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COVARIATE ADJUSTED FUNCTIONAL PRINCIPAL COMPONENTS
ANALYSIS FOR LONGITUDINAL DATA

BY CI-REN JIANG1 AND JANE-LING WANG2

University of California, Davis

Classical multivariate principal component analysis has been extended to
functional data and termed functional principal component analysis (FPCA).
Most existing FPCA approaches do not accommodate covariate information,
and it is the goal of this paper to develop two methods that do. In the first
approach, both the mean and covariance functions depend on the covariate Z

and time scale t while in the second approach only the mean function depends
on the covariate Z. Both new approaches accommodate additional measure-
ment errors and functional data sampled at regular time grids as well as sparse
longitudinal data sampled at irregular time grids. The first approach to fully
adjust both the mean and covariance functions adapts more to the data but
is computationally more intensive than the approach to adjust the covariate
effects on the mean function only. We develop general asymptotic theory for
both approaches and compare their performance numerically through simu-
lation studies and a data set.

1. Introduction. Principal component analysis is a standard dimension re-
duction tool for multivariate data and has been extended to functional data that
are in the form of random curves. Because functional data are intrinsically infinite
dimensional, dimension reduction is essential to analyze such data. In addition to
Ferraty and Vieu (2006) and Wu and Zhang (2006), the sequence of monographs
by Ramsay and Silverman (2002, 2005) provide a tutorial for the methodology
and applications of “Functional Data Analysis” (FDA). A sizable literature exists
for FPCA, functional approaches to conduct principal component analysis, when
entire curves are observed for each subject or in practical terms when subjects are
measured at a dense grid of time points [see, e.g., Rao (1958), Dauxois, Pousse and
Romain (1982), Besse and Ramsay (1986), Castro, Lawton and Sylvestre (1986),
Rice and Silverman (1991), Boente and Fraiman (2000), Bosq (2000), Cardot
(2000, 2006), Mas and Menneteau (2003) and Hall and Hosseini-Nasab (2006)].
Kneip and Utikal (2001) used methods of FDA to assess the variability of densi-
ties for data sets from different populations. When functional data are observed at
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irregular time points, perhaps just a few time points per subject, they are usually
referred as longitudinal data since they often arise from longitudinal studies. Rice
(2004) and Hall, Müller and Wang (2006) described the intrinsic similarities and
differences between FDA and longitudinal data analysis. Longitudinal data are of-
ten sparse with few measurements per subject and noisy with measurement errors
(or random fluctuations). However, these difficulties can be overcome in most situ-
ations, so it is still possible to conduct FPCA [Shi, Weiss and Taylor (1996), James,
Hastie and Suger (2000), Rice and Wu (2001), Yao, Müller and Wang (2005), Paul
and Peng (2009) and Peng and Paul (2009)].

The aforementioned FPCA approaches treat all functional data as if they come
from the same population. When the covariate information is available, some non-
FPCA approaches such as functional mixed effects models [Wang (1998) and Guo
(2002)] and semiparametric mixed effects models Zhang et al. (1998) are pro-
posed. There has been little work involving covariate information in the frame-
work of FPCA although it might be of particular interest in many situations, for
example, to study the modes of variation of the data. Furthermore, FPCA is an ef-
fective dimension reduction method. Chiou, Müller and Wang (2003) considered
a general approach incorporating a vector covariate effect through a semiparamet-
ric model. Their approach consists of two steps. In the first step, traditional FPCA
was performed on all subjects ignoring the covariate information. This resulted in
a Karhunen–Loève expansion [see (2.2)] for each subject X(t) for which the con-
ditional expectation of X(t) given the covariate Z was obtained and subsequently
estimated through a semiparametric approach. A different approach was proposed
in Cardot (2006), who considered conditional FPCA through nonparametric kernel
estimators of the conditional mean functions and conditional variance functions.
A key assumption for both approaches is that the trajectories of the functional data
are either completely observed or densely recorded over time. Both assumptions
are rarely satisfied in longitudinal medical or social studies. Specifically, the ap-
proach in Chiou, Müller and Wang (2003) is not suitable for extension to sparse
longitudinal data as the conditional principal components cannot be estimated or
approximated consistently for sparse longitudinal data. We propose a unified ap-
proach in Section 2 to model the mean function and two different approaches to
model the covariance function.

Little is known on how to incorporate covariate information in FPCA for sparse
longitudinal data, so our goal in this paper is to provide a unified platform to in-
corporate the covariate information that is applicable to both functional and longi-
tudinal data. Two different approaches are proposed; one is based on conditional
FPCA and the other adjusts the covariate effect on the mean function only. We
derive uniform consistency and asymptotical normality for the mean and covari-
ance functions for kernel and local polynomial smoothers. The two approaches
are compared numerically through a simulation study and illustrated with a data
example.
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The rest of this paper is organized as follows: Section 2 introduces the two new
approaches and their estimation procedures. Asymptotic results and the theoretical
properties of the proposed estimators are described in Section 3 with proofs in
the Appendix. Practical implementations of the new approaches and simulation
studies are discussed in Section 4. In Section 5, we employ both approaches to
the Mexican Flies data in Carey et al. (2005) and compare them to three FPCA
approaches James, Hastie and Suger (2000), Yao, Müller and Wang (2005), Peng
and Paul (2009) that do not incorporate covariate information. Conclusions are in
Section 6.

2. Methodology. Ignoring the covariate information for the moment and con-
sider the random functions X(t) with mean μ(t) and covariance �(t, s). FPCA
in this simple setting corresponds to a spectral decomposition of the covariance �

and leads to the Karhunen–Loève decomposition of the random function

X(t) = μ(t) + ∑
k=1

Akφk(t),(2.1)

where φk(t) is the eigenfunction of the covariance function �(s, t) corresponding
to the kth largest eigenvalues, and Ak = ∫

T {X(t) − μ(t)}φk(t) dt is the kth func-
tional principal component score. In the presence of a covariate Z = z we view
X(t, z) as a random function with mean function μ(t, z) and covariance function
�(t, s, z) where s and t are in a compact time interval T . In this paper, the random
function X(t, z) are not observable because measurements are taken on discrete
time points and there may be measurement errors. This is different from the situa-
tion considered in Cardot (2006) where a covariate adjusted FPCA was proposed
under the assumption that the entire function X(t, z) can be observed without er-
rors.

2.1. Model. We consider two ways to extend the FPCA approach to accom-
modate covariate information. Both approaches consist of two parts: a systematic
part corresponding to the mean function and a stochastic part comprising the ran-
dom components that reflect the covariance structure of the longitudinal data. In
both approaches we do not assume that we know the structure of μ(t, z) other than
that it is a smooth function, so we will need to estimate it nonparametrically. The
difference between the two approaches is in the handling of the covariance struc-
ture. Conceptually, the covariate Z can be any vector that has continuous distribu-
tion, but due to the curse of dimensionality only low-dimensional Z can be used.
Some dimension reduction approaches will be necessary for high-dimensional Z

and are beyond the scope of this paper.
In the first approach, it is assumed that the eigenfunctions of �(t, s, z) vary

with z so that there exists an orthogonal expansion of � (in the L2 sense) in
terms of eigenfunctions φk(t, z) and nonincreasing eigenvalues λk(z) :�(t, s, z) =
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∑
k λk(z)φk(t, z)φk(s, z). Thus the random trajectory X(t, z) can be represented

as

X(t, z) = μ(t, z) + ∑
k=1

Ak(z)φk(t, z),(2.2)

where Ak(z) are uncorrelated random variables with mean 0 and variance λk(z).
Again, we will model the covariance surface nonparametrically, assuming that it
is a smooth function of t, s and z. Since both the mean and covariance functions
have been adjusted by the covariate Z, we call this fully adjusted functional prin-
cipal component analysis and abbreviate it as fFPCA. This approach to adjust the
covariate effects is conceptually equivalent to the conditional FPCA approach in
Cardot (2006) but differs crucially in the way of estimation due to differences
in the data design we consider here. This crucial difference in the data design also
triggers a much different theoretical framework. For one-dimensional Z, only one-
dimensional smoothing is needed in Cardot (2006) to estimate both the mean and
covariance function along the Z-direction at each time location since the entire
function X(t, z) is observed.

When μ(t, z) = β(t)z and the stochastic components
∑

k=1 Ak(z)φk(t, z) in
model (2.2) adopts a time-varying linear structure b(t)z for some unknown func-
tion β and random function b, model (2.2) yields the varying coefficient random
effects model in Guo (2002). When μ(t, z) takes a partial linear form f (t) + βz

and the stochastic component also takes a partial linear form u(t) + bZ, for some
unknown functions f and u, parameter β and random variable b, model (2.2) re-
duces to the partial linear mixed model in Zhang et al. (1998).

In the second approach, one can take advantage of the fact that the covari-
ate Z is a random variable and pool all subjects together after centering each
individual curve at zero. This leads to a pooled covariance function �∗(t, s) =∫

Z E{(X(t, z) − μ(t, z))(X(s, z) − μ(s, z))}g(z) dz where g is the p.d.f. of Z on
Z , and �∗(t, s) is assumed to be a smooth function of t and s. Consequently, there
exists an orthogonal expansion (in the L2 sense) in terms of eigenfunctions φ∗

k and
nonincreasing eigenvalues λ∗

k such that �∗(t, s) = ∑
k λ∗

kφ
∗
k (t)φ∗

k (s), and

X(t, z) = μ(t, z) + ∑
k=1

A∗
kφ

∗
k (t),(2.3)

where A∗
k are uncorrelated random variable with E{A∗

k} = 0 and var{A∗
k} = λ∗

k .
This approach has the advantage that the covariance function can be estimated
with a lower-dimensional smoother than its counterpart in fFPCA, accelerating
the rate of convergence compared to fFPCA. We abbreviate this mean adjusted
functional principal component analysis on X(t, z) − μ(t, z) as “mFPCA” where
“m” stands for the mean adjusting operation. The estimation procedure for mFPCA
is described in Section 2.2.2. Conceptually, the fFPCA approach should fit the
data better as it adapts to the covariate information in covariance estimation while
mFPCA does not. This benefit may be offset by inferior practical performance
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if the data are sparse. Our simulation results in Section 4 reflect limited benefits
of fFPCA, so one may prefer the mFPCA approach in many applications or try
both approaches, unless the eigenfunctions vary substantially across the covariate
values.

