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ASYMPTOTIC NORMALITY OF THE QUASI-MAXIMUM
LIKELIHOOD ESTIMATOR FOR MULTIDIMENSIONAL

CAUSAL PROCESSES

BY JEAN-MARC BARDET AND OLIVIER WINTENBERGER

University Paris 1

Strong consistency and asymptotic normality of the quasi-maximum
likelihood estimator are given for a general class of multidimensional causal
processes. For particular cases already studied in the literature [for instance
univariate or multivariate ARCH(∞) processes], the assumptions required
for establishing these results are often weaker than existing conditions.
The QMLE asymptotic behavior is also given for numerous new examples
of univariate or multivariate processes (for instance TARCH or NLARCH
processes).

1. Introduction. Since the seminal paper of Engle [11], autoregressive con-
ditional heteroscedasticity (ARCH) models have been favored by econometricians
for modeling financial series in discrete time. There are several reasons to explain
the success of these models. One of them is certainly that they may be applied
to series of data with fat tails. For statistical inference in conditionally Gaussian
ARCH models, maximum likelihood estimators (MLE) are rather simple to calcu-
late and have nice asymptotic properties. But it is well known that the normality of
the innovations is rejected in most applications dealing with fat tail data. However,
Gaussian MLE remain the most simple estimators and may keep their nice as-
ymptotic properties even in nonconditionally Gaussian cases. Estimators are then
called (Gaussian) quasi-MLE, QMLE for short.

We give in this paper, for the first time, asymptotic properties, namely strong
consistency and asymptotic normality (respectively, SC and AN for short), of the
QMLE for many multivariate models. To establish results in a unified way, we
consider almost everywhere (a.e.) solutions X = (Xt , t ∈ Z) of equations of the
type

Xt = Mθ0(Xt−1,Xt−2, . . .) · ξt + fθ0(Xt−1,Xt−2, . . .) ∀t ∈ Z.(1.1)

Here, θ0 ∈ � ⊂ R
d is the parameter of interest, Mθ0(Xt−1,Xt−2, . . .) is a (m×p)-

random matrix having a.e. full rank m, fθ0(Xt−1,Xt−2, . . .) is a R
m-random vec-

tor, the R
p-random vectors ξt = (ξ

(k)
t )1≤k≤p are independent and identically dis-

tributed satisfying standard assumptions E[ξ (k)
0 ξ

(k′)
0 ] = 0 for k �= k′ and E[ξ (k)

0
2] =
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Var(ξ (k)
0 ) = 1. Many models admit such multidimensional autoregressive represen-

tation. ARCH, GARCH, VAR, multivariate AR–GARCH and TARCH all corre-
spond to (1.1) associated with specific functions θ 	→ fθ and θ 	→ Mθ .

Only for defining properly the QMLE, we assume, in this paragraph, that the se-
quence (ξt )t∈Z is normally distributed. The conditional likelihood of X expresses
as, up to an additional constant,

Ln(θ) := −1

2

n∑
t=1

qt (θ) for all θ ∈ �

(1.2)
with qt (θ) := [(Xt − f t

θ )′(H t
θ )

−1(Xt − f t
θ ) + log(det(H t

θ ))]
and f t

θ = fθ (Xt−1,Xt−2, . . .), Mt
θ = Mθ(Xt−1,Xt−2, . . .) and Ht

θ := Mt
θM

t
θ
′
. The

quasi-likelihood L̂n is obtained by plugging in Ln the approximations f̂ t
θ :=

fθ (Xt−1, . . . ,X1, u), M̂t
θ := Mθ(Xt−1, . . . ,X1, u) and Ĥ t

θ := M̂t
θ · (M̂t

θ )
′, where

u = (un)n∈N is a finitely nonzero sequence1 (un)n∈N,

L̂n(θ) := −1

2

n∑
t=1

q̂t (θ)

(1.3)
with q̂t (θ) := [(Xt − f̂ t

θ )′(Ĥ t
θ )

−1(Xt − f̂ t
θ ) + log(det(Ĥ t

θ ))].
The QMLE θ̂n is the maximizer of the quasi-likelihood L̂n; that is,

θ̂n := Arg max
θ∈�

L̂n(θ).(1.4)

Remark that unobserved values (Xt , t ≤ 0) have to be fixed a priori equal to
(un)n∈N in the quasi-likelihood L̂n. In Section 3.1, we give sufficient conditions
on the parameters set � in order to ensure that the choice of (un)n∈N does not
have any consequences on the asymptotic behavior of L̂n. Even if (un)n∈N may
have some consequences in practical applications (see [14]), it plays no role in the
asymptotic results of this paper, and we set un = 0 ∀n ∈ N for convenience.

From now on, we omit any Gaussian assumption on the distribution of ξt . Un-
der some Lipschitz-type assumptions on M and f , we define parameters sets
�(r) ⊂ � if E(‖ξt‖r ) < ∞ for r = 2 and r = 4. Thanks to a result of Doukhan
and Wintenberger [9], we derive the existence of a solution X of the very gen-
eral model (1.1) as θ0 ∈ �(r) (see Section 2). This solution X admits necessarily
finite moments of corresponding orders [i.e., E(‖Xt‖r ) < ∞]. Using these mo-
ments properties, we prove SC and AN of QMLE if, respectively, θ0 ∈ �(2) and

θ0 ∈ ◦
� ∩ �(4), where

◦
� denotes the interior of � and other assumptions (see

Section 3 for more details). Then, SC and AN of QMLE are only given here if X

has finite moments of order 2 and 4, which is less sharp than classical results

1This means that un �= 0 only for finitely many n ∈ N.
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on univariate GARCH, ARMA–GARCH and univariate conditional heteroscedas-
tic models (see Berkes, Horváth and Kokoszka [1], Francq and Zakoïan [14] and
Straumann and Mikosch [25], resp.). But, compared with other existing results
for multivariate models (see Jeantheau [17] and Boussama [4] for SC, Comte and
Liberman [5] and Ling and McAleer [20] for AN), our assumptions are sharper and
much simpler. Moreover, even for univariate models such that ARCH(∞) model,
our results are competitive with those of Robinson and Zaffaroni [24].

Thus, in the sequel, we focus our presentation in models satisfying (1.1), except
univariate conditional heteroscedastic models defined as in [25]. In this frame-
work, most of existing results recalled in the previous paragraph are given under
a condition of existence and finite moments on the process X without specifying
assumptions on � and ξ that are related to this condition. The links between the
conditions first on X and second on � and ξ are intricate in this framework and the
classical approach of stochastic recurrence equation, introduced by Bougerol [3]
and applied in Straumann and Mikosch [25] does not work. Moreover, another
classical method using Markov chain representations and contraction assumptions,
as in Duflo [10], does not work, too (see Boussama [4], page 131). For such mod-
els, the approach of Doukhan and Wintenberger [9] that we use here provides a
nice and simple alternative.

We express, in Section 4, our conditions for classical models. For univariate
ARCH(∞) processes, our conditions are different than those in Robinson and
Zaffaroni [24] concerning SC and AN but may be more interesting in specific
cases. For SC in multivariate GARCH models, we obtain similar conditions as in
Jeantheau [17] and Boussama [4]. For AN multivariate ARCH(∞) and ARMA–
GARCH models, our conditions are sharper than those in Comte and Lieber-
man [5] and Ling and McAleer [20], who derived the asymptotic normality for
more specific models under moments of order 4, 6 or 8 on X. Reducing the order
of finite moments of the processes X to 4 is consistent with financial data that usu-
ally exhibit fat tailed marginals. We also provide, for the first time, the SC and AN
of the QMLE in TARCH, GLARCH and some multidimensional SV (stochastic
volatility) models.

But, to begin with, Section 2 presents assumptions on the model (1.1).

2. Notation and assumptions. Some standard notation is used:

• The symbol 0 denotes any null vector of any vector space;
• For u ∈ R

p , u = (u(i))1≤i≤p , and for A a m × p-matrix, A = (Aij )ij ;
• For u ∈ R

p , Diag(u) is the diagonal p × p matrix with (Diag(u))ij = δijui ;
• If V is a vector space then V ∞ = {(xn)n∈N ∈ V N,∃N ∈ N, xk = 0 for all

k > N};
• The symbol ‖ · ‖ denotes the usual Euclidean norm of a vector or a matrix (for A

a m × p-matrix, ‖A‖ = sup‖Y‖≤1{‖AY‖, Y ∈ R
p});

• For the measurable vector- or matrix-valued function g defined on some set U ,
‖g‖U = supθ∈U ‖g(θ)‖;
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• From now on, � denotes a subset of R
d , and if V is a Banach space, then

C(�,V ) denotes the Banach space of V -valued continuous functions on �

equipped with the uniform norm ‖ · ‖� and L
r (C(�,V )) (r ≥ 1) denotes the

Banach space of random a.e. continuous functions f such that E[‖f ‖r
�] < ∞;

• For θ ∈ �, if �θ : (Rm)∞ → V is a Borelian function on V a finite-dimensional
vector space, then ∂k

θ �θ(x) denotes, respectively, for k = 0,1,2, when there

exists �θ(x), ∂�θ (x)
∂θ

and ∂2�θ(x)

∂θ2 [x ∈ (Rm)];
• If h : Rm → V is a Borelian function on a vector space V equipped with the

norm ‖ · ‖, then h is a Liph-Lipschitzian function if

Liph := sup
x,y∈Rm,x �=y

‖h(x) − h(y)‖
‖x − y‖ < ∞.

2.1. Solutions of (1.1). In Proposition 1 below, we prove the existence of a
stationary solution of order r to the general model (1.1) under some restrictions
on the parameter θ0. To settle these assumptions in a short way, let us introduce
the generic symbol � for any of the functions f , M or H and, for k = 0,1,2 and
some compact subset � of R

d , define

(Ak(�,�)) The function ∂k
θ �θ satisfies ‖∂k

θ �θ(0)‖� < ∞, and there exists a

sequence (α
(k)
j (�,�))j of nonnegative numbers such that ∀x, y ∈ (Rm)∞

‖∂k
θ �θ(x) − ∂k

θ �θ(y)‖� ≤
∞∑

j=1

α
(k)
j (�,�)‖xj − yj‖

with
∞∑

j=1

α
(k)
j (�,�) < ∞,

if � = H , x, y, xj , yj are, respectively, replaced by xx′, yy′, xjx
′
j and yjy

′
j .

