
The Annals of Statistics
2009, Vol. 37, No. 6A, 3272–3306
DOI: 10.1214/08-AOS673
© Institute of Mathematical Statistics, 2009

ON RANDOM TOMOGRAPHY WITH UNOBSERVABLE
PROJECTION ANGLES1

BY VICTOR M. PANARETOS

Ecole Polytechnique Fédérale de Lausanne

To the memory of David George Kendall (1918–2007)
whose work will always be a source of inspiration

We formulate and investigate a statistical inverse problem of a random to-
mographic nature, where a probability density function on R

3 is to be recov-
ered from observation of finitely many of its two-dimensional projections in
random and unobservable directions. Such a problem is distinct from the clas-
sic problem of tomography where both the projections and the unit vectors
normal to the projection plane are observable. The problem arises in single
particle electron microscopy, a powerful method that biophysicists employ to
learn the structure of biological macromolecules. Strictly speaking, the prob-
lem is unidentifiable and an appropriate reformulation is suggested hinging
on ideas from Kendall’s theory of shape. Within this setup, we demonstrate
that a consistent solution to the problem may be derived, without attempting
to estimate the unknown angles, if the density is assumed to admit a mixture
representation.

1. Introduction. The classical problem of tomography can be informally de-
scribed as that of the determination of an object by knowledge of its projections
in multiple directions. Problems of this nature arise in a variety of disciplines in-
cluding medicine, astronomy, optics, geophysics and electron microscopy. Math-
ematically, the problem is formulated as that of seeking a solution to an integral
equation relating a real function f : Rn → R to its one-dimensional Radon trans-
form (or X-ray transform),

f̌ (ξ, x)=
∫ +∞
−∞

f (x + τξ) dτ, ξ ∈ S
n−1 and x ∈ ξ⊥.(1.1)

Under regularity conditions on f , the Radon transform can be seen to be invertible,
and the function f can be recovered by means of explicit formulas which we omit
(Helgason [22] and Jensen [26]).
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In practical situations, such as X-ray imaging (e.g., Shepp and Kruskal [47]),
one seeks to determine f given finitely many pairs of orientations and correspond-
ing profiles {(ξi, f̌ (ξi, ·))}Ni=1. Several algorithms have been proposed to address
this problem, and these are often problem specific, although one may single out
broad classes, such as Fourier methods (based on the projection-slice theorem) and
back-projection methods (see Natterer [38]). The subject matter and mathematical
literature on such problems and their solution approaches is vast (see Deans [10]
for a succinct overview).

In statistics, the tomographic reconstruction problem manifests itself most
prominently in the case of positron emission tomography (PET), which can be seen
as a special type of density estimation problem where a density f is to be estimated
given a random sample {(�i,Xi)}ni=1 from a density proportional to f̌ (ξ, x) (see
Shepp and Vardi [48] and Vardi, Shepp and Kaufman [53]). PET lends itself to sta-
tistical treatment through a broad range of techniques such as likelihood-based, or-
thogonal series (singular value decomposition) and smoothed backprojection tech-
niques, to name only a few (e.g., Vardi, Shepp and Kaufman [53], Silverman et al.
[49], Green [20], Jones and Silverman [28]). Naturally, theoretical aspects such
as consistency and optimality have also been widely investigated (e.g., Chang and
Hsiung [8], Johnstone and Silverman [27] and O’Sullivan [39]). Further to PET,
statistical problems such as random coefficient regression and multivariate den-
sity estimation have also been treated by means of insights and techniques gained
from the field of tomography (Beran, Feuerverger and Hall [2], Feuerverger and
Vardi [14] and O’Sullivan and Pawitan [40]).

In this paper, we formulate and investigate a stochastic variant of the classi-
cal tomographic reconstruction problem, where the profile orientations are not
only random, but are in fact unobservable. This variant arises in the electron mi-
croscopy of single biological particles (see Section 1.1), a powerful method that
biophysicists employ in order to study the structure of biological macrocolecules.
It is qualitatively different from the usual tomography settings, where reconstruc-
tion crucially depends on the knowledge of the projection directions {ξi}ni=1. When
the latter are unavailable, it is natural to ask whether anything interesting can be
statistically said about the unknown density. We explore the limitations that are
inherent when trying to answer such a question, and propose a mixture framework
where the three-dimensional structure can be consistently estimated up to an or-
thogonal transformation, without attempting to estimate the unknown projection
angles.

The paper is structured as follows. In Section 1.1 we present an informal in-
troduction to the missing angle tomography problem of single particle electron
microscopy. We then formulate the problem statistically (Section 2) and discuss
its main aspects and the relevance of shape-theoretic ideas (Section 3). We then
proceed to introduce a parametric framework (Section 3.1) which allows for a
“statistical inversion” in the shape domain (Section 4). Illustrations are provided
in Section 5 and the paper concludes with some remarks in Section 6.
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1.1. Single particle electron microscopy. Resolving the structure of a bio-
logical particle is an undertaking that involves piecing together numerous facets
of a complex investigation. The most important of these is, perhaps, the three-
dimensional visualization of the particle whose dimension can be of the order of
Angstroms (1 Å= 10−10 m). Although it is X-rays that have traditionally been as-
sociated with particle structure determination, electron microscopy has arisen as a
powerful tool with important advantages in these endeavors (Chiu [9], Frank [15],
Glaeser et al. [19] and Henderson [23]).

The structure of a biological particle is described by the relative positioning of
its atoms in space. Each atom’s electrons create a potential around it, and the en-
semble of these potentials gives rise to a potential distribution in three-dimensional
space, the shielded Coulomb potential distribution, which is typically assumed to
admit a potential density function, say ρ(x, y, z). The structure of the particle is
then described by this density.

This potential density provides the means of interaction with the electron mi-
croscope’s beam: when the beam passes through the specimen (particle) in the
z-direction, there is a reduction to the beam intensity caused by the scattering of
electrons due to the interaction with the specimen. According to the Abbe image
formation theory (Glaeser et al. [19]), the intensity recorded on the film under
the specimen is approximately linear in the projection of the particle density in the
z-direction,

∫+∞
−∞ ρ(x, y, z) dz. Therefore, the imaging mode of the electron micro-

scope provides us with a sample profile from the Radon transform of the particle’s
potential density.

While as such, the problem should be amenable to the “traditional” tomo-
graphic reconstruction techniques, things in practice are not as straightforward
due to the problem of radiation damage (Glaeser [17]). Extended exposure to
the electron beam will cause chemical bonds to break, and thus will alter the
structure of the specimen. It follows that it is impossible to image the same parti-
cle under many different orientations. The exposure should instead be distributed
over many identical particles. This can be achieved by crystallizing multiple par-
ticles (Drenth [12]) but reliance on crystals has several fundamental drawbacks
(Frank [15] and Glaeser [18]). Single particle cryo-electron microscopy is a tech-
nique of electron microscopy, that aims at obtaining a three-dimensional repre-
sentation of the particle without crystallizing the sample (e.g., Glaeser [18]). In
this approach, a large number of structurally identical particles are imbedded un-
constrained (i.e., uncrystallized) in an aqueous solution, then rapidly frozen and
finally imaged via the electron microscope. Since the particles are unconstrained,
they move and rotate freely within the aqueous solution, assuming haphazard ori-
entations at the moment they are frozen. After preliminary processing, the data
yielded are essentially noisy versions of the projected potential densities, at ran-
dom and unknown orientations. Figures 1 and 2 present characteristic examples
of such data in the presence of noise (Figure 1), and in the ideal—but practically
impossible—noiseless case (Figure 2), for two different particles.
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FIG. 1. (a) Random profiles of pyruvate-ferredoxin oxidoreductase (PFOR) obtained via sin-
gle-particle electron microscopy at the Lawrence Berkeley National Laboratory (Courtesy of F. Gar-
czarek and R. M. Glaeser). (b) Reconstruction of the three-dimensional potential density after the
projection angles have been estimated (Garczarek et al. [16]).

Biophysicists typically proceed via attempting to estimate the unobservable ori-
entations, in order to then be able to iteratively use standard tomographic tech-
niques (Frank [15] and Glaeser et al. [18]). However, they often rely on a priori
knowledge on the structure of the particle either from other experiments or from an
ad hoc examination of the projections by eye, in order to perform this estimation.
Once an initial model is provided, it may be used to estimate the unknown angles
and update the estimate. In cases where previous structural information is not avail-
able, and a naked eye examination is either not feasible (e.g., when the particle has
no symmetries) or would best be avoided, it is natural to wonder whether an “ob-
jective” initial model can be extracted directly from the data, without attempting
to estimate the unknown angles.

2. A stochastic Radon transform. We may distinguish three important as-
pects in the random tomography problem that arises in single particle electron
microscopy: (I) the samples of the Radon transform are obtained at haphazard
orientations ξ which are thought as random, (II) the physics of the data collection

FIG. 2. (a) A model of the three-dimensional potential density of the human translation initiation
factor eIF3 derived from single particle data after angle estimation (Siridechadilok et al. [50]). (b)
Noiseless random projections obtained from the known model (Courtesy of R. J. Hall).
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process allows for the possibility of within-plane rotations in a projection, (III) one
does not observe the projection orientations.

These aspects become clear once we have a precise working definition and,
for this reason, we define a random analogue to the Radon transform. Let
(SO(3),D) be the measurable space of special orthogonal matrices, with D the
Borel σ -algebra generated by the standard Riemannian metric on SO(3). Also, let
(L2(�2),B) be the measurable space of square integrable functions on the disc
�2 := {x ∈ R

2 :‖x‖ ≤ π}, equipped with the Borel σ -algebra B generated by the
L2-norm.

Let ρ : R3 → [0,∞) be probability density function centered at zero. Since the
object of any tomographic probe is necessarily finite, we shall restrict our attention
to densities that are supported on the ball �3 := {x ∈R

3 :‖x‖ ≤ π} and essentially
bounded (i.e., ess supρ <∞).

