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ASYMPTOTIC THEORY FOR THE SEMIPARAMETRIC
ACCELERATED FAILURE TIME MODEL WITH MISSING DATA

BY BIN NAN,1 JOHN D. KALBFLEISCH AND MENGGANG YU

University of Michigan, University of Michigan and Indiana University

We consider a class of doubly weighted rank-based estimating methods
for the transformation (or accelerated failure time) model with missing data
as arise, for example, in case-cohort studies. The weights considered may
not be predictable as required in a martingale stochastic process formula-
tion. We treat the general problem as a semiparametric estimating equation
problem and provide proofs of asymptotic properties for the weighted es-
timators, with either true weights or estimated weights, by using empirical
process theory where martingale theory may fail. Simulations show that the
outcome-dependent weighted method works well for finite samples in case-
cohort studies and improves efficiency compared to methods based on pre-
dictable weights. Further, it is seen that the method is even more efficient
when estimated weights are used, as is commonly the case in the missing
data literature. The Gehan censored data Wilcoxon weights are found to be
surprisingly efficient in a wide class of problems.

1. Introduction. Instead of modeling the hazard function for censored sur-
vival data, as in the Cox model [6], modeling the (transformed) failure time di-
rectly is sometimes appealing to practitioners since it postulates a simple relation-
ship between the response variable and covariates with easily interpretable para-
meters. Let T denote the failure time transformed by a known monotone func-
tion h, C be the corresponding transformed censoring time, � = 1(T ≤ C) and
Y = min(T ,C), where 1(·) denotes an indicator function. The model of interest is

Ti = θ ′
0Zi + ei, i = 1, . . . , n,(1.1)

where the ei’s are independent and identically distributed (i.i.d.) with unknown
distribution F , and ei is independent of (Zi,Ci) for all i. When h = log, the model
is called the accelerated failure time model (see, e.g., [12]).

For a cohort of n i.i.d. observations of Xi = (Yi,�i,Zi), i = 1, . . . , n, [4] pro-
posed an imputation type of least squares method, where the censored survival
time is replaced by an estimate of the mean residual life conditional on the co-
variates, which is obtained from the Kaplan–Meier estimator on the residual scale.
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Stute [24, 25] proposed a weighted least squares method with weights obtained
from the Kaplan–Meier estimator for the transformed survival time. [21, 26] and
[30], among others, studied the rank-based estimating method and proved the as-
ymptotic properties using martingale theory for counting processes.

In this article, we consider a general rank-based estimating method for model
(1.1) in the presence of missing data as arise, for example, in case-cohort studies
(e.g., [19, 23]) where data are missing by design. Specifically, let Zi = (Z′

1i ,Z
′
2i)

′
and assume that Z1i is missing at random (see [14]), while Z2i , Yi and �i are al-
ways observed for all i. The situations where Zi = Z1i for all i, or where Z2i is not
included in model (1.1), are special cases. In the latter of these special cases, Z2i

is usually called an auxiliary variable in the missing data literature. The approach
in this article extends the work of [16] for case-cohort studies, where weights are
predictable and the counting process approach of [26] applies. It can be applied
to general two-phase outcome-dependent sampling designs for censored survival
data and allows the use of nonpredictable weights that can yield more efficient
parameter estimates. The proof of efficiency gains from using estimated weights,
even though the true weights are given, similarly follows the approach of [18].

This article is organized as follows. In Section 2, we introduce the doubly
weighted rank-based estimating method with arbitrary weights (i.e., either pre-
dictable or nonpredictable), and link the proposed estimating function to a semi-
parametric framework that is more suitable for applying empirical process theory.
Methods based on both known weights and estimated weights are considered. We
describe asymptotic properties of the proposed estimators in Section 3, with de-
tailed proofs given in Section 6. In Section 4, we discuss the asymptotic efficiency
and some simulation results that compare methods of using predictable weights
and nonpredictable weights and methods of using known weights and estimated
weights. We make a few concluding remarks in Section 5.