These Lipschitz-type inequalities on f and M are essential for establishing
Proposition 1 and SC and AN of QMLE. Let us now provide some examples of
models satisfying (1.1) and assumptions (A0(�,�)).

EXAMPLE 1. (i) In [9] multidimensional GLARCH(∞) [generalized linear
ARCH(∞)] models were defined, such that

Xt = Diag

(
B0(θ0) +

∞∑
k=1

Bk(θ0,Xt−k)

)
ξt ,(2.1)

where, for j ∈ N, Bj(θ, ·) : Rm → R
m × R

p are Lipschitzian functions. Then,

(A0(M,�)) is satisfied with α
(0)
j (M,�) = supθ∈� Lipx(Bj (θ, x)) when

∞∑
j=1

sup
θ∈�

Lipx(Bj (θ, x)) < ∞.(2.2)
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(ii) Nonlinear ARCH(∞) [NLARCH(∞)] models refer to (1.1) satisfying

fθ ≡ 0 and Hθ := MθM
′
θ is a function of xx′ = (xjx

′
j )j≥0.(2.3)

For NLARCH(∞) models, it is clear that assumption (A0(H,�)) will be more
straightforward than (A0(M,�)). In particular, when Hθ is a Lipschitzian function
of xx′, then (A0(H, {θ})) holds. The multivariate ARCH(∞) models are specific
cases of NLARCH(∞) models defined by

Xt =
(
B0(θ0) +

∞∑
j=1

Bj(θ0)Xt−jX
′
t−jB

′
j (θ0)

)1/2

ξt ,(2.4)

where m = p and A1/2 denotes the symmetric matrix such that (A1/2)2 = A for
some symmetric positive matrix A. Here, B0(θ) is assumed to be a symmetric
matrix. Multivariate ARCH(∞) processes are processes with stochastic volatility
that generalize multivariate GARCH(p, q) processes (see, e.g., [17] or [5]). Here,
(A0(H,�)) is satisfied with α

(0)
j (H,�) = ‖Bj(θ)‖2

� when

∞∑
j=1

‖Bj(θ)‖2
� < ∞.(2.5)

(iii) Third main examples are multidimensional extensions of complete models
with stochastic volatility introduced in [18] as approximations of complete models
with continuous time. The increments of the log of the price processes are, here,
solutions of the recursive equation

Xt = σ(St−1)ξt + μ(St−1),(2.6)

where σ and μ are, respectively, m × p-matrices and R
p-vector valued Lipschitz

functions defined on R
p and the so-called offset functions St satisfy the equation

St = (
Ip − B(θ0)

) ∞∑
i=1

B(θ0)
i−1(Xt + · · · + Xt−i+1).

Here, B(θ) is a p × p matrix, and then (A0(f,�)) and (A0(M,�)) are satisfied as
soon as ‖B(θ)‖ < 1.

For ensuring a stationary r-order solution of (1.1), for r ≥ 1, define the set

�(r) :=
{
θ ∈ R

d, (A0(f, {θ})) and (A0(M, {θ})) hold,

∞∑
j=1

α
(0)
j (f, {θ}) + (E‖ξ0‖r )1/r

∞∑
j=1

α
(0)
j (M, {θ}) < 1

}
.

It is clear that θ ∈ �(r) only if E‖ξ0‖r < ∞. Then, using results of Doukhan and
Wintenberger [9], one obtains (all the proofs are given in Section 5) the following.
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PROPOSITION 1. If θ0 ∈ �(r) for some r ≥ 1, then there exists a unique
causal [Xt is independent of (ξi)i>t for t ∈ Z] solution X to (1.1), which is sta-
tionary, ergodic and satisfies E‖X0‖r < ∞.

This result generalizes the one proved by Giraitis, Kokoszka and Leipus [15]
for univariate ARCH(∞) models. It automatically yields weak dependence prop-
erties (see [9] for details). However, for specific processes, conditions on M can
be advantageously replaced by conditions on H and the following.

COROLLARY 1. For univariate NLARCH(∞) models satisfying (2.3) with
m = p = 1 and f ≡ 0, the result of Proposition 1 holds, if θ0 ∈ �̃(r) for r ≥ 2,
where

�̃(r) :=
{
θ ∈ R

d, (A0(H, {θ})) holds, (E‖ξ0‖r )

( ∞∑
j=1

α
(0)
j (H, {θ})

)r/2

< 1

}
.

REMARK 1. Proposition 1 and Corollary 1 link the r-moment of innova-
tions (ξt ) to an r-moment of X0. However, it is known that the consistency of
QMLE can be obtained for r = 2, but requiring only that E(| log(detHt

θ0
)|) < ∞

(see [21]). Then, we cannot consider FIGARCH models here, as they never have fi-
nite variance (see [24], page 1061). However, as far as we know, all existing proofs
of consistency of QMLE in a multidimensional context imply a finite moment of
order 2 for X (see [4, 5, 17] and [20]). This is due to the difficulty of proving the
existence of a solution and its moments properties.

REMARK 2. The main example of process satisfying Corollary 1 is univariate
ARCH(∞) models, the univariate version of (2.4), defined by Robinson [23] as
the solution of the equation

Xt = σtξt , σ 2
t = b0(θ0) +

∞∑
j=1

bj (θ0)X
2
t−j ,(2.7)

where, for all θ ∈ R
d , (bj (θ))j≥1 are sequences of nonnegative real num-

bers. Here, α
(0)
j (M,�) =

√
supθ∈� bj (θ) and α

(0)
j (H,�) = supθ∈� bj (θ). Then,

(A0(H, {θ0})) holds when
∑∞

j=1 bj (θ0) < ∞, and θ0 ∈ �̃(r) when

(E‖ξ0‖r )

( ∞∑
j=1

bj (θ0)

)r/2

< 1.(2.8)

Working with �̃(r) larger than �(r) gives weaker conditions in this context.
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2.2. Additional assumptions required for the convergence of QMLE. Fix some
compact subset � of R

d . A first usual assumption for using QMLE is the follow-
ing:

inf
θ∈�

det(Hθ(x)) ≥ H for all x ∈ (Rm)∞ and some H > 0.(D(�))

The same primitive identifiability condition as in Jeantheau [17] will be required:

∀θ ∈ � and some t ∈ Z,
(Id(�))

(f t
θ = f t

θ0
and Ht

θ = Ht
θ0

a.s.) ⇒ θ = θ0.

The following condition (Var) is needed for ensuring existence of the asymptotic
variance in AN:

(Var) One of the families (∂f t
θ0

/∂θi)1≤i≤d or (∂H t
θ0

/∂θi)1≤i≤d is a.e. linearly
independent, where

∂f t
θ

∂θ
:= ∂fθ

∂θ
(Xt−1, . . .) and

∂H t
θ

∂θ
:= ∂Hθ

∂θ
(Xt−1, . . .).

Such conditions (Id(�)) and (Var) are primitive. We give more explicit conditions
for univariate and multivariate AR(∞)–ARCH(∞) models (see Section 4 for more
details). We do not achieve explicit conditions when introducing nonlinearity in f ,
M or H .

3. Asymptotic behavior of the QMLE. The results of this section are more
general if one replaces �(r) with �̃(r) in the assumptions when dealing with
univariate NLARCH(∞) models (see Remark 2 for more details).

3.1. Asymptotic properties of the quasi-likelihood. The QMLE is based on
an approximation of f t

θ = E(Xt |Xt−1,Xt−2, . . .) and Ht
θ = E((Xt − f t

θ )(Xt −
f t

θ )′|Xt−1,Xt−2, . . .) by f̂ t
θ and Ĥ t

θ , which is defined as in the Introduction. The
following lemma estimates the error of approximations. It is a crucial step in the
proof of the QMLE consistency.

LEMMA 1. Assume that θ0 ∈ �(r) for r ≥ 2 and X is the stationary solution
of (1.1). Let � be a compact set of R

d :

1. If (A0(f,�)) holds, then ∀θ ∈ �, f t
θ ∈ L

r (C(�,R
m)) and

E[‖f̂ t
θ − f t

θ ‖r
�] ≤ E[‖X0‖r ]

(∥∥∥∥∑
j>t

αj (f )

∥∥∥∥
�

)r

for all t ∈ N
∗;(3.1)

2. If (A0(M,�)) holds, then ∀θ ∈ �, Ht
θ ∈ L

r/2(C(�,Mm)), and there exists
C > 0 not depending on t such that

E[‖Ĥ t
θ − Ht

θ‖r/2
� ] ≤ C

(∥∥∥∥∑
j>t

α
(0)
j (M,�)

∥∥∥∥
�

)r/2

for all t ∈ N
∗;(3.2)
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3. If (A0(H,�)) holds, then ∀θ ∈ �, Ht
θ ∈ L

r/2(C(�,Mm)) and

E[‖Ĥ t
θ − Ht

θ‖r/2
� ] ≤ E[‖X0‖r ]

(∥∥∥∥∑
j>t

α
(0)
j (H,�)

∥∥∥∥
�

)r/2

for all t ∈ N
∗.(3.3)

Moreover, under any of the two last conditions and with (D(�)), Ht
θ is an invertible

matrix and ‖(Ĥ t
θ )

−1‖� ≤ H−1/m.

3.2. Strong consistency. In the following theorem, we assume by convention
that, if (A0(M,�)) holds, then α

(0)
j (H,�) = 0, and, if (A0(H,�)) holds, then

α
(0)
j (M,�) = 0.

THEOREM 1. Assume that θ0 ∈ �(2)∩� and let X be the stationary solution
of (1.1). If θ0 ∈ �, a compact set of R

d such that assumptions (D(�)), (Id(�)),
(A0(f,�)) and (A0(M,�)) [or (A0(H,�))] hold with

α
(0)
j (f,�) + α

(0)
j (M,�) + α

(0)
j (H,�) = O(j−
) for some 
 > 3/2,(3.4)

then the QMLE θ̂n defined by (1.4) is SC; that is, θ̂n
a.s.−→

n→∞ θ0.

3.3. Asymptotic normality. We use the following convention: if (A1(M,�))
holds, then α

(1)
j (H,�) = 0, and, if (A1(H,�)) holds, then α

(1)
j (M,�) = 0.

