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Mixture models have received considerable attention recently and New-
ton [Sankhyā Ser. A 64 (2002) 306–322] proposed a fast recursive algorithm
for estimating a mixing distribution. We prove almost sure consistency of this
recursive estimate in the weak topology under mild conditions on the family
of densities being mixed. This recursive estimate depends on the data order-
ing and a permutation-invariant modification is proposed, which is an aver-
age of the original over permutations of the data sequence. A Rao–Blackwell
argument is used to prove consistency in probability of this alternative es-
timate. Several simulations are presented, comparing the finite-sample per-
formance of the recursive estimate and a Monte Carlo approximation to the
permutation-invariant alternative along with that of the nonparametric maxi-
mum likelihood estimate and a nonparametric Bayes estimate.

1. Introduction. Mixture distributions have played a key role in modeling
data that reflect population heterogeneity, contain indirect observations or involve
latent variables. In recent years, these models have been widely used in genetics,
bioinformatics, proteomics, computer vision, speech analysis and a host of other
research areas; see, for example, [1, 5, 7, 21, 25, 27, 31]. Fitting a mixture model
has been made easy by the advent of computational techniques such as the Ex-
pectation Maximization (EM) and the Markov Chain Monte Carlo (MCMC) algo-
rithms. Recovering the underlying mixing distribution, however, continues to pose
a serious challenge.

Newton, et al. [22–24] introduced a fast, recursive algorithm for estimating a
mixing density when a finite sample is available from the corresponding mixture
model. Suppose X1, . . . ,Xn are independently distributed (iid) according to the
density

p(x) =
∫
�

p(x|θ)F (dθ),(1)

where p(x|θ) is a known sampling density, with respect to a dominating σ -finite
measure ν on X, parametrized by θ ∈ �. Assume also that the mixing distribu-
tion F is absolutely continuous with respect to some σ -finite measure μ on �.
Newton [22] proposed to estimate f = dF/dμ as follows.
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RECURSIVE ALGORITHM. Fix an initial estimate f0 and a sequence of
weights w1,w2, . . . ∈ (0,1). Given i.i.d. observations X1, . . . ,Xn from the mix-
ture density p(x) in (1), compute

fi(θ) = (1 − wi)fi−1(θ) + wi

p(Xi |θ)fi−1(θ)∫
� p(Xi |θ ′)fi−1(θ ′)μ(dθ ′)

, θ ∈ �(2)

for i = 1, . . . , n and produce fn as the final estimate.

This method of estimating f has a number of advantages over the existing
mainstream methods found in the literature. To begin with, it is rather straight-
forward to accommodate prior information regarding support and continuity prop-
erties of f through those of f0. For example, if p(xi |θ) > 0 for all θ ∈ �, then
supp(fi) = supp(fi−1). Therefore, by choosing f0 appropriately one can ensure
that fn has the same support as the target f . This flexibility is not offered by the
method of nonparametric maximum likelihood (NPML) estimation of F ; cf. Laird
[16] and Lindsay [18] which produces an estimate supported on at most n points. It
is also evident that the recursive algorithm above applies to any arbitrary sampling
density p(x|θ), making this method more general than deconvolution methods
which deal exclusively with sampling densities of the type p(x|θ) = ϕ(x − θ) for
some density ϕ. However, a lot is known about deconvolution methods; see, for
example [9, 30, 35].

The flexibility associated with fn resembles those found in a Bayesian frame-
work. Indeed, for n = 1, the estimate fn is precisely the posterior mean of f under
the Bayesian formulation that a priori f follows a Dirichlet process (DP) distri-
bution [8, 10] with base measure f0 and precision 1/w1 − 1. Newton’s original
motivation for the recursive algorithm was based on this fact [23], though this
analogy breaks down for n > 1. In particular, fn, for n > 1, depends on the par-
ticular order in which Xi’s enter the recursion and hence is not a function of the
sufficient statistic (X(1), . . . ,X(n))—the order statistics. Consequently, fn cannot
equal any posterior quantity. To further distinguish the two estimates, computation
of a nonparametric Bayes estimate fNPB based on the DP prior requires a rather
elaborate Monte Carlo procedure, while the recursive estimate can be computed
many times faster. It was hoped that fn would serve as a computationally efficient
approximation to fNPB.

It is rather difficult to study the asymptotic properties of fn since it is not a
Bayesian quantity, does not seem to optimize a criterion function such as the log
likelihood and cannot be written as a linear estimator [13]. Nevertheless, empirical
studies carried out by Newton [22] and Ghosh and Tokdar [12] clearly demon-
strated good performance of this estimate. Newton [22] also presented a proof
of convergence of fn as n → ∞ based on the theory of inhomogeneous Markov
chains. Unfortunately, this proof had a gap [12]. Ghosh and Tokdar [12] used a
novel martingale based argument to show consistency under the same conditions
as in Newton [22]. A slightly stronger result has recently been derived by Martin
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and Ghosh [20] using a stochastic approximation representation of the algorithm.
The conditions required in these papers are somewhat restrictive, particularly in
requiring � to be a known finite set. Ghosh and Tokdar [12] further require p(x|θ)

to be bounded away from zero on X × �, while Martin and Ghosh [20] make the
weaker assumption that p(·|θ) > 0 ν-a.e. for each θ .

