ(M), rather
than ψ(M), is concave.] Nevertheless, (6) is satisfied by a wide range of crite-
ria, including the commonly used D-, A- or c-criteria [see cases (i) and (ii) in the
illustration of the main result below].

Our main result is as follows.

THEOREM 1 (General monotonicity). Assume (5) and (6). Assume that in it-
eration (2), with 0 < λ ≤ 1, we have

M
(
w(t)) > 0, φ′(M(

w(t))) �= 0 and M
(
w(t+1)) > 0.

Then

φ
(
M

(
w(t+1))) ≥ φ

(
M

(
w(t))).

In other words, under mild conditions which ensure that (2) is well defined
[specifically, the denominator in (2) is nonzero], (5) and (6) imply that (2) never
decreases the criterion φ. Let us illustrate Theorem 1 with some examples. For
simplicity, in (i)–(iv) we display formulae for λ = 1 only, although monotonicity
holds for all λ ∈ (0,1].

(i) Take

φp(M) =
{

log detM, p = 0;
− tr(Mp), p ∈ [−1,0).

Then ψp(M) ≡ −φp(M−1) satisfies (5) and (6). By Theorem 1, Algorithm I is
monotonic for φ = φp,p ∈ [−1,0]. This generalizes the previously known cases
p = 0 and p = −1 (with particular values of λ). The iteration (2) reads

w
(t+1)
i = w

(t)
i

tr(Mp−1(w(t))Ai)

tr(Mp(w(t)))
, i = 1, . . . , n.
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(ii) More generally, given a full rank m × r matrix K (r ≤ m), consider

ψp,K(M−1) ≡ −φp,K(M) =
{

log det(K�M−1K), p = 0;
tr((K�M−1K)−p), p ∈ [−1,0).

Then ψp,K(M) satisfies (5) and (6). By Theorem 1, Algorithm I is monotonic for
φ = φp,K,p ∈ [−1,0]. The iteration (2) reads

w
(t+1)
i = w

(t)
i

tr(M−1K(K�M−1K)−p−1K�M−1Ai)

tr((K�M−1K)−p)

∣∣∣∣
M=M(w(t))

.(8)

(iii) In particular, taking r = 1,K = c (an m×1 vector) and p = −1 in case (ii),
we obtain that Algorithm I is monotonic for the c-criterion φ−1,c. The iteration (8)
reduces to

w
(t+1)
i = w

(t)
i

c�M−1(w(t))AiM
−1(w(t))c

c�M−1(w(t))c
, i = 1, . . . , n.

As noted by a referee, with p = −1, the choice λ = 1 may lead to an os-
cillating behavior in the sense that w(t) alternates between two points at which
φ−1,c(M(w)) takes the same value. While this does not contradict Theorem 1, it
suggests that other values of λ are more desirable for fast convergence. Following
Fellman (1974) and Torsney (1983), a practical recommendation is λ = 1/2 in the
p = −1 case.

(iv) Consider another example of case (ii), with p = 0, r = m − 1 and K =
(0r , Ir)

�. Henceforth 0r denotes the r × 1 vector of zeros, and Ir denotes the
r × r identity matrix. Assume Ai = xix

�
i , x�

i = (1, z�
i ) and zi is (m − 1) × 1.

This corresponds to a D-optimal design problem for (θ2, . . . , θm) under the linear
model,

y|(x, θ) ∼ N(x�θ, σ 2), x� = (1, z�),

where the parameter is θ = (θ1, θ2, . . . , θm)�. That is, interest centers on all co-
efficients other than the intercept. Nevertheless, as far as the design measure w is
concerned, the optimality criterion, φ0,K(M), coincides with φ0(M), that is,

− log det(K�M−1(w)K) = log detM(w).

After some algebra, (8) reduces to

w
(t+1)
i = w

(t)
i

(zi − z̄)�M−1
c (w(t))(zi − z̄)

m − 1
, i = 1, . . . , n,(9)

where

z̄ =
n∑

i=1

w
(t)
i zi; Mc

(
w(t)) =

n∑
i=1

w
(t)
i (zi − z̄)(zi − z̄)�.