2.2. Estimation. In many situations one can only observe the processes
X(t, z) intermittently and possibility with measurement errors. Let Yij be the j th
observation of the random function Xi , made at a random time Tij ∈ T with a co-
variate Zi ∈ Z and measurement error εij where i = 1, . . . , n, and j = 1, . . . ,Ni .
Here we assume that the measurement schedule Tij is a random sample of size
Ni and Ni is assumed to be i.i.d. and independent of all other random variables.
We also assume that the measurement errors are i.i.d. with mean 0 and a constant
variance σ 2 and are independent of the random coefficients Ak(z) or A∗

k under
model (2.2) or (2.3), respectively. Thus the observed data are

Yij = Xi(Tij ,Zi) + εij .(2.4)

The key steps in our FPCA approach are to estimate the mean and covari-
ance function. The corresponding eigenvalues and eigenfunctions can be obtained
easily through the eigen-equation after the covariance function has been esti-
mated. The mean functions for fFPCA and mFPCA are the same and can be es-
timated using any two-dimensional scatter-plot smoother of Yij against (Tij ,Zi),
for j = 1, . . . ,Ni, i = 1, . . . , n. We provide general asymptotic properties of any
linear scatter-plot smoother of the mean function μ(t, z) and demonstrate in Sec-
tion 3 these asymptotic properties on two linear smoothers, the Nadaraya–Watson
estimator (3.1) and the local linear estimator (3.2).

Similarly, our covariance estimator can also be expressed as a scatter-plot
smoother of the so called “raw covariances” defined below against (Tij , Tik):

Cijk = (
Yij − μ̂(Tij ,Zi)

)(
Yik − μ̂(Tik,Zi)

)
.(2.5)

The covariance estimators are different for fFPCA and mFPCA. For one-di-
mensional Z, the former involves a three-dimensional smoother of Cijk against
(Tij , Tik,Zi) for j, k = 1, . . . ,Ni, i = 1, . . . , n while the latter only requires a two-
dimensional smoother of Cijk against (Tij , Tik) for j, k = 1, . . . ,Ni, i = 1, . . . , n.
In principle, one can employ any linear smoother. We illustrate the theorems for the
Nadaraya–Watson estimators and local linear estimators [Fan and Gijbels (1996)]
in Section 3.

2.2.1. fFPCA. Note that since

cov(Yij , Yik|Tij , Tik,Zi)

= cov(X(Tij ,Zi),X(Tik,Zi)) + σ 2δjk,



COVARIATE ADJUSTED FPCA 1199

where δjk is 1 if j = k and 0 otherwise, the diagonal of the “raw” covariances Cijk

in (2.5) should not be included in the covariance function smoothing step. With
this in mind the local linear smoother for the covariance function �(t, s, z) is

�̂L(t, s, z) = β̂0 where

β̂ = arg min
β

{
n∑

i=1

∑
1≤j �=k≤Ni

K3

(
t − Tij

hG,t

,
s − Tik

hG,t

,
z − Zi

hG,z

)

(2.6) × [
Cijk − (

β0 + β1(Tij − t)

+β2(Tik − s) + β3(Zi − z)
)]2}

,

and K3 is a three-dimensional kernel function satisfying (A.2).
Next we aim to estimate the variance V (t, z) = �(t, t, z) + σ 2 of Y(t) for a

given z. Let K2 be a two-dimensional kernel function satisfying (A.1) and V̂ (t, z)

be the local linear smoother using only the diagonal time elements; then

V̂ (t, z) = β̂0,

where

β̂ = arg min
β

n∑
i=1

Ni∑
j=1

K2

(
t − Tij

hV,t

,
z − Zi

hV,z

)

× [Cijj − β0 − β1(Tij − t) − β2(Zi − z)]2.

The variance σ 2 of the measurement error can be estimated by averaging
(V̂ (t, z) − �̂L(t, t, z)) over a range of t . For stability, one may prefer to use a
trimmed mean restricting the averaging to take place over a central portion of the
time domain. We find the recommendation in Yao, Müller and Wang (2005) to
use a trimmed mean based on the central 50% of the time domain satisfactory.
Specifically, this leads to

σ̂ 2 = 1

|T1||Z|
∫

Z

∫
T1

{V̂ (t, z) − �̂L(t, t, z)}dt dz,(2.7)

where T1 is the interval [inf{t : t ∈ T } + |T |/4, sup{t : t ∈ T } − |T |/4] with the
notation |I| denoting the length of a generic interval I . If the variances of the
measurement errors vary over time and z, the variance function σ 2(t, z) can be
estimated directly as V̂ (t, z) − �̂(t, t, z).

The solutions of the eigen-equations,
∫

�̂L(t, s, z)φ̂k(s, z) ds = λ̂k(z)φ̂k(t, z),
where the φ̂k(t, z) satisfies

∫
φ̂2

k (t, z) dt = 1 and
∫

φ̂k(t, z)φ̂m(t, z) dt = 0 for
m < k, are used to estimate the eigenfunctions and eigenvalues. It now remains
to estimate the principal component scores

Aik(Zi) =
∫

φk(t,Zi)[Xi(t,Zi) − μ(t,Zi)]dt
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for the ith subject. Due to measurement errors and the intermittent measure-
ment schedules, the approaches in Chiou, Müller and Wang (2003) and Cardot
(2006) are not applicable to estimate these scores. Instead, the approach in
Yao, Müller and Wang (2005) aimed at estimating the conditional expectation
E(Aik(Zi)|Ỹi ) is well suited to estimate the principal component scores where
Ỹi = (Yi1, . . . , YiNi

)T . Under the assumption that Ỹi is multivariate normal, this
leads to the estimate

Âik(Zi) = λ̂kφ̂
T

ik	̂
−1
Ỹi

(Ỹi − μ̂i ),

where μ̂i = (μ̂(Ti1,Zi), . . . , μ̂(TiNi
,Zi))

T , (	̂Ỹi
)j,k = �̂L(Tij , Tik,Zi) + σ̂ 2δjk

and φ̂ik = (φ̂k(Ti1,Zi), . . . , φ̂k(TiNi
,Zi))

T .

2.2.2. mFPCA. The estimation of �∗(s, t) is similar to the procedure in Yao,
Müller and Wang (2005) except that we use Cijk as the raw covariances. Let
�̂∗(t, s) be the covariance estimator based on a local linear smoother; then

�̂∗(t, s) = β̂0 where

β̂ = arg min
β

{
n∑

i=1

∑
1≤j �=k≤Ni

K2

(
t − Tij

hG∗
,
s − Tik

hG∗

)

(2.8) × [
Cijk − (

β0 + β1(Tij − t)

+β2(Tik − s)
)]2}

,

where t, s ∈ T and K2 is defined in (A.1). Let V̂ ∗(t) be the local linear smoother
focusing on the diagonal values {�∗(t, t) + σ 2}; then

V̂ ∗(t) = β̂0,

where

β̂ = arg min
β

n∑
i=1

Ni∑
j=1

K1

(
t − Tij

hV ∗

)
[Cijj − β0 − β1(Tij − t)]2,

where K1 is a kernel function with compact support, symmetric and Hölder con-
tinuous. Again, a “trimmed” mean of (V̂ ∗(t) − �̂∗(t, t)) is used to estimate σ 2

similar to (2.7).
The solutions of the eigen-equations,

∫
�̂∗(t, s)φ̂∗

k (s) ds = λ̂∗
kφ̂

∗
k (t), where the

φ̂∗
k (t) satisfies

∫
(φ̂∗

k (t))2 dt = 1 and
∫

φ̂∗
k (t)φ̂∗

m(t) dt = 0 for m < k, are used to
estimate the eigenfunctions and eigenvalues. The principal component scores A∗

ik

for subject i are estimated as in Yao, Müller and Wang (2005) through

Â∗
ik = λ̂∗

k(φ̂
∗
ik)

T (	̂∗
Ỹi

)−1(Ỹi − μ̂i ),
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where Ỹi and μ̂i are defined as in Section 2.2.1, and (	̂∗
Ỹi

)j,k and φ̂
∗
ik are defined

as (	̂∗
Ỹi

)j,k = �̂∗(Tij , Tik) + (σ̂ ∗)2δjk and φ̂
∗
ik = (φ̂∗

k (Ti1), . . . , φ̂
∗
k (TiNi

))T .

2.3. Bandwidth selection and number of eigenfunctions. The bandwidths
for the estimated mean function are chosen via the leave-one-curve-out cross-
validation suggested by Rice and Silverman (1991). However, the bandwidths of
the covariance function estimators are chosen via a k-fold cross-validation proce-
dure to save computing time. Below we define the k-fold cross-validation method
for the bandwidths selection of �∗(t, s). The formula for �(t, s, z) is similar.

Suppose that the subjects are randomly assigned to k sets (S1, S2, . . . , Sk).

h = arg min
h

k∑

=1

∑
i∈S


∑
1≤j �=m≤Ni

{
Cijm − �̂∗(−S
)(Tij , Tim)

}2
,(2.9)

where �̂∗(−S
)(Tij , Tim) is the estimated covariance function at (Tij , Tim) when
the subjects in S
 are not used to estimate �∗(t, s). We found the ten-fold (k = 10)
method to have satisfactory performance.