In this paper we show consistency of fn in the weak topology under quite gen-
eral conditions. Our assumptions are slightly stronger than those needed in Kiefer
and Wolfowitz [14] or Leroux [17] to prove consistency of the NPML estimate
of F . In particular, � is not required to be finite and the sampling density is al-
lowed to decay to zero. We use a major extension of the basic martingale argument
in [12] to show that the marginal density

pn(x) =
∫

p(x|θ)fn(θ)μ(dθ)(3)

almost surely converges to p(x) in the L1 topology. This then leads to almost sure
weak convergence of fn to f . This latter result applies to any arbitrary method of
estimation—for example, it can be used to show weak consistency of the posterior
mean of the mixing distribution under the DP formulation. This result holds even
when � is noncompact, as long as θ �→ p(x|θ) vanishes at the boundary in a
certain near-uniform sense. The main martingale argument, too, does not explicitly
require much structural assumption on �, but assumption A5 (see Section 2) would
be difficult to verify without compactness.

Despite this asymptotic justification, the dependence of fn on the order of the
observations could be a cause of concern in application, especially when n is not
very large. In some cases a particular ordering can be justified by problem specific
considerations. For example, “sparseness” assumptions (i.e., that only a small per-
centage of the observations come from the nonnull component of the mixture) led
Bogdan, et al. [3] to arrange the observations in the ascending order of their mag-
nitude while estimating a mixing density underlying a multiple testing problem.
In the absence of such justification a permutation invariant version of fn may be
desirable. Newton [22] recommends calculating the average over a large number
of random permutations which can be seen as a Monte Carlo approximation to

f̄n = 1

n!
∑
s∈Sn

fn,s,(4)

where Sn is the permutation group on {1, . . . , n} and fn,s , for s ∈ Sn, represents
the estimate fn with the observations arranged as Xs(1), . . . ,Xs(n).

In Section 3 we show that f̄n provides a Rao–Blackwellization of fn and satis-
fies Ed(f, f̄n) ≤ Ed(f,fn) for many standard divergence measures d . This prop-
erty is then exploited to show that in the weak topology, f̄n → f in probability.
Section 4 presents a simulation study of finite sample performance of fn and f̂n—
a Monte Carlo approximation to f̄n. It is demonstrated that f̂n, which requires
more computing time than fn, is still faster and more accurate than other existing
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methods, such as the NPML estimate or a NP Bayes estimate. Finally, in Section 5
we give some concluding remarks.

2. Consistency of Newton’s estimate. For the remainder of the paper we
consider the following assumptions:

A1.
∑∞

i=1 wi = ∞ and
∑∞

i=1 w2
i < ∞.

A2. The map F �→ ∫
p(x|θ)F (dθ) is injective; that is, the mixing distribution F

is identifiable from the mixture
∫

p(x|θ)F (dθ).
A3. For each x ∈ X, the map θ �→ p(x|θ) is bounded and continuous.
A4. For any ε > 0 and any compact X0 ⊂ X, there exists a compact �0 ⊂ � such

that
∫
X0

p(x|θ)ν(dx) < ε for all θ /∈ �0.
A5. There exists a constant B < ∞ such that, for every θ1, θ2, θ3 ∈ �∫

X

(
p(x|θ1)

p(x|θ2)

)2

p(x|θ3)ν(dx) < B.

The first condition on the weights wi is necessary for fn to outgrow the influence of
the initial guess f0. At the same time, the weights need to decay to zero to allow for
accumulation of information. The square summability condition ensures a certain
rate for this decay, suitable for the Taylor approximation approach taken here. The
identifiability condition A2, necessary for any estimation of mixture densities, is
shown in Teicher [33] to be satisfied by many sampling densities of interest; for
example:

• Normal with mean θ and fixed variance σ 2 > 0,
• Gamma with rate θ and fixed shape α > 0,
• Poisson with mean θ .

Each of these densities satisfy the boundedness conditions A3 as well as the decay
property A4. These also satisfy the square integrability condition A5 when � is a
compact interval.

Let Kn = ∫
f log(f/fn) dμ and K∗

n = ∫
p log(p/pn) dν denote the error mea-

sures according to the Kullback–Leibler (KL) divergence, where fn and pn are
defined in (2) and (3), respectively. On application of a telescoping sum, it follows
easily from the recursive definition of the estimates fi that

Kn − K0 = −
n∑

i=1

∫
�

log
[
1 + wi

(
p(Xi |θ)

pi−1(Xi)
− 1

)]
f (θ)μ(dθ).