Thus (9) satisfies detM(w(t+1)) ≥ detM(w(t)).
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Monotonicity of (9) has been conjectured since Titterington (1978), and con-
siderable numerical evidence has accumulated over the years. Recently, extending
the arguments of Pázman (1986), Dette, Pepelyshev and Zhigljavsky (2008) have
obtained results which come very close to resolving Titterington’s conjecture. Nev-
ertheless, we have been unable to extend their arguments further. Instead we prove
the general Theorem 1 using a different approach, and settle this conjecture as a
consequence.

The proof of Theorem 1 is achieved by using a method of auxiliary variables.
When a function f (w) [e.g., −detM(w)] to be minimized is complicated, we
introduce a new variable Q and a function g(w,Q) such that minQ g(w,Q) =
f (w) for all w, thus transforming the problem into minimizing g(w,Q) over w

and Q jointly. Then we may use an iterative conditional minimization strategy
on g(w,Q). This is inspired by the EM algorithm [Dempster, Laird and Rubin
(1977), Meng and van Dyk (1997); in particular, see Csiszár and Tusnady’s (1984)
interpretation; see Yu (2008) for a related interpretation of the data augmentation
algorithm].

In Section 3 we analyze Algorithm I using this strategy. Although attention is
paid to the mathematics, our focus is on intuitively appealing interpretations which
may lead to further extensions of Algorithm I with the same desirable monotonic-
ity properties. If the algorithm is monotonic, then convergence can be established
under mild conditions (Section 4). Section 5 contains an illustration with optimal
designs for a simple logistic regression model.

3. Explaining the monotonicity. A key observation is that the problem of
maximizing φ(M(w)), or, equivalently, minimizing ψ(M−1(w)) can be formu-
lated as a joint minimization over both the design and the estimator. Specifically,
let us compare the original Problem P1 with its companion Problem P2. Through-
out A1/2 denotes the symmetric nonnegative definite (SNND) square root of an
SNND matrix A.

PROBLEM P1. Minimize −φ(M(w)) ≡ ψ((
∑n

i=1 wiAi)
−1) over w ∈ �.

PROBLEM P2. Minimize

g(w,Q) ≡ ψ(Q�wQ�)(10)

over w ∈ � and Q [an m × (mn) matrix], subject to QG = Im, where

�w ≡ Diag(w−1
1 , . . . ,w−1

n ) ⊗ Im; G ≡ (A
1/2
1 , . . . ,A1/2

n )�.

Though not immediately obvious, Problems P1 and P2 are equivalent, and this
may be explained in statistical terms as follows. In (10), Q�wQ� is simply the
variance matrix of a linear unbiased estimator, QY , of the m × 1 parameter θ in
the model

Y = Gθ + ε, ε ∼ N(0,�w),
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where Y is the (mn) × 1 vector of observations. The constraint QG = Im ensures
unbiasedness. [Note that G is full-rank since M(w) is nonsingular by assumption.]
Of course, the weighted least squares (WLS) estimator is the best linear unbiased
estimator, having the smallest variance matrix (in the sense of positive definite
ordering) and, by (5), the smallest ψ for that matrix. It follows that, for fixed w,
g(w,Q) is minimized by choosing QY as the WLS estimator,

g(w, Q̂WLS) = inf
QG=Im

g(w,Q),(11)

Q̂WLS = M−1(w)(w1A
1/2
1 , . . . ,wnA

1/2
n ).(12)

However, from (10) and (12) we get

g(w, Q̂WLS) = ψ(M−1(w)).(13)

That is, Problem P2 reduces to Problem P1 upon minimizing over Q.
Since Problem P2 is not immediately solvable, it is natural to consider the sub-

problems: (i) minimizing g(w,Q) over Q for fixed w and (ii) minimizing g(w,Q)

over w for fixed Q. Part (ii) is again formulated as a joint minimization problem.
For a fixed m × (mn) matrix Q such that QG = Im, let us consider Problems P3
and P4.

PROBLEM P3. Minimize g(w,Q) as in (10) over w ∈ �.