THEOREM 2. Assume that θ0 ∈ �(4) ∩ ◦
�, the interior of �, and let X be the

stationary solution of (1.1). Under the assumptions of Theorem 1 and (Var), if, for
i = 1,2, (Ai(f,�)) and (Ai(M,�)) [or (Ai(H,�))] hold, with

α
(1)
j (f,�)+α

(1)
j (M,�)+α

(1)
j (H,�) = O(j−
′

) for some 
′ > 3/2,(3.5)

then the QMLE θ̂n is SC and AN; that is,
√

n(θ̂n − θ0)
D−→

n→∞Nd(0,F (θ0)
−1G(θ0)F (θ0)

−1),(3.6)

where F(θ0) and G(θ0) are defined in (5.10) and (5.14), respectively.

4. Examples. In this section, the previous asymptotic results are applied to
several examples. As assumptions (Id(�)) and (Var) are primitive, we give more
explicit sufficient conditions for ARCH(∞) models. Then, we will assume the
following:

(Id′) ξ0 is such that no quadratic form Q �= 0, satisfies Q(ξ0) = δ p.s. for some
δ ∈ R.

This condition is the same as in [16], but we use it in the more general framework
of multivariate ARCH(∞) models. In the univariate case, it is equivalent to the fact
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that the support of ξ0 is not reduced to {−1,1}. Whatever the dimensions are, if
the support of ξ0 has a nonempty interior, then (Id′) is automatically satisfied. If ξ0
admits a density, identifiability holds under weaker conditions (see [12]). Things
get easier then, as X0 admits, also, a density (see Proposition 5.1 of [9]).

4.1. Univariate ARCH(∞) processes. We use the definition and results of Re-
mark 2. For θ0 ∈ �̃(r), the existence of a stationary solution and of its r th order
moments is already settled in Giraitis, Kokoszka and Leipus [15]. Here, we formu-
late a version of Theorems 1 and 2 adapted to this context.

PROPOSITION 2. Let θ0 ∈ �̃(2), let X be the stationary solution of (2.7) and
let (Id′) hold. Assume that θ0 ∈ �, a compact set of R

d such that ∀j ∈ N, θ ∈ � 	→
bj (θ), is a nonnegative continuous injective function such that

inf
θ∈�

b0(θ) > 0 and sup
θ∈�

bj (θ) = O(j−
) for some 
 > 3/2:(4.1)

SC. Then, the QMLE θ̂n is SC.

AN. Moreover, if θ0 ∈ �̃(4) ∩ ◦
� and θ ∈ � 	→ bj (θ) is 2 times continuously dif-

ferentiable for any j ∈ N with for (k, k′) ∈ {1, . . . , d}2,

sup
θ∈�

∣∣∣∣∂bj (θ)

∂θk

∣∣∣∣ = O(j−
′
) for some 
′ > 3/2 and

(4.2) ∑
j≥1

sup
θ∈�

∣∣∣∣∂2bj (θ)

∂θk ∂θk′

∣∣∣∣ < ∞,

and, if there exists some injective function k ∈ N 	→ jk ∈ N such that(
∂bjk

(θ0)

∂θk

)
1≤k≤d

is linearly independent,(4.3)

then the QMLE θ̂n is also AN.

The proof that assumptions (Id(�)) and (Var) hold under (Id′) and (4.3) is given
in Section 5.5. A more explicit condition in Robinson and Zaffaroni [24], assump-
tion A(r), F(1) and G, page 1053, ensures that both (Id(�)) and (Var). We do not
consider this condition here, as it is more restrictive and useless in multivariate
cases.

Let us compare the results of Proposition 2 with those of Theorems 1 and 2
in Robinson and Zaffaroni [24]. Those authors obtained SC of the QMLE under
moments of order r > 2 (instead of r = 2 here) but only with EX

2ρ
t < ∞, with

ρ < 1 (instead of EX2
t < ∞ here) and a decreasing rate j−
 with 
 > 1 (instead of


 > 3/2 here) for the sequence (supθ∈� |bj (θ)|)j≥1. It implies that a more general
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space of parameters � and that FIGARCH processes can be considered in [24].
However, note that no relation such as θ0 ∈ �̃(2) [or �̃(4)] is specified in [24]
with explicit sets �̃(2) [or �̃(4)]. Such relation may derive from the sufficient
existence conditions given in [7], but the link between these two complementary
works has not been examined, as far as we know. Concerning identifiability con-
dition, assumptions on the derivatives of θ → bj (θ) are required in assumption
F(1) and G of [24] as well as the existence of a probability density function in
assumption A(r). There are no such conditions in Proposition 2, and assumption
(Id′) seems to be more general and easier used than assumption A(r), F(1) and G
of [24]. Moreover, concerning AN, their assumption F(l), which is obtained from
a comparison of the derivatives of θ → bj (θ) and bj (θ), seems not unnatural; for
instance, if bj (θ) = C(cos(αj) − αj)j−5 with θ = (C,α) and α ≤ −1, then our
Proposition 2 shows AN, while assumption F(2) of [24] is not satisfied [in such

a case, | ∂2bj

∂α2 (θ)| = Cj−3| cos(αj)| is not always smaller than (bj (θ))1−η for all
η > 0 and j ∈ N]. Finally, [24] requires conditions on the third derivatives, while
no such assumption is supposed in our Proposition 2.

As a conclusion, it is not possible to compare Proposition 2 and Theorem 1
and 2 of [24], because the required conditions are different. But Proposition 2 is
certainly simpler and more straightforward to use. However, the complexity of the
conditions in [24] are certainly due to the efforts of these authors to deal with
FIGARCH processes that we cannot consider here as all processes with infinite
variance.

4.2. TARCH(∞) models. The process X is called threshold ARCH(∞) if it
satisfies the equations

Xt = σtξt ,
(4.4)

σt = b0(θ0) +
∞∑

j=1

[b+
j (θ0)max(Xt−j ,0) − b−

j (θ0)min(Xt−j ,0)],

where the parameters b0(θ), b+
j (θ) and b−

j (θ) are assumed to be nonnegative real
numbers. This class of processes is a generalization of the class of TGARCH(p,q)
processes (introduced by Rabemananjara and Zakoïan [22]) and AGARCH(p,q)
processes (introduced by Ding, Granger and Engle [6]). Here,

�(r) =
{
θ ∈ R

d
∣∣∣ ∞∑
j=1

max(b−
j (θ), b+

j (θ)) ≤ (E[|ξ0|r ])−1/r

}
,

since α
(0)
j (M, {θ}) = max(b−

j (θ), b+
j (θ)). Consequently, we can settle, for the first

time, the SC and AN of the QMLE for TARCH(∞) models as follows.
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PROPOSITION 3. Let θ0 ∈ �(2), let X be the stationary solution to (4.4), and
assume that θ0 ∈ �, a compact set of R

d such that (Id(�)), holds. Moreover, as-
sume that infθ∈� b0(θ) > 0 and

sup
θ∈�

max(b−
j (θ), b+

j (θ)) = O(j−
) for some 
 > 3/2:

SC. Then, the QMLE is SC.

AN. Moreover, if θ0 ∈ ◦
� ∩ �(4), assume that θ 	→ b0(θ), θ 	→ b+

j (θ) and θ 	→
b−
j (θ) are 2 times continuously differentiable on �, satisfying

sup
θ∈�

max
(∣∣∣∣∂b+

j (θ)

∂θk

∣∣∣∣, ∣∣∣∣∂b+
j (θ)

∂θk

∣∣∣∣) = O(j−
′
) for some 
′ > 3/2

and∑
j≥1

sup
θ∈�

max
(∣∣∣∣∂2b+

j (θ)

∂θk ∂θk′

∣∣∣∣, ∣∣∣∣∂2b−
j (θ)

∂θk ∂θk′

∣∣∣∣) < ∞ for all (k, k′) ∈ {1, . . . , d}2.

If (Var) holds, then the QMLE θ̂n is also AN.

As far as we know, more explicit conditions for (Id(�)) and (Var) in such non-
linear context do not exist. One possible way to obtain such conditions could be
to work under (Id′), where the quadratic forms Q are replaced with functions
x 	→ b+ max(x,0) − b− min(x,0) for some b+, b− ∈ R

+.

4.3. Multivariate ARCH(∞) processes. Multivariate ARCH(∞) processes
are already considered in Example 1(ii), and, since α

(0)
j (M, {θ}) = ‖Bj(θ)‖,

�(r) =
{
θ ∈ R

d
∣∣∣ ∞∑
j=1

‖Bj(θ)‖ < (E[‖ξ0‖r ])−1/r

}
.(4.5)

PROPOSITION 4. Let θ0 ∈ �(2), X be the stationary solution of (2.4) and
(Id′) hold. Assume that B0(θ) is some p × p symmetric definite positive matrix,
and Bj(θ) are, for all j ≥ 1, some p × p null-matrices or matrices such that the
symmetric matrix (Bj (θ) + Bj(θ)′)/2 is positive definite. If θ0 ∈ �, a compact set
of R

d such that infθ∈� detB0(θ) > 0 and θ ∈ � 	→ Bj(θ) is an injective function,
for all j ∈ N:

SC. Then, the QMLE is SC.

AN. Moreover, assume that θ0 ∈ �(4) ∩ ◦
� and ∀j ∈ N, θ ∈ � 	→ Bj(θ) are 2

times continuously differentiable, satisfying, for all (k, k′) ∈ {1, . . . , d}2,∥∥∥∥∂Bj (θ)

∂θk

∥∥∥∥
�

= O(j−
′
) for some 
′ > 3/2
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and ∑
j≥1

∥∥∥∥∂2Bj(θ)

∂θk ∂θk′

∥∥∥∥
�

< ∞.

If there exists some subset S ⊂ N such that(
∂Bj (θ0)

∂θk

)
1≤k≤d,j∈S

is linearly independent,(4.6)

then the QMLE θ̂n is also AN.

The proof that assumptions (Id(�)) and (Var) hold under such conditions is
given in Section 5.5. To the best of our knowledge, the asymptotic behavior of the
QMLE for such models is studied here for the first time. It generalizes the work
of Jeantheau [17] and Comte and Lieberman [5] on, respectively, VEC and BEKK
multivariate GARCH(q, q ′) models, which both admit an ARCH(∞) representa-
tion. Conditions for SC are similar to those in [17] and in [5]. Existing results for
AN in [5] were obtained under stronger assumptions than here.