Write log(1 + x) = x − x2R(x), x > −1, where the remainder term satisfies 0 ≤
R(x) ≤ max(1, (1 + x)−2)/2. Then

Kn − K0 =
n∑

i=1

[
wi

(
1 − p(Xi)

pi−1(Xi)

)
+

∫
�

Ri(Xi, θ)f (θ)μ(dθ)

]
(5)

=
n∑

i=1

wiVi −
n∑

i=1

wiMi +
n∑

i=1

Ei,
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where

Ri(x, θ) = w2
i

(
p(x|θ)

pi−1(x)
− 1

)2

R

(
wi

(
p(x|θ)

pi−1(x)
− 1

))
,

Mi = −E

[
1 − p(Xi)

pi−1(Xi)

∣∣∣∣Fi−1

]

=
∫
X

(
p(x)

pi−1(x)
− 1

)
p(x)ν(dx),

Vi = 1 − p(Xi)

pi−1(Xi)
+ Mi,

Ei =
∫
�

Ri(Xi, θ)f (θ)μ(dθ).

In the following we prove that each of
∑∞

i=1 wiVi ,
∑∞

i=1 Ei and
∑∞

i=1 wiMi is
finite with probability 1.

Let Fi = σ(X1, . . . ,Xi) be the σ -algebra generated by the first i observations.
By definition of Vi , Sn = ∑n

i=1 wiVi forms a zero mean martingale sequence with
respect to Fn. Moreover by assumption A5,

E(S2
n) = E

{
n∑

i=1

w2
i E[V 2

i |Fi−1]
}

≤ E

{
n∑

i=1

w2
i E

[(
1 − p(Xi)

pi−1(Xi)

)2∣∣∣∣Fi−1

]}

≤ 2(1 + B)

n∑
i=1

w2
i .

Since
∑∞

i=1 w2
i < ∞ by A1, E(S2

n) is uniformly bounded in n. Therefore, by the
martingale convergence theorem [6], Sn almost surely converges to a random vari-
able S∞ with E(S∞) < ∞.

Let Tn = ∑n
i=1 Ei and let T∞ = limTn, which always exists (since Ei ’s are

nonnegative) but may equal infinity. Notice that for u > 0 and v ∈ (0,1),

(u − 1)2 max
{
1,

(
1 + v(u − 1)

)−2} ≤ max{(u − 1)2, (1/u − 1)2}.
Therefore,

Ri(x, θ) ≤ w2
i

2

(
p(x|θ)

pi−1(x)
− 1

)2

max
{

1,

(
1 + wi

(
p(x|θ)

pi−1(x)
− 1

))−2}

≤ w2
i

2
max

{(
1 − p(x|θ)

pi−1(x)

)2

,

(
1 − pi−1(x)

p(x|θ)

)2}
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and hence, by assumption A5,

E[Ei |Fi−1] =
∫
�

E[Ri(Xi, θ)|Fi−1]f (θ)μ(dθ) ≤ w2
i (1 + B).

By Fatou’s lemma and assumption A1,

E(T∞) ≤ lim inf
n

E(Tn) = lim inf
n

E

(
n∑

i=1

E[Ei |Fi−1]
)

≤ lim inf
n

(1 + B)

n∑
i=1

w2
i < ∞,

which proves T∞ is finite with probability 1.
Now rearrange the terms in (5) and use nonnegativity of Kn to get

n∑
i=1

wiMi ≤ K0 + Sn + Tn.(6)

It follows from the inequality logy ≤ y − 1 that Mi ≥ K∗
i ≥ 0. Therefore∑∞

i=1 wiMi exists but could be infinite. However, equation (6) implies

∞∑
i=1

wiMi ≤ K0 + S∞ + T∞ < ∞ a.s.(7)

The almost sure finiteness of the three series in (5) leads to the following important
result.

THEOREM 1. Under A1 and A5, Kn → K∞ a.s. for some random vari-
able K∞. Moreover, K∗

n → 0 a.s. on a (random) subsequence.

PROOF. The first assertion is a simple consequence of the finiteness of the
three series. The second observation follows since

∑∞
i=1 wiK

∗
i < ∞ almost surely

while
∑∞

i=1 wi = ∞. �

Next, define the quantities

gi,x(θ) = p(x|θ)fi−1(θ)

pi−1(x)
and hi,x′(x) =

∫
�

p(x|θ)gi,x′(θ)μ(dθ),

so that the recursive updates fi−1 �→ fi and pi−1 �→ pi are, respectively,

fi(θ) = (1 − wi)fi−1(θ) + wigi,Xi
(θ),

pi(x) = (1 − wi)pi−1(x) + wihi,Xi
(x).
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Therefore, as in the case of Kn, we could write

K∗
n − K∗

0 = −
n∑

i=1

∫
X

p(x) log
[
1 + wi

(
hi,Xi

(x)

pi−1(x)
− 1

)]
ν(dx)

=
n∑

i=1

∫
X

p(x)

[
wi

(
1 − hi,Xi

(x)

pi−1(x)

)
+ R∗

i (Xi, x)

]
ν(dx)

=
n∑

i=1

wiV
∗
i −

n∑
i=1

wiM
∗
i +

n∑
i=1

E∗
i ,

where

R∗
i (x′, x) = w2

i

(
hi,x′(x)

pi−1(x)
− 1

)2

R

(
wi

[
hi,x′(x)

pi−1(x)
− 1

])
,

E∗
i =

∫
X

R∗
i (Xi, x)p(x)ν(dx),

M∗
i = −E

[
1 −

∫
X

hi,Xi
(x)

pi−1(x)
p(x)ν(dx)

∣∣∣∣Fi−1

]

=
∫
X

∫
X

hi,x′(x)

pi−1(x)
p(x)p(x′)ν(dx)ν(dx′) − 1,

V ∗
i = 1 −

∫
X

hi,Xi
(x)

pi−1(x)
p(x)ν(dx) + M∗

i .