PROBLEM P4. Minimize the function

h(
,w,Q) = ψ(
) + tr
(
ψ ′(
)(Q�wQ� − 
)

)
,(14)

over w ∈ � and the m × m positive-definite matrix 
.

The concavity assumption (7) implies that

h(
,w,Q) ≥ ψ(Q�wQ�)(15)

with equality when 
 = Q�wQ�, that is, Problem P4 reduces to Problem P3 upon
minimizing over 
.

Since Problem P4 is not immediately solvable, it is natural to consider the sub-
problems: (i) minimizing h(
,w,Q) over 
 for fixed w and Q and (ii) minimiz-
ing h(
,w,Q) over w for fixed 
 and Q. Part (ii), which amounts to minimizing

tr(ψ ′(
)Q�wQ�) = tr(Q�ψ ′(
)Q�w),

admits a closed-form solution: if we write Q = (Q1, . . . ,Qn) where each Qi is
m × m, then w2

i should be proportional to tr(Q�
i ψ ′(
)Qi). But Algorithm I may

not perform an exact minimization here [see (16)].
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Based on the above discussion, we can express Algorithm I as an iterative con-
ditional minimization algorithm involving w,Q and 
. At iteration t , define

Q(t) = (
Q

(t)
1 , . . . ,Q(t)

n

);
Q

(t)
i = w

(t)
i M−1(

w(t))A1/2
i , i = 1, . . . , n;


(t) = Q(t)�w(t)Q
(t)� = M−1(

w(t)).
Then we have

ψ
(
M−1(

w(t))) = g
(
w(t),Q(t)) [by (13)]

= h
(

(t),w(t),Q(t)) [by (14)]

≥ h
(

(t),w(t+1),Q(t)) (see below)(16)

≥ g
(
w(t+1),Q(t)) [by (15), (10)](17)

≥ ψ
(
M−1(

w(t+1))) [by (11), (13)].(18)

The choice of w(t+1) leads to (16) as follows. After simple algebra, the iteration
(2) becomes

w
(t+1)
i = rλ

i w1−2λ
i∑n

j=1 rλ
j w1−2λ

j

, i = 1, . . . , n,

where

wi ≡ w
(t)
i , ri ≡ tr

(
Q

(t)�
i ψ ′(
(t))Q(t)

i

)
.

Since 0 < λ ≤ 1, Jensen’s inequality yields(
n∑

i=1

ri

wi

)1−λ

≥
n∑

i=1

wi

(
ri

w2
i

)1−λ

;
(

n∑
i=1

ri

wi

)λ

≥
n∑

i=1

wi

(
ri

w2
i

)λ

.

That is,
n∑

i=1

ri

wi

≥
(

n∑
i=1

r1−λ
i w2λ−1

i

)(
n∑

i=1

rλ
i w1−2λ

i

)
.

Hence

tr
(
ψ ′(
(t))Q(t)�w(t)Q

(t)�) =
n∑

i=1

ri

w
(t)
i

≥
n∑

i=1

ri

w
(t+1)
i

= tr
(
ψ ′(
(t))Q(t)�w(t+1)Q

(t)�)
,

which produces (16). Choosing λ = 1/2, that is, w
(t+1)
i ∝ √

ri , leads to exact min-
imization in (16); choosing λ = 1 yields equality in (16). But any choice of w(t+1)
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that decreases h(
(t),w,Q(t)) at (16) would have resulted in the desired inequal-
ity,

ψ
(
M−1(

w(t))) ≥ ψ
(
M−1(

w(t+1))).
We may allow λ to change from iteration to iteration, and monotonicity still holds,
as long as λ ∈ (0,1]. See Silvey, Titterington and Torsney (1978) and Fellman
(1989) for investigations concerning the choice of λ. Also note that we assume
w

(t)
i ,w

(t+1)
i > 0 for all i. This is not essential, however, because (i) the possibility

of w
(t)
i = 0 can be handled by restricting our analysis to all design points i such

that w
(t)
i > 0, and (ii) the possibility of w

(t+1)
i = 0 can be handled by a standard

limiting argument. Monotonicity holds as long as M(w(t)) and M(w(t+1)) are both
positive definite, as noted in the statement of Theorem 1.