4.4. Multivariate GLARCH(∞) models. Such models have been already
considered in Example 1(i). Note that they are generalizations of multivariate
LARCH(∞) models introduced by Doukhan, Teyssière and Winant [8]. For in-
stance, consider the multidimensional extension of the TARCH models as

(Bj (θ, x))k =
m∑

i=1

B+
jki(θ)max(xji,0) + B−

jki(θ)min(xji,0),

where B+
jki and B−

jki are nonnegative real numbers. For GLARCH(∞) models,

�(r) =
{
θ ∈ R

d
∣∣∣ ∞∑
j=1

Lipx(Bj (θ, x)) < (E[‖ξ0‖r ])−1/r

}
.

PROPOSITION 5. Let θ0 ∈ �(2), X be the stationary solution of (2.1). If θ0 ∈
�, a compact set of R

d such that (Id(�)) holds, infθ∈� ‖B0(θ)‖ > 0 and, for all
j ∈ N, θ ∈ �, Bj(θ, ·) ∈ [0,∞[p and

‖Lipx(Bj (θ, x))‖� = O(j−
) for some 
 > 3/2:

SC. Then, the QMLE is SC.

AN. Moreover, if θ0 ∈ ◦
� ∩ �(4), (Var) holds, and ∀j ∈ N, θ ∈ � 	→ Bj(θ, ·) is 2

times continuously differentiable and satisfies∥∥∥∥Lipx

∂Bj (θ, x)

∂θk

∥∥∥∥
�

= O(j−
′
) with 
′ > 3/2
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and ∑
j≥1

∥∥∥∥Lipx

∂2Bj(θ, x)

∂θk ∂θk′

∥∥∥∥
�

< ∞ for all (k, k′) ∈ {1, . . . , d}2,

then the QMLE θ̂n is also AN.

4.5. Multivariate ARMA–GARCH models. Here, Mθ is concentrated on its di-
agonal and f is not necessarily identically zero. If f ≡ 0, the model coincides
with the VEC–GARCH model (see Jeantheau [17]). Multidimensional ARMA–
GARCH processes were introduced by Ling and McAleer [20] as the solution of
the system of equations {

θ(L) · Xt = �θ(L) · εt ,

εt = Mθ(Xt−1,Xt−2, . . .)ξt ,
(4.7)

with Diag(H t
θ ) = C0(θ) + ∑q

i=1 Ci(θ)Diag(εt−iε
′
t−i) + ∑q ′

i=1 Di(θ)Diag(H t−i
θ ).

Here, C0(θ), Ci(θ) and Dj(θ) are positive definite matrices, Diag(A) is the diag-
onal of a matrix A, θ(L) := Im − 1L − · · · − sL

s and �θ(L) := Im − �1L −
· · · − �s′Ls′

are polynomials in the lag operator L, i and �j are squared matri-
ces. We define, for all θ ∈ R

d ,

�θ(L) := Im +
∞∑
i=1

�i(θ)Li = �−1
θ (L)θ(L)

and

∞∑
i=1

Bi(θ)Zi :=
(

1 −
q ′∑

i=1

Di(θ)Zi

)−1

×
q∑

i=1

Ci(θ)Zi for all Z ∈ C
m,

where the polynomials of the two right-hand side products are assumed to be co-
prime. Equation (4.7) satisfies (1.1) with fθ (Xt−1,Xt−2, . . .) = ∑∞

i=1 �i(θ)Xt−i .
Then,

�(r) =
{
θ ∈ R

d
∣∣∣ ∞∑

i=1

‖�i(θ)‖ + (E[‖ξ0‖r ])1/r
∞∑

j=1

‖Bj(θ)‖ < 1

}
.

If θ0 ∈ �(r), then the existence of a solution is ensured. This existence condition
is more explicit than the one of Theorem 2.1 of Ling and McAleer [20]. Now, we
give a version of Theorems 1 and 2 when

θ = (1, . . . ,s,�1, . . . ,�s′,C0,C1, . . . ,Cq,D1, . . . ,Dq ′).

PROPOSITION 6. Let θ0 ∈ �(2) and X be the stationary solution of (4.7).
If θ0 ∈ �, a compact set of R

d such that infθ∈� det(C0(θ)) > 0, such that the
formulation for the multivariate GARCH part of X is minimal and such that
det(θ(z)�θ(z)) �= 0 for all ‖z‖ ≤ 1, θ(z) and �θ(z) are coprime on �:
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SC. Then, the QMLE is SC.

AN. Moreover, if θ0 ∈ ◦
� ∩ �̃(4), and (Var) holds, then the QMLE θ̂n is also AN.

We refer the reader to Proposition 3.4 of [20], which proves that assuming the
minimal representation of the GARCH part of the processes is enough for ensuring
that assumption (Id(�)) holds. Remark that Proposition 6 improves the results of
Ling and McAleer [20], which also provide (weak) consistency and asymptotic
normality of the QMLE under finite moments of higher order for X. Notice, also,
that the QMLE consistency of VEC–GARCH models was already established by
Jeantheau [17] under similar conditions.

4.6. Complete models with stochastic volatility. For such process solution
of (2.6), the set �(r) is defined easily for any r ≥ 2 by the equation

�(r) = {θ ∈ R
d | Lip(μ) + (E‖ξ0‖r )1/r Lip(σ ) < 1 − ‖Bθ‖}.

Now, we are able to give asymptotic properties of QMLE for complete models
with stochastic volatility.

PROPOSITION 7. Let θ0 ∈ �(2), X be the stationary solution of (2.6), with σ

verifying that infx∈Rm det(σ (x)σ (x)′) ≥ H for some H > 0. If θ0 ∈ �, a compact
set of R

d such that (Id(�)), holds:

SC. Then, the QMLE is SC.

AN. Moreover, if θ0 ∈ ◦
� ∩ �(4), (Var) holds, and ∀j ∈ N, θ ∈ � 	→ Bj(θ, ·) is 2

times continuously differentiable and satisfies∥∥∥∥∂Bj (θ, x)

∂θk

∥∥∥∥
�

< 1

and ∥∥∥∥∂2Bj(θ, x)

∂θk ∂θk′

∥∥∥∥
�

< 1 for all (k, k′) ∈ {1, . . . , d}2,

then the QMLE θ̂n is also AN.

To our knowledge, this is the first result of this type for complete models with
stochastic volatility. This example enlightens the fact that QMLE procedure also
provides satisfying estimators for some models with stochastic volatility.

5. Proofs. In this section, the proofs of the main results are collected in the
order of appearance in the paper. First, we prove Proposition 1 and Corollary 1,
then Lemma 1, which settles the asymptotic properties of the quasi-likelihood.
With the help of this property, we prove the main theorems that state consistency
and asymptotic normality of the QMLE.
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5.1. Proofs of Proposition 1 and Corollary 1. We apply a result of Doukhan
and Wintenberger [9] that provides conditions for the existence of a stationary
solution of an equation of type

Xt = F(Xt−1,Xt−2, . . . ; ξt ) a.e. for all t ∈ Z.(5.1)

If E‖ξ0‖r < ∞ and F satisfies, for x = (xi)i≥1, y = (yi)i≥1 ∈ (Rm)∞:

• E‖F(0; ξ0)‖r < ∞;
• (E‖F(x; ξ0) − F(y; ξ0)‖r )1/r ≤ ∑

j≥1 aj‖xj − yj‖ with
∑

j≥1 aj < 1.

The existence of a unique causal stationary solution X of (5.1), such that
E[‖X0‖r ] < ∞, is proved in [9]. We identify F from (1.1) as follows:

F(Xt−1,Xt−2, . . . ; ξt ) = Mθ0(Xt−1,Xt−2, . . .) · ξt + fθ0(Xt−1,Xt−2, . . .).

Obviously, E[‖F(0; ξ0)‖r ] < ∞ if E‖ξ0‖r < ∞, and we have(
E‖F(x; ξ0) − F(y; ξ0)‖r)1/r

≤ (
E

∥∥(
Mθ0(x) − Mθ0(y)

) · ξ0
∥∥r)1/r + ‖fθ0(x) − fθ0(y)‖

≤ (E‖ξ0‖r )1/r‖Mθ0(x) − Mθ0(y)‖ + ‖fθ0(x) − fθ0(y)‖.
The condition of Proposition 1 then implies those of [9] on F . For univariate
NLARCH models satisfying (2.3), as Hθ is a function of xx′ = x2, we have(

E[|M2
θ0

(x)ξ2
0 − M2

θ0
(y)ξ2

0 |r/2])2/r = (E[|ξ0|r ])2/r |Hθ0(x
2) − Hθ0(y

2)|

≤ (E[|ξ0|r ])2/r
∞∑

j=1

αj (H, θ0)|x2
j − y2

j |.

The result of [9] yields the existence, in L
r/2, of (X2

t )t∈Z, satisfying the equation

X2
t = M2

θ0
(Xt−1,Xt−2, . . .)ξ

2
t = Hθ0(X

2
t−1,X

2
t−2, . . .)ξ

2
t a.e.

Moreover, by [9], there exists a measurable function ϕ such that Xt = ϕ(ξt , ξt−1,

. . .) for all t ∈ Z. The ergodicity of X follows from the Proposition 4.3 in Kren-
gel [19]; it states that, if (E,E) and (Ẽ, Ẽ) are measurable spaces, (vt )t∈Z is a
stationary ergodic sequence of E-valued random elements and ϕ : (EN,EN) 	→
(Ẽ, Ẽ) is a measurable function, then the sequence (ṽt )t∈Z defined by ṽt =
ϕ(vt , vt−1, . . .) is a stationary ergodic process.

5.2. Proof of Lemma 1. We treat the three assertions of the lemma one after
the other.
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1. Define f
t,p
θ = fθ (Xt−1, . . . ,Xt−p,0,0, . . .) for all t ∈ Z and p ∈ N. We have

f
t,p
θ ∈ L

r (C(�,R
m)) because θ0 ∈ �(r) and, using Proposition 1, all the follow-

ing quantities are finite:

(E[‖f t,p
θ ‖r

�])1/r ≤ (E[‖f t,0
θ − f

t,p
θ ‖r

�])1/r + (E[‖f t,0
θ ‖r

�])1/r

≤
(∑

j≥1

α
(0)
j (f,�)

)
(E[‖X0‖r ])1/r + ‖fθ (0)‖�.