We define the projection operator of ρ as the mapping 	{ρ} : SO(3)→ L2(�2)

given by

(	{ρ}(A))(x, y) :=
∫ +∞
−∞

Aρ(x, y, z) dz ∀A ∈ SO(3),(2.1)

where Aρ(x) := ρ(A−1x) for x ∈ R
3 and A ∈ SO(3). Given an element A0 ∈

SO(3), the function 	{ρ}(A0) is the projection (or profile) of ρ at orientation A0.
In particular, 	{ρ} is well defined as a random element of L2(�2) if we equip
(SO(3),D) with a probability measure.

PROPOSITION 2.1 (Measurability). Let ρ :�3 → [0,∞) be an essentially
bounded probability density function centered at the origin. The projection op-
erator 	{ρ} is a measurable mapping from (SO(3),D) to (L2(�2),B).

PROOF. Let θ :�3 → R be a continuous function, and let An
n→∞−→ A be a

convergent sequence in SO(3). By continuity, it holds that Anθ → Aθ point-
wise [recall that Anθ(x)= θ(A−1

n x)]. Combining this fact with the bounded con-
vergence theorem shows that limn→∞(	{θ}(An))(x, y) = (	{θ}(A))(x, y), for
all (x, y) ∈R

2. The bounded convergence theorem then implies ‖	{θ}(An) −
	{θ}(A)‖2 → 0.

Now let ρ be as in the assumptions of the theorem and let ε > 0. By Lusin’s
theorem, there exists a continuous function θε :�3 → R such that Leb{x ∈
�3 :ρ(x) 	= θε(x)}< ε. By the triangle inequality,

‖	(ρ)(An)−	(ρ)(A)‖2 ≤ ‖	(ρ)(An)−	(θε)(An)‖2

+ ‖	(θε)(An)−	(θε)(A)‖2

+ ‖	(θε)(A)−	(ρ)(A)‖2.

If we let n→∞, our earlier analysis shows that the second term will vanish.
The first and third term on the right-hand side are bounded above by ε · C, for
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some finite C ≥ 0 since ρ is nonnegative and essentially bounded, while θε is
bounded. Since the choice of ε is arbitrary, this establishes the continuity of 	{ρ}
with respect to the relevant topologies and its measurability with respect to the
corresponding Borel σ -algebras. �

For N ≥ 1, let {An}Nn=1 be independent and identically distributed random ele-
ments of the special orthogonal group SO(3) distributed according to normalized
Haar measure. We define the stochastic Radon transform of length N of ρ as the
i.i.d. collection of random projections {	{ρ}(An)}Nn=1, taking values in the sample
space (L2(�2),B). These realizations of independent projections are not coupled
with the corresponding orientations, that is, we observe 	{ρ}(An) but not An. For
this reason, we suppress the dependence on An whenever this does not cause con-
fusion, and write ρ̆n for 	{ρ}(An). From the classical statistical perspective, we
observe that any centered essentially bounded density ρ on �3 induces a probabil-
ity measure Pρ on the measurable space (L2(�2),B) via

Pρ[B] =�
{
A ∈ SO(3) :	{ρ}(A) ∈ B

}
, B ∈ B,

with � denoting normalized Haar measure on (SO(3),D). The stochastic Radon
transform of length N of ρ is then an i.i.d. random sample from the distribution Pρ

(a collection of N independent random fields with law Pρ ).

3. Invariance and shape. We wish to consider the recovery of a density given
its stochastic Radon transform, that is, to investigate the feasibility of a statistical
inversion of the stochastic transform. When seen as an estimation problem, the
recovery problem exhibits certain special group invariance properties; these are
manifested both in the parameter space as well as in the sample space, as uniden-
tifiability and sufficiency, respectively.

Focusing first on the parameter space, we recall that a parametric family of
models (distributions) {Pθ } with parameter space 
 is identifiable if the mapping
θ �→ Pθ is a bijection. The probability model parameterized in our case is the
distribution of a random profile 	{θ} with θ ∈ F, where F is the set of essen-
tially bounded probability densities supported on �3 that are centered at the origin
[understood as a subset of the metric space L2(�3)]. However, the following para-
metrization is not well defined, in the sense that it is unidentifiable: if B ∈ O(3)
so that B�B = I and det(B) ∈ {−1,1}, we may put Q = diag{1,1,det(B)}, and
observe that

	{Bθ}=
∫ +∞
−∞

ABθ(x, y, z) dz=
∫ +∞
−∞

ABQθ
(
x, y,det(B) · z)dz d=	{θ}

for any A∼Haar[SO(3)], by right invariance of Haar measure.
It follows that the probability law Pρ induced on L2(�2) by the parameter ρ ∈

F is the same as the law PBρ for any B ∈ O(3). This suggests that ideally we
could only recover the original function modulo O(3), which leads to the need for
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a parametrization of the model in terms of those characteristics of the functions
of F that are invariant under orthogonal transformations. Formally, let G(F) =
{γA :A ∈ O(3)} be the group of rotations and reflections on the function class F,
with action

(γAf )(u)= f (A−1u), A ∈O(3), f ∈ F.(3.1)

Define the shape [f ] of a function f ∈ F as its orbit under the action of G(F)

[f ] = {γ (f ) :γ ∈G(F)}.(3.2)

Consequently, we call the quotient space F/G(F) the shape space of F, and we
denote it by �F. While we saw that we cannot recover “more than [ρ]” from
the stochastic Radon transform of ρ, we prove next that shape can be potentially
recovered given a sample from the stochastic Radon transform.

THEOREM 3.1 (Singular identifiability). Let F be the set of probability densi-
ties supported on �3 that are centered at the origin and are essentially bounded.
For θ ∈ F, let P[θ ] denote the probability distribution induced on the sample space
(L2(�2),B) by [θ ] ∈�F via the stochastic Radon transform 	{h} of any h ∈ [θ ].
Then, for any two distinct elements [f ], [g] ∈�F, the measures P[f ] and P[g] are
mutually singular.

To prove this theorem, we will make use of the following result on Radon trans-
forms (see Proposition 7.8 in Helgason [22]).

PROPOSITION 3.1. Let f : Rd →R be function of compact support and � be
an infinite subset of the unit sphere S

2. Then f is determined by the collection
{f̌ξ }ξ∈�, where

f̌ξ (x)=
∫ +∞
−∞

f (x + τξ) dτ, x ∈ ξ⊥.

PROOF OF THEOREM 3.1. Assume that [f ], [g] ∈ �F and [f ] 	= [g]. Since
P[g] = Pg and P[g] = Pg , it suffices to show that Pf ⊥ Pg . Since the shapes [f ]
and [g] are distinct, we have

f 	= Bg ∀B ∈ SO(3).

It follows that given any � ∈ SO(3), the set {A ∈ SO(3) :	{f }(A)=	{�g}(A)}
has Haar measure zero,

�
{
A ∈ SO(3) :	{f }(A)=	{�g}(A)}= 0 ∀� ∈ SO(3).(3.3)

For if this were not the case we could find an uncountably infinite set �⊆ S
2 such

that f̌ξ = (�̌g)ξ for all ξ ∈�, where

ȟξ (x)=
∫ +∞
−∞

h(x + τξ) dτ, x ∈ ξ⊥.
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So, by means of Proposition 3.1, we would conclude f = �g, contradicting our
assumption.

Consider an arbitrary coupling of Pf and Pg , that is, let (SO(3),D,�) be as
before, and let h : (SO(3),D)→ (SO(3),D) be any measurable function such that
�{A ∈ SO(3) :	{g}[h(A)] ∈ ·} = Pg[·].

Initially, we assume that h(·) is continuous. Since SO(3) acts transitively on
itself, we may represent h as

h(A)=A�A, �A ∈ SO(3).

By continuity of h, it follows that A �→ �A is also continuous.
Now, let {An}n≥1 be a monotone sequence of partitions of SO(3) that become

finer as n increases. That is, An partitions SO(3) into n disjoint sets {Ai
n}ni=1 with

the property that for every j ∈ {1, . . . , n+ 1} there exists an ij ∈ {1, . . . , n} such

that A
j
n+1 ⊆A

ij
n . Define a sequence of “simple” measurable functions

hn(A)=A�n
i on the set Ai

n,

where �i
n is defined as

�i
n := arg min

�∈{�A : A∈A
i
n}

{
min
A∈A

i
n

‖	{f }(A)−	{g}(A�)‖2

}

for A
i

n the closure of Ai
n. The above is well defined by compactness of A

i

n and
continuity of A �→ �A. Now, since h is continuous, we have

hn→ h ∀A ∈ SO(3).

Hence, by continuity of the projection mapping and by the dominated convergence
theorem, we have, for all A ∈ SO(3),

‖	{f }(A)−	{g}(hn(A))‖2 ↑ ‖	{f }(A)−	{g}(h(A))‖2.(3.4)

That the convergence is monotone follows from the definition of hn: the partition

sequence is monotone and for A ∈ A
j

n+1 ⊆ A
ij
n we have that {�A :A ∈ A

j

n+1} ⊆
{�A :A ∈A

ij
n }. We now proceed to define the sets

Kn := {
A ∈ SO(3) :‖	{f }(A)−	{g}(hn(A))‖2 > 0

}
,

K := {
A ∈ SO(3) :‖	{f }(A)−	{g}(h(A))‖2 > 0

}
.

By definition of hn,

Kn ⊆Kn+1 ∀n≥ 1.
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Therefore, Kn ↑⋃∞
n=1 Kn, where

∞⋃
n=1

Kn =
∞⋃
n=1

{
A ∈ SO(3) :‖	{f }(A)−	{g}(hn(A))‖2 > 0

}
= {

A ∈ SO(3)|∃n≥ 1 :‖	{f }(A)−	{g}(hn(A))‖2 > 0
}

= {
A ∈ SO(3) :‖	{f }(A)−	{g}(h(A))‖2 > 0

}
=K.