2. Doubly weighted semiparametric estimating function. For the ith sub-
ject, Z2i , Yi and �i are always observed. Let Ri be the missing data indicator that
takes value 1 if Z1i is also observed and 0 otherwise. Suppose that Z1i is missing
at random, so that

πi = Pr(Ri = 1|Zi,Yi,�i) = Pr(Ri = 1|Z2i , Yi,�i)

for each i. This holds, for example, when independent Bernoulli sampling is im-
plemented in a two-phase sampling design that includes the case-cohort study as a
special case.

To estimate θ0 in model (1.1), we follow [15] and define the following random
map

�n(θ, η,ρ) = 1

n

n∑
i=1

ψ(Xi; θ, η,ρ)

(2.1)

= 1

n

n∑
i=1

	iρ(Yi − θ ′Zi, θ){Zi − η(Yi − θ ′Zi, θ)}�i,
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where θ ∈ 
 ⊂ R
d is the d-dimensional Euclidean parameter of interest with un-

known true value θ0, and η and ρ are real valued (vectors of) functions that can be
viewed as infinite dimensional nuisance parameters.

When η(t, θ) is replaced by an estimator of the true function (see [21])

η0(t, θ) = E{1(Y − θ ′Z ≥ t)Z}
E{1(Y − θ ′Z ≥ t)} ,

with η0(t, θ0) = E(Z|Y − θ ′
0Z ≥ t), random map (2.1) becomes a weighted esti-

mating function for θ , where 	i are subject specific weights and ρ(t, θ) is a weight
function. Clearly such an estimating function is semiparametric.

To be more general, we assume that the true functional forms of η and ρ are
unknown and need to be estimated, and study the estimating function �n(θ, η̂n, ρ̂n)

with

η̂n(t, θ) =
∑n

j=1 Wj 1(Yj − θ ′Zj ≥ t)Zj∑n
j=1 Wj 1(Yj − θ ′Zj ≥ t)

,(2.2)

where Wj are subject specific weights that may or may not equal 	j . This is the
source of the term “double weights” (see [31]); the purpose of introducing two
possibly different subject specific weights will soon become clear. A particularly
interesting weight function ρ(t, θ) is taken to be ρ0(t, θ) = Pr(Y − θ ′Z ≥ t), and
it can be estimated by

ρ̂n(t, θ) =
∑n

j=1 Wj 1(Yj − θ ′Zj ≥ t)∑n
j=1 Wj

,(2.3)

a weighted Gehan-type weight. This type of weight provides a very desirable prop-
erty. The corresponding estimating function �n(θ, η̂n, ρ̂n) is monotone in θ . See
[31] for the detailed derivation.

In this article, we focus on the estimator of θ obtained from the estimating
function �n(θ, η̂n, ρ̂n), where η̂n is given in (2.2). The estimator ρ̂n can be more
flexible, but we will be particularly interested in the one given by (2.3). Using
two possibly different sets of subject specific weights 	i and Wi in �n(θ, η̂n, ρ̂n)

yields great flexibility that covers a broad range of problems. The following are a
few examples:

(i) When ρ = 1 and 	i = Wi = 1 for all i, (2.2) becomes

η̂n(t, θ) =
∑n

j=1 1(Yj − θ ′Zj ≥ t)Zj∑n
j=1 1(Yj − θ ′Zj ≥ t)

,

and the estimating function �n(θ, η̂n,1) becomes the rank-based estimating func-
tion studied by [26] and [29], among others. [26] and [30] proved asymp-
totic linearity of �n(θ, η̂n,1) and thus normality of the estimator obtained from
�n(θ, η̂n,1) = 0 using a stochastic integral formulation and martingale theory for
counting processes.
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(ii) When ρ̂n takes the form in (2.3) and 	i = Wi = 1 for all i, �n(θ, η̂n, ρ̂n)

becomes the estimating function of [26] with Gehan weights. The monotonicity of
such an estimating function was studied by [7].

(iii) When ρ̂n takes the form in (2.3) and 	i = 1, Wi = 1(i ∈ SC)/Pr(i ∈ SC)

for all i where SC denotes the set of labels of the subcohort in a case-cohort study,
�n(θ, η̂n, ρ̂n) becomes the estimating function of [16] with generalized Gehan-
type weights.