Three criteria to choose the number of eigenfunctions K are discussed in the
simulation study section. Suppose that the first K eigenfunctions are used to pre-
dict the trajectories; given t ∈ T and z ∈ Z , the predicted trajectory of Xi(t, z)

based on the first K eigenfunctions will be

X̂K
i (t, z) = μ̂L(t, z) +

K∑
k=1

Âik(z)φ̂k(t, z),(fFPCA)

X̃K
i (t, z) = μ̂L(t, z) +

K∑
k=1

Â∗
ikφ̂

∗
k (t).(mFPCA)

3. Asymptotic results. For simplicity, the covariate Z in this section will be
univariate, and N1, . . . ,Nn are i.i.d. copies of some random variable N . We first
focus on the asymptotic distribution of linear smoothers of the mean function.

Asymptotic results for mean functions. A general theory (Lemma C.2) for two-
dimensional kernel-weighted estimators is provided in the Appendix; from there
the asymptotic normality of the Nadaraya–Watson kernel estimator μ̂NW(t, z) and
local linear estimator μ̂L(t, z) of μ(t, z) follows.

Specifically,

μ̂NW(t, z) =
∑n

i=1
∑Ni

j=1 K2((t − Tij )/hμ,t , (z − Zi)/hμ,z)Yij∑n
i=1

∑Ni

j=1 K2((t − Tij )/hμ,t , (z − Zi)/hμ,z)
,(3.1)
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μ̂L(t, z) = β̂0 where for β = (β0, β1, β2),

β̂ = arg min
β

n∑
i=1

Ni∑
j=1

K2

(
t − Tij

hμ,t

,
z − Zi

hμ,z

)
(3.2)

× [Yij − β0 − β1(Tij − t) − β2(Zi − z)]2.

THEOREM 3.1. Under assumptions A.3, A.5 and A.6, B.1–B.4, and assuming
hμ,z

hμ,t
→ ρμ and nE(N)h6

μ,t → τ 2
μ for some 0 < ρμ, τμ < ∞,

√
nN̄hμ,thμ,z[μ̂NW(t, z) − μ(t, z)] D→ N(βNW,	NW),

where

βNW = ∑
k1+k2=2

1

k1!k2!
[∫

s
k1
1 s

k2
2 K2(s1, s2) ds1 ds2

]

×
{

1

f2(t, z)

∂2

∂tk1∂zk2
α1(t, z) − μ(t, z)

f2(t, z)

∂2

∂tk1∂zk2
f2(t, z)

}

× τμ

√
ρ

2k2+1
μ ,

	NW = [Var(Y |t, z)‖K2‖2]/f2(t, z), α1(t, z) = μ(t, z)f2(t, z),

and f2(t, z) is the joint density of (T ,Z).

THEOREM 3.2. Under assumptions A.3, A.5 and A.6, B.1–B.4, and assuming
hμ,z

hμ,t
→ ρμ, and nE(N)h6

μ,t → τ 2
μ for some 0 < ρμ, τμ < ∞,

√
nN̄hμ,thμ,z[μ̂L(t, z) − μ(t, z)] D→ N(βL,	L),

where

βL = ∑
k1+k2=2

1

k1!k2!
[∫

s
k1
1 s

k2
2 K2(s1, s2) ds1 ds2

]
∂2

∂tk1∂zk2
μ(t, z)τμ

√
ρ

2k2+1
μ ,

	L = [Var(Y |t, z)‖K2‖2]/f2(t, z) and f2(t, z) is the joint density of (T ,Z).

Asymptotic results for covariance functions. We will need to consider three-
dimensional smoothers to estimate the covariance function. Again, the asymptotic
normalities of the Nadaraya–Watson kernel estimator and local linear estimator
of the covariance function follow from Lemma D.2 in Appendix D. Here the
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Nadaraya–Watson kernel estimator of the covariance �(t, s, z) is defined as

�̂NW(t, s, z) =
(

n∑
i=1

∑
1≤j �=k≤Ni

K3

(
t − Tij

hG,t

,
s − Tik

hG,t

,
z − Zi

hG,z

)
Cijk

)

(3.3)

×
(

n∑
i=1

∑
1≤j �=k≤Ni

K3

(
t − Tij

hG,t

,
s − Tik

hG,t

,
z − Zi

hG,z

))−1

.

For notational convenience, we focus on the case of conventional kernel of order
(0,2) and denote

σ 2
i =

∫ ∫ ∫
u2

i K3(u1, u2, u3) du1 du2 du3

for i = 1,2,3,

nE
(
N(N − 1)

)
h6

G,thG,z → τ 2
1 , nE

(
N(N − 1)

)
h2

G,th
5
G,z → τ 2

2

and

υ3(t, s, z) = Var
((

Y1 − μ(T1,Z)
)(

Y2 − μ(T2,Z)
)|T1 = t, T2 = s,Z = z

)
in the following two theorems.

THEOREM 3.3. Under assumptions A.4–A.6, B.5–B.8, and assuming hG,z

hG,t
→

ρG and nE(N(N − 1))h7
G,t → τ 2

G for some 0 < ρG, τG < ∞,√
nN̄(N̄ − 1)h2

G,thG,z{�̂NW(t, s, z) − �(t, s, z)} D→ N(γNW,�NW),

where

γNW = 1

2

{
σ 2

1 τ1
d2

dt2 �(t, s, z) + σ 2
2 τ1

d2

ds2 �(t, s, z) + σ 2
3 τ2

d2

dz2 �(t, s, z)

}

+
{
σ 2

1 τ1

(
d

dt
�(t, s, z)

)(
d

dt
g3(t, s, z)

)

+ σ 2
2 τ1

(
d

ds
�(t, s, z)

)(
d

ds
g3(t, s, z)

)

+ σ 2
3 τ2

(
d

dz
�(t, s, z)

)(
d

dz
g3(t, s, z)

)}/
g3(t, s, z),

�NW = [υ3(t, s, z)‖K3‖2]/g3(t, s, z)

and g3(t, s, z) is the joint density of (T1, T2,Z).

THEOREM 3.4. Under assumptions A.4–A.6, B.5–B.8, assuming hG,z

hG,t
→ ρG,

and nE(N(N − 1))h7
G,t → τ 2

G for some 0 < ρG, τG < ∞,√
nN̄(N̄ − 1)h2

G,thG,z{�̂L(t, s, z) − �(t, s, z)} D→ N(γL,�L),
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where γL = 1
2{σ 2

1 τ1
d2

dt2 �(t, s, z) + σ 2
2 τ1

d2

ds2 �(t, s, z) + σ 2
3 τ2

d2

dz2 �(t, s, z)}, �L =
[υ3(t, s, z)‖K3‖2]/g3(t, s, z), and g3(t, s, z) is the joint density of (T1, T2,Z).

Remarks. 1. The above asymptotic results reveal that standard optimal con-
vergent rates for independent data are attained for all estimators when E(N) is
finite. For instance, the convergence rate for both the Nadaraya–Watson and local
linear estimates for the mean function is n1/3 which is the optimal convergence
rate for a two-dimensional smoother under similar regularity conditions, and the
convergence rate for both covariance function estimators is n2/7, also optimal for
a similar three-dimensional smoother.

2. The convergent rates of all estimators are faster when the expected num-
ber of measurements per subject E(N) → ∞ as there are more data available
per subject. For instance, the convergence rate for both mean function estimates
and both covariance function estimates can be as arbitrarily close to n2/5 when
E(N) → ∞. Note that n2/5 is the optimal rate of convergence when the entire
longitudinal process Y(·, zi) can be observed for all subjects i = 1, . . . , n; there-
fore smoothing is only required on the z-direction leading to a one-dimensional
smoothing rate.

The asymptotic normality of the mFPCA covariance estimator can be han-
dled similar to Theorem 3.2, but it is in fact much simpler if we follow the ar-
guments of Theorem 2 in Yao (2007). The proof follows from the weak uni-
form convergence of μ̂(t, z) in Lemma D.4, the asymptotic distributions of the
estimators based on “raw covariances,” Cijk , are identical to those based on
C̃ijk = {Yij −μ(Tij ,Zi)}{Yik −μ(Tik,Zi)}. Thus the Nadaraya–Watson estimator
and local linear estimator of covariance based on Cijk are asymptotically equiva-
lent to those estimators based on C̃ijk . To save space, we present only the results
for the local linear smoother in (2.8).

THEOREM 3.5. Under assumptions hG∗ → 0, nE(N2)h2
G∗ → ∞, h2

G∗ ×
E(N2) → 0, nE(N(N − 1))h6

G∗ → τ 2 for some 0 ≤ τ < ∞, A.5–A.6, and
E.1–E.3, √

nN̄(N̄ − 1)h2
G∗{�̂∗(t, s) − �∗(t, s)} D→ N(γ ∗,�∗),

where γ ∗ = τ
2

∫
u2K1(u) du{ d2

dt2 �
∗(t, s) + d2

ds2 �∗(t, s)}, �∗ = [υ2(t, s)‖K1‖4]/
g2(t, s), υ2(t, s) = Var((Y1 − μ(T1,Z))(Y2 − μ(T2,Z))|T1 = t, T2 = s) and
g2(t, s) is the joint density of (T1, T2).