The penultimate equality follows from the monotone convergence given in (3.4).
Continuity of � from below leads us to the conclusion

�[K] =�

[ ∞⋃
n=1

Kn

]
= lim

n→∞�[Kn].

On the other hand, by definition of hn, we have that, for all n≥ 1,

�[Kn] =�
{
A ∈ SO(3) :‖	{f }(A)−	{g}(hn(A))‖2 > 0

}
=�

[
n⋃

i=1

{
A ∈ SO(3) :‖	{f }(A)−	{g}(hn(A))‖2 > 0

}∩Ai
n

]

=�

[
n⊎

i=1

{
A ∈Ai

n :‖	{f }(A)−	{g}(A�i
n)‖2 > 0

}]

=
n∑

i=1

�
{
A ∈Ai

n :‖	{f }(A)−	{�i
ng}(A)‖2 > 0

}

=
n∑

i=1

�[Ai
n] = 1

by appealing to the first part of our proof (3.3). In summary, we have shown that

�[K] =�
{
A ∈ SO(3) :	{f }(A) 	=	{g}(h(A))}= 1.

Now consider the case where h is measurable, but not continuous. We recall
that Lusin’s theorem guarantees that for any δ > 0 there exists a closed set Hδ

(and hence compact in our case) and a continuous function hδ such that h = hδ
on Hδ while �(SO(3) \Hδ) < δ. Therefore, for arbitrary measurable h, and given
any δ > 0,

�[K] =�[K∩Hδ] +�[K∩Hc
δ]

=�
{
A ∈Hδ :	{f }(A) 	=	{g}(h(A))}

+�
{
A ∈ SO(3) \Hδ :	{f }(A) 	=	{g}(h(A))}
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=�
{
A ∈Hδ :	{f }(A) 	=	{g}(hδ(A))}

+�
{
A ∈ SO(3) \Hδ :	{f }(A) 	=	{g}(h(A))}

≥ �
{
A ∈Hδ :	{f }(A) 	=	{g}(hδ(A))}

=�[Hδ]
≥ 1− δ.

The choice of δ being arbitrary, we conclude that the event {	{f } 	= 	{g}} has
probability 1 for an arbitrary coupling. Strassen’s theorem now implies that the
total variation distance between Pf and Pg is 1, which completes the proof. �

It follows that, under isotropic projection orientations, the unknown density is
identifiable up to an orthogonal transformation, regardless of whether or not we
observe the projection angles [in fact, this remains true if Haar measure � is re-
placed by any measure � ′ on SO(3) with � ′ ��].

Shape is not just crucial as a notion in the context of the parameter space only.
Under isotropic projection orientations, any orthogonal transformation of the two-
dimensional projection data contains the same information on the function-valued
parameter. Letting G(L2(�2)) denote the group of rotations and reflections on
L2(�2), we define the shape of an element f in the sample space L2(�2) as
[f ] = {α(f ) :α ∈G(L2(�2))}. We equip the corresponding shape space (quotient
space) M := L2(�2)/G(L2(�2)) with the Borel σ -algebra M generated by the
quotient topology. This turns the quotient space into a measurable space, and the
quotient mapping into a measurable mapping, that is, a statistic. The next propo-
sition establishes that the shape statistic is sufficient with respect to the original
shape (see page 85 of Schervish [46] for the definition of abstract sufficiency).

THEOREM 3.2. Let F be the set of probability densities supported on �3
that are centered at the origin and are essentially bounded. For θ ∈ F, let P[θ ]
denote the probability distribution induced on the sample space (L2(R2),B) by
[θ ] ∈ �F via the stochastic Radon transform 	(h) of any h ∈ [θ ]. The mapping
	(h) �→ [	(h)] is a sufficient statistic for the parameter [θ ] and a maximal in-
variant statistic with respect to the group G(L2(�2)).

Before we prove Theorem 3.2, we prove a lemma and recall two results from
measure theory.

LEMMA 3.1. Let [θ ] ∈ �F and P[θ ] be the law of 	{h}, induced by h ∈ [θ ].
Then, given any B ∈ B , γ ∈G(L2(�2)), it holds that P[θ ]{B} = P[θ ]{γB}.

PROOF. There exists a W ∈O(2) such that for A∼Haar[SO(3)]
γ [	{θ}(A)(x, y)] d=

∫ +∞
−∞

(
W 0
0� det(W)

)
Aθ(x, y, z) dz

d=	{θ}(A)(x, y),
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the last equality following from the left invariance of Haar measure. �

The next two results can be found in Lemma 1.6 and Theorem 2.29 of Kallen-
berg [29].

LEMMA 3.2. Let (M,d) be a metric space with topology T and Borel σ -alge-
bra A . Then, for any D ⊂M , the metric space (D,d) has topology T ∩ D and
Borel σ -algebra A ∩D.

PROPOSITION 3.2. Let G be a locally compact second countable Hausdorff
group that acts transitively and properly on a locally compact second countable
Hausdorff space S. Then, there exists, uniquely up to renormalization, a G-invari-
ant Radon measure μ 	= 0 on S.

PROOF OF THEOREM 3.2. Maximal invariance follows immediately from the
definition of shape as the orbit under the group of orthogonal transformations. To
prove sufficiency, we note that the space (L2(�2),B) is a standard Borel space
since it is complete and separable in the metric induced by the L2-norm. It follows
that there exists a regular conditional distribution ν(B|[θ ],m) : B × �F ×M →
[0,1] for 	(θ) given [	(θ)],

ν(B|[θ ],m) := P[θ ]{B|[	(θ)] =m}, B ∈ B, m ∈M.(3.5)

Therefore, sufficiency will follow if we can show that ν(B|[θ ],m) is function-
ally independent of [θ ], that is, ν(B|w,m) = r(B,m),∀w ∈ �F. We begin by
observing that ν(m|w,m)= 1. Therefore, ν(·|w,m) can be viewed as a probabil-
ity measure on (m,B ∩ m), where B ∩ m := {m ∩ A :A ∈ B}. Now let T be the
natural topology of L2(�2), so that B ∩m = σ(T) ∩m = σ(T ∩m) is the Borel
σ -algebra of subsets of m, generated by the subspace topology T∩m (Lemma 3.2).
But (m,T ∩m) is a locally compact second countable Hausdorff space. Hence, by
Proposition 3.2, there exists a unique Radon measure (up to constant multiples)
r(B,m) on (m,B ∩ m) such that r(B,m) = r(γB,m), for all γ ∈ G(L2(�2))

and B ∈ B ∩ m. But Lemma 3.1 implies that ν(B|w,m) = ν(γB|w,m) for all
γ ∈G(L2(�2)) and all B ∈ B ∩m, and ν is a probability measure. Consequently,
it must be that ν(B|w,m)= λr(B,m) for some λ > 0, which completes the proof.

�

It follows that our analysis should concentrate on the concept of shape. On the
one hand, it is the shape of the unknown density that we seek to estimate; on the
other hand, we should base our estimate on the shape of the projections, that being
a sufficient statistic.

A systematic mathematical study of shape in the case of finitely many labeled
points in Euclidean space was initiated by Kendall [31]; his motivation was the
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question of existence of alignments in megalithic stone monuments (Kendall and
Kendall [32]). In Kendall’s approach, shape is the collection of those character-
istics of a labeled point pattern that are invariant under rotation, translation and
scaling. The shape spaces induced have a manifold structure, and their geometry
depends both on the number of points and the dimension of the ambient space (Le
and Kendall [34]). A closely related concept of shape with a different “representa-
tion theory” was independently proposed by Bookstein [3], who was interested in
biological applications and morphometrics. In Kendall’s terminology, our version
of shape would be called “unoriented shape-and-size,” to stress the fact that O(3) is
quotiented out while scalings are not. Kendall and Le [33] provide a compendious
review of statistical shape theory.

Though shape spaces of finite point patterns are well understood and widely
used in applied work, there is apparently no practical formulation of the shape
of a function. An active field of research focuses on practical parameterizations
of the shape of closed curves on the plane and in space (e.g., Younes [54] and
Small and Le [51]), the principle motivation being computer vision. Such ideas
do not appear useful, though, when attempting to find connections between the
shape of a function and the shape of its integral transform. For this reason, we
will hinge on Euclidean shape-theoretic ideas that will enable us to establish such
connections, via an appropriate parametrization (see Panaretos [41], Panaretos [42]
and Panaretos [43]).

3.1. Parametrization: radial expansions and the Gram matrix. At least three
ingredients come into play when considering a parametrization for the shape of
a density in this particular context. First, it is important that the parametrization
allow for the problem to be posed as one of parameter estimation. In addition, one
may ask for a parametrization that makes it feasible to always explicitly be able
to pick out a representative member from a particular shape class. Most important
is the need to be able to find a connection between original shape and projected
shape. In essence, what we are asking for is a parametrization that will allow us to
convert the abstract setting of quotient spaces into something we can put a handle
on.

With these general considerations in mind, we choose to focus on the following
parametric yet flexible class of finite mixtures of radial location densities:

ρ(x)=
K∑
k=1

qkϕ(x|μ̃k), μ̃k ∈R
3, qk > 0,

K∑
k=1

qk = 1,(3.6)

where ϕ(·|ξ̃ ) is a spherically symmetric probability density with expectation ξ̃ , so
that ϕ(·|ξ̃ )= f (‖x− ξ̃‖) for some probability density f : R+ → R

+. The choice
of this particular type of expansion appears useful both from the applied and the
mathematical points of view. The optics of the imaging procedure have a smooth-
ing effect on the planar densities recorded on the film. As a result, the projected
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FIG. 3. Synthetic single-particle projection data from the Klenow fragment of Escherichia coli
DNA Polymerase I (Courtesy of A. Leschziner). The projections resemble mixtures of roughly circular
components contaminated by noise.

particles often do appear as an ensemble of roughly circular “blobs” (see, e.g.,
Figures 1, 2 and 3). Mixtures of Gaussians have previously been employed to ob-
tain Riemannian metrics between biological shapes in deformation shape analysis
(e.g., Peter and Rangarajan [44]).