For p < q ,

E[‖f t,p
θ − f

t,q
θ ‖r

�] ≤ E

[∥∥∥∥ ∑
p<j≤q

α
(0)
j (f,�)Xt−j

∥∥∥∥r]

≤ E[‖X0‖r ]
( ∑

p<j≤q

α
(0)
j (f,�)

)r

.

Since
∑

j≥1 α
(0)
j (f,�) < ∞, (f

t,p
θ )p≥0 satisfies the Cauchy criteria in L

r (C(�,

R
m)), and it converges to f

t,∞
θ ; that is, f t

θ on σ(Xt1, . . . ,Xtn), for all n ∈ N
∗ and

t > t1 > · · · > tn [those σ -algebras generate σ(Xt−1,Xt−2, . . .) and, therefore,
f

t,∞
θ =a.s. f

t
θ ].

2. Define H
t,p
θ = Hθ(Xt−1, . . . ,Xt−p,0, . . .) for all p ∈ N and t ∈ N. From

Proposition 1, θ0 ∈ �(r) and common inequalities satisfied by matrix norms,
H

t,p
θ ∈ L

r/2(C(�,Mm)), since, denoting M
t,p
θ = Mθ(Xt−1, . . . ,Xt−p,0, . . .),

‖Ht,p
θ ‖r/2

� ≤ ‖Mt,p
θ ‖r

� ≤
(
‖Mθ(0)‖� +

∞∑
j=1

‖Xt−j‖α(0)
j (M,�)

)r

.

We conclude as above that Ht
θ ∈ L

r/2(C(�,Mm)) by bounding, for p < q ,

‖Ht,p
θ − H

t,q
θ ‖r/2

� ≤ ‖Mt,p
θ − M

t,q
θ ‖r/2

� (‖Mt,p
θ ‖r/2

� + ‖Mt,q
θ ‖r/2

� ).

The Cauchy–Schwarz inequality implies that

E[‖Ht,p
θ − H

t,q
θ ‖r/2

� ] ≤ (E[‖Mt,p
θ − M

t,q
θ ‖r

�])1/2

× [
(E[‖Mt,p

θ ‖r
�])1/2 + (E[‖Mt,q

θ ‖r
�])1/2]

≤ B

(
E

[( ∑
p<j≤q

α
(0)
j (M,�)‖Xt−j‖

)r])1/2

≤ B(E[‖X0‖r ])1/2
( ∑

p<j≤q

α
(0)
j (M,�)

)r/2

for some constant B > 0.
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3. First, notice that ‖X0X
′
0‖ ≤ ‖X0‖2. Next, as in the previous proofs,

(H
t,p
θ )p∈N∗ converges to Ht

θ in L
r/2(C(�,Mm)). Thus, there exists a subsequence

(pk)k∈N such that ‖Ht,pk

θ − Ht
θ‖�

a.s.−→k→∞ 0. Thanks to the continuity of the de-
terminant, (detHt,pk

θ )k∈N also converges a.s. to detHt
θ . Then, detHt

θ ≥ H , Ht
θ is

an invertible matrix, and, in view of elementary relations between matrix norm
and determinant, ‖(Ĥ t

θ )
−1‖� ≤ H−1/m.

5.3. Proof of Theorem 1. The proof of the theorem is divided into two parts.
In (i), a uniform (in θ ) law of large numbers on (q̂t )t∈N∗ [defined in (1.3)] is estab-
lished. In (ii), it is proved that L(θ) := −E(qt (θ))/2 has a unique maximum in θ0.
Those two conditions lead to the consistency of θ̂n.

(i) Using Proposition 1, with qt = G(Xt,Xt−1, . . .), one deduces that (qt )t∈Z

[defined in (1.2)] is a stationary ergodic sequence. From Straumann and Mikosch
[25], we know that, if (vt )t∈Z is a stationary ergodic sequence of random elements
with values in C(�,R

m), then the uniform (in θ ∈ �) law of large numbers is im-
plied by E‖v0‖� < ∞. As a consequence, (qt )t∈Z satisfies a uniform (in θ ∈ �)
strong law of large numbers as soon as E[supθ |qt (θ)|] < ∞. But, from the in-
equality log(x) ≤ x − 1, for all x ∈]0,∞[ and Lemma 1, for all t ∈ Z,

|qt (θ)| ≤ ‖Xt − ft (θ)‖2

(H)1/m
+ m

∣∣∣∣ 1

m
logH + ‖Ht

θ‖
M1/m

− 1
∣∣∣∣ for all θ ∈ �

(5.2)

�⇒ sup
θ∈�

|qt (θ)| ≤ ‖Xt − ft (θ)‖2
�

(H)1/m
+ | logH | + m × ‖Ht

θ‖�

H 1/m
.

But, ∀t ∈ Z, E‖Xt‖r < ∞ (see Proposition 1) and E[‖f t
θ ‖r

�] + E[‖Ht
θ‖r/2

� ] < ∞
(see Lemma 1). As a consequence, the right-hand side of (5.2) has a finite first
moment and, therefore,

E

[
sup
θ∈�

|qt (θ)|
]
< ∞.

The uniform strong law of large numbers for (qt (θ)) follows; hence,∥∥∥∥Ln(θ)

n
− L(θ)

∥∥∥∥
�

a.s.−→
n→∞ 0 with L(θ) := −1

2
E[q0(θ)].(5.3)

Now, one shows that 1
n
‖L̂n − Ln‖�

a.s.−→
n→∞ 0. Indeed, for all θ ∈ � and t ∈ N

∗,

|q̂t (θ) − qt (θ)|
= (log det Ĥ t

θ − log detHt
θ ) + (Xt − f̂ t

θ )′(Ĥ t
θ )

−1(Xt − f̂ t
θ )

− (Xt − f t
θ )′(H t

θ )
−1(Xt − f t

θ )

≤ |C|−1|det(Ĥ t
θ ) − det(H t

θ )| + (Xt − f̂ t
θ )′[(Ĥ t

θ )
−1 − (H t

θ )
−1](Xt − f̂ t

θ )(5.4)
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+ (2Xt − f̂ t
θ − f t

θ )′(H t
θ )

−1(f t
θ − f̂ t

θ )

≤ H−1‖det(Ĥ t
θ ) − det(H t

θ )‖� + 2(‖Xt‖ + ‖f̂ t
θ ‖�)‖(Ĥ t

θ )
−1 − (H t

θ )
−1‖�

+ (2‖Xt‖ + ‖f̂ t
θ ‖� + ‖f t

θ ‖�)‖(H t
θ )

−1‖�‖f t
θ − f̂ t

θ ‖�

by the mean value theorem, with C ∈ [det(H t
θ ),det(Ĥ t

θ )] and, therefore, |C| > H .
On the one hand,

‖(Ĥ t
θ )

−1 − (H t
θ )

−1‖� ≤ ‖(Ĥ t
θ )

−1‖�‖Ĥ t
θ − Ht

θ‖� · ‖(H t
θ )

−1‖�.

On the other hand, for an invertible matrix A ∈ Mm(R), and H ∈ Mm(R),

det(A + H) = det(A) + det(A) · Tr((A−1)′H) + o(‖H‖),
where |Tr((A−1)′H)| ≤ ‖A−1‖ · ‖H‖. Using the relation ‖(H t

θ )
−1‖� ≥ H−m for

all t ∈ Z, there exists C > 0 not depending on t , such that inequality (5.4) becomes

sup
θ∈�

|q̂t (θ)−qt (θ)| ≤ C(‖Xt‖+‖f̂ t
θ ‖� +‖f t

θ ‖�)× (‖Ĥ t
θ −Ht

θ‖� +‖f t
θ − f̂ t

θ ‖�).

From the Hölder and Minkowski inequalities and by virtue of 3/2 = 1 + 1/2,

E

[
sup
θ∈�

|q̂t (θ) − qt (θ)|2/3
]
≤ C(E[‖Xt‖ + ‖f̂ t

θ ‖� + ‖f t
θ ‖�]2)1/3

× (E[‖Ĥ t
θ − Ht

θ‖�] + E[‖f t
θ − f̂ t

θ ‖�])2/3(5.5)

≤ C′
(∑

j≥t

[
α

(0)
j (f,�) + α

(0)
j (M,�)

])2/3

with C′ > 0 not depending on θ and t . Now, consider, for n ∈ N
∗,

Sn :=
n∑

t=1

1

t
sup
θ∈�

|q̂t (θ) − qt (θ)|.

Applying the Kronecker lemma (see Feller [13], page 238), if limn→∞ Sn < ∞
a.s., then 1

n
· ‖L̂n −Ln‖�

a.s.−→
n→∞ 0. Following Feller’s arguments, it remains to show

that, for all ε > 0,

P(∀n ∈ N,∃m > n such that |Sm − Sn| > ε) := P(A) = 0.

Let ε > 0, and denote

Am,n := {|Sm − Sn| > ε}
for m > n. Notice that A = ⋂

n∈N

⋃
m>n Am,n. For n ∈ N

∗, the sequence of
sets (Am,n)m>n is obviously increasing, and, if An := ⋃

m>n Am,n, then
limm→∞ P(Am,n) = P(An). Observe that (An)n∈N is a decreasing sequence of
sets and, thus,

lim
n→∞ lim

m→∞ P(Am,n) = lim
n→∞ P(An) = P(A).
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It remains to bound P(Am,n). From the Bienaymé–Chebyshev inequality,

P(Am,n) = P

(
m∑

t=n+1

1

t
sup
θ∈�

|q̂t (θ) − qt (θ)| > ε

)

≤ 1

ε2/3 E

[(
m∑

t=n+1

1

t
sup
θ∈�

|q̂t (θ) − qt (θ)|
)2/3]

≤ 1

ε2/3

m∑
t=n+1

1

t2/3 E

[
sup
θ∈�

|q̂t (θ) − qt (θ)|2/3
]
.