4. Simulation results. We compare the performance of the two covariate ad-
justed FPCA approaches in Section 2 with the estimator in Yao, Müller and Wang
(2005) which we term uFPCA with the prefix “u” suggesting that it is “unadjusted”
FPCA. The simulation scheme is as follows: for each subject, a covariate z is gen-
erated from U(0,1), its mean function is μ(t, z) = t + z sin(t) + (1 − z) cos(t)
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and its variance–covariance function is derived from two eigenfunctions φ1(t, z) =
− cos(π(t + z/2))

√
2 and φ2(t, z) = sin(π(t + z/2))

√
2, for 0 ≤ t ≤ 1 with eigen-

values λ1(z) = z/9, λ2(z) = z/36 and λk = 0 for k ≥ 3. The specific principal
component scores Aik(z) are generated from N(0, λk(z)), and the additional mea-
surement errors are assumed to be normally distributed with mean 0 and variance
(0.05)2. For the measurement scheme {tij } we use a nonequidistant “jittered” de-
sign. Specifically, an equally spaced grid {c0, . . . , c50} on [0,1] with c0 = 0 and
c50 = 1 is selected and jittered according to the plan si = ci + εi where εi are i.i.d.
with N(0,0.0001) and then constrained to be si = 0 if si < 0 and si = 1 if si > 1.
Each curve is sampled at a random number of points, {tij }, j = 1, . . . ,Ni , where
Ni are chosen from a discrete uniform distribution {2, . . . ,10}, and the locations
of the measurements are randomly chosen from {s1, . . . , s49} without replacement.
The simulation consists of 100 runs, and the number of subject is 100 in each run.

Epanechniknov kernels are used in the smoothing steps. The bandwidths for
the mean surface estimator are chosen by leave-one-curve-out cross-validation
while the bandwidths for the covariance estimator are chosen by a 10-fold cross-
validation method to save computing time. Three criteria (AIC, BIC and fraction
of variation explained (FVE) method) for choosing the value K are also compared.
The AIC and BIC are defined as in Yao, Müller and Wang (2005).

The FVE method is defined as the minimum number of components needed
to explain at least a specified fraction of the total variation. In the simulation,
we choose K for uFPCA and mFPCA to be the minimum number k satisfying
(
∑k

i=1 λi)/(
∑

i=1 λi) ≥ 0.80, and for the fFPCA approach, this corresponds to se-
lecting the smallest k satisfying

∑k
i=1 λi(z)/

∑
i=1 λi(z) ≥ 0.80 for each subject

with covariate value z. A major difference is that this type of FVE would allow
subject-specific choice for the number of principal components in fFPCA. A prob-
lem is that the covariance estimate based on individually selected number of prin-
cipal component may not yield a smooth covariance surface. To rectify this and
to facilitate a uniform platform to compare the three approaches, we propose a
global choice of K based on the 90th percentile of the individually selected k’s for
fFPCA. This global choice is somewhat objective and may give a slight benefit to
fFPCA in fitting the observed data as compared to using either the mean or median
value of k as the global choice. Both AIC and BIC approaches tend to choose too
many eigenfunctions so they can predict the data well, while FVE is the best for
selecting the correct model. However, it is inferior to the others for prediction as
evident in Table 2.

The mean integrated squared error of the covariance estimator for mFPCA
is 0.00046, the biases and standard errors of the two eigenvalues are −0.0102
(s.d. = 0.0121) and −0.0035 (s.d. = 0.0052), respectively. The averaged esti-
mated eigenfunction of the 100 simulations is close to the true eigenfunctions
as shown in Figure 1. This suggests that the covariance estimator of mFPCA is
sufficiently accurate. From Table 1 and Figure 2, the performance of fFPCA is
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FIG. 1. First two eigenfunctions of the covariance and their estimates by mFPCA.

generally satisfactory although the accuracy varies with the covariate. The esti-
mate for the second eigenfunction at Z = 0.1 is poor due to the small eigenvalue
0.0028, so there is probably no need to include more than one eigenfunction for
Z = 0.1.

Next, we compare the three different model selection criteria of choosing the
number K of eigenfunctions. We use the mean integrated squared error (MISE)

TABLE 1
Simulation results of fFPCA. The three rows corresponding to ISE are based on the average

integrated squared errors of the 100 simulations where ISE of ĝ(·) for estimating a target function
g(·) is defined as

∫
T (ĝ(t) − g(t))2 dt . The rows corresponding to λ̂i (z)

are the biases and standard deviation (in bracket)

Covariate z 0.1 0.3 0.5 0.7 0.9

ISE of �̂L 0.00015 0.00025 0.00071 0.0014 0.0030
ISE of φ̂1(t, z) 0.0294 0.0076 0.0071 0.0074 0.0112
ISE of φ̂2(t, z) 0.2720 0.0305 0.0242 0.0179 0.0300
λ̂1(z) 0.0047 −0.0041 −0.0113 −0.0202 −0.0242

(0.0073) (0.0106) (0.0181) (0.0205) (0.0333)

λ̂2(z) 0.0034 0.0001 0.0005 −0.0002 −0.0037
(0.0045) (0.0039) (0.0057) (0.0077) (0.0094)
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TABLE 2
Average MISE (4.1) and MSFE (4.2) in 100 simulation runs for the three approaches, the values in

the parenthesis excludes one outlier occurred in the 6th run

MISE MSFE

FVE AIC BIC FVE AIC BIC

uFPCA 0.0339 0.0215 0.0215 0.0047 0.0035 0.0036
(0.0325) (0.0198) (0.0197) (0.0067) (0.0065) (0.0065)

mFPCA 0.1075 0.0077 0.0076 0.0039 0.0024 0.0025
(0.0103) (0.0063) (0.0063) (0.0050) (0.0017) (0.0017)

fFPCA 0.0085 0.0077 0.0077 0.0039 (0.0027) 0.0027
(0.0085) (0.0077) (0.0077) (0.0022) (0.0015) (0.0015)

for the true curves Xi(t, zi),

MISE = 1

n

n∑
i=1

∫ 1

0

(
Xi(t, zi) − X̂K

i (t, zi)
)2

dt(4.1)

FIG. 2. Means of the first two eigenfunctions estimated via fFPCA at five different values of the
covarite.
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as a criterion where K is the number of eigenfunctions used to predict the trajec-
tory of each subject. The corresponding mean squared fitting errors (MSFE) is

MSFE = 1

n

n∑
i=1

1

Ni

Ni∑
j=1

(Yij − Ŷij )
2.(4.2)

An outlier was detected in the 6th run for mFPCA predicted trajectory, so we
include two results in Table 2, one with all simulations and one with this outlier run
excluded. Not surprisingly, uFPCA is outperformed in general by both covariate
adjusted approaches. When using the FVE method as a criterion of choosing K ,
fFPCA is slightly better than mFPCA. However, when using AIC or BIC as the
criterion of choosing K , the performance of mFPCA is comparable to, if not better
than, that of fFPCA. Consequently, if the purpose is to predict subject trajectories,
mFPCA with BIC is recommended owing to its simplicity. For modeling purpose,
fFPCA with the FVE method is preferred.

5. Data application. We illustrate the covariate-adjusted FPCA approaches
through reproductive data for Mexican fruit flies. The study was conducted at the
fruit fly mass rearing facility near Metapa, Chiapas, Mexico. Daily egg production
(number of eggs) were recorded for a total of 1151 females [Carey et al. (2005)]
till death. The goal here is to explore the influence of early reproduction, as mea-
sured by total reproduction by age 30 (in days), to reproduction pattern up to age
50. We exclude the infertile flies and those living less than 50 days. The latter is to
provide a uniform platform to perform FPCA and consider only those who live at
least around the average lifetime (≈50.9 days) of fertile flies. Out of the remaining
567 flies, we further randomly selected 2 to 10 observations in the first 50 days, so
we can compare the results for sparse data with the complete data to validate the
new mFPCA and fFPCA approaches. In addition, we compare the new approaches
with three different FPCA approaches that do not incorporate the covariate infor-
mation. The first is the uFPCA in Yao, Müller and Wang (2005), the second is
the reduced rank approach in James, Hastie and Suger (2000), termed rFPCA with
“r” stands for reduced rank, and the third is a geometric approach in Peng and
Paul (2009) similar to the reduced rank method but with a different algorithm. We
term this approach “gFPCA” with “g” standing for geometric. Both rFPCA and
gFPCA assume that X(t) is a Gaussian processes, measurement errors are nor-
mally distributed, and use natural or B-spline bases to expand the eigenfunctions.
Both approaches aim at maximizing the likelihood function, but rFPCA uses the
EM algorithm to accomplish it and gFPCA tackles the likelihood functions di-
rectly with a Newton–Raphson method by exploiting the geometric structure of
the eigenfunctions as they lie on a Stiefel manifold. As rFPCA serves as the initial
estimates for gFPCA, the original code for rFPCA has been improved and included
in an R package, fpca, which is available on the CRAN project.
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TABLE 3
MSFEs of mFPCA, fFPCA, uFPCA and rFPCA with global K and the values in bracket

are MSFEs based on sparse data

FVE (80%) FVE (90%) AIC BIC

MSFE K MSFE K MSFE K MSFE K

mFPCA 614.1 (465.9) 4 612.8 (447.9) 6 611.8 (433.7) 14 612.0 (436.4) 10
fFPCA 614.9 (464.4) 4 613.9 (454.4) 5 612.8 (441.3) 11 613.2 (445.7) 7
uFPCA 684.6 (499.8) 2 684.6 (499.8) 2 680.8 (472.6) 8 680.9 (473.6) 6
rFPCA 720.2 (136.6) 9 719.1 (131.5) 11

uFPCA 681.0 (477.3) for K = 4, 680.8 (472.1) for K = 10, 680.7 (471.6) for K = 14
gFPCA 785.1 (648.6) for K = 5 (based on the CV method), 784.8 (647.1) for K = 6

As suggested in James, Hastie and Suger (2000), the number of bases in rFPCA
is selected by 10-fold cross-validation likelihood and the number of eigenfunc-
tions are reduced by the usual FVE (fraction of variation explained) method. For
the Mexfly data, it selected 15 bases and the resulted numbers of eigenfunctions
corresponding to 80% and 90% FVE, as reported in Table 3, are 9 and 11, respec-
tively. The choice of the B-spline basis functions and the number of eigenfunctions
for gFPCA are selected by a new cross-validated likelihood method proposed in
Peng and Paul (2009) and they resulted in 8 bases and 5 eigenfunctions.