From a mathematical point of view, this type of density is well behaved under
orthogonal transformation and projection. For any A ∈ O(3),

ϕ(A�x|ξ̃ )= f (‖A�x− ξ̃‖)= f (‖x−Aξ̃‖)= ϕ(x|Aξ̃),(3.7)

and letting H be the projection onto the plane z= 0,∫ +∞
−∞

ϕ(x, y, z|Aξ̃) dz= φ(x, y|μ),
(3.8) ⎧⎨⎩μ=HAξ̃,

φ(x, y|0)=
∫ +∞
−∞

ϕ(x, y, z|0) dz,
so that any rotation of the density can be encoded by a rotation of the location
parameters μ̃k , while its two-dimensional profiles can be expressed as a mixture
of the marginal of ϕ, regardless of the projection orientation.

To remove the effects of location, assume that the density is centered with re-
spect to its location vectors, that is, assume

∑K
k=1 μ̃k = 0. Since any rotation of ρ

can be encoded by a rotation of its location vectors, we may use the characteristics
of the location vectors to encode the shape of ρ. The Gram matrix generated by
the collection {μ̃k} is the K × K symmetric nonnegative definite matrix, whose
ij th element is the inner product 〈μ̃i, μ̃j 〉, as follows:

Gram({μ̃k})=

⎛⎜⎜⎜⎝
‖μ̃1‖2 〈μ̃1, μ̃2〉 · · · 〈μ̃1, μ̃K〉
〈μ̃2, μ̃1〉 ‖μ̃2‖2 · · · 〈μ̃2, μ̃K〉

...
. . .

...

〈μ̃K, μ̃1〉 · · · ‖μ̃K‖2

⎞⎟⎟⎟⎠ .(3.9)
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In Kendall’s shape theory, Gram matrices are employed as a coordinate system
for the shape manifold induced by rigid motions. Note that if the vectors {μ̃k}
are arranged as the columns of a 3 × K matrix V , then we may simply write
Gram(V ) = V �V . The Gram matrix is invariant under orthogonal transforma-
tions of the generating vectors, since for B ∈ O(3) we immediately see that
Gram(BV ) = V �B�BV = V �V = Gram(V ). Furthermore, given a Gram ma-
trix of rank p, one can find K vectors in R

d , d ≥ p, with centroid zero whose
pairwise inner products are given by that Gram matrix. In fact, the specification
of such an ensemble amounts to merely solving nondegenerate lower triangular
linear systems of equations.

We can thus define the shape of a ϕ-radial mixture as the coupling of its mixing
proportions with the Gram matrix generated by its location vectors:

[ρ] = (Gram({μ̃k}), {qk}).(3.10)

We call the two components of this parametrization the Gram component and
the mixing component, respectively. The shape of a profile of ρ, say ρ̆0(x, y) =∑K

k=1 qkφ(x, y|HA0μ̃k), corresponding to a rotation A0 ∈ SO(3) will then be
given by [ρ̆0] = (Gram({HA0μ̃k}), {qk}).

Our interest now is in establishing a relationship between the shapes of the
Radon profiles of a density and the shape of the original density.

4. Statistical inversion. Since the coefficients involved in the radial mixture
expansion are invariant under projection, the Gram matrix of the location vectors
becomes the primary object of interest. Especially in view of sufficiency, we seek a
relationship between the Gram components of the projected shape and the original
shape. The following theorem provides such a connection and can be seen as an
inversion in the shape domain.

THEOREM 4.1 (Shape inversion). Let V be a d × k matrix, 2 ≤ d <∞, k ≤
∞, whose columns encode an ensemble of k elements of R

d with centroid zero.
Let � be normalized Haar measure on SO(d) and H denote the projection onto a
subspace of dimension d − 1. Then,∫

SO(d)
Gram{HAV }�[dA] = d − 1

d
Gram{V }.(4.1)

PROOF. We may assume that H = diag{1, . . . ,1,0}without loss of generality.
We notice that Gram{HAV } = V �A�HAV, since H is symmetric idempotent
and recognize that A�HA is the spectral decomposition of a projection onto the
plane {A�x :x ∈ Im(H)}, where Im(H) is the image of H . As such, we should be
able to encode the same projection relying solely on a unit sphere parametrization,
as opposed to using the special orthogonal group. Indeed, B�HB

d= I − uu� for
B ∼Haar[SO(d)] and u a uniformly random unit vector, u∼U(Sd−1) (I −uu� is
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the projection onto u⊥). Hence, the proof of the theorem reduces to verifying that,
for u ∼ U(Sd−1), E[uu�] = d−1I . The uniform distribution on the hypersphere
is invariant under orthogonal transformations, Wu

d= u, ∀W ∈ O(d). Therefore,
E[uu�] =WE[uu�]W� for all W ∈ O(d), implying that E[uu�] = cI for some
constant c ∈ R. Finally, note that trace(E[uu�]) = trace(E[u�u]) = 1, so that it
must be that c= d−1 and the proof is complete. �

The relation in (4.1) reminds one of Cauchy’s formula and other related stere-
ological results, where the key ingredient is the isotropy of the projection hyper-
planes (see, e.g., Baddeley and Jensen [1]).

Theorem 4.1 says that the expected projected Gram matrix is proportional to the
original Gram matrix. Thus, supposing that we can estimate {qk} consistently by
some estimator {q̂k}, an obvious consistent estimator is given by(

d

(d − 1)N

N∑
n=1

Gram(ρ̆n), {q̂k}
)
,(4.2)

which is essentially a method of moments estimator coupled with {q̂k}. Unfortu-
nately, things are not so straightforward. Given any profile ρ̆n(x, y) of ρ, the ex-
pansion ρ̆n(x, y)=∑K

k=1 qkφ(x, y|Anμ̃k) is unobservable. Contrary to the case of
orthogonal expansions in Hilbert space, there is no transform corresponding to this
expansion, so that the unobservable elements {qk}Kk=1 and {Anμ̃k}1≤k≤K,1≤n≤N
must be estimated from the data. A further subtle problem thus arises: since the
expansion is unobservable, the correspondence of the indices are also unobserv-
able. When looking at a projection, regardless of how we arrange the location
vectors to build the Gram matrix and coefficient vector, the information encoded
is the same. However, we must be able to choose this arrangement consistently
across all projections, since we will be averaging the Gram matrices across projec-
tions. If the indices are unobservable, guaranteeing this consistent construction of
the Gram matrices is nontrivial. To surpass this further unidentifiability issue, we
impose an assumption on the mixing components.

ASSUMPTION 4.1. The components of the density are distinguishable, that is,
in the setup given in (3.6), we further assume that qi 	= qj , ∀i 	= j .

Assumption 4.1 allows us to use the auxiliary parameters (the mixing and per-
haps the scaling coefficients, if these are included) estimated from the data to re-
cover the unobservable labeling. A hybrid maximum likelihood/method of mo-
ments (MoM) estimator is presented in the next section.

4.1. A hybrid estimator. In this section, we propose an estimator of the shape
of the unknown density when this can be expanded as a finite mixture satisfying
Assumption 4.1. The estimator is a hybrid estimator, fusing together a maximum
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likelihood estimator of the unobservable profile expansions with a method of mo-
ments estimator of the final Gram matrix in light of Theorem 4.1. For simplicity
and tidiness, we will treat the planar case. The treatment of the d-dimensional case,
d ≥ 3, is directly analogous.

In the planar case, we have ρ : R2 → [0,∞), an essentially bounded density
function supported on the disc of radius π , �2 = {x ∈ R

2 :‖x‖ ≤ π}. We let N
be a positive integer and {An}Nn=1 be independent and identically distributed ran-
dom elements of the special orthogonal group SO(2) drawn according to the cor-
responding normalized Haar measure. Finally, we write Aρ(x) := ρ(A−1x) for
x ∈ R

2 and A ∈ SO(2). The corresponding stochastic Radon transform is the col-
lection of projections

ρ̆n(x) :=	{ρ}(An)(x)=
∫ +∞
−∞

Anρ(x, y) dy, x ∈ [−π,π ].(4.3)

Let ϕ(·|ξ̃ ) be a planar radial density function centered at ξ̃ , and let φ(x|0) =∫+∞
−∞ ϕ(x, y|0) dy be a symmetric one-dimensional location density, centered at

the origin. Our model is

ρ(x, y)=
K∑
k=1

qkϕ(x, y|μ̃k), qi 	= qj , ∀i 	= j,(4.4)

so that the nth profile is ρ̆n(x)=∑K
k=1 qkφ(x|μ(n)

k ). Here, μ(n)
k ∈ [−π,π ] denotes

the projection of the kth location vector in the nth profile of the stochastic Radon
transform: μ(n)

k = HAnμ̃k , H = (1,0). Since we assume that ρ is supported on
the disc �2, it must be that diam{supp(ϕ)}< 2π .