4. Global convergence. Monotonicity (Theorem 1) plays an important role
in the following convergence theorem.

THEOREM 2 (Global convergence). Denote the mapping (2) by T .
(a) Assume

φ′(M(w)) ≥ 0; φ′(M(w))Ai �= 0, w ∈ �+, i = 1, . . . , n.

(b) Assume (2) is strictly monotonic, that is,

w ∈ �+, T w �= w 	⇒ φ(M(T w)) > φ(M(w)).(19)

(c) Assume φ is strictly concave and φ′ is continuous on positive definite matri-
ces.

(d) Assume that, if M (a positive definite matrix) tends to M∗ such that φ(M)

increases monotonically, then M∗ is nonsingular.
Let w(t) be generated by (2) with w

(0)
i > 0 for all i. Then:

(i) all limit points of w(t) are global maxima of φ(M(w)) on �+, and
(ii) as t → ∞, φ(M(w(t))) increases monotonically to supw∈�+ φ(M(w)).

The proof of Theorem 2 is somewhat subtle. Standard arguments show that
all limit points of w(t) are fixed points of the mapping T . This alone does not
imply convergence to a global maximum, however, because there often exist sub-
optimal fixed points on the boundary of �. (Global maxima occur routinely on
the boundary also.) Our goal is therefore to rule out possible convergence to such
sub-optimal points; details of the proof are presented in Yu (2009), an extended
version of this paper. We shall comment on conditions (a)–(d).

Condition (a) ensures that starting with w(0) ∈ �+, all iterations are well de-
fined. Moreover, if w

(0)
i > 0 for all i, then w

(t)
i > 0 for all t and i. This highlights

the basic idea that, in order to converge to a global maximum w∗, the starting value
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w(0) must assign positive weight to every support point of w∗. Such a requirement
is not necessary for monotonicity. On the other hand, assigning weight to non-
supporting points of w∗ tends to slow the algorithm down. Hence methods that
quickly eliminate nonoptimal support points are valuable [Harman and Pronzato
(2007)].

Condition (b) simply says that unless w is a fixed point, the mapping T should
produce a better solution. Let us assume (5), (7) and condition (a) so that Theo-
rem 1 applies. Then, by checking the equality condition in (16), it is easy to see
that condition (b) is satisfied if 0 < λ < 1. [The argument leading to (19) tech-
nically assumes that all coordinates of w are nonzero, but we can apply it to the
appropriate subvector of w.] If λ = 1, then (16) reduces to an equality. However,
by checking the equality conditions in (17) and (18), we can show that condition
(b) is satisfied if ψ is strictly increasing and strictly concave:

M2 ≥ M1 > 0,
(20)

M1 �= M2 	⇒ ψ(M1) < ψ(M2);
M1,M2 > 0,

(21)
M1 �= M2 	⇒ ψ(M2) < ψ(M1) + tr

(
ψ ′(M1)(M2 − M1)

)
.

Conditions (c) and (d) are technical requirements that concern φ alone. Con-
dition (c) ensures uniqueness of the optimal moment matrix which simplifies the
analysis. Condition (d) ensures that positive definiteness of M(w) is maintained in
the limit. Conditions (c) and (d) are satisfied by φ = φp with p ≤ 0, for example.

Let us mention a typical example of Theorem 2.

COROLLARY 1. Assume Ai �= 0,w
(0)
i > 0, i = 1, . . . , n, and M(w(0)) > 0.

Then the conclusion of Theorem 2 holds for Algorithm I with φ = φ0.