Figure 3 shows the estimated mean surface of mFPCA and fFPCA for both
sparse and complete data; it indicates that the daily reproductive rates are corre-
lated with cumulative reproduction at young age, but that mean estimator works
well even though data are sparse. Subjects with higher cumulative reproductions at
a young age tend to have higher daily reproductive rates. Similar to the mean esti-
mator, the covariance estimator of mFPCA also works very well when the data are
sparse as Figure 4 shows. The estimated covariance function based on complete
data is not so smooth as that based on sparse data because a smaller bandwidth
was selected when there are substantially more data.

The mean square fitted errors for the five approaches are reported in Table 3.
The performance of uFPCA, mFPCA and fFPCA are similar to those from the
simulation study in Section 4; mFPCA is generally slightly better than fFPCA
for sparse data, and both outperform uFPCA and gFPCA. The improvements of
mFPCA and fFPCA over uFPCA appear marginal for sparse data, but this is due
to the large measurement errors (the estimates of σ by mFPCA, fFPCA, uFPCA
are 25.34, 25.44, 24.81, respectively) present in the data. Since uFPCA only selects
two eigenfunctions, we tried to check whether one can improve it by increasing the
number of eigenfunctions. We use mFPCA as the gauge, and the lower portion of
Table 3 reports additional results for uFPCA that utilizes the same number (K =
4,10, and 14) of components as mFPCA. We also tried to include additional results
for gFPCA to compare with mFPCA; however, the CV chose 8 bases and hence
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FIG. 3. Estimated mean surface for sparse and complete data.

FIG. 4. Estimated covariance surfaces of mFPCA for sparse and compete data.
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restricts K to K ≤ 8. This leads to only one additional case when K = 6 as the
algorithm encountered singularity situation for the case with K = 8.

An intriguing phenomenon is the performance of rFPCA, which by far outper-
forms all other procedures for sparse data but not for the complete data where
uFPCA, mFPCA and fFPCA all have smaller fitting errors. This suggests an over-
fitting problem and calls for further investigation. We tried to investigate this with
simulations but could not reach any conclusion using the simulation setting in Sec-
tion 4. Both algorithms in rFPCA and gFPCA encountered singularity situations
or could not converge in many runs with the divergent problem more serious for
gFPCA. It appears that the smoothing parameters for both methods are sensitive to
the data.

In summary, this data supports the simpler covariate adjusted approach of ad-
justing just the mean but not the covariance. Additional benefit of the mFPCA
approach is its computing speed. The computational time of the Mexican fruit flies
data for fFPCA is 20 times more than mFPCA after the bandwidths for the mean
and covariances functions have been selected. If we include the time to select those
bandwidths, the gap is smaller as 10-fold CV was used to estimate the covariance
functions for both mFPCA and fFPCA, leaving the leave-one-out CV for the mean
function the most time-consuming part of the algorithm. However, the computa-
tional cost for fFPCA escalates as the total number of observations increases.

6. Conclusions. Through simulations and data analysis, we have shown that
current approaches for functional principal component analysis may no longer be
suitable for functional data when covariate information is available. Two alter-
natives are proposed to incorporate covariate effects on functional response data,
adjusting the covariate effects on the mean function only (mFPCA) or adjusting the
covariate effects for the covariance as well (fFPCA). Numerical evidence supports
the simpler mean-adjusted approach especially when the purpose is to predict the
trajectories Y(t).

Besides the method itself, the criteria of choosing the number of eigenfunctions
affect performance. Among the three criteria discussed in the simulation study, the
FVE method based on the fraction of variation explained is more likely to pick the
correct number of eigenfunctions than the other two criteria (AIC and BIC). When
model fitting X(t) is the main purpose of the data analysis, fFPCA with the FVE
criterion is the best choice. However, fFPCA is time-consuming and mFPCA is
just slightly less efficient than fFPCA in fitting X(t) but could be more efficient
than fFPCA in predicting Y(t), so mFPCA might be an attractive approach to
accommodate covariates.

Both FPCA approaches are model free and provide nonparametric estimates
for both the fixed and random effects. The advantages of the principal-component
based approach are: (1) less random effects are needed to fit the data; (2) it has the
added value to reveal the modes of variation of the data and (3) it provides guidance
to other parsimonious models such as a varying coefficient model or a linear mixed
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effects model. Developing formal inference procedures using either mFPCA or
fFPCA approaches for model validation will be important future projects.

So far we have considered the theory and implementation for univariate covari-
ate Z only, but both can be extended to multivariate Z conceptually and theo-
retically. The catch is the high-dimensional smoothing involved with a vector Z.
Some dimension reduction on Z will be needed for practical implementation and
this will be another future research project.

APPENDIX A: KERNEL FUNCTIONS

We consider both two and three-dimensional kernels that are symmetric with
compact support. A kernel function K2 :R2 → R is of order (ν, κ) if

∫ ∫
uk1vk2K2(u, v) dudv =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ k1 + k2 < κ ,
k1 �= ν1, k2 �= ν2,

(−1)|ν||ν|!, k1 = ν1, k2 = ν2,
�= 0, k1 + k2 = κ ,

(A.1)

where ν is a multi-index ν = (ν1, ν2) and |ν| = ν1 + ν2. A kernel function
K3 :R3 → R is of order (ν, κ) if∫ ∫

uk1vk2wk3K3(u, v,w)dudv dw

(A.2)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, 0 ≤
3∑

i=1

ki < κ, ki �= νi ,

for i = 1,2,3,
(−1)|ν||ν|!, k1 = ν1, k2 = ν2, k3 = ν3,
�= 0, k1 + k2 + k3 = κ ,

where ν is a multi-index ν = (ν1, ν2, ν3) and |ν| = ν1 + ν2 + ν3.

APPENDIX B: ASSUMPTIONS

For bandwidth sequences h1 = h1(n) and h2 = h2(n), the notation h1 � h2
means they are of the same order, and, namely, h1/h2 stays away from 0 and ∞.
We denote hμ,t and hμ,z as the two bandwidth sequences for the mean function
estimator in the coordinates T and Z . Similarly, hG,t and hG,z are the two band-
width sequences for the covariance estimator. The assumptions on the bandwidths
are listed in A.1–A.4; the assumptions of the measurement schedule are in A.5, A.6
and A.7 is a common assumption while the covariance is estimated. The bandwidth
assumptions and the measurement schedule assumptions are required to show that
the local property of the kernel-based estimators holds for longitudinal or func-
tional data with the presence of within-subject correlation.

A.1 hμ,t � hμ,z � h, h → 0, nh|ν|+2 → ∞, and nh2κ+2 < ∞.
A.2 hG,t � hG,z � h, h → 0, nh|ν|+3 → ∞, and nh2κ+3 < ∞.
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A.3 hμ,t � hμ,z � h, h → 0, nE(N)h|ν|+2 → ∞, E(N)h → 0 and nE(N) ×
h2κ+2 < ∞.

A.4 hG,t � hG,z � h, h → 0, nE(N2)h|ν|+3 → ∞, E(N2)h2 → 0 and nE(N ×
(N − 1))h2κ+3 < ∞.

A.5 The number of observations Ni(n) for the ith subject is a random variable
with Ni(n) ∼ N(n) where N(n) is a positive integer-valued random variable

with lim supn→∞ EN(n)2

[EN(n)]2 and lim supn→∞ EN(n)4

(EN(n)2)2 both finite. Moreover,
Ni(n), i = 1, . . . , n are i.i.d.

A.6 The observational times Tij and measurements Yij are independent of the
number of measurements N(n).

A.7 E{(Y − μ(T ,Z))4} < ∞.

For random design, we assume (Tij ,Zi, Yij ) have the same distribution as
(T ,Z,Y ) with joint p.d.f. f3(t, z, y), and the observation times Tij are i.i.d.
with p.d.f. f (t), but dependency is allowed among observations from the
same subject. The joint p.d.f.’s of (T ,Z), (T1, T2, Y1, Y2), (T1, T2,Z,Y1, Y2),
(T1, T2, T

′
1, T

′
2, Y1, Y2, Y

′
1, Y

′
2), (T1, T2, T

′
1, T

′
2,Z,Y1, Y2, Y

′
1, Y

′
2), (T1, T2), and (T1,

T2,Z) are, respectively, f2(t, z), f4(t1, t2, y1, y2), f5(t1, t2, z, y1, y2), f8(t1, t2, t
′
1,

t ′2, y1, y2, y
′
1, y

′
2), f9(t1, t2, t

′
1, t

′
2, z, y1, y2, y

′
1, y

′
2), g2(t1, t2) and g3(t1, t2, z). The

following regularity conditions for marginal or joint p.d.f.’s and mean or covari-
ance functions along with the bandwidths assumptions are used to show the consis-
tency results in Section 3 and Appendices C and D. B.1–B.4 are for the asymptotic
results of two-dimensional kernel-based estimators while B.5–B.8 are for the as-
ymptotic results of three-dimensional kernel-based estimators.

The following type of continuity, as defined in Yao (2007), will be needed:

DEFINITION 1. A real function f (x, y) :Rn+m → R is continuous on A ⊆ Rn

uniformly in y ∈ Rm, if given any x ∈ A and ε > 0 there exists a neighborhood of x

not depending on y, say U(x), such that |f (x′, y)−f (x, y)| < ε for all x′ ∈ U(x)

and y ∈ Rm.

B.1 dκ

dtk1 dzk2
f2(t, z) exists and is continuous on {(t, z)} for k1 + k2 = κ , 0 ≤

k1, k2 ≤ κ , and f2(t, z) > 0.
B.2 f3(t, z, y) is continuous on {(t, z)} uniformly in y ∈ R; dκ

dtk1 dzk2
f3(t, z, y)

exists and is continuous on {(t, z)} uniformly in y ∈ R, for k1 + k2 = κ , 0 ≤
k1, k2 ≤ κ .