Using (5.5) and condition (3.4), since 
 > 3/2, there exists C > 0 such that( ∞∑
j=t

α
(0)
j (f,�) + α

(0)
j (M,�) + α

(0)
j (H,�)

)2/3

≤ C

t2(
−1)/3 .

Thus, t−2/3
E[supθ∈� |q̂t (θ) − qt (θ)|2/3] ≤ C(t−2
/3) for some C > 0, and

∞∑
t=1

1

t2/3 E

[
sup
θ∈�

|q̂t (θ) − qt (θ)|2/3
]
< ∞ as 
 > 3/2.

Thus, limn→∞ limm→∞ P(Am,n) −→
n→∞ 0 and 1

n
· ‖L̂n − Ln‖�

a.s.−→
n→∞ 0.

(ii) See Proposition 2.1 of Jeantheau [17].

5.4. Proof of Theorem 2. Let V be a Banach space (thereafter V = R
m or V =

Mm) and D(2)C(�,V ) denote the Banach space of V -valued 2 times continuously
differentiable functions on � equipped with the uniform norm

‖g‖(2),� = ‖g‖� +
∥∥∥∥∂g

∂θ

∥∥∥∥
�

+
∥∥∥∥ ∂2g

∂θ ∂θ ′
∥∥∥∥
�

.

We start by proving the following preliminary lemma.

LEMMA 2. Let θ0 ∈ �(r) (r ≥ 2), and assume that θ0 ∈ �, a compact set
of R

d such that, for i = 1,2, (Ai(f,�)) and (Ai(M,�)) [or (Ai(H,�))] hold.
Then,

f t
θ ∈ L

r(D(2)C(�,R
m)

)
and Ht

θ ∈ L
r/2(

D(2)C(�,Mm)
)
.

In view of the results of Lemmas 1 and 2, the functions ∂Ln(θ)/∂θ and
∂2Ln(θ)/∂θ2 are measurable and a.s. finite for all θ ∈ �. Their asymptotic prop-
erties are described in the next two lemmas.
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LEMMA 3. Let θ0 ∈ �(r) (r ≥ 4) and assume that θ0 ∈ �, a compact set of R
d

such that, for i = 1,2, (Ai(f,�)) and (Ai(M,�)) [or (Ai(H,�))] hold. Then,

n−1/2 ∂Ln(θ0)

∂θ

D−→
n→∞Nd(0,G(θ0)),(5.6)

where G(θ0) = (G(θ0))1≤i,j≤d is finite and its expression is given in (5.14).

LEMMA 4. Under the assumptions of Lemma 3,∥∥∥∥1

n

∂2Ln(θ)

∂θ ∂θ ′ − ∂2L(θ)

∂θ ∂θ ′
∥∥∥∥
�

a.s.−→
n→∞ 0 with

∂2L(θ)

∂θ ∂θ ′ := −1

2
E

[
∂2q0

∂θ ∂θ ′ (θ)

]
.(5.7)

We postponed the proofs of Lemmas 1–4 to the end of the section and continue
with the proof of Theorem 2. From Theorem 1, we have

θ̂n
a.s.−→

n→∞ θ0.(5.8)

Since θ0 ∈ ◦
�, a Taylor expansion of ∂Ln(θ0)/∂θi ∈ R implies

∂Ln(θ̂n)

∂θi

= ∂Ln(θ0)

∂θi

+ ∂2Ln(θn,i)

∂θ ∂θi

(θ̂n − θ0)(5.9)

for n sufficiently large such that the θn,i ∈ �, which are between θ̂n and θ0, for
all 1 ≤ i ≤ d . Using (5.7) and (5.8), we conclude, with the uniform convergence
theorem, that

Fn := −2
(

1

n

∂2Ln(θn,i)

∂θ ∂θi

)
1≤i≤d

a.s.−→
n→∞F(θ0).

One obtains (F (θ0))ij = E[∂2q0(θ0)/∂θi ∂θj ] for 1 ≤ i, j ≤ d . With similar ar-
guments as for (5.13), since Xt − f t

θ0
= Mθ0ξt , with ξt independent of (Xt−1,

Xt−2, . . .),

E

[
(Xt − f t

θ0
)′ ∂

2(H t
θ )

−1

∂θi ∂θj

(Xt − f t
θ0

)

]

= 2E

[
Tr

(
(H t

θ0
)−2 ∂H t

θ0

∂θj

∂H t
θ0

∂θi

)
− Tr

(
(H t

θ0
)−1 ∂2Ht

θ0

∂θj ∂θi

)]
.

From (5.15), we then derive the explicit expression

(F (θ0))ij = E

[
2
(

∂f t
θ0

∂θj

)′
(H t

θ0
)−1 ∂f t

θ0

∂θi

+ Tr
(
(H t

θ0
)−2 ∂H t

θ0

∂θj

∂H t
θ0

∂θi

)]
.(5.10)



2750 J.-M. BARDET AND O. WINTENBERGER

Under assumption (Var), F(θ0) is a positive definite d × d matrix. Indeed, for all
Y = (y1, . . . , yd) ∈ R

d ,

Y ′F(θ0)Y = E

[
2
( ∑

1≤i≤d

yi

∂f t
θ0

∂θi

)′
(H t

θ0
)−1

( ∑
1≤i≤d

yi

∂f t
θ0

∂θi

)

+ Tr
(
(H t

θ0
)−2

( ∑
1≤i≤d

yi

∂H t
θ0

∂θi

)2)]
.

These two terms are nonnegative and at least one of them is positive under assump-
tion (Var). Then, F(θ0) is an invertible matrix, and there exists n large enough such
that Fn is an invertible matrix. Moreover, (5.9) implies,

n(θ̂n − θ0) = −2F−1
n

(
∂Ln(θ̂n)

∂θ
− ∂Ln(θ0)

∂θ

)
.

Therefore, if 1√
n
‖ ∂Ln(θ̂n)

∂θ
‖ P−→

n→∞ 0, using Lemma 3, one obtains Theorem 2. Since
∂L̂n(θ̂n)

∂θ
= 0 (θ̂n is a local extremum for L̂n),

E

[
1√
n

∥∥∥∥∂Ln

∂θ
− ∂L̂n

∂θ

∥∥∥∥
�

]
−→
n→∞ 0.(5.11)

Using the relation (5.12), the following inequality

|a1b1c1 − a2b2c2| ≤ |a1 − a2||b2||c2| + |a1||b1 − b2||c2| + |a1||b1||c1 − c2|
and the bounds ‖(Ĥ t

θ )
−1‖� ≤ H−1/m, ‖(H t

θ )
−1‖� ≤ H−1/m, one obtains:∥∥∥∥∂qt (θ)

∂θi

− ∂q̂t (θ)

∂θi

∥∥∥∥
�

≤ 2

H 1/m

[∥∥∥∥∂f̂ t
θ

∂θi

− ∂f t
θ

∂θi

∥∥∥∥
�

‖Xt − f̂ t
θ ‖� +

∥∥∥∥∂f t
θ

∂θi

∥∥∥∥
�

‖f̂ t
θ − f t

θ ‖�

]

+ 2
∥∥∥∥∂f t

θ

∂θi

∥∥∥∥
�

‖(H t
θ )

−1 − (Ĥ t
θ )

−1‖�‖Xt − f̂ t
θ ‖�

+ ‖f̂ t
θ − f t

θ ‖�

∥∥∥∥∂(Ĥ t
θ )

−1

∂θi

∥∥∥∥
�

‖Xt − f̂ t
θ ‖�

+ ‖X − f t
θ ‖�‖Xt − f̂ t

θ ‖�

∥∥∥∥∂(H t
θ )

−1

∂θi

− ∂(Ĥ t
θ )

−1

∂θi

∥∥∥∥
�

+ ‖(Ĥ t
θ )

−1‖�

∥∥∥∥∂H t
θ

∂θi

− ∂Ĥ t
θ

∂θi

∥∥∥∥
�

+ ‖(H t
θ )

−1 − (Ĥ t
θ )‖�

∥∥∥∥∂(H t
θ )

−1

∂θi

∥∥∥∥
�

.
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Since, for i = 1,2, (Ai(f,�)) and (Ai(M,�)) [or (Ai(H,�))] hold, there exists
C > 0 such that

E‖f t
θ − f̂ t

θ ‖r
� ≤ C

(∑
j≥t

α
(0)
j (f,�)

)r

and

E

∥∥∥∥∂f t
θ

∂θi

− ∂f̂ t
θ

∂θi

∥∥∥∥r

�

≤ C

(∑
j≥t

α
(1)
j (f,�)

)r

.

The differences E‖Ht
θ − Ĥ t

θ‖r/2
� ≤ C(

∑
j≥t α

(0)
j (M,�))r/2 can also be bounded in

the following way:

E

∥∥∥∥∂H t
θ

∂θi

− ∂Ĥ t
θ

∂θi

∥∥∥∥r/2

�

≤ C

((∑
j≥t

α
(0)
j (M,�)

)r/2

+
(∑

j≥t

α
(1)
j (M)

)r/2)
,

E

∥∥∥∥∂(H t
θ )

−1

∂θi

− ∂(Ĥ t
θ )

−1

∂θi

∥∥∥∥r/2

�

≤ C

((∑
j≥t

α
(0)
j (M,�)

)r/2

+
(∑

j≥t

α
(1)
j (M)

)r/2)
.

Finally, using Hölder inequalities, there exists another constant C ≥ 0 satisfying

E

∥∥∥∥∂qt (θ)

∂θi

− ∂q̂t (θ)

∂θi

∥∥∥∥
�

≤ C
∑
j≥t

(
α

(0)
j (f,�) + α

(0)
j (M,�) + α

(0)
j (H,�)

+ α
(1)
j (f,�) + α

(1)
j (M,�) + α

(1)
j (H,�)

)
.

Under (3.5), 1√
n

∑n
t=1 E‖ ∂qt (θ)

∂θi
− ∂q̂t (θ)

∂θi
‖� −→

n→∞ 0, and Theorem 2 follows.

PROOF OF LEMMA 2. Here, we focus on the case of Hθ under (Ai(f,�)) and
(Ai(M,�)), i = 1,2. The other cases are similar and simpler.