Proceeding as in the lead up to Theorem 1, it can be shown that each of∑∞
i=1 wiV

∗
i ,

∑∞
i=1 wiM

∗
i and

∑∞
i=1 E∗

i is finite almost surely. The required non-
negativity of M∗

i is established using Jensen’s inequality as follows:

M∗
i =

∫
X

∫
X

∫
� p(x|θ)p(x′|θ)fi−1(θ)μ(dθ)

pi−1(x)pi−1(x′)
p(x)p(x′)ν(dx)ν(dx′) − 1

=
∫
�

{∫
X

p(x|θ)

pi−1(x)
p(x)ν(dx)

}2

fi−1(θ)μ(dθ) − 1

≥
{∫

�

∫
X

p(x|θ)

pi−1(x)
p(x)ν(dx)fi−1(θ)μ(dθ)

}2

− 1

= 0.

From this we conclude the following.

THEOREM 2. Under A1 and A5, K∗
n → 0 a.s.

PROOF. It follows from the above discussion that K∗
n → K∗∞, almost surely,

for some random variable K∗∞. But we know from Theorem 1 that K∗
n → 0 a.s. on

a subsequence. These two together imply K∗∞ = 0 a.s. �
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It follows from the above theorem that pn → p in the L1 topology (also in
the topology of the Hellinger metric). We next show that under identifiability, L1

consistency of pn implies weak consistency of fn via a tightness argument. Since
this result requires no assumption on the construction of fn, it is presented in the
next theorem in more generality than required at the moment. We will see some
other use of it in the sequel.

THEOREM 3. Let F̃ and F̃n be probability measures on � with respective
mixture densities p̃(x) = ∫

p(x|θ)F̃ (dθ) and p̃n(x) = ∫
p(x|θ)F̃n(dθ). Suppose

p̃n → p̃ in L1. Then, under A2–A4, F̃n → F̃ in the weak topology.

PROOF. We first show that F̃n forms a tight sequence. Fix any ε > 0. It suffices
to show existence of a compact �0 ⊂ � such that F̃n(�0) > 1 − ε for sufficiently
large n. Take any compact X0 ⊂ X such that

∫
X0

p̃ dν > 1 − ε/2. By A4, there
exists a compact �0 such that

∫
X0

p(x|θ)ν(dx) < ε/2 for all θ /∈ �0. Now apply
the L1 convergence of p̃n to p̃ to conclude

1 − ε

2
<

∫
X0

p̃ dν = lim
n→∞

∫
X0

p̃n dν ≤ lim inf
n→∞

{
F̃n(�0) + ε

2
F̃n(�

c
0)

}
.

Thus, F̃n is tight and the final assertion will follow once we show every weakly
convergent subsequence F̃n(k) converges to F̃ . Now, if F̃n(k) → F̃ ∗ for some F̃ ∗ ∈
P(�) then, by assumption A3, p̃n(k) → p̃∗ pointwise and hence in the L1 topol-
ogy (via Scheffé’s theorem), where p̃∗(x) = ∫

p(x|θ)F̃ ∗(dθ). Therefore p̃∗ = p̃,
which, under A2, implies F̃ ∗ = F̃ . �

The following result precisely states what we have already proved regarding
consistency of fn.

COROLLARY 4. Under A1–A5, the estimate fn obtained from (2) converges
almost surely to f in the weak topology.

3. Averaging over permutations. It is easy to see that the permutation aver-
aged estimate f̄n can be written as f̄n = E[fn | X(1), . . . ,X(n)]. Let p̄n denote the
corresponding mixture density

pn(x) =
∫
�

p(x|θ)f̄n(θ)μ(dθ).

Then pn also satisfies pn = E[pn|X(1), . . . ,X(n)]. Therefore f̄n and pn produce
a Rao–Blackwellization of fn and pn, respectively, by making these functions of
the sufficient statistic—the order statistics. As one might guess, this results in a
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smaller expected error in estimation, when error is measured by a divergence d

that is convex in the estimate

Ed(f, f̄n) = Ed
(
f,E

[
fn|X(1), . . . ,X(n)

])
≤ E

{
E

[
d(f,fn)|X(1), . . . ,X(n)

]}
= Ed(f,fn)

and similarly, Ed(p,pn) ≤ Ed(p,pn). Examples of such divergence measures d

include the KL divergence and the L1 distance.
We next show that the above result leads to weak convergence of f̄n to f . How-

ever, we prove convergence only in probability and not almost surely. Recall that
Yn → Y in probability if and only if every subsequence nk contains a further subse-
quence nk(l) such that Ynk(l)

→ Y a.s., whenever the underlying topology is metriz-
able.