B.3 f5(t1, t2, z, y1, y2) is continuous on {(t1, t2, z)} uniformly in (y1, y2) ∈ R2.
B.4 dκ

dtk1 dzk2
μ(t, z) exists and is continuous on {(t, z)}, for k1 + k2 = κ , 0 ≤

k1, k2 ≤ κ .
B.5 dκ

dtk1 dsk2 dzk3
g3(t, s, z) exists and is continuous on {(t, s, z)} for k1 + k2 + k3 =

κ , 0 ≤ k1, k2, k3 ≤ κ , and g3(t, s, z) > 0.
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B.6 f5(t, s, z, y1, y2) is continuous on {(t, s, z)} uniformly in (y1, y2) ∈ R2;
dκ

dtk1 dsk2 dzk3
f5(t, s, z, y1, y2) exists and is continuous on {(t, s, z)} uniformly

in (y1, y2), for k1 + k2 + k3 = κ , 0 ≤ k1, k2, k3 ≤ κ .
B.7 f9(t1, t2, t

′
1, t

′
2, z, y1, y2, y

′
1, y

′
2) is continuous on {(t1, t2, t ′1, t ′2, z)} uniformly

in (y1, y2, y
′
1, y

′
2) ∈ R4.

B.8 dκ

dtk1 dsk2 dzk3
�(t, s, z) exists and is continuous on {(t, s, z)}, for k1 + k2 + k3 =

κ , 0 ≤ k1, k2, k3 ≤ κ .

APPENDIX C: PROOFS OF THEOREMS 3.1 AND 3.2

Given an integer Q ≥ 1 and for q = 1, . . . ,Q, let ψq :R3 → R satisfy:

C.1 ψq(t, z, y)’s are continuous on U({t, z}) uniformly in y ∈ R;
C.2 The functions ∂p

∂tp1 ∂zp2 ψq(t, z, y) exist for all arguments (t, z, y) and are con-
tinuous on U({t, z}) uniformly in y ∈ R, for p1 +p2 = p and 0 ≤ p1,p2 ≤ p.

The kernel-weighted averages for two-dimensional smoothers are defined as

�qn = 1

nENh
ν1+1
μ,t h

ν2+1
μ,z

n∑
i=1

Ni∑
j=1

ψq(Tij ,Zi, Yij )K2

(
t − Tij

hμ,t

,
z − Zi

hμ,z

)
,(C.1)

where K2 is a kernel function of order (ν, κ) [defined in (A.1)], hμ,t , and hμ,z

are bandwidths associated with t and z, respectively. We will see later that the
Nadaraya–Watson estimator and local linear estimator each involves two and four
such ψq functions yielding Q = 2 and 4, respectively. Let

αq(t, z) = ∂ |ν|

∂tν1∂zν2

∫
ψq(t, z, y)f3(t, z, y) dy

and

σqr(t, z) =
∫

ψq(t, z, y)ψr(t, z, y)f3(t, z, y) dy ‖K2‖2,

where f3(t, z, y) is the joint density of (T ,Z,Y ), ‖K2‖2 = ∫
K2

2 and 1 ≤ q, r ≤ Q.
We first provide the asymptotic normality of kernel-weighted averages for two-

dimensional smoothers based on longitudinal data. Lemma C.1 extends The-
orem 4.1 of Bhattacharya and Müller (1993) from a univariate smoother on
independent observations to a bivariate smoother on correlated longitudinal ob-
servations. Lemma C.2 provides the key steps for the asymptotic results of the
Nadaray–Watson and local linear estimators.

LEMMA C.1. Under assumptions A.3, A.5 and A.6, B.1–B.4, and C.1
and C2, √

nENh
2ν1+1
μ,t h

2ν2+1
μ,z [(�1n, . . . ,�Qn)

T − (E�1n, . . . ,E�Qn)
T ]

(C.2)
D→ N(0,	).
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PROOF. We will show this through Cramér–Wold device and Lindeberg CLT.
Let

A =
√

nENh
2ν1+1
μ,t h

2ν2+1
μ,z

Q∑
q=1

aq[�qn − E(�qn)],

where aq , 1 ≤ q ≤ Q, are given constants. Observing that A = ∑n
i=1 Ui where

Ui = 1√
nENhμ,thμ,z

Q∑
q=1

Ni∑
j=1

aqψq(Tij ,Zi, Yij )K2

(
t − Tij

hμ,t

,
z − Zi

hμ,z

)

−
Q∑

q=1

aq

n

√
nENh

2ν1+1
μ,t h

2ν2+1
μ,z E�qn

and Ui’s are i.i.d. mean zero random variables. To verify the Lindeberg condition,
we need Var(Ui), 1 ≤ i ≤ n. First, we show

nENh
2ν1+1
μ,t h2ν2+1

μ,z cov(�qn,�rn) = σqr(t, z) + o(1).

To see this, consider nENh
2ν1+1
μ,t h

2ν2+1
μ,z cov(�qn,�rn) = I1 − I2 where

I1 = 1

hμ,thμ,z

E

[
1

EN

{
N∑

j=1

ψq(Tj ,Z,Yj )K2

(
t − Tj

hμ,t

,
z − Z

hμ,z

)}

×
{

N∑
l=1

ψq(Tl,Z,Yl)K2

(
t − Tl

hμ,t

,
z − Z

hμ,z

)}]

and

I2 = EN

hμ,thμ,z

E

[
1

EN

N∑
j=1

ψq(Tj ,Z,Yj )K2

(
t − Tj

hμ,t

,
z − Z

hμ,z

)]

× E

[
1

EN

N∑
l=1

ψr(Tl,Z,Yl)K2

(
t − Tl

hμ,t

,
z − Z

hμ,z

)]
.

It is obvious that I2 = o(1). As for I1, it can be decomposed to I1 = Q1 + Q2
where

Q1 = 1

hμ,thμ,z

E

[
1

EN

(
N∑

j=1

ψq(Tj ,Z,Yj )ψr(Tj ,Z,Yj )K
2
2

(
t − Tj

hμ,t

,
z − Z

hμ,z

))]

= 1

hμ,thμ,z

E

[
ψq(T ,Z,Y )ψr(T ,Z,Y )K2

2

(
t − T

hμ,t

,
z − Z

hμ,z

)]

= σ 2
qr (t, z) + o(1)
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and

Q2 = hμ,tE(N(N − 1))

EN
E{ψq(t − t1hμ,t , z − hμ,zs2, y1)

× ψr(t − t2hμ,t , z − hμ,zs2, y2)K2(t1, s2)K2(t2, s2)}

= (hμ,tEN)
E(N(N − 1))

(EN)2

×
{∫

ψq(t, z, y1)ψr(t, z, y2)f5(t, t, z, y1, y2) dy1 dy2

×
(∫

K2(t1, s2)K2(t2, s2) dt1 dt2 ds2

)
+ o(h)

}
= o(1).

Therefore, we can have Var(Ui) = 1
n
(aT 	a + o(1)) where aT = (a1, . . . , aQ). Let

Bn = ∑n
i=1 Var(Ui) = aT 	a + o(1). In order to apply Lindeberg CLT, we need to

prove

lim
n→∞

1

B2
n

n∑
i=1

E
[
U2

i 1{|Ui |>εBn}
] = 0 ∀ε > 0,

where 1{·} is an indicator function and it suffices to prove

lim
n→∞nE

[
U2

1 1{U2
1 >ε2B2

n}
] = 0.

Using the fact (a + b)2 ≤ 2a2 + 2b2, we can get

nE
{
U2

1 1{U2
1 >ε2B2

n}
}

≤ 2nE

{
1

nENhμ,thμ,z

[
Q∑

q=1

N1∑
j=1

aqψq(T1j ,Z1, Y1j )

× K2

(
t − T1j

hμ,t

,
z − Z1

hμ,z

)]2

1{η}
}

+ o(1),

where

η = 1

ENhμ,thμ,z

(
Q∑

q=1

N1∑
j=1

aqψq(T1j ,Z1, Y1j )K2

(
t − T1j

hμ,t

,
z − Z1

hμ,z

))2

>
nε2

2

(
aT 	a + o(1)

)− o(1).

Observing that the term [∑Q
q=1

∑N1
j=1 aqψq(T1j ,Z1, Y1j )K2(

t−T1j

hμ,t
, z−Z1

hμ,z
)]2

is dominated by
∑Q

q=1
∑Q

r=1
∑N1

j=1 aqarψq(T1j ,Z1, Y1j )ψr(T1j ,Z1, Y1j ) ×
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K2
2 (

t−T1j

hμ,t
, z−Z1

hμ,z
), and using change of variable, we arrive at

nE
{
U2

1 1{U2
1 >ε2B2

n}
} ≤ 2E

{
ϒ1{ϒ>nε2/2(aT 	a+o(1))−o(1)}

}+ o(1),

where ϒ = ∑Q
q=1

∑Q
r=1 aqarψq(t − s1hμ,t , z − s2hμ,z, Y )ψr(t − s1hμ,t , z −

s2hμ,z, Y )K2
2 (s1, s2), t−T

hμ,t
= s1, and z−Z

hμ,z
= s2. So far, we have shown that

limn→∞ nε2

2 (aT 	a + o(1)) = ∞ for any given ε > 0. This implies that Linde-
berg condition holds and the proof of the lemma is thus complete. �

LEMMA C.2. Let H :RQ → R be a function with continuous first-order deriv-
atives, DH(v) = ( ∂

∂x1
H(v), . . . , ∂

∂xQ
H(v))T , and N̄ = 1

n

∑n
i=1 Ni . Under assump-

tions A.3, A.5 and A.6, B.1–B.4, C.1 and C.2, and assuming hμ,z

hμ,t
→ ρμ and

nE(N)h2κ+2
μ,t → τ 2

μ for some 0 < ρμ, τμ < ∞,√
nN̄h

2ν1+1
μ,t h

2ν2+1
μ,z [H(�1n, . . . ,�Qn) − H(α1, . . . , αQ)]

D→ N(βH , [DH(α1, . . . , αQ)]T 	[DH(α1, . . . , αQ)]),
where 	 = (σqr)1≤q,r≤l , and

βH = ∑
k1+k2=κ

(−1)κ

k1!k2!
[∫

s
k1
1 s

k2
2 K2(s1, s2) ds1 ds2

]

×
{

Q∑
q=1

∂H

∂αq

[(α1, . . . , αQ)T ] ∂k1+k2−ν1−ν2

∂tk1−αq ∂zk2−ν2
αq(t, z)

}
τμ

√
ρ

2k2+1
μ .