(iv) When ρ̂n takes the form in (2.3) and 	i = 1, Wi = Ri/πi for all i, where
πi depends on �i , �n(θ, η̂n, ρ̂n) becomes an extension of the estimating function
of [31] (where the authors focused on numerical aspects and did not provide as-
ymptotic properties). The weights 	i = 1 and Wi = Ri/πi have been applied to
case-cohort studies to potentially improve efficiency in the Estimator II of [2] as
well as in [5, 13] for the Cox model.

(v) When 	i = Wi = Ri/πi , the estimating function �n(θ, η̂n, ρ̂n) can be ap-
plied to a general missing data problem with covariate Z1i missing at random. This
arises, for example, in a two-phase sampling design and yields an estimator that is
similar to that proposed in [20] and further studied by [3] for the Cox model.

In examples (i), (ii) and (iii), the estimating functions can be formulated as mar-
tingales, and the related theory applies. In the last two situations, however, weights
	i and/or Wi depend on �i , particularly in case-cohort studies, and, thus, are not
predictable. There is no martingale representation of these weighted estimating
functions. Further complications are: (1) the estimating function �n(θ, η̂n, ρ̂n) is
a nonsmooth function of θ , so that the methods developed for smooth estimating
functions based on Taylor expansions do not apply; and (2) the nuisance para-
meters η and ρ are explicit functions of θ , whereas usual semiparametric models
assume that nuisance parameters do not vary with the parameter of interest.

Our simulation study shows a substantial efficiency gain when such outcome-
dependent weights are used and more efficiency gain when the known weights are
estimated from observed data. This latter result has been often noted (see, e.g.,
[3, 11, 18, 22], among many others). For these reasons, it is desirable to rigorously
investigate the theoretical properties of the estimators obtained from the estimating
function �n(θ, η̂n, ρ̂n) with both known and estimated flexible weights.

3. Asymptotic properties. Assume that the observed data are i.i.d. In addi-
tion to Conditions 1–3 in [30] (also assumed in [26]), we assume Conditions (A)
and (B) below and derive asymptotic properties of the estimator obtained from
the weighted estimating function �n(θ, η̂n, ρ̂n). In particular, these results ap-
ply when η̂n is given by (2.2) and ρ̂n takes the form (2.3), which estimates
ρ0 = Pr(Y − θ ′Z ≥ t) with either true weights Wi or their estimates Ŵi . Our
method does not depend on stochastic integrals and, hence, does not require pre-
dictability of the weights. So, it applies to a much broader range of estimating
functions. Note that η̂n(t, θ) in (2.2) and ρ̂n(t, θ) in (2.3) are not differentiable
in θ .
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CONDITION (A). There exist constants τ < ∞ and ξ , such that Pr(Y − θ ′Z ≥
τ) ≥ ξ > 0 for all Z and θ ∈ 
.

CONDITION (B). The selection probability π = Pr(R = 1|Z2, Y,�) ≥ ζ > 0
for all Z2, Y and � for some constant ζ .

Condition (A) follows an assumption in equation (3.1) of [26]. Condition (B) is
a common assumption in the missing data literature and guarantees that the inverse
selection probability weights are bounded. Using empirical process theory, we fol-
low the idea of [26] and [30] to show the asymptotic linearity of �n(θ, η̂n, ρ̂n)

in θ in a neighborhood of the true value θ0. We adopt the empirical process no-
tation of [27]. In particular, for a function f of a random variable U that follows
distribution P , we define

Pf =
∫

f (u)dP (u),

Pnf = n−1
n∑

i=1

f (Ui),

Gnf = n−1/2(Pn − P)f

and refer all the details to the reference. Throughout the article, we assume that 	i

and Wi are bounded and satisfy E(	i |Xi) = E(Wi |Xi) = 1, for all i, and set εθ =
Y − θ ′Z and ε0 = Y − θ ′

0Z.

3.1. Using true weights. Consistency and rate of convergence of the proposed
estimator θ̂n for general η and ρ are given in Theorems 3.1 and 3.2, respectively.
Asymptotic normality of θ̂n obtained from the estimating function �n(θ, η̂n, ρ̂n),
with η̂n and ρ̂n taking the forms in (2.2) and (2.3), is given in Theorem 3.3. Proofs
are deferred to Section 6.