THEOREM 5. Under A1–A5, f̄n converges weakly to f in probability.

PROOF. From Theorem 2 it follows that ‖p − pn‖1 → 0 a.s. Since the L1
distance is bounded by 2, it follows by the dominated convergence theorem that
E‖p − pn‖1 → 0. Rao–Blackwellization implies E‖p − pn‖1 → 0 and, hence,
‖p −pn‖1 → 0 in probability. Take an arbitrary subsequence nk . It must contain a
further subsequence nk(l) such that ‖p−pnk(l)

‖1 → 0 a.s. Then Theorem 3 implies

that f̄nk(l)
→ f a.s. in the weak topology. The assertion follows since the weak

topology is metrizable. �

REMARK 6. Even for moderate n, there are too many permutations to com-
pute p̄n exactly, so the Monte Carlo estimate p̂n is used as a numerical approx-
imation. Therefore, what we can conclude from Theorem 5 is a sort of practical
consistency of p̂n; that is, for large n and sufficiently many random permutations,
p̂n ≈ p̄n and p̄n ≈ p, which implies p̂n ≈ p.

4. Simulations. The numerical results in [12, 22] show that fn performs well
in a variety of problems. In the following subsections we compare, more exten-
sively, the performance of the recursive estimate (RE) and the recursive estimate
averaged over permutations (PARE), starting with initial guess f0, with that of sev-
eral popular competitors, namely, the nonparametric maximum likelihood estimate
(MLE) and the nonparametric Bayes estimate (NPB) based on a Dirichlet process
prior with base measure f0 and precision constant set to 1. While RE and PARE
are easy to compute, computation of MLE and NPB is nontrivial. For the MLE,
we implement an efficient new algorithm of Wang [34]. To find NPB, we employ a
new importance sampling method, based on a collapsing of the Pólya Urn scheme;
see the Appendix. We set the following simulation parameters:
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• T = 100 samples of size n = 200 are taken from the model.
• For PARE, 100 random permutations of the data are selected.
• For RE and PARE, the weights satisfy wi = (i + 1)−1.
• For NPB, R = 10,000 importance samples are used; see (12).

The efficiency of our NPB algorithm is measured by the effective sample size
(ESS) [19]. For an importance sample of size R the ESS, given by

ESS = R

1 + var{ω∗
1, . . . ,ω

∗
R} ,

estimates the size of an “equivalent” i.i.d. sample from the posterior distribution
of f , where ω∗

r is a normalization of the weight ωr in (11).

REMARK 7. Estimation of a mixing distribution in the Dirichlet process mix-
ture (DPM) formulation is an extremely difficult problem. The current Monte
Carlo approaches for DPM models, including the one proposed in the Appendix,
are based on some sort of exploration of the space of clustering configurations of
the observations. Unfortunately, the conditional expectation of the mixing distribu-
tion, given the clustering, is highly variable; much more so than the conditional ex-
pectation of the mixture density. Consequently, one needs an thorough exploration
of the clustering space to obtain a reliable estimate of the mixing distribution. This
is nearly impossible to achieve in finite time as this space grows exponentially with
the number of observations.

4.1. Regular mixtures. In this subsection we will consider two regular mixture
models—regular in the sense that f is a density with respect to Lebesgue measure
and smooth on its interval of support—namely, the Beta–Normal (BN) and the
Gamma–Poisson (GP) mixtures

θi ∼ 1
3Beta(3,30) + 2

3Beta(4,4), Xi |θi ∼ N(θi, σ
2),(BN)

θi ∼ TruncGamma(2,0.4), Xi |θi ∼ Poisson(θi).(GP)

In each case, the samples are independent across i = 1, . . . , n. Here the usual
Gamma(2,0.4) distribution is truncated to � = [0,50]. One can easily check that
conditions A2–A5 are verified for these models; in particular, A5 follows immedi-
ately from the compactness of �. For (BN) we choose σ = 0.1 but our conclusions
hold for a range of σ containing 0.1. We also choose f0 to be a Unif(�) density in
each case.

Figures 1 and 2 display the estimates for model (BN) and (GP), respectively.
In each figure, the upper left-hand cell shows the four estimates for a randomly
selected run, while the other cells show the corresponding 100 estimates. The tra-
ditional estimates—MLE and NPB—of f are quite poor, with the MLE being
discrete and the NPB being very spiky; see Remark 7. Note that the average ESS
over the 100 datasets for the (BN) and (GP) models are 538 and 324, respectively.
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FIG. 1. Plots of the mixing density estimates (top row) and corresponding mixture density estimates
(bottom row) for model (BN). The upper left-hand cell shows all four mixing density estimates for
a randomly selected run, while the remaining cells show the true f or p (black) with the T = 100
estimates (gray).