PROOF. It suffices to show this theorem with N̄ replaced by E(N) due to
Slutsky theorem. We first handle the asymptotic bias term by showing that√

nE(N)h
2ν1+1
μ,t h

2ν2+1
μ,z [H(�1n, . . . ,�Qn) − H(α1, . . . , αQ)] → βH .(C.3)

By conditioning on the value of N , it is easy to see that

E(�qn) = 1

h
ν1+1
μ,t h

ν2+1
μ,z

E

(
ψq(T ,Z,Y )K2

(
t − T

hμ,t

,
z − Z

hμ,z

))
.

Let t−T
hμ,t

= s1 and z−Z
hμ,z

= s2; it follows from Taylor’s expansion of order |k| on
�qn’s and Taylor’s expansion on H that

E(�qn) = αq(t, z) + ∑
k1+k2=|k|

(−1)|k|

k1!k2!
[∫ ∫

s
k1
1 s

k2
2 K2(s1, s2) ds1 ds2

]

×
[

∂ |k|−(ν1+ν2)

∂tk1−ν1∂zk2−ν2
αq(t, z)

]
h

k1−ν1
μ,t hk2−ν2

μ,z

+ o(h
k1−ν1
μ,t ) + o(hk2−ν2

μ,z ).
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Combining Lemma C.1, the continuity of DH at (α1, . . . , αQ)T and the δ-
method, we have√

nENh
2ν1+1
μ,t h

2ν2+1
μ,z [H(�1n, . . . ,�Qn) − H(E�1n, . . . ,E�Qn)]

(C.4)
D→ N(0, [DH(α1, . . . , αQ)]T 	[DH(α1, . . . , αQ)]).

The lemma now follows from (C.3) and (C.4). �

PROOF OF THEOREM 3.1. Let ψ1(u1, u2, u3) = u3, ψ2(u1, u2, u3) = 1, and
H(x1, x2) = x1/x2, then μ̂NW = H(�1n,�2n), DH(α1, α2) = (1/α2,−α1/α

2
2),

α1(t, z) = μ(t, z)f2(t, z), α2(t, z) = f2(t, z). Applying the results of Lemma C.2,
the bias is

βNW = ∑
k1+k2=2

1

k1!k2!
[∫

s
k1
1 s

k2
2 K2(s1, s2) ds1 ds2

]

×
{

1

α2(t, z)

∂2

∂tk1 ∂zk2
α1(t, z) − α1(t, z)

(α2(t, z))2

∂2

∂tk1 ∂zk2
α2(t, z)

}

× τμ

√
ρ

2k2+1
μ

and the components of 	 are

σ11(t, z) = [Var(Y |T = t,Z = z) + μ2(t, z)]f2(t, z)‖K2‖2,

σ12(t, z) = σ 2
21(t, z) = μ(t, z)f2(t, z)‖K2‖2, σ22(t, z) = f2(t, z)‖K2‖2.

Therefore, 	NW = Var(Y |t,z)
f2(t,z)

‖K2‖2, and the result follows. �

The next lemma follows similar arguments as in Lemma 1 of Yao, Müller and
Wang (2005) except that a two-dimensional Fourier transformation is employed
here whereas their arguments involve only a one-dimensional Fourier transforma-
tion. Define the Fourier transforms of K2(u, v) and K3(u1, u2, u3) by

ζ1(t, z) =
∫ ∫

exp
(−(iut + iwz)

)
K2(u,w)dudw

and

ζ2(t, s, z) =
∫ ∫ ∫

exp
(−(iu1t + iu2s + iu3z)

)
K3(u1, u2, u3) du1 du2 du3.

They satisfy:

D.1 ζ1(t, z) is absolutely integrable;
D.2 ζ2(t, s, z) is absolutely integrable.
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LEMMA C.3. Under assumptions A.1, A.5–A.7, B.1–B.4, C.1 and C.2
and D.1,

sup
t∈T ;z∈Z

|�qn − αq | = Op

(
1√

nh
|ν|+2
μ

)
where hμ � hμ,t � hμ,z.

PROOF. Since

E
{

sup
t∈T ;z∈Z

|�qn − αq |
}

≤ E
{

sup
t∈T ;z∈Z

|�qn − E(�qn)|
}

+ sup
t∈T ;z∈Z

|E(�qn) − αq |

and Taylor’s expansion implies E(�qn) = αq +O(hk−ν1−ν2
μ ) = αq +O( 1√

nh
|ν|+2
μ

).

It remains to show the correct order of the first term. To this end, we employ the
inverse Fourier transformation

ζ1(t, z) =
∫ ∫

exp(−iut − iwz)K2(u,w)dudw,

which implies

K2

(
t − T
j

hμ,t

,
z − Z


hμ,z

)
(C.5)

=
(

1

2π

)2 ∫ ∫
exp

(
iu

(
t − T
j

hμ,t

)
+ iw

(
z − Z


hμ,z

))
ζ1(u,w)dudw.

Let ϕqn(u,w) = 1
n

∑n

=1

1
E(N)

∑N


j=1 exp(iuT
j + iwZ
)ψ(T
j ,Z
,Y
j ), and by
plugging equation (C.5) into �qn, we obtain

�qn =
(

1

2π

)2 1

h
ν1
μ,th

ν2
μ,z

∫ ∫
ϕqn(u,w) exp(−iut − iwz)ζ1(hμ,tu, hμ,zw)dudw.

Therefore,

sup
t∈T ;z∈Z

|�qn − E(�qn)|

≤
(

1

2π

)2 1

h
ν1
μ,th

ν2
μ,z

×
∫ ∫

|ϕqn(u,w) − E(ϕqn(u,w))||ζ1(hμ,tu, hμ,zw)|dudw.

By the facts that E(|ϕqn(u,w) − E(ϕqn(u,w))|) ≤ (E{ϕqn(u,w) − E(ϕqn(u,

w))}2)1/2 and {T�,Y�,N
} are i.i.d. where T� = (T
1, . . . , T
N

)T and Y� =
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(Y
1, . . . , Y
N

)T , we have

Var(ϕqn(u,w))

≤ 1

n
E

{
1

E(N)

N∑
j=1

exp(iuTj + iwZ)ψq(Tj ,Z,Yj )

}2

≤ 1

n
E

{(
1

E(N)

)2
(

N∑
j=1

exp(i2uTj + i2wZ)

)(
N∑

j=1

ψ2
q (Tj ,Z,Yj )

)}

= 1

n
E(ψ2

q (T ,Z,Y )),

where the second inequality follows from Cauchy–Schwarz inequality. The lemma
now follows from

E
{

sup
t∈T ;z∈Z

|�qn − E�qn|
}

≤
∫∫

E{|ϕqn(u,w) − E(ϕqn(u,w))|}|ζ1(hμ,tu, hμ,zw)|dudw

4π2h
ν1
μ,th

ν2
μ,z

≤ 1

4π2

√
E(ψ2

q (T ,Z,Y ))
∫∫ |ζ1(u,w)|dudw

√
nh

ν1+1
μ,t h

ν2+1
μ,z

= O

(
1√

nh
|ν|+2
μ

)
.

�

PROOF OF THEOREM 3.2. Let

Spq = ∑
i

∑
j

wij (Tij − t)p(Zi − z)q,

Rpq = ∑
i

∑
j

wij (Tij − t)p(Zi − z)qYij ,

where wij = 1
nhμ,thμ,z

K2(
t−Tij

hμ,t
, z−Zi

hμ,z
). It can be shown that

β̂0 = R00 − β̂1S10 − β̂2S10

S00
,

where

β̂1 = −R00(S10S02 − S11S01) + R10(S00S02 − S2
01) − R01(S00S11 − S01S10)

S00(S10S02 − S2
11) − S10(S10S02 − S11S01) + S01(S10S11 − S01S20)

,

β̂2 = R00(S10S11 − S02S20) − R10(S00S11 − S10S01) + R01(S00S20 − S2
10)

S00(S10S02 − S2
11) − S10(S10S02 − S11S01) + S01(S10S11 − S01S20)

.

Applying Lemma C.2 and Slutsky’s theorem repeatedly, we can show through
tedious calculations and Theorem 3.1 that |β̂1 − β1| = Op( 1√

nE(N)h4
μ

) and |β̂2 −
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β2| = Op( 1√
nE(N)h4

μ

), where hμ � hμ,t � hμ,z. These results imply that

lim
√

nN̄h2
μ

[(
μ̂L(t, z) − μ(t, z)

)− (
μ̃(t, z) − μ(t, z)

)] D→ 0,

where μ̃(t, z) = [R00 − β1S10 − β2S10]/S00. It suffices to show Theorem 3.2
for μ̃(t, z) instead of μ̂L(t, z), and this follows from setting H(x1, x2, x3, x4) =
[x2 − β1x3 + β1tx1 − β2x4 + β2zx1]/x1, ψ1(u1, u2, u3) = 1, ψ2(u1, u2, u3) = u3,
ψ3(u1, u2, u3) = u1, and ψ4(u1, u2, u3) = u2 in Lemma C.2. �

APPENDIX D: PROOFS OF THEOREMS 3.3 AND 3.4

For an integer Q ≥ 1, let ϑq :R5 → R for q = 1, . . . ,Q satisfy:

C.3 ϑq(t, s, z, y1, y2)’s are continuous on U({t, s, z}) uniformly in (y1, y2) ∈ R2.
C.4 The functions ∂p

∂tp1∂sp2∂zp3 ϑq(t, s, z, y1, y2) exist for all arguments (t, s, z,

y1, y2) and are continuous on U({t, s, z}) uniformly in (y1, y2) ∈ R2, for
p1 + p2 + p3 = p and 0 ≤ p1,p2,p3 ≤ p.