THEOREM 3.1. Denote �(θ,η,ρ) = P [ρ(εθ , θ){Z − η(εθ , θ)}�]. Let 
, the
parameter space of θ , be compact, assume that θ0 ∈ 
 is the unique solution of
�(θ,η0, ρ0) = 0 and let ‖ · ‖ be the supremum norm. If ‖η − η0‖ ≤ δn and ‖ρ −
ρ0‖ ≤ δn with δn ↓ 0, where η, η0, ρ and ρ0 belong to Glivenko–Cantelli classes
and are bounded, then:

(i) In outer probability,

‖�n(θ, η,ρ) − �(θ,η0, ρ0)‖ → 0;(3.1)

(ii) An approximate root θ̂n satisfying �n(θ̂n, η(·, θ̂n), ρ(·, θ̂n)) = op∗(1) is
consistent;

(iii) When η̂n and ρ̂n are given respectively by (2.2) and (2.3), an approximate
root θ̂n satisfying �n(θ̂n, η̂n(·, θ̂n), ρ̂n(·, θ̂n)) = op∗(1) is consistent.
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THEOREM 3.2. Let 
0 ⊂ 
 be a neighborhood of θ0, ‖ · ‖0 be the supre-
mum norm in 
0 and η̂n be as in (2.2). Assume that ‖ρ̂n − ρ0‖0 = Op∗(n−1/2),
and assume that both ρ̂n and ρ0 are bounded and belong to a Donsker class.
Let θ̂n be an approximate root satisfying �n(θ̂n, η̂n(·, θ̂n), ρ̂n(·, θ̂n)) = op∗(n−1/2).
Suppose �(θ,η0(·, θ), ρ0(·, θ)) is differentiable with bounded continuous deriva-
tive �̇θ (θ, η0(·, θ), ρ0(·, θ)) in 
0, and �̇θ (θ0, η0(·, θ0), ρ0(·, θ0)) is nonsingular.
Then, ‖η̂n − η0‖0 = Op∗(n−1/2) and |θ̂n − θ0| = Op∗(n−1/2). Finally, if ρ̂n takes
the form in (2.3) and ρ0(t, θ) = Pr(εθ ≥ t), then the above conditions for ρ̂n and
ρ0 are satisfied.

In the proofs of the above theorems, given in Section 6, we apply the perma-
nence of the Donsker property under closures and convex hulls (see [27]) to show
that (2.2) and (2.3) and their limits are Donsker. A variety of sufficient conditions
for Donsker classes of functions are provided in [27].

When η̂n takes the form in (2.2), the estimating function �n(θ, η̂n, ρ̂n) is dis-
continuous in θ . In the case of full cohort data with 	i = Wi = 1 for all i, [21, 26,
30] showed, with considerable effort, the asymptotic linearity of �n(θ, η̂n,1), in a
neighborhood of the true parameter θ0, in order to prove asymptotic normality. [16]
had equally complicated arguments for asymptotic linearity in case-cohort studies
where the weights Wi do not depend on �i . We avoid the stochastic integral for-
mulation and apply empirical process theory to show the asymptotic linearity of
�n(θ, η̂n(·, θ), ρ̂n(·, θ)) around θ0 for the class of missing data problems consid-
ered here. In Theorem 3.3, we focus on the situation where η̂n and ρ̂n are, respec-
tively, given by (2.2) and (2.3). For other types of bounded weight functions ρ̂n and
ρ0, proofs of asymptotic normality follow the same steps, and the same asymptotic
representation should hold if {ρ̂n} and {ρ0} are Donsker and ρ̂n is an asymptotic
linear estimator. This approach takes care of both predictable and nonpredictable
weights.