In practice, we observe a discrete version of the profiles, on certain lattice points
{xt }Tt=1 ∈ [−π,π ], for T a positive integer. In particular, we assume the lattice to
be regular, that is, the xt being equally spaced. Furthermore, the digital images
{In}Nn=1 of the profiles will be contaminated by additive noise, which is assumed
to be Gaussian and white,

In(xt )= ρ̆n(xt )+ εn(t)=
K∑
k=1

qkφ
(
xt |μ(n)

k

)+ εn(t)(4.5)

for 1 ≤ n ≤ N and 1 ≤ t ≤ T . Here, {εn(t)} is a collection of N independent
Gaussian white noise processes on {1, . . . , T } with variance σ 2

ε . By indepen-
dence, both between and within the white noise processes and the random rota-
tions in (4.3), we may write down the following log-likelihood expression for the
parameters of the unobservable mixture expansion:

�(μ,q)∝− 2π

NT

N∑
n=1

T∑
t=1

∥∥∥∥∥In(xt )−
K∑
k=1

qkφ
(
xt |μ(n)

k

)∥∥∥∥∥
2

.(4.6)
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Maximization of this log-likelihood requires that we choose NK location parame-
ters (K for each profile), as well as a unique set of K mixing proportions to be
shared across the profiles, so as to minimize the residual sum of squares between
the observed and stipulated profiles (note that K is assumed to be known). Our
hybrid estimator for the shape of the two-dimensional density ρ is then formally
written as

[̂ρ] =
(

2

N

N∑
n=1

Gram
({
μ̂
(n)
k

}K
k=1

)
︸ ︷︷ ︸

Ĝ

, {q̂k}Kk=1︸ ︷︷ ︸
q̂

)
, (μ̂, q̂)= arg max

(μ,q)

�(μ,q).(4.7)

The hybrid estimator is consistent and asymptotically Gaussian. Here, asymptotic
refers to both important aspects of the problem: the resolution T and the num-
ber of profiles N . The T →∞ asymptotics relate to the deconvolution proce-
dure, while the N →∞ asymptotics relate to the inversion stage. Depending on
how one defines the hybrid estimator, there may be an interesting relationship be-
tween the two. To state these results, we point out that the underlying probability
space is a product space (�,G,P)= (�1 ×�2, σ (D1 ×D2),P1 × P2). The triple
(�2,D2,P2) is the space of sequences of special orthogonal matrices {An}∞n=1
with P2 such that all finite-dimensional measures are product normalized Haar
measures. On the other hand, the space (�1,G1,P1) induces infinite sequences of
row-wise independent white noise triangular arrays {εn(t, T );1≤ t ≤ T ≤∞}∞n=1
under P1, with common variance σ 2

ε .
First, we note that the ML estimators are consistent for every N ≥ 1 as T →∞,

implying consistency of the mixing component estimator.

THEOREM 4.2 (MLE deconvolution consistency). Let θ̃ (ω2|N) denote the
true parameters for the profiles of a stochastic Radon transform of length N of
the mixture expansion (4.4),

θ̃ (ω2|N)= ({
μ
(n)
k (ω2)

}
1≤k≤K,1≤n≤N, {qk}1≤k≤K

)
and let θ̂ (ω1,ω2|T ,N) denote the corresponding maximum likelihood deconvolu-
tion estimate based on the observed profile {IN(xt )}Tt=1. Then,

θ̂ (ω1,ω2|T ,N)
P−→

T→∞ θ̃ (ω2|N).(4.8)

To prove Theorem 4.2, we first state without proof a variant of a uniform weak
law for triangular arrays due to Jennrich [25].

LEMMA 4.1. Let {Xt,T }t≤T be a triangular array of random variables with
mean zero and variance σ 2

X <∞, such that elements of the same row are inde-
pendent. Let {gt,T (θ)} be a triangular array of continuous functions on a compact
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Euclidean set 
 satisfying

lim
T→∞ sup

θ1,θ2∈


∣∣∣∣∣ 1

T

T∑
t=1

gt,T (θ1)gt,T (θ2)

∣∣∣∣∣<∞.(4.9)

Then,

sup
θ∈


∣∣∣∣∣ 1

T

T∑
t=1

gt,T (θ)Xt,T

∣∣∣∣∣ P−→
T→∞0.

PROOF OF THEOREM 4.2. It suffices to show that for P2-almost all ω2

θ̂ (ω1,ω2|T ,N)
P1−→

T→∞ θ̃ (ω2|N)(4.10)

for then the bounded convergence theorem will imply that ∀ε > 0,

lim
T→∞P[‖θ̂ (ω1,ω2|T ,N)− θ̃ (ω2|N)‖> ε]

=
∫
�2

lim
T→∞P1[‖θ̂ (ω1,ω2|T ,N)− θ̃ (ω2|N)‖> ε]dP2 = 0.

To this aim, let 
 be the support of θ , which is by definition compact, and define
QT (·) as follows:

QT (θ)=− 2π

NT

N∑
n=1

T∑
t=1

∥∥∥∥∥In(xt )−
K∑
k=1

qkφ
(
xt −μ

(n)
k

)∥∥∥∥∥
2

=− 2π

NT

N∑
n=1

T∑
t=1

‖In(xt )−�n(xt |θ)‖2.

If we establish the existence of a deterministic function Q(θ) such that:

(1) supθ∈
 |QT (θ)−Q(θ)| P1−→ 0, as T →∞,
(2) supθ : ‖θ−θ̃‖≥ε Q(θ) <Q(θ̃), ∀ε > 0,

(3) QT (θ̂(T ,N))≥QT (θ̃)− oP1(1),

for P2-almost all ω2, then relation (4.10) will immediately follow (e.g., van der
Vaart [52]). We fix and suppress ω2 so that in what follows, random variables are
to be seen as functions of ω1 only. Let

Q(θ) := − 1

N

N∑
n=1

∫ π

−π
‖ρ̆n(x)−�n(x|θ)‖2 dx − σ 2

ε ,(4.11)

where ρ̆n(·) = �n(·|θ̃ ) is the nth profile (without noise contamination) and
σ 2
ε is the variance of the noise component. For tidiness write δn(x|θ) :=
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|ρ̆n(x)−�n(x|θ)| so that Q(θ)=−N−1 ∑
n

∫
δ2
n(x|θ) dx − σ 2

ε . Furthermore, let
δ∗n(xt |θ) := supxt−2π/T≤y≤xt δn(x|θ) and

Q∗
T (θ) := −

2π

NT

N∑
n=1

T∑
t=1

δ∗n
2
(xt |θ)− σ 2

ε

=− 2π

NT

N∑
n=1

T∑
t=1

sup
xt−2π/T≤y≤xt

{δn(y|θ)}2 − σ 2
ε ,

the second equality following form monotonicity of y �→ y2 on R
+. To verify

condition (1), we must show convergence of supθ∈
 |QT (θ) −Q(θ)| to zero in
probability. Using the triangle inequality on the uniform norm, one obtains

sup
θ∈


|QT (θ)−Q(θ)| ≤ sup
θ∈


|QT (θ)−Q∗
T (θ)|︸ ︷︷ ︸

A(T )

+ sup
θ∈


|Q∗
T (θ)−Q(θ)|︸ ︷︷ ︸
B(T )

.(4.12)

For the term B(T ), we note that fT (θ) = |Q∗
T (θ) −Q(θ)| is continuous on the

compact set 
. Furthermore, by the definition of the upper Riemann–Stieltjes in-
tegral, we have that fT ↓ 0 pointwise as T →∞. It follows by Dini’s theorem that
fT converges uniformly to zero, that is, B(T )= supθ∈
 |Q∗

T (θ)−Q(θ)| T→∞−→ 0.
Consider now A(T ):

A(T )= 2π

NT

N∑
n=1

T∑
t=1

[(
In(xt )−�n(xt |θ))2 − δ∗n

2
(xt |θ)− σ 2

ε

]

= 2π

NT

N∑
n=1

T∑
t=1

[(
ρ̆n(xt )+ εn(xt )−�n(xt |θ))2 − δ∗n

2
(xt |θ)− σ 2

ε

]

= 2π

NT

N∑
n=1

T∑
t=1

[
δ2
n(xt |θ)− δ∗n

2
(xt |θ)+ (

ε2
n(xt )− σ 2

ε

)
+ 2εn(xt )

(
ρ̆n(xt )−�n(xt |θ))].

The triangle inequality yields

sup
θ∈


|A(T )| ≤ sup
θ∈


∣∣∣∣∣ 2π

NT

N∑
n=1

T∑
t=1

(
ε2
n(xt )− σ 2

ε

)∣∣∣∣∣
+ sup

θ∈


∣∣∣∣∣ 2π

NT

N∑
n=1

T∑
t=1

(
δ2
n(xt |θ)− δ∗n

2
(xt |θ))

∣∣∣∣∣
+ sup

θ∈


∣∣∣∣∣ 2π

NT

N∑
n=1

T∑
t=1

2εn(xt )
(
ρ̆n(xt )−�n(xt |θ))

∣∣∣∣∣.
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The first term on the right-hand side is functionally independent of θ and con-
verges to zero in P1-probability as T →∞ by the weak law of large numbers for
triangular arrays.

To see that the second term converges to zero, we notice that the function
| 2π
NT

∑N
n=1

∑T
t=1(δ

2
n(xt |θ)− δ∗n2(xt |θ))| is continuous on the compact set 
, and,

by definition of the upper Riemann–Stieltjes integral,∣∣∣∣∣ 2π

NT

N∑
n=1

T∑
t=1

(
δ2
n(xt |θ)− δ∗n

2
(xt |θ))

∣∣∣∣∣ ↑ 0 as T →∞,

pointwise in θ . It therefore follows from Dini’s theorem that convergence to zero
is uniform.

Hence, it remains to show that the penultimate term converges to zero in
P1-probability. To this aim, we will use Lemma 4.1. To see that it applies here,
we need to verify condition (4.9) for the array {ψt,T (θ)} = {(ρ̆(xt )−�n(xt |θ)}.
Observe that, by definition of the upper Riemann–Stieltjes integral,∣∣∣∣∣2πT

T∑
t=1

ψt,T (θ1)ψt,T (θ2)

∣∣∣∣∣ ≤ 2π

T

T∑
t=1

|ψt,T (θ1)||ψt,T (θ2)|

≤ 2π

T

T∑
t=1

δ∗n(xt |θ1)δ
∗
n(xt |θ2) ↓ 〈δn(x|θ1), δn(x|θ2)〉2

<∞
for all θ1, θ2 ∈
. Notice that the limit is a bounded function on 
×
. Dini’s theo-
rem implies that the convergence to this limit occurs uniformly. We have therefore
verified that (1) holds.