With the same method and notation as in the proof of Lemma 1, the result
holds as soon as the function θ ∈ � → H

t,p
θ is proved to satisfy a Cauchy cri-

terion in L
r/2(D(2)C(�,Mm)). Using the proof of Lemma 1, we already have

E‖Ht,p
θ ‖r/2

� < ∞. It remains to bound the quantities

E

∥∥∥∥∂H
t,p
θ

∂θi

∥∥∥∥r/2

�

and E

∥∥∥∥∂2H
t,p
θ

∂θi ∂θj

∥∥∥∥r/2

�

∀i, j ∈ {1, . . . , d},∀p ∈ N
∗.
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Using assumption (A1(M,�)),∥∥∥∥∂H
t,p
θ

∂θi

∥∥∥∥
�

≤ 2‖Mt,p
θ ‖�

∥∥∥∥∂M
t,p
θ

∂θi

∥∥∥∥
�

≤
(
‖Mθ(0)‖� +

∞∑
j=1

α
(0)
j (M,�)‖Xt−j‖

)

×
(∥∥∥∥∂Mθ(0)

∂θi

∥∥∥∥
�

+
∞∑

j=1

α
(1)
j (M,�)‖Xt−j‖

)
.

Using E[‖X0‖r ] < ∞ and the Hölder and Minkowski inequalities,

E

[∥∥∥∥∂H
t,p
θ

∂θi

∥∥∥∥r/2

�

]
≤ C

(
‖Mθ(0)‖r

� + E[‖X0‖r ]
( ∞∑

j=1

α
(0)
j (M,�)

)r)1/2

×
(∥∥∥∥∂Mθ(0)

∂θi

∥∥∥∥r

�

+ E[‖X0‖r ]
( ∞∑

j=1

α
(1)
j (M,�)

)r)1/2

.

In the same way, there exists another constant C > 0 such that

E

∥∥∥∥∂2H
t,p
θ

∂θi ∂θj

∥∥∥∥r/2

�

≤ C

[(( ∞∑
j=1

α
(1)
j (M,�)

)r( ∞∑
j=1

α
(1)
j (M,�)

)r)1/2

+
(( ∞∑

j=1

α
(0)
j (M,�)

)r( ∞∑
j=1

α
(2)
j (M,�)

)r)1/2]
.

From
∑

j α
(0)
j (M,�) < ∞,

∑
j α

(1)
j (M,�) < ∞ and

∑
j α

(2)
j (M,�) < ∞, we

deduce that E[‖Ht,p
θ ‖r/2

(2),�] < ∞ for all p ∈ N
∗. In the same way as in the proof

of Lemma 1, we can also prove that the sequence (H
t,p
θ )p∈N∗ satisfies the Cauchy

criterion in the Banach space L
r/2(D(2)C(�,Mm)). For the first derivatives, the

result easily follows from the inequality∥∥∥∥∂H
t,p
θ

∂θi

− ∂H
t,q
θ

∂θi

∥∥∥∥
�

≤ 2‖Mt,p
θ − M

t,q
θ ‖�

∥∥∥∥∂M
t,p
θ

∂θi

∥∥∥∥
�

+ 2‖Mt,q
θ ‖�

∥∥∥∥∂H
t,p
θ

∂θi

− ∂H
t,q
θ

∂θi

∥∥∥∥
�

.

For the second derivatives, a similar argument finishes the proof. �

PROOF OF LEMMA 3. Simple calculations give the relations

∂(H t
θ )

−1

∂θk

= −(H t
θ )

−1 ∂H t
θ

∂θk

(H t
θ )

−1 and
∂ ln det(H t

θ )

∂θk

= Tr
(
(H t

θ )
−1 ∂H t

θ

∂θk

)
.
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From Lemma 2, ∂f t
θ /∂θ , ∂H t

θ/∂θ and (Ĥ t
θ )

−1 are a.s. finite. Then, ∂Ln(θ)/∂θ

is an a.s. finite measurable function satisfying, for all 1 ≤ i ≤ d , ∂Ln(θ)/∂θi =
−1

2
∑n

t=1 ∂qt (θ)/∂θi with

∂qt (θ)

∂θk

= −2
(

∂f t
θ

∂θk

)′
(H t

θ )
−1(Xt − f t

θ )

(5.12)

+ (Xt − f t
θ )′

∂(H t
θ )

−1

∂θk

(Xt − f t
θ ) + Tr

(
(H t

θ )
−1 ∂H t

θ

∂θk

)
.

Denoting Ft = σ(Xt ,Xt−1, . . .), let us prove that (
∂qt (θ0)

∂θ
,Ft )t∈Z is a R

m-valued
martingale difference process. Indeed, for all t ∈ Z,

E
(
(Xt − f t

θ0
)|Ft

) = 0 and E
(
(Xt − f t

θ0
)(Xt − f t

θ0
)′|Ft

) = Ht
θ0

.

As a consequence,

E

(
∂qt (θ0)

∂θk

∣∣∣Ft

)
= E

(
(Xt − f t

θ0
)′

∂(H t
θ0

)−1

∂θk

(Xt − f t
θ0

)
∣∣∣Ft

)

+ Tr
(
(H t

θ0
)−1 ∂H t

θ0

∂θk

)
.

We conclude by noticing that the first term of the sum is equal to

E

(
Tr

(
∂(H t

θ0
)−1

∂θk

(Xt − f t
θ0

)(Xt − f t
θ0

)′
)∣∣∣Ft

)
= Tr

(
∂(H t

θ0
)−1

∂θk

H t
θ0

)
.

In order to apply the central limit theorem for martingale-differences (see [2]),
we have to prove E[‖ ∂qt (θ0)

∂θ
‖2] < ∞. Using the relation Xt − f t

θ0
= Mt

θ0
ξt for all

t ∈ Z, then

∂qt (θ0)

∂θk

= −2
(

∂f t
θ0

∂θk

)′
(H t

θ0
)−1Mt

θ0
ξt − ξ ′

t M
t ′
θ0

(H t
θ0

)−1′ ∂H t
θ0

∂θk

(H t
θ0

)−1Mt
θ0

ξt

+ Tr
(
(H t

θ0
)−1 ∂H t

θ0

∂θk

)
.

With Tr(ABC) = Tr(CAB) = Tr(ACB) for symmetric matrices A, B , C,

E

[(
ξ ′
t M

t ′
θ0

(H t
θ0

)−1′ ∂H t
θ0

∂θk

(H t
θ0

)−1Mt
θ0

ξt

)2]

= E

[
(ξ ′

t ξt )
2 Tr

(
Mt ′

θ0
(H t

θ0
)−1 ∂H t

θ0

∂θk

(H t
θ0

)−1 ∂H t
θ0

∂θk

(H t
θ0

)−1Mt
θ0

)]
(5.13)

= E

[
(ξ ′

t ξt )
2 Tr

(
(H t

θ0
)−2

(
∂H t

θ0

∂θk

)2)]
.
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Using this relation, the bound ‖(H t
θ0

)−1‖� ≤ H−1/m and the independence of ξt

and Ft , there exists C > 0 such that

E

[(
∂qt (θ0)

∂θk

)2]
≤ C

(
E

[∥∥∥∥∂f t
θ0

∂θk

∥∥∥∥2

‖Mt
θ0

‖2
]

× E[‖ξt‖2] + E

[∥∥∥∥∂H t
θ0

∂θk

∥∥∥∥2]

+ E[‖ξ ′
t ξt‖2] × E

[∥∥∥∥∂H t
θ0

∂θk

∥∥∥∥2])
.

Therefore, since r ≥ 4, the moment conditions for the CLT are fulfilled

E

[∥∥∥∥∂qt (θ0)

∂θ

∥∥∥∥2]
=

d∑
k=1

E

[
∂qt (θ0)

∂θk

]2

< ∞.

We compute the asymptotic covariance matrix of ∂qt (θ0)
∂θ

. Thus,

(G(θ0))ij = E

[
∂qt (θ0)

∂θi

∂qt (θ0)

∂θj

]

= E

[
4
(

∂f t
θ0

∂θi

)′
(H t

θ0
)−1

(
∂f t

θ0

∂θj

)
(5.14)

− Tr
(
(H t

θ0
)−1 ∂H t

θ0

∂θi

)
Tr

(
(H t

θ0
)−1 ∂H t

θ0

∂θj

)

+ p
(
m4 + (p − 1)

)
Tr

(
(H t

θ0
)−2 ∂H t

θ0

∂θi

∂H t
θ0

∂θj

)]
.

To simplify the expression, we assume here that ξt and −ξt have the same distrib-
ution, in order that E[ξt ξ

′
t Aξt ] = 0 for A, a matrix. �

PROOF OF THE LEMMA 4. From the proof of Proposition 1 and from the
result of Lemma 2, the second derivative process (∂2qt (θ)/∂θ2)t∈Z is stationary
ergodic (it is a measurable function of Xt,Xt−1, . . .). Therefore, it satisfies a Uni-
form Law of Large Numbers (ULLN) if its first uniform moment is bounded.

From (5.12), the second partial derivatives of qt (θ) are

∂2qt (θ)

∂θi ∂θj

= −2
(

∂2f t
θ

∂θi ∂θj

)′
(H t

θ )
−1(Xt − f t

θ )

+ (Xt − f t
θ )′

∂2(H t
θ )

−1

∂θi ∂θj

(Xt − f t
θ )

− 2
((

∂f t
θ

∂θi

)′ ∂(H t
θ )

−1

∂θj

+
(

∂f t
θ

∂θj

)′ ∂(H t
θ )

−1

∂θi

)
(Xt − f t

θ )(5.15)
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+ 2
(

∂f t
θ

∂θi

)′
(H t

θ )
−1

(
∂f t

θ

∂θi

)

+ Tr
((

∂(H t
θ )

−1

∂θj

)(
∂H t

θ

∂θi

))
+ Tr

(
(H t

θ )
−1

(
∂2Ht

θ

∂θi ∂θj

))
.