THEOREM 3.3. Let η̂n and ρ̂n be as in (2.2) and (2.3). Let θ̂n be an approx-
imate root satisfying �n(θ̂n, η̂n(·, θ̂n), ρ̂n(·, θ̂n)) = op∗(n−1/2). Let Y and Z de-
note the sample spaces of random variables Y and Z, respectively. Suppose that
ρ0(εθ , θ) and η0(εθ , θ) are differentiable in θ with derivatives ρ̇0θ and η̇0θ , which
are uniformly bounded and continuous in 
0 × Y × Z. Note that this implies that
�(θ,η0(·, θ), ρ0(·, θ)) is differentiable in θ with bounded continuous derivative
�̇θ (θ, η0(·, θ), ρ0(·, θ)) in 
0. Then, we have the following:

(i) The asymptotic linearity

n1/2�n(θ̂n, η̂n(·, θ̂n), ρ̂n(·, θ̂n))

= n1/2�n(θ0, η̂n(·, θ0), ρ̂n(·, θ0))(3.2)

+ n1/2(θ̂n − θ0)�̇θ (θ0, η0(·, θ0), ρ0(·, θ0)) + op∗(1)

holds;
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(ii) If �̇θ (θ0, η0(·, θ0), ρ0(·, θ0)) is nonsingular, then n1/2(θ̂n − θ) is asymptot-
ically normal with the asymptotic representation

n1/2(θ̂n − θ0) = {−�̇θ (θ0, η0(·, θ0), ρ0(·, θ0))}−1

· Gn

[
	ρ0(ε0, θ0){Z − η0(ε0, θ0)}�

(3.3)

−
∫

Wρ0(t, θ0){Z − η0(t, θ0)}1(ε0 ≥ t) d�0(t)

]

+ op∗(1).

REMARK. As becomes clear in the proof of Theorem 3.3, the asymptotic rep-
resentation (3.3) is the same if the weight function ρ0(t, θ) is known, and, in fact,
such a property does not depend on what ρ0(t, θ) is. This finding is consistent
with the claim in Section 4 of [26]. Equation (3.3) reduces to the result of [16] for
predictable W when 	 = 1 and ρ0(t, θ) = 1. The variance estimator for θ̂n can be
obtained following the method described in [16] based on the asymptotic represen-
tation (3.3) and the original idea of [9]. Alternative variance estimation methods
can be found in [10, 17]. Later, in Section 4.1, we show that letting 	 = W yields
more efficient estimation for the example of a case-cohort study.

3.2. Using estimated weights. In Theorems 3.1, 3.2 and 3.3, the subject-
specific weights Wi and 	i are assumed to be known. This is a reasonable as-
sumption for many types of sampling designs when weights are the inverse of
sampling probabilities, because sampling probabilities are usually prespecified by
investigators. In the missing data literature, many authors (e.g., [22] and [3]) have
pointed out that using the estimated weights improves the asymptotic efficiency,
even though the true weights are known. Suppose true weights Wi are parameter-
ized by α with true value α0; that is,

Wi ≡ W(Xi;α0), i = 1, . . . , n.

Let α̂n be an estimator of α. Then, we can estimate Wi by

Ŵi = W(Xi; α̂n), i = 1, . . . , n.

In this subsection, we take 	i = Wi , i = 1, . . . , n, for simplicity, and we con-
sider the asymptotic properties of the estimator θ̂∗

n , which are obtained from the
following semiparametric estimating function with estimated weights:

�∗
n(θ, η̂∗

n, ρ̂
∗
n) = 1

n

n∑
i=1

Ŵi ρ̂
∗
n(Yi − θ ′Zi, θ){Zi − η̂∗

n(Yi − θ ′Zi, θ)}�i,(3.4)

where

η̂∗
n(t, θ) =

∑n
j=1 Ŵj 1(Yj − θ ′Zj ≥ t)Zj∑n

j=1 Ŵj 1(Yj − θ ′Zj ≥ t)
(3.5)
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and

ρ̂∗
n(t, θ) =

∑n
j=1 Ŵj 1(Yj − θ ′Zj ≥ t)∑n

j=1 Ŵj

.(3.6)

This case 	i = Wi handles the case-cohort study, naturally, when inverse sam-
pling probability weights are used for which 	i = Wi = 1 whenever �i = 1. Note
that the estimating function (3.4) is obtained by replacing known weights Wi with
their estimates Ŵi in �n(θ, η̂n, ρ̂n), η̂n and ρ̂n; see (2.2) and (2.3). As in Theo-
rem 3.3, the following result holds for other types of bounded weight function ρ0
and estimator ρ̂∗

n , provided that {ρ̂∗
n} and {ρ0} are Donsker, and that ρ̂∗

n , as a func-
tion of α, is an asymptotically linear estimator that is twice continuously differen-
tiable in α with the first-order derivative converging to an integrable limit at α0.
The latter remark becomes clear in the proof of the next theorem.