We now proceed to verify condition (2). When the location parameters
{μ(n)

k }Kk=1 within a profile are distinct, the mapping {(qk,μ(n)
k )}Kk=1 �→

∑K
k=1 qk ×

φ(·|μ(n)
k ) is an injection. Since the ω2 for which the projected means are distinct is

a set of P2-probability 1, condition (2) follows immediately from the fact that Q(·)
[defined in (4.11)] is a norm on L2[−π,π ]. Condition (3) is trivially satisfied, by
definition of θ̂T as the arg max of QT (·). Finally, statements in the proof hold for
all ω2 ∈�2, and the proof is complete. �

Using Theorem 4.2, we establish the consistency of the estimator of the Gram
component.

THEOREM 4.3 (Gram component consistency). Let ρ be as in (4.4), and let
Ĝ(T ,N) denote the hybrid estimator of the Gram component of [ρ], Gram([ρ]),
based on N independent profiles {In(xt )}Tt=1, n= 1, . . . ,N . Then, Ĝ is Lp-consis-
tent for Gram([ρ]) in the sense that for every p > 0, there exists a sequence TN ↑
∞, such that

E‖Ĝ(TN,N)−Gram([ρ])‖pF N→∞−→ 0,(4.13)
where ‖ · ‖F is the Frobenius matrix norm.
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Before proceeding with the proof, we give two lemmas without proof.

LEMMA 4.2. Let α(T )= (α1(T ), . . . , αK(T )) be a sequence of random mea-
sures on {1, . . . ,K} and πT be a sequence of random permutations, defined
by the property that πT (α1(T ), . . . , αK(T )) = (α(1)(T ), . . . , α(K)(T )) a.s. If α =
(α1, . . . , αK) is a measure with distinct components, then

αT
P−→

T→∞α �⇒ πT
P−→

T→∞π,(4.14)

where π is defined by the property π(α1, . . . , αK)= (α(1), . . . , α(K)).

LEMMA 4.3. If WT is a sequence of random p × p permutation matrices
converging to a permutation matrix W in probability, and XT is a sequence of

random p× 1 vectors converging to X in probability, then WTXT
P−→T→∞WX.

PROOF OF THEOREM 4.3. Let μ̂(n)
k (N,T ) be the ML estimator of the kth

location parameter within the nth projection. Let Ŝn(T ,N) be the corresponding
estimate of the Gram matrix for the locations within the nth projection, Ŝn(T ,N)=
{〈μ̂(n)

i (N,T ), μ̂
(n)
j (N,T )〉}Ki,j=1, and Sn be the true Gram matrix corresponding to

the true means in the nth projection. Then, we have

Ĝ(T ,N)= 2

N

N∑
n=1

Ŝn(T ,N) and G̃(N)= 2

N

N∑
n=1

Sn(4.15)

and we can bound the Lp distance (E‖Ĝ(T ,N)−Gram([ρ])‖pF )1/p above by(
E‖Ĝ(T ,N)− G̃(N)‖pF

)1/p︸ ︷︷ ︸
A(T ,N)

+ (
E‖G̃(N)−Gram([ρ])‖pF

)1/p︸ ︷︷ ︸
B(N)

.

It is straightforward that limN→∞B(N)= 0, so we concentrate on A(T ,N):

A(T ,N)≤ 2

N

N∑
n=1

(
E‖Ŝn(T ,N)− Sn‖pF

)1/p = 2
(
E2[E1‖Ŝ1(T ,N)− S1‖pF ]

)1/p
.

Here we have used exchangeability and Fubini’s theorem. By Theorem 4.2, we
have that the maximum likelihood deconvolution estimates are P-weakly consis-
tent (in the sense of convergence in probability) so that, for every N ∈N, we have

(Ŝ1(T ,N), . . . , ŜN(T ,N))
P−→T→∞ (S1, . . . , SN). This is true by a combination

of the continuous mapping theorem for convergence in probability, Lemmas 4.2
and 4.3. It follows by the fact that {Ŝ(T ,N)}T ∈N is uniformly bounded so that

E‖Ŝ1(T ,N)− S1‖pF T→∞−→ 0, for all N ∈ N (e.g., see Corollary 2.2.2, page 38 of
Lukacs [36]). Now consider a nonnegative sequence {bn} converging monotoni-
cally to zero. Since limT→∞A(T ,N) = 0 for any value of N , then we can find
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a sequence {TN } such that A(TN,N)≤ bN , ∀N . Taking the limit as N →∞ com-
pletes the proof. �

Taking the consistency results in Theorems 4.2 and 4.3 as a starting point, we
may also prove weak convergence results for the mixing and Gram components.

THEOREM 4.4 (Mixing component CLT). Let q̂N,T (ω1,ω2) denote the max-
imum likelihood estimator based on N independent profiles {In(xt )}Tt=1, n =
1, . . . ,N , of the mixing proportions q of the mixture given in (4.4). Let NT ↑∞ be

a sequence dominated by T , such that q̂NT ,T (ω1,ω2)
P→ q for T →∞. Then, if ϕ

is twice differentiable, it holds that

P
[√

NT T
(
q̂NT ,T (ω1,ω2)− q

) ∈ (y,y+ dy)
] T→∞−→ exp{−y�Fy/2}

(2π)K/2|F |−1/2 dy,(4.16)

where the entries of the matrix F are given by

Fij = 1

2πσ 2
ε

E

{∫ π

−π
φ(x|μi)φ(x|μj)dx

}
(4.17)

with φ(x|μj) := ∫+∞
−∞ ϕ(x, y|Aμ̃j ) dy for A∼Haar[SO(3)], j = 1, . . . ,K .

PROOF. As with the proof of Theorem 4.2, it will suffice to show that for
P2-almost all ω2, relation (4.16) holds with P1 replacing P. We start out with a
technical note, whose relevance will become clear later. Fix two indices i, j ≤K

and consider the collection {∫ π
−π φ(y|μ(n)

i )φ(y|μ(n)
j ) dy}n≥1. This comprises an

i.i.d. sequence in L1(�2,G2,P2) so that by the strong law of large numbers, the
set Bi,j defined as{

ω2 ∈�2 :
1

N

N∑
n=1

∫ π

−π
φ
(
y|μ(n)

i

)
φ
(
y|μ(n)

j

)
dy

N→∞−→ E

∫ π

−π
φ
(
y|μ(n)

i

)
φ
(
y|μ(n)

j

)
dy

}
has P2-probability 1. Hence, P[⋂i,j Bi,j ] = 1. For the rest of the proof, we fix
an arbitrary ω2 ∈⋂

i,j Bi,j which will not be explicitly written out. Theorem 4.2,
allows the following Taylor expansion of the gradient of the log-likelihood around
the maximum likelihood estimator q̂T for large T :

∇�(q̂NT ,T )=∇�(q)+ [∇2�(q)](q̂NT ,T − q)+OP(‖q̂NT ,T − q‖2),

so that
1√
NT T

∇�(q)+ 1

NT T
[∇2�(q)]√NT T (q̂NT ,T − q)

+ 1√
NT T

OP(‖q̂NT ,T − q‖2)= 0.
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In order to proceed, we calculate ∇� and ∇2� as follows:

∂

∂qi
�(q)=− 1

σ 2
ε

N∑
n=1

T∑
t=1

φ
(
xt |μ(n)

i

)(
In(xt )−

K∑
k=1

qkφ
(
xt |μ(n)

k

))
,

∂2

∂qi ∂qj
�(q)= 1

σ 2
ε

N∑
n=1

T∑
t=1

φ
(
xt |μ(n)

i

)
φ
(
xt |μ(n)

j

)
.

Now, it can be seen that ∇2� does not depend on ω1 ∈�1. Fix two indices i, j ≤K

and observe that by the triangle inequality,∣∣∣∣∣ 1

NT

N∑
n=1

T∑
t=1

φ
(
xt |μ(n)

i

)
φ
(
xt |μ(n)

j

)− 1

2π
E

∫ π

−π
φ(y|μi)φ(y|μj)dy

∣∣∣∣∣
≤ 1

N

N∑
n=1

∣∣∣∣∣ 1

T

T∑
t=1

φ
(
xt |μ(n)

i

)
φ
(
xt |μ(n)

j

)− 1

2π

∫ π

−π
φ
(
y|μ(n)

i

)
φ
(
y|μ(n)

j

)
dy

∣∣∣∣∣︸ ︷︷ ︸
α(n,T )

+
∣∣∣∣∣ 1

2π

1

N

N∑
n=1

∫ π

−π
φ
(
y|μ(n)

i

)
φ
(
y|μ(n)

j

)
dy − 1

2π
E

∫ π

−π
φ(y|μi)φ(y|μj)dy

∣∣∣∣∣︸ ︷︷ ︸
β(N)

.

Choose any ε > 0. An argument involving Dini’s theorem, such as the one in the
proof of Theorem 4.2, shows that the first term on the right-hand side converges to
zero uniformly in μ

(n)
i and μ

(n)
j . Hence, convergence to zero is uniform over n, too.

As a result, we can choose a T0 such that α(n,T ) < ε/2 for any T ≥ T0 and for all
n ∈N. Since ω2 ∈ B , we can also choose an N0 such that for any N ≥N0 it holds
that β(N) < ε/2. Consequently, for any ε > 0 we can choose an M = T0 ∧ N0
such that ∣∣∣∣ 1

NT
(∇2�)ij − 1

2πσ 2
ε

E

∫ π

−π
φ(y|μi)φ(y|μj)dy

∣∣∣∣< ε

for T ,N ≥M . Thus, we have established that, P almost surely

1

NT
{(∇2�)ij } T ,N→∞−→

{
1

2πσ 2
ε

E

∫ π

−π
φ(x|μi)φ(x|μj)dx

}
= {−Fij }(4.18)

with F being the Fisher information matrix. This remains true when replacing N

by an increasing sequence NT , and take the limit as T ↑∞. We now turn to show
that the gradient of the log-likelihood satisfies a central limit theorem. Let NT ↑
∞ be as in the statement of the theorem. Define a triangular array of random
K-vectors {YT,n} with 1≤ n≤NT ≤ T

YT,n := 1√
TNT

1

2πσ 2
ε

T∑
t=1

δ(xt,T , n) #φ(xt,T , n),(4.19)
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where {xt,T } is a regular lattice of T points on [−π,π ], and the vectors #φ and
scalars δ are defined, respectively, as

#φ(xt,T , n) :=
⎛⎜⎝φ

(
xt,T |μ(n)

1

)
...