On the other hand, RE and PARE are much more stable across samples. Moreover,
as expected from the Rao–Blackwellization, we see less variability in the PARE
than in the RE, in the sense that f̂n hugs the true f closer than does fn.

That the sampling distribution is discrete in model (GP) has an interesting impli-
cation. In Figure 2 there is a (false) peak at zero for the mixture density pn. This is
due to the fact that the data X1, . . . ,Xn were generated by replicating each value
according to its count. That is, the data sequence consists of all the 0s first, fol-
lowed by all the 1s, etc. Therefore, permutation is necessary for count data stored
in a particular deterministic order.

Table 1 displays the mean computation time (in seconds). In each case, the
computation time for PARE is significantly less than that of NPB. In the Beta–
Normal example, PARE is more than 10 times faster than the MLE, but the latter
is only slightly more efficient in the Gamma–Poisson example. One explanation
for this discrepancy is that PARE must process each Xi individually, whereas the
MLE allows for a reduction to the frequency table nx = #{i :Xi = x}, which can
result in a significant decrease in computation time, especially when the sample
size n is large.
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FIG. 2. Plots of the mixing density estimates (top row) and corresponding mixture density estimates
(bottom row) for model (GP). The upper left-hand cell shows all four mixing density estimates for
a randomly selected run, while the remaining cells show the true f or p (black) with the T = 100
estimates (gray).

Figure 3 summarizes the L1 distances L1(p, p̂) (left) as well as what we call
a bias-spread summary (right) for the 100 estimates in the two regular examples.
This bias-spread summary is similar to the traditional bias-variance decomposition
of mean-square error: if p̂nt is an estimate of p based on the t th sample (t =

TABLE 1
Mean computation time (in seconds) for PARE, MLE and NPB over the T = 100 samples. RE (not

displayed) is about 100 times faster than PARE

Model PARE MLE NPB

BN 0.14 1.11 43.77
GP 0.12 0.20 31.41



2514 S. T. TOKDAR, R. MARTIN AND J. K. GHOSH

FIG. 3. Summary of the L1 distance L1(p, p̂) (left column) and Bias–Spread tradeoff (right col-
umn) for models (BN) (top row) and (GP) (bottom row).

1, . . . , T ) of size n, then

Bias =
∫
X

|p̂n· − p|dν and Spread = 1

T

T∑
t=1

∫
X

|p̂nt − p̂n·|dν,(8)

where p̂n·(x) = T −1 ∑T
t=1 p̂nt (x) is the point-wise average of the T estimates of

p(x). We consider the sum of the bias and spread as a measure of overall variabil-
ity and look at how the two components contribute to the sum. In both examples,
PARE performs better in terms of overall variability, spread and, most importantly,
L1 loss. Compared to the other estimates, it appears that PARE does a better job
of simultaneously controlling bias and spread. In the Beta–Normal example, RE
also performs well. Due to the deterministic ordering issue mentioned above, RE
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performs quite poorly for (GP) and is not displayed. Note that these relative com-
parisons remain the same when the L1 distance is replaced by the KL divergence.

4.2. Irregular mixture. For an irregular mixture, we take f to have both
a discrete and an absolutely continuous component. In particular, consider the
Irregular–Normal (IN) mixture

θi ∼ 2
3δ{0} + 1

3TruncNormal(0,4), Xi |θi ∼ N(θi,1),(IN)

where the samples are independent across i = 1, . . . , n, δ{0} denotes a point-mass
at zero, and the usual N(0,4) distribution is truncated to � = [−10,10]. Note
that the choice of dominating measure μ is Lebesgue measure on � plus a unit
mass at zero. The initial guess/hyperparameter f0 is taken to be 1

2δ{0} + 1
2Unif(�)

density. In this subsection we focus on just the PARE and NPB estimates, the top
two performers in Section 4.1.

Figure 4 shows the 100 estimates of the the absolutely continuous part fac of
the mixing distribution as well as the corresponding estimates of the mixture. Just
as in Section 4.1, we see PARE has considerably less variability than NPB (with
an average ESS of about 330) on the θ -scale, while both perform comparably
on the x-scale. The left-most plot in Figure 5 summarizes the 100 estimates π̂

of π = Pr(θ = 0). Both procedures tend to overestimate π = 0.667 (horizontal
line). Most likely, this is because fac is also fairly concentrated around θ = 0. The
right two plots in Figure 5 summarize L1(p, p̂) and the bias-spread over the 100
samples. PARE, again, tends to be much more accurate under L1 loss: on average,
L1(p,pNPB) is about 34% larger than L1(p, p̂n). Also, PARE seems to handle the
twin bias-spread problems better than NPB.