PROOF. Conditions (a), (c) and (d) are readily verified. Condition (b) is satis-
fied by (20) and (21). The claim follows from Theorem 2. �

When (20) or (21) fails, and λ = 1, it is often difficult to appeal to Theorem 2
because strict monotonicity [condition (b)] may not hold. We illustrate this with an
example where the monotonicity is not strict, and the algorithm does not converge
[see Pronzato, Wynn and Zhigljavsky (2000), Chapter 7; also the remark in case
(iii) following Theorem 1]. Consider iteration (9) (λ = 1) with n = m = 2 and
design space X = {xi = (1, zi)

�, i = 1,2}, z1 = −z2 = 1. It is easy to show that,
for any w(t) = (w1,w2) ∈ �, iteration (9) maps w(t) to w(t+1) = (w2,w1). Thus,
unless w1 = w2 = 1/2 to begin with, the algorithm alternates between two distinct
points. This appears to be a rare example, as (9) usually converges in practical
situations.
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5. Further remarks and illustrations. One can think of several reasons for
the wide interest in Algorithm I and its relatives. Similar to the EM algorithm, Al-
gorithm I is simple, easy to implement and monotonically convergent for a large
class of optimality criteria (although this was not proved in the present general-
ity). Algorithm I is known to be slow sometimes. But it serves as a foundation
upon which more effective variants can be built [see, e.g., Harman and Pronzato
(2007) and Dette, Pepelyshev and Zhigljavsky (2008)]. While solving the con-
jectured monotonicity of (9) holds mathematical interest, our main contribution
is a way of interpreting such algorithms as optimization on augmented spaces.
This opens up new possibilities in constructing algorithms with the same desirable
monotonic convergence properties.

As a numerical example, consider the logistic regression model

p(y|x, θ) = exp(yx�θ)

1 + exp(x�θ)
, y = 0,1.

The expected Fisher information for θ from a unit assigned to xi is

Ai = xi

exp(x�
i θ)

(1 + exp(x�
i θ))2

x�
i .

We compute locally optimal designs with prior guess θ∗ = (1,1)�(m = 2), and
design spaces,

X1 = {xi = (1, i/20)�, i = 1, . . . ,20};
X2 = {xi = (1, i/10)�, i = 1, . . . ,30}.

The design criteria considered are φ0 (for D-optimality) and φ−2. We use Algo-
rithm I with λ = 1, starting with equally weighted designs.

For φ0, Corollary 1 guarantees monotonic convergence. This is illustrated by
Figure 1, the first row, where φ0 = log detM(w) is plotted against iteration t . Us-
ing the convergence criterion (4) with δ = 0.0001, the number of iterations until
convergence is 93 for X1 and 2121 for X2. The actual locally D-optimal designs
are w1 = w20 = 0.5 for X1 and w1 = w23 = 0.5 for X2, as can be verified us-
ing the general equivalence theorem. This simple example serves to illustrate both
the monotonicity of Algorithm I (when Theorem 1 applies) and its potential slow
convergence.

For φ−2, although Algorithm I can be implemented just as easily, Theorem 1
does not apply because the concavity condition (7) no longer holds. Indeed, Algo-
rithm I (with λ = 1) is not monotonic, as is evident from Figure 1, in the second
row, where φ−2 = − tr(M−2(w)) is plotted against iteration t . This shows the po-
tential danger of using Algorithm I when monotonicity is not guaranteed.

Although Theorem 1 does not cover the φp criterion for p < −1, it is still possi-
ble that monotonicity holds for a smaller range of λ. Calculations in special cases
lead to the conjecture [Silvey, Titterington and Torsney (1978)] that Algorithm I
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FIG. 1. Values of φ0 = log detM and φ−2 = − tr(M−2) for Algorithm I with design spaces X1
and X2.

is monotonic if 0 < λ ≤ 1/(1 − p). Theorem 1 provides further evidence for this
conjecture, but new insights are needed to resolve it.

We have focused on local optimality. An alternative, Bayesian optimality
[Chaloner and Larntz (1989), Chaloner and Verdinelli (1995)], seeks to maximize
the expected value of φ(M(θ;w)) over a prior distribution π(θ). The notation
M(θ;w) emphasizes the dependence of the moment matrix on the parameter θ . It
would be worthwhile to extend our strategy in Section 3 to Bayesian optimality,
and we plan to report both theoretical and empirical evaluations of such extensions
in future works.
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