The general weighted averages of three-dimensional smoothing methods are de-
fined as

�qn(t, s, z) = 1

nE(N(N − 1))h
ν1+ν2+2
G,t h

ν3+1
G,z

×
n∑

i=1

∑
1≤j �=k≤Ni

ϑq(Tij , Tik,Zi, Yij , Yik)(D.1)

× K3

(
t − Tij

hG,t

,
s − Tik

hG,t

,
z − Zi

hG,z

)
,

where K3 is a kernel function of order (ν,κ) [see (A.2)]. Let

ξq(t, s, z) = ∂ |ν|

∂tν1 ∂sν2 ∂zν3

×
∫

ϑq(t, s, z, y1, y2)f5(t, s, z, y1, y2) dy1 dy2,

ωqr =
∫

ϑq(t, s, z, y1, y2)ϑr(t, s, z, y1, y2)

× f5(t, s, z, y1, y2) dy1 dy2‖K3‖2,

where f5(t, s, z, y1, y2) is the joint density of (T1, T2,Z,Y1, Y2), ‖K3‖2 = ∫
K2

3 ,
and 1 ≤ q, r ≤ l.

Next, we provide the longitudinal version of the asymptotic normality property
of kernel-weighted averages for three-dimensional smoothers.



1222 C.-R. JIANG AND J.-L. WANG

LEMMA D.1. Under Assumption A.4–A.6, B.5–B.8, C.3 and C.4,√
nE[N(N − 1)]h2ν1+2ν2+2

G,t h
2ν3+1
G,z

× {(�1n, . . . ,�Qn)
T − (E(�1n), . . . ,E(�Qn))

T }(D.2)

D→ N(0,�).

PROOF. The proof follows similar framework as in Lemma C.1 with appro-
priate modifications for three-dimensional smoothers. �

LEMMA D.2. Let H :RQ → R be a function with continuous first order
derivatives, DH(v) = ( ∂

∂x1
H(v), . . . , ∂

∂xQ
H(v))T , and N̄ = 1

n

∑n
i=1 Ni . Under As-

sumption A.4–A.6, B.5–B.8, C.3 and C.4, hG,z

hG,t
→ ρG and nE(N(N −1))h2κ+3

G,t →
τ 2
G for some 0 < ρG, τG < ∞, we obtain√

nN̄(N̄ − 1)h
2ν1+2ν2+2
G,t h

2ν3+1
G,z {H(�1n, . . . ,�Qn) − H(ξ1, . . . , ξQ)}

D→ N(γH , [DH(ξ1, . . . , ξQ)]T �[DH(ξ1, . . . , ξQ)]),
where � = (ωqr)1≤q,r≤Q and

γH =
Q∑

q=1

∑
κ1+κ2+κ3=κ

{
(−1)κ

κ !
∫

u
κ1
1 u

κ2
2 u

κ3
3 K3(u1, u2, u3) du1 du2 du3

}

× dκ

dtκ1 dsκ2 dzκ3

∫
ϑq(t, s, z, y1, y2)

× f5(t, s, z, y1, y2) dy1 dy2

× ∂H

∂ξq

(ξ1, . . . , ξQ)T τG

√
ρ

2κ3+1
G .

PROOF. The framework of this proof is similar to that of Lemma D.1. �

LEMMA D.3. Under assumptions A.2, A.5–A.7, B.5–B.7, C.3 and C.4
and D.2,

sup
t,s∈T ;z∈Z 0

|�qn − ξq | = Op

(
1√

nh
|ν|+3
G

)
where hG � hG,t � hG,z.

PROOF. The proof is very similar to the proof of Lemma C.3. �
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LEMMA D.4. Under assumptions A.1 and A.2, A.5–A.7, B.1–B.3, B.5–B.7
and D.1 and D.2 for K2, we have defined as (A.1) of order (0,2), and K3 defined
as (A.2) of order (0,2),

sup
t∈T ;z∈Z

|μ̂L(t, z) − μ(t, z)| = Op

(
1√

nhμ,thμ,z

)
,

sup
t,s∈T ;z∈Z

|�̂L(t, s, z) − �(t, s, z)| = Op

(
1√

nh2
G,thG,z

)
.

PROOF. Apply Lemma C.3 to the Nadaraya–Watson estimator μ̂NW(t, z) by
choosing ψ1(t, z, y) = y, ψ(t, s, y) = 1, and H(x1, x2) = x1

x2
, one can obtain

sup
t∈T ;z∈Z

|f̂ (t, z) − f (t, z)| = Op

(
1√
nh2

μ

)
,

sup
t∈T ;z∈Z

|μ̂NW(t, z) − μ(t, z)| = Op

(
1√
nh2

μ

)
.

Similar to the proof of Theorem 3.2, one can rewrite μ̂L(t, z) as

μ̂L(t, z) = μ̂NW(t, z) − β̂1

f̂ (t, z)
S10 − β̂2

f̂ (t, z)
S10,

where S10 is defined in the proof of Theorem 3.2 and show that

sup
t∈T ;z∈Z

|β̂1 − β1| = Op

(
1√
nh3

μ

)
and sup

t∈T ;z∈Z
|β̂2 − β2| = Op

(
1√
nh3

μ

)
.

Thus, supt∈T ;z∈Z |μ̂L(t, z) − μ(t, z)| = Op( 1√
nh2

μ
).

The uniform convergence rate of the covariance estimator simply replaces
Lemma C.3 with Lemma D.3. �

PROOFS OF THEOREMS 3.3 AND 3.4. From Lemma D.4, we know that
supt,z |μ̂(t, z) − μ(t, z)| = Op( 1√

nh2
μ
) for both μ̂NW(t, z) and μ̂L(t, z). Let

ϑ1(t1, t2, z, y1, y2) = (y1 − μ(t1, z))(y2 − μ(t2, z)), ϑ2(t1, t2, z, y1, y2) = (y1 −
μ(t1, z)), and ϑ3(t1, t2, z, y1, y2) = 1, then supt,z |�qn| = Op(1), q = 1,2,3, by
Lemma D.3. Thus, we can obtain supt,z |�qn|Op( 1√

nh2
μ
) = Op( 1√

nh2
μ
) for q = 2,3.

By the fact that

Cijk = C̃ijk + (
Yij − μ(Tij ,Zi)

)(
μ(Tik,Zi) − μ̂(Tik,Zi)

)
+ (

Yik − μ(Tik,Zi)
)(

μ(Tij ,Zi) − μ̂(Tij ,Zi)
)

+ (
μ(Tij ,Zi) − μ̂(Tij ,Zi)

)(
μ(Tik,Zi) − μ̂(Tik,Zi)

)
,
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and supt,z|μ̂(t, z) − μ(t, z)|2 = Op( 1
nh4

μ
) is negligible compared to �1n, �̂NW(t,

s, z) and �̂L(t, s, z) obtained via smoothing Cijk are asymptotically equivalent to
those, denoted by �̃NW(t, s, z) and �̃L(t, s, z), respectively, obtained via smooth-
ing C̃ijk . Therefore, it suffices to show the asymptotic distributions of �̃NW(t, s, z)

and �̃L(t, s, z).
Theorem 3.3 now follows from Lemma D.2 by letting ϑ1(t, s, z, y1, y2) = (y1 −

μ(t, z))(y2 − μ(s, z)), ϑ2(t, s, z, y1, y2) = 1, and H(x1, x2) = x1
x2

.
Theorem 3.4 follows from similar arguments as in the proof of Theorem 3.2.

�

PROOF OF THEOREM 3.5. To show the asymptotic results of the mFPCA co-
variance estimator, we need the following regularity conditions for the pooled co-
variance function and some joint p.d.f.’s:

E.1 dκ

dtk1 dsk2
g2(t, s) exists and is continuous on {(t, s)} for k1 + k2 = κ , 0 ≤

k1, k2 ≤ κ , and g2(t, s) > 0;
E.2 f4(t, s, y1, y2) is continuous on {(t, s)} uniformly in (y1, y2) ∈ R2;

dκ

dtk1 dsk2
f4(t, s, y1, y2) exists and is continuous on {(t, s)} uniformly in

(y1, y2) ∈ R2, for k1 + k2 = κ , 0 ≤ k1, k2 ≤ κ ;
E.3 f8(t1, t2, t

′
1, t

′
2, y1, y2, y

′
1, y

′
2) is continuous on {(t1, t2, t ′1, t ′2)} uniformly in

(y1, y2, y
′
1, y

′
2) ∈ R4.

Since the covariance estimator of mFPCA involves two-dimensional smoothing,
the theoretical properties of covariance estimator in Theorem 1 in Yao, Müller and
Wang (2005) and Theorem 2 in Yao (2007) can be applied directly. Thus, under
assumptions A.5–A.7, D.1, E.1–E.3, hG∗ → 0, nh6

G∗ → ∞ and nh8
G∗ < ∞, one

could obtain that

sup
t,s∈T

|�̂∗(t, s) − �∗(t, s)| = Op

(
1√

nh2
G∗

)
. �
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