φ
(
xt,T |μ(n)

K

)
⎞⎟⎠ ,

δ(xt,T , n) := (In(xt,T )−∑K
k=1 qkφ(xt,T |μ(n)

k ))

2πσ 2
ε

.

We note that E1Y = 0 throughout the array. Furthermore, by independence,

Cov1[YT,n] = E1[YT,nY�T ,n]
(4.20)

= 1

TNT

1

2πσ 2
ε

T∑
t=1

#φ(xt,T , n) #φ(xt,T , n)� <∞.

Since we have fixed ω2 ∈⋂
i,j Bi,j , taking the limit as T ↑∞ yields

NT∑
n=1

E1[YT,nY�T ,n] T→∞−→ 1

2πσ 2
ε

∫ π

−π
E2[ #φ(y) #φ(y)�]dy,(4.21)

where the integral is understood element-wise. We now show that our triangular
array satisfies a Lindeberg condition. We have

NT∑
n=1

E1[‖YT,n‖2; ‖YT,n‖> ε]

≤
NT∑
n=1

E1

[∥∥∥∥∥ 1√
TNT

T∑
t=1

δ(xt,T , n)c#1
∥∥∥∥∥

2

;
∥∥∥∥∥ 1√

TNT

T∑
t=1

δ(xt,T , n)c#1
∥∥∥∥∥> ε

]
,

where #1 ∈ R
K is a vector of 1’s and c > 0 is an upper bound for all the elements

of #φ. These are differentiable and compactly supported functions of x ∈ [−π,π ]
for every n. The δ’s are i.i.d. Gaussian random variables over n and T , so, by

defining i.i.d. random variables Xn
d= X ∼ N (0, σ 2

ε c), the last line may be re-
written as

1

NT

NT∑
n=1

E1

[
‖Xn

#1‖2;
∥∥∥∥ 1√

NT

Xn
#1
∥∥∥∥> ε

]
=

∫
�1

KX21{√K|X|>ε
√
NT } dP1,

the last term converging to 0 by virtue of the dominated convergence theorem
and X having finite variance. It follows from the multidimensional Lindeberg–
Feller theorem (see, e.g., Proposition 2.27 on page 20 of [52]) that

1√
TNT

∇�=
NT∑
n=1

YT,n
T→∞�⇒ N

(
0,

1

2πσ 2
ε

∫ π

−π
E2[ #φ(y) #φ(y)�]dy

)
.(4.22)
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Returning to the Taylor expansion, as T →∞ the (NT T )
−1/2-scaled error van-

ishes in probability (by assumption) and Slutsky’s lemma yields√
TNT (q̂NT ,T − q)

T→∞�⇒ NK(0, σ 2
ε F

−1), P2-a.s.(4.23)

This completes the proof. �

THEOREM 4.5 (Gram component CLT). Let ρ be as in (4.4) and let Ĝ(T ,N)

denote the estimator of the Gram component of [ρ], Gram([ρ]), based on N in-
dependent profiles {In(xt )}Tt=1, n= 1, . . . ,N . Then, there exists τN ↑∞ such that
the normalized difference Ĝ(τN,N)−Gram([ρ]) is asymptotically distributed ac-
cording to the matrix Gaussian distribution

√
N

(
Ĝ(τN,N)−Gram([ρ])) N→∞�⇒ NK×K(0,�),(4.24)

where the covariance matrix � is given by

� = (V � ⊗ V �)Cov[vec{�}](V ⊗ V ).(4.25)

Here, ⊗ stands for the Kronecker product, vec is the column stacking operator,
V is any 3 × K matrix satisfying V �V = Gram([ρ]) and � is a 3 × 3 random
matrix with the following second-order properties:

var(�ii)= 1
9 , var(�ij )= 1

15 for i 	= j,
(4.26)

cov(�ii,�jj )=− 1
18 for i 	= j

and with uncorrelated off-diagonal elements.

We give here the definition of the matrix Gaussian distribution (also see Chap-
ter 2 of Nagar and Gupta [37]).

DEFINITION 4.1. Let M be an p× n real matrix, and let � and � be positive
definite p× p and n× n matrices, respectively. A real random matrix X is said to
have the matrix Gaussian distribution Np×n(M,� ⊗�) if

vec(X�)∼Npn

(
vec(M�),� ⊗�

)
.

PROOF OF THEOREM 4.5. Let FN,T denote the distribution of
√
NĜ(T ,N)

and H denote the distribution NK×K(Gram([ρ]),�), that is, the “shifted” stipu-
lated limiting distribution with expectation Gram([ρ]) instead of zero. If G̃(N) is
as in the proof of Theorem 4.3, we denote by QN the distribution of

√
NG̃(N).

It will suffice to show that, for some τN ↑ ∞, dPr(FτN ,N ,H)
n→∞−→ 0, where dPr

denotes the Prokhorov metric, metrizing weak convergence (e.g., Billingsley [4]).
Applying the triangle inequality,

dPr(FτN ,N ,H)≤ dPr(FτN ,N ,QN)+ dPr(QN,H).(4.27)
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Now let dP (X,Y ) = inf{δ > 0 : P[d(X,Y ) > δ] < δ} be the standard metric that
metrizes convergence in probability, for d the metric on the range of the random
variables. Now dPr(�1,�2) is the infimum of dP (X,Y ) over all pairs (X,Y ) of
random variables with (�1,�2) the respective distributions, provided that d in-
duces a separable space (Dudley [13]). It follows that dPr(FτN ,N ,QN) will con-
verge to zero if we can show that

√
NA(τN,N)=√NE‖Ĝ(τN,N)− G̃(N)‖pF N→∞−→ 0.(4.28)

For this to hold, it must be that A(τN,N) is o(N−(1+α)/2) for some α > 0. Since
limT→∞A(T ,N)= 0 for all N ∈N, we can always choose such a τN .

We have established that the first term in the right-hand side of (4.27) con-
verges to zero. For the second term, we use the classical central limit theorem.
The sequence {2Sn} is i.i.d. with mean Gram([ρ]) and covariance � (see (4.19)
in Panaretos [42], with n = 2). Therefore, by the multidimensional central limit

theorem, one has 2N−1/2 ∑N
n=1 Sn

N→∞�⇒ H . �

In Theorems 4.3 and 4.5, the order of magnitude of T is made dependent on
that of N . We discuss this briefly, starting from the setup in Theorem 4.3. When
performing the deconvolution, we ask that the mixing proportions are the same for
all profiles. As a result, the dimension of the unknown parameter grows with N ,
so that we should make T depend on N . If the deconvolutions are performed in-
dependently for each profile,

arg min
({q(n)k }Kk=1,{μ(n)

k }Kk=1)

2π

T

T∑
t=1

∥∥∥∥∥In(xt )−
K∑
k=1

q
(n)
k φ

(
xt |μ(n)

k

)∥∥∥∥∥
2

,

(4.29)
n= 1,2, . . . ,N,

then exchangeability implies a “stronger” consistency result

∀ε > 0 ∃T0,N0 : E‖Ĝ(T ,N)−Gram([ρ])‖pF < ε
(4.30)

∀N ≥N0 and T ≥ T0.

A compromise between the two extreme approaches of overall and separate sums
of squares is to assign profiles into groups of size less than a fixed number, not
depending on N . In the case of overall optimization, more projection data may re-
quire better resolution T . In biological practice, of course, the instruments will give
a certain—hopefully high—resolution. This depends on the current state of tech-
nology and can be thought of as being inflexible. On the other hand, the number of
projections can become arbitrarily large, the only constraint being computing time
(Glaeser [18]).

Theorem 4.5 says that for T converging to infinity sufficiently fast as compared
to N , we are in a consistent regime, and a classical central limit theorem applies
for the estimated shape. A slow growth of T , however, may provide asymptoti-
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cally biased estimators. If deconvolution is carried out separately for each profile,
a standard

√
n-type central limit theorem for the maximum likelihood estimates

of the projected location parameters applies for the MLE deconvolution within a
single profile. A delta method argument subsequently implies that picking τN of
the order of Nκ for any κ > 1 is sufficient in order to guarantee weak convergence
to the stipulated limit.

4.2. Exact deconvolution and a theorem of Carathéodory. Our analysis has
underlined the difficulties posed by the unobservability of the radial mixture ex-
pansion parameters. Intuitively, there is no transform! It is natural to ask whether
there are special cases where these expansions need not be estimated, but are avail-
able as a determinate aspect of the data at hand.

Recall that the (deterministic) problem of deconvolution is the solution of a
Fredholm integral equation of the first kind of the form

∫+π
−π g(t − y)h(y) dy =

f (t), for g, when h and f are known. The singular value decomposition of the
operator φ �→ g ∗ φ (e.g., Kanwal [30]) may be used to solve such an equation
when the functions involved are square integrable. In the present case, however,
the function g(x)=∑K

k=1 αkδ(x −μk) is a weighted Dirac comb, which is not an
element of L2.

Let f (x) be a profile. In the absence of noise, our deconvolution problem is
described as f (x) = φ(x) ∗∑K

k=1 αkδ(x − μk), where f and φ are known, and
we wish to recover {μk}Kk=1 and {αk}Kk=1. In practice, we observe a discretely sam-

pled profile {ft }T/2−1
t=−T/2, ft = f (2πt

T
) for T even (say). Therefore, if we apply the

inverse discrete Fourier transform we obtain d−1
f (κ)/φ̂(κ)≈∑K

k=1 αke
iμkκ for T

large, assuming that φ̂(κ) does not vanish for κ ∈ {2πt/T }T/2
t=−T/2. This translates

our deconvolution problem into one of frequency identification, allowing us to in-
voke the following theorem.