Therefore, using the bound ‖(H t
θ )

−1‖� ≤ M−1/m of Lemma 1 and usual relations
between norms and traces of matrix, there exists C > 0 such that∥∥∥∥∂2qt (θ)

∂θi ∂θj

∥∥∥∥
�

≤ C

[(∥∥∥∥ ∂2f t
θ

∂θi ∂θj

∥∥∥∥
�

+
∥∥∥∥∂H t

θ

∂θj

∥∥∥∥
�

∥∥∥∥∂f t
θ

∂θi

∥∥∥∥
�

+
∥∥∥∥∂H t

θ

∂θi

∥∥∥∥
�

∥∥∥∥∂f t
θ

∂θj

∥∥∥∥)
‖Xt − f t

θ ‖�

+
∥∥∥∥ ∂2Ht

θ

∂θi ∂θj

∥∥∥∥
�

‖Xt − f t
θ ‖2

� +
∥∥∥∥∂f t

θ

∂θi

∥∥∥∥
�

∥∥∥∥∂f t
θ

∂θj

∥∥∥∥
�

+
∥∥∥∥∂H t

θ

∂θi

∥∥∥∥
�

∥∥∥∥∂H t
θ

∂θj

∥∥∥∥
�

]
.

We conclude that E‖ ∂2qt (θ)
∂θi ∂θj

‖r/4
� < ∞ (r ≥ 4), since, for t ∈ Z, 1 ≤ i, j ≤ d ,

E[‖Xt‖r ] < +∞, E[‖f t
θ ‖r

�] < +∞,

E

[∥∥∥∥∂f t
θ

∂θi

∥∥∥∥r

�

]
< +∞, E

[∥∥∥∥ ∂2f t
θ

∂θi ∂θj

∥∥∥∥r

�

]
< +∞;

E[‖Ht
θ‖r/2

� ] < +∞, E

[∥∥∥∥∂H t
θ

∂θi

∥∥∥∥r/2

�

]
< +∞, E

[∥∥∥∥ ∂2Ht
θ

∂θi ∂θj

∥∥∥∥r/2

�

]
< ∞.

As a consequence, the ULLN holds for ∂2qt (θ)/∂θ2. �

5.5. Proof of sufficient conditions for (Id(�)) and (Var) for ARCH processes.
First, we express a key lemma derived from Lemma 3.1 in [16].

LEMMA 5. Assume that (ξt )t is a sequence of i.i.d. r.v. satisfying (Id′). Then,
for all t ∈ Z, if Qt and δ ξt are σ((Xt−k)k∈N∗)-measurable, respectively, quadratic
form and real variable, and if (ξt )t is independent of σ((Xt−k)k∈N∗), then

Qt(ξt ) = δt , a.s. ⇒ Qt = 0 and δt = 0, a.s.

PROOF. The proof is similar to that in [16]. As ξt is independent of (Xt−1,

Xt−2, . . .), we apply the Fubini theorem thusly:

P
(
Qt(ξt ) = δt

) =
∫

P
(
Q

(w)
t (ξt ) = δ

(w)
t

)
dμ(w),
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denoting by μ the distribution of (Xt−1,Xt−2, . . .). As this quantity is equal to 1,
and since P(Q

(w)
t (ξt ) = δ

(w)
t ) = P(Q

(w)
t (ξ0) = δ

(w)
t ), we derive that P(Q

(w)
t =

δ
(w)
t ) = 1; thus, Q

(w)
t = 0 = δ

(w)
t using (Id′) μ-almost everywhere. This ends the

proof. �

LEMMA 6. Under assumptions of the part SC of Proposition 4, then (Id(�))
holds.

The basic idea is a recursive use of Lemma 5. Assume that, for some
t ∈ Z and some θ ∈ �, we have Ht

θ = Ht
θ0

a.s. Identifying Ht
θ = B0(θ) +∑∞

j=1 Bj(θ)Xt−jX
′
t−jB

′
j (θ), we express the equation Ht

θ = Ht
θ0

a.s. for the first
element, indexed by (1,1), thusly:

B
(1,1)
0 (θ0) +

∞∑
j=1

B
(1.)
j (θ0)Xt−jX

′
t−j

(
B

(1.)
j (θ0)

)′
(5.16)

= B
(1,1)
0 (θ) +

∞∑
j=1

B
(1.)
j (θ)Xt−jX

′
t−j

(
B

(1.)
j (θ)

)′
,

where A(i.) is the ith row of A and A(i,k) the element indexed by (i, k) of A. For
some σ(Xt−2,Xt−3, . . .)-measurable random variable δ1, we have the equation

Qt−1(ξt−1) = B
(1.)
1 (θ0)M

t−1
θ0

ξt−1ξ
′
t−1(M

t−1
θ0

)′
(
B

(1.)
1 (θ0)

)′
− B

(1.)
1 (θ)Mt−1

θ0
ξt−1ξ

′
t−1(M

t−1
θ0

)′
(
B

(1.)
1 (θ)

)′ = δt−1.

Applying Lemma 5, we get that Qt−1 = 0 and δt−1 = 0 a.s. Using the relation
δt−1 = 0 a.s. and the expression of δt−1, we prove recursively on j that Qt−j = 0
and δt−j = 0 for any j ≥ 1. As Qt−j j (ξt−j ) = 0, we get that

B
(1.)
j (θ0)Xt−jX

′
t−j

(
B

(1.)
j (θ0)

)′ = B
(1.)
j (θ)Xt−jX

′
t−j

(
B

(1.)
j (θ)

)′
and we use these relations for all j ≥ 1 in (5.16) to obtain that B

(1,1)
0 (θ0) =

B
(1,1)
0 (θ). We also use that Qt−j (ek) = 0 p.s. for ek the kth element of the canoni-

cal basis of R
p to get the equation(

B
(1.)
1 (θ0)M

t−1
θ0

(.k))2 = (
B

(1.)
1 (θ)Mt−1

θ0

(.k))2
.

The same arguments applied to the second element, indexed by (1,2), implies that
B

(1,2)
0 (θ0) = B

(1,2)
0 (θ) and the equation

B
(1.)
j (θ0)M

t−1
θ0

(.k)
B

(2.)
j (θ0)M

t−1
θ0

(.k) = B
(1.)
j (θ)Mt−1

θ0

(.k)
B

(2.)
j (θ)Mt−1

θ0

(.k)
.

Hence, we have B
(i,i′)
0 (θ0) = B

(i,i′)
0 (θ) and ai,k,j (θ0)ai′,k,j (θ0) = ai,k,j (θ) ×

ai′,k,j (θ), for all 1 ≤ i, i′, k ≤ m and j ≥ 1, where ai,k,j (θ) = B
(i.)
j (θ)Mt−1

θ0

(.k)
.
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It directly follows that B0(θ0) = B0(θ). If Bj(θ0) �= 0, then Bj(θ0) is definite pos-
itive by assumption and, for any 1 ≤ k ≤ m, there exists some 1 ≤ i ≤ m such that
ai,k,j (θ0) �= 0. It leads to the existence of some εk ∈ {−1,1} satisfying(

Bj(θ0) − εkBj (θ)
)
Mt−1

θ0

(.k) = 0.

If εk = −1, then Bj(θ0) + Bj(θ) is invertible as any definite positive matrix.

We obtain a contradiction with Mt−1
θ0

(.k) �= 0 and, thus, εk = 1. In other words,

(Bj (θ0) − Bj(θ))Mt−1
θ0

(.k) = 0, and we conclude that Bj(θ0) = Bj(θ), for all

j > 0, as the family {Mt−1
θ0

(.k)
,1 ≤ k ≤ p} generates the whole space R

m. Now,

if Bj(θ0) = 0, using the relation ai,k,j (θ0)
2 = ai,k,j (θ)2, we derive that Bj(θ) = 0

as the family {Mt−1
θ0

(.k)
,1 ≤ k ≤ p} generates the whole space R

m. Finally, in all
cases, we conclude that Bj(θ0) = Bj(θ) for all j ∈ N, and, if θ ∈ � 	→ Bj(θ) is
injective, then (Id(�)) is implied.

LEMMA 7. Under assumptions of the part AN of Proposition 4, then (Var)
holds.

Simple calculations provide

∂H t
θ0

∂θk

= ∂B0(θ0)

∂θk

+ ∑
j≥1

(
∂Bj (θ0)

∂θk

Xt−jX
′
t−jBj (θ0)

′

(5.17)

+ Bj(θ0)Xt−jX
′
t−j

∂Bj (θ0)

∂θk

′)
.

Let us now fix some d-uplet (y1, . . . , yd) such that
∑d

i=1 yi∂H t
θ0

/∂θi = 0. Us-
ing the expression (5.17) and the same arguments than in the previous proof of
Lemma 6, we get that

∑d
i=1 yi∂B0(θ0)/∂θi = 0, and, for all j ≥ 1 and 1 ≤ k ≤ m,

d∑
i=1

yi

(
∂Bj (θ0)

∂θi

Mt−1
θ0

(.k)(
Mt−1

θ0

(.k))′
Bj(θ0)

′

(5.18)

+ Bj(θ0)M
t−1
θ0

(.k)(
Mt−1

θ0

(.k))′ ∂Bj (θ0)

∂θi

′)
= 0.

Remark that, if Bj(θ0) = 0, then ∂Bj (θ0)

∂θi
= 0 and, thus, necessarily Bj(θ0) �= 0

for all j ∈ S. Now, since the statement that if Bj(θ0) �= 0, then Bj(θ0) is invert-
ible, we have that, for any 1 ≤ k ≤ m, there exists some 1 ≤ 
 ≤ m such that

B
(
.)
j (θ)Mt−1

θ0

(.k) �= 0. Then, as

d∑
i=1

yi

∂Bj (θ0)

∂θi

(
.)

Mt−1
θ0

(.k)
Bj (θ0)

(
.)Mt−1
θ0

(.k) = 0,
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we obtain that
∑d

i=1 yi∂Bj (θ0)/∂θi
(
.)Mt−1

θ0

(.k) = 0. Now, using this relation and

(5.18) on the (
, 
′)th element for any 
′, we easily obtain that
∑d

i=1 yi
∂Bj (θ0)

∂θi

(
′.) ×
Mt−1

θ0

(.k) = 0. Considering these results, we get the relation
∑d

i=1 yi
∂Bj (θ0)

∂θi
×

Mt−1
θ0

(.k) = 0 and, as the family {Mt−1
θ0

(.k)
,1 ≤ k ≤ p} generates the whole space

R
m, we obtain that

∑d
i=1 yi

∂Bj (θ0)

∂θi
= 0 for all j ∈ S. We conclude, necessarily, that

yi = 0 for all 1 ≤ i ≤ d and (Var) automatically follows.
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