4.3. Massive data example. The irregular mixture (IN) in Section 4.2 arises in
many important applications. In microarray analysis [29] or quantitative trait loci
(QTL) mapping [3], each θ represents the expression level of a single gene or the
association level of a single genetic marker, respectively. For the nonparametric
regression problem [4], the θ ’s represent coefficients of, say, a wavelet basis ex-
pansion of the regression function. In each example, the θ -vector is assumed to
be sparse in the sense that most of the θ ’s are zero. To account for sparseness,
a Bayesian formulation assumes that the θ ’s are independent observations from a
common prior distribution

F(dθ) = πδ{0}(dθ) + (1 − π)fac(θ) dθ.(9)

A fully Bayesian analysis can be difficult in these applications: the results are very
sensitive to the choice of hyperparameters (π,fac) [4, 29]. However, the dimen-
sion n of the θ -vector is quite large so an empirical Bayes approach [28] is a
popular alternative. It was shown in Section 4.2 that both the PARE and NPB can
be used to estimate (π,fac), but when n is extremely large, computation becomes
much more expensive, particularly for NPB.
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FIG. 4. Plots of the absolutely continuous parts of the mixing distributions (top row) and corre-
sponding mixture density estimates (bottom row) for model (IN). The true fac or p are shown in
black with the T = 100 estimates in gray.

We take a simulated dataset of size n = 50,000 from the model (IN) in Sec-
tion 4.2. Figure 6 shows the PARE and NPB estimates of (π,fac) in (9). Although
the PARE has two modes, it is a much closer approximation to the true fac com-
pared to the spiky NPB estimate. An important point is that, even with 10,000
importance samples, the ESS is only 1; see Remark 7. The estimates π̂ are also
displayed and π̂PARE = 0.733 and π̂NPB = 0.772 are both slightly larger than the
target π = 0.667. Figure 6 also shows the estimates p̂ of the marginal density p.
With n = 50,000, L1-consistency of pNPB [2, 11] and p̄n has kicked in, and that of
NPB and PARE follows by Remark 6. What is perhaps most important in massive
data problems—where almost any estimate will perform well—is computational
efficiency. Here, the PARE was obtained in 45 seconds, while the NPB estimate
took nearly 6 hours.
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FIG. 5. Summary of the estimates of π = Pr(θ = 0) (left), summary of the L1 distance L1(p, p̂)

(middle) and Bias–Spread tradeoff (right) for model (IN).

Evidence suggests that PARE is a much better procedure than NPB in this prob-
lem for an empirical Bayes analysis. Compared to NPB, the PARE algorithm is
easier to implement, the computation is significantly faster, and the resulting esti-
mates of (π,fac) are much more accurate.

5. Discussion. The previous analyses in [12, 20] fell short of proving strong
consistency of recursive estimate fn in the general case, each only establishing
convergence for the case of known and finite �. Here a more general theorem is
proved by extending the martingale approach taken by Ghosh and Tokdar [12],

FIG. 6. Plot of the absolutely continuous part of the mixing distribution (left) and corresponding
mixture density estimates (right) for model (IN) in the massive data example.
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namely, by extending the approximate martingale representation of K(f,fn) on
the �-space to K(p,pn) on the X-space. That the KL is the appropriate diver-
gence measure to use for our purposes is not immediately clear, but the stochas-
tic approximation representation of Newton’s algorithm for known finite � along
with the Lyapunov function properties of the KL divergence shown in Martin and
Ghosh [20], show that the KL divergence is, indeed, quite natural. This stochastic
approximation representation of the recursive algorithm in [20] continues to hold
for more general � and we speculate that an alternative proof of convergence can
be given based on this fact. Unfortunately, definitive, ready-to-use results on con-
vergence of stochastic approximation algorithms in such general spaces are, to our
knowledge, not yet available.

The failure of these previous analyses [12, 20] suggested that sample paths of
the recursive estimate were, in some sense, unstable. In keeping with the stochastic
approximation representation of the algorithm, we considered a stabilized version
of fn, namely,

fn:W =
∑n

i=1 wifi∑n
i=1 wi

,

which is a weighted average of the iterates fi of the recursive algorithm. This tech-
nique of averaging the iterates, common in the stochastic approximation literature,
can often improve stability properties of the algorithm, such as decreasing the vari-
ance of an estimate reached in finite time or increasing the rate of convergence; see,
for example, Kushner and Yin [15]. While fn:W performs quite poorly compared
to fn in the cases we considered, it was in proving fn:W → f that Theorem 3 was
discovered, opening the door to the consistency results presented in Section 2.

In simulations (including others not presented here), we have observed that fn

converges quite rapidly to the true mixing density f . For weights of the form
wi = (iα + 1)−1 for α ∈ (0.5,1], the convergence was typically fastest for α = 1.
These simulation results, together with the stochastic approximation representa-
tion [20] of the recursive algorithm and the well-known results on convergence
of stochastic approximation algorithms [15], suggest the following conjecture:
K∗

n = OP (w
β
n ) for some β ∈ (0,1). While the numerical evidence is consistent

with this conjecture, the rate of convergence remains an open problem.
A drawback of the recursive algorithm is that it cannot handle an additional