THEOREM 4.6 (Carathéodory [7]). Let {ck}n−1
k=0 be complex constants, at least

one of which is nonzero (n > 1). Then, there exist an integer m, 1 ≤ m ≤ n, real
numbers βj > 0 and distinct frequencies ωj ∈ (−π,π ] (j = 1, . . . ,m) such that
the ck can be uniquely represented as

ck =
m∑

j=1

βje
iωj k, k = 0, . . . , n− 1.(4.31)

Setting w(κ) = d−1
f (κ)/φ̂(κ), we have that w(−κ) = w(κ), and so we are

in the setting w(κ) = ∑K
k=1 αke

iμkκ and want to recover the αk’s and μk’s.
Carathéodory’s theorem assures us that, for T large and for appropriate densi-
ties φ, there exists a unique solution to our deconvolution problem with probability
1 (owing to our Haar measure assumption). Pisarenko [45] hinged on a construc-
tive proof of Carathéodory’s result due to Grenander and Szegö [21] to determine
the hidden frequencies {ωj }:
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1. Build the matrix C = {ci−j }ni,j=1.
2. Find the eigenvector v = (v0, . . . , vm) corresponding to the smallest eigenvalue

(assuming no multiplicity) of the Toeplitz matrix Cm, the top-left submatrix of
C of dimension m×m.

3. Find the K distinct unit roots {eiωj }mj=1 of
∑m

n=0 vnz
n = 0.

As with any deconvolution problem, this method will be sensitive to the presence
of noise. Li and Speed [35], in studying electrophoresis experiments, report that
the method is fairly robust to the presence of noise and can be used to provide
starting values for a maximum likelihood procedure. Such an approach is unlikely
to be succesful in our setting, as, for certain profiles, two (at least) spikes may
fall within a critical distance ε of each other, rendering the method very sensitive
to noise unless T is overwhelmingly large. The dependence of deconvolution on
the relationship between T and K is connected with the Rayleigh limit and the
problem of superresolution (see Donoho et al. [11]). Indeed, we have a nearly
black object to recover; the �0-norm of the unknown signal (spike train) is much
smaller than T .

The most important aspect in our case, though, is that the information across
different profiles can be used to gain insights about the location of the spikes within
each particular profile, so that spikes that lie close to one another could potentially
be identified. In the noiseless case, Carathéodory’s theorem guarantees that we
will still recover an expansion, namely that which combines the almost coincident
spikes into a single spike.

An extension of the method of Pisarenko to higher dimensions is not straight-
forward. The one-dimensional result can employed, however, in a coordinate-wise
fashion (on the one-dimensional marginals of every projection).

5. Two examples. The dimension of the search space and the form of the
objective function (4.6) render the practical solution of the optimization problem
challenging in its own right. We will not pursue it here, as it is the subject of a
separate investigation. However, in order to illustrate both the problem and the
application of the hybrid estimator, we consider two mixture data sets, that are
purposely chosen to be sparse and noise free, so that Pisarenko’s method may be
applied.

5.1. A two-dimensional Gaussian mixture. Assume that we observe a finite
sample of N = 150 profiles from the stochastic Radon transform of the function

ρ(u)=
5∑

j=1

j

2πσ 2 exp
{
− 1

2σ 2 (u−μj)
�(u−μj)

}
,

(5.1)
u= (ux, uy) ∈R

2,

with σ = 0.3 and μ1 = (0.6,0)�, μ2 = (0.6,0.8)�, μ3 = (−0.1,0.1)�, μ4 =
(−1,−0.3)�, μ5 = (−0.2,−0.6)�. The choice of location parameters and stan-
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(a) (b)

FIG. 4. (a) Contour plot of the density ρ superimposed on its intensity plot, with dots indicating
the locations of the means. (b) Superimposition of the contour plots of the true (red) and estimated
(blue) densities.

dard deviation was made so as to ensure a certain sparsity. Figure 4(a) gives a
contour and intensity plot of the mixture density.

The 150 profiles are digitized on a grid of T = 256 regular lattice points. A sam-
ple of six profiles from this stochastic Radon transform is presented in Figure 5.
The projection angles are uknown.

FIG. 5. Six sample profiles from the 150 profiles of the realisation of the stochastic Radon transform
of the density given in (5.1).
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(a) (b)

FIG. 6. Superimposed bootstrap replicates as a means of assessment of uncertainty. Panels (a) and
(b) contain the superimposition of 15 and 100 replications, respectively.

The deconvolution was performed separately for each profile, using only Pis-
arenko’s method, which yielded extremely accurate results, and then the hybrid
estimator was constructed. Figure 4(b) contains the contours of the estimated den-
sity superimposed on those of the true density.

A challenging problem is uncertainty estimation and presentation. Motivated
by Brillinger et al. [6] and Brillinger, Downing and Glaeser [5], who exploited
symmetries to assess variability, we employ a bootstrap approach. We resample the
150 profiles and construct bootstrap replicates of the estimated density. We then
superimpose the contour plots (see Figure 6). The rule of thumb is that the more
tangled the contours appear the more uncertainty is associated with that particular
region. The important aspect of these figures is that the overall shape is seen to be
preserved and not to be highly variable.

5.2. A three-dimensional Gaussian mixture. Next, we consider a sparse
Gaussian mixture in three dimensions. We observe N = 150 profiles from the
stochastic Radon transform of the Gaussian mixture

ρ(u)=
4∑

k=1

qk

σ 3(
√

2π)3
exp

{
−(u−μk)

�(u−μk)

2σ 2

}
,

(5.2)
u= (ux, uy, uz) ∈R

3,

with σ = 0.46, q1 = 2, q2 = 3, q3 = 2.4, q4 = 4 and {μj } given as μ1 =
(0,0.8,−0.3)�, μ2 = (0.7,−0.4,−0.3)�, μ3 = (−0.7,−0.4,−0.3)�, μ4 =
(0,0,0.8)�. Visualization of this synthetic particle is challenging since we must
visualize level surfaces rather than contours, via an isosurface plot [Figure 8(a)].
Again, we notice that the mixture is sparse in the sense previously described.
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FIG. 7. Intensity plots for a sample of four profiles from the stochastic Radon transform of ρ. These
images would correspond to the data yielded by the electron microscope.

A sample of four profiles from the realization of the stochastic Radon transform is
depicted in Figure 7. The corresponding Euler projection angles are unknown.

Deconvolution was carried out separately for each image, and the mixing co-
efficients were estimated as before. In particular, we used a naive deconvolution
approach, applying Pisarenko’s method to the one-dimensional marginals of each
projection (which worked well here due to sparsity). A visual comparison of the
estimated and the true density is given in Figure 8, where isosurface plots are given
for both densities.

6. Concluding remarks. We formulated and investigated a problem of statis-
tical tomography where the projection angles are random and unobservable. The
problem was seen to be ill-posed since unobservability of the projection angles
limits us to consider inference modulo an appropriate orthogonal group. For es-
sentially bounded and compactly supported densities, these invariants were seen
to be identifiable and the problem of their recovery was phrased as an estimation
problem. The abstraction involved in modular inference may render the pursuit of

(a)

(b)

FIG. 8. (a) Isosurface plots from three different perspective for the density ρ. (b) Isosurface plots
from the same three perspecitves of the estimated density.
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a solution in the most general case overly ambitious. Indeed it is initially not at
all clear how an estimator can be constructed. Nevertheless, it was seen that once
the problem is “over-regularized,” so as to become an essentially parametric prob-
lem, one may develop an appropriate framework for modular inference, and obtain
consistent estimators. In particular, assuming that the unknown function admits
a radial mixture representation (or, more generally, a radial basis function repre-
sentation), consistent estimation may be performed hinging on ideas from D. G.
Kendall’s Euclidean shape theory, without making any attempt to estimate the un-
known projection angles. In this setup, a hybrid estimator was constructed whose
determination requires a deconvolution step and an inversion step, the former being
the more challenging one.

Tomography with unknown projection angles arises in singe particle electron
microscopy, and biophysicists typically proceed by estimating the unknown an-
gles by means of a prior model (called a low resolution model). This low reso-
lution model initializes an iterative procedure that estimates the angles, updates
the estimate of the particle and cycles until convergence. Low resolution models
often originate from an ad hoc “naked eye examination” of the projections by the
experienced scientist, who uses his visual intuition to circumvent the lack of an-
gular information. In fact, many such models comprise an ensemble of solid balls
in space, and can be quite successful as starting models, provided that the parti-
cle has enough symmetries to enable this ad hoc “naked eye” model construction.
The results in this paper suggest that, potentially, it could be practically feasible
to construct an “objective” prior model based solely on the data at hand, neither
requiring symmetries, nor attempting to estimate the unknown angles. From one
point of view, the approach described can be thought of as a mathematical for-
malization of the biophysicist’s visual intuition. Indeed, the radial expansion setup
investigated can provide a fruitful framework for the construction of initial models
(R. M. Glaeser, personal communication) and its application to the single-particle
setup is the subject of ongoing work. On a more theoretical level, the identifiabil-
ity results presented establish the feasibility of reconstruction from single particle
data (up to a coordinate system).

Finally, we add a few comments on the estimation framework. Throughout the
paper, the number of mixing components K of the unknown density has been
assumed to be known—for example, the scientist will have some insight in its
choice. Nevertheless, K could also be treated as an unknown parameter to be esti-
mated, this being a standard problem in mixture estimation (see James, Priebe and
Marchette [24], and references therein). In fact, more unknown parameters can
be introduced, as long as the mixture remains identifiable. Investigation of how
an EM approach could be adapted for this simultaneous deconvolution problem
would be of interest in this case. Another assumption that was made was regard-
ing the isotropy of the Eulerian projection angles. In the anisotropic case, one
can hardly proceed at all when the projection angles are unobservable; any re-
weighting scheme would be ill-defined. The determination of an algorithm that
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would perform the simultaneous deconvolution step in a real setting is a problem
that is of interest in its own right. Connections with discrete sparse inverse prob-
lems, such as those studied in Donoho et al. [11], are especially relevant here.
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