unknown parameter ξ in p(·|θ), such as an unknown ξ = σ 2 when p(·|θ) is
a N(θ,σ 2) density. Martin and Ghosh [20] tackle this problem when replicates
Xi1, . . . ,Xir are available from p(·|θi, ξ). The general idea is to use a suitable es-
timate ξ̂i = ξ̂ (X1, . . . ,Xi) of ξ , based on the first i observations, as a plug-in in
the update fi−1 �→ fi in 2. This procedure has performed well in a variety of sim-
ulations but convergence results are known only for the case of finite � [20]. The
proof of convergence in [20] is based on a stochastic approximation representation
of the algorithm and, therefore, does not easily extend to more general �.
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The numerical illustrations given here, as well as in [12, 20, 22], suggest that
RE and PARE perform quite well in a variety of problems compared to other al-
ternatives, such as MLE or NPB. While these alternatives are popular and have
well-known convergence properties, which provide practical and theoretical justi-
fication for their use in applications, they lack the computational efficiency of the
recursive algorithm and often produce very poor estimates. Even if one insists on
a more traditional analysis, RE or PARE could be used in a computationally inex-
pensive preliminary analysis [26] to help choose an appropriate model to be fit to
the observed data.

The theoretical results of the present paper establish the consistency properties
the recursive algorithm was lacking which, combined with its generality, strong
finite-sample performance and speedy computation, should put fn and f̂n among
the front-runners of mixing density estimates.

APPENDIX: A NEW ALGORITHM FOR NPB

Consider the Dirichlet process mixture (DPM) model

xi |θi ∼ p(·|θi), θi |f ∼ f, f ∼ D(c, f0),

independently for i = 1, . . . , n, where p(x|θ) is the likelihood function, the density
f on � is the parameter of interest, and D(c, f0) is a Dirichlet process distribution
with precision parameter c > 0 and base density f0. Ferguson [10] shows that if
the θi ’s were observed, then the posterior distribution f is easily obtained. How-
ever, special techniques such as data augmentation [32], are needed when only the
indirect observations x1, . . . , xn are available. In this section, we briefly outline a
new approach to this problem.

In this approach, the mixing parameters θi ’s are collapsed onto only the cluster-
ing configuration s = (s1, . . . , sn), where si’s are defined sequentially as follows:
s1 = 1 and, for i = 2, . . . , n

si =
{

sj , if there is a j < i such that θi = θj ,
1 + max

j<i
sj , otherwise.

Like in Liu [19], the basic idea is to sequentially generate from

p(st |x1, s1, . . . , xt−1, st−1, xt ), t = 1, . . . , n(10)

and calculate the importance weight

ω = p(x1)

n∏
t=2

p(xt |x1, s1, . . . , xt−1, st−1).(11)

The current method differs from that of Liu [19] in two important ways. First,
simulation of s in 10 requires no advanced sampling techniques while the compu-
tational complexity of Liu’s step (A) is problem-specific. Second, the conditional



2520 S. T. TOKDAR, R. MARTIN AND J. K. GHOSH

mean f (s) = E(f |x, s) of the mixing density given the data x and the clustering
configuration s can be easily calculated:

f (s) = 1

c + n

[
cf0 +

M∑
�=1

n�f
(�)

]
,

where M = maxj sj is the total number of clusters, n� = #{j : sj = �} are the clus-
ter sizes and f (�) are the cluster specific “parametric” posterior mean densities
given by

f (�)(θ) ∝ ∏
j :sj=�

p(xj |θ)f0(θ).

These calculations are summarized in the following algorithm.

1. Set M = 1, s1 = 1, n1 = 1,

f (1)(θ) = p(x1|θ)f0(θ)∫
p(x1|θ ′)f0(θ ′)μ(dθ ′)

and ω =
∫

p(x1|θ)f0(θ)μ(dθ).

2. For i = 2, . . . , n repeat
(a) Set q0 = c

∫
p(xi |θ)f0(θ)μ(dθ) and compute

q� = n�

∫
p(xi |θ)f (�)(θ)μ(dθ), � = 1, . . . ,M.

(b) Update ω ← ω
∑M

�=0 q�/(c + i − 1).
(c) Draw m from {0,1, . . . ,M} with probabilities (p0,p1, . . . , pM) where

p� ∝ q�.
(d) If m = 0, then update M ← M + 1, set si = M , nM = 1 and

f (M)(θ) = p(xi |θ)f0(θ)∫
p(xi |θ ′)f0(θ ′)μ(dθ ′)

.

Otherwise, set si = m and update nm ← nm + 1 and

f (m)(θ) ← p(xi |θ)f (m)(θ)∫
p(xi |θ ′)f (m)(θ ′)μ(dθ ′)

.

Steps 1 and 2 are repeated R times independently, producing estimates f (sr ) and
weights ωr , for r = 1, . . . ,R. Then, based on the identity fNPB = E[f (s)], the
posterior mean is approximated by the weighted average

fNPB = 1

ω1 + · · · + ωR

R∑
r=1

ωrf
(sr ).(12)

Note, finally, that permuting the observations x1, . . . , xn before each of these R

iterations can greatly improve the efficiency of the algorithm.
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