We now consider consistency and asymptotic normality of θ̂∗
n in Theorem 3.4

with a reasonable assumption about α̂n and a classical smoothness condition for
W(X;α) in α. The efficiency gain from using estimated weights becomes evident.

THEOREM 3.4. Suppose that W(X;α) is twice differentiable, with respect
to α, in A0 × X with continuous and bounded derivatives, where A0 is a neigh-
borhood of α0 and X is the bounded sample space of the random variable X. Sup-
pose that α̂n is an asymptotically efficient estimator of α with bounded influence
function at α0. Let η̂∗

n and ρ̂∗
n be defined by (3.5) and (3.6), and let θ̂∗

n be an ap-
proximate root satisfying the equation �∗

n(θ̂∗
n , η̂∗

n(·, θ̂∗
n ), ρ̂∗

n(·, θ̂∗
n )) = op∗(n−1/2).

Suppose that all the assumptions in Theorem 3.3 hold. Then, θ̂∗
n is consistent, and

n1/2(θ̂∗
n −θ0) is asymptotically normal with zero mean and the asymptotic variance

�0 − {�̇θ (θ0, η0, ρ0)}−1BV0B
′{�̇θ (θ0, η0, ρ0)}−1,(3.7)

where �0 is the asymptotic variance of n1/2(θ̂n − θ0) determined by (3.3), V0 is
the asymptotic variance of n1/2(α̂n − α0), and

B = P [ρ0(ε0, θ0)A2(ε0, θ0)�] − P [ρ0(ε0, θ0){Z − η0(ε0, θ0)}(Ẇα(X;α0))
′�],

with Ẇα(X;α) denoting the α-derivative of W(X;α) and

A2(t, θ0) = 1

ρ0(t, θ0)
[P {1(ε0 ≥ t)Z(Ẇα(X;α0))

′}

− η0(t, θ0)P {(Ẇα(X;α0))
′1(ε0 ≥ t)}].

Note that, if ρ̂∗
n = ρ̂n = 1, then ρ0(t, θ0), in the above expression for A2, should

be replaced by P {1(ε0 ≥ t)}. The asymptotic efficiency of α̂n is one of three suf-
ficient conditions for applying the result of [18] to obtain the above asymptotic
normality of θ̂∗

n . When data are missing at random and inverse sampling prob-
ability weights are considered, the parameter α is adaptive to other parameters
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(see [1]) and its efficient estimator can be easily obtained, for example, by the max-
imum likelihood method. In sampling designs, a stratified approach is commonly
used to improve efficiency. If the number of strata is finite, then the (independent
Bernoulli) sampling probabilities within strata consist of the parameter α, and the
sampling fractions are the maximum likelihood estimates of α.

The other two conditions of [18] are: (i) n1/2(θ̂n − θ0) and n1/2(α̂n − α0) are
asymptotically jointly normal; and (ii) n1/2(θ̂∗

n −θ0) is asymptotically equivalent to
n1/2(θ̂n −θ0)+Bn1/2(α̂n −α0). The former is determined by (3.3) in Theorem 3.3
and the fact that α̂n is an asymptotically linear estimator. The latter is established
with a detailed proof in Section 6.

Consider a stratified case-cohort study. Suppose that all the censored subjects
in a study cohort are divided into S strata by the variable Z2 ∈ {ζ1, . . . , ζS}. In
a stratified case-cohort study, all of the failures are completely observed. For
censored subjects, we denote the true sampling probabilities by α0s , 1 ≤ s ≤ S.
Suppose that there are ns subjects in stratum s, out of whom n∗

s are selected
into the subcohort by the independent Bernoulli sampling. We assume that, when
n → ∞, ns/n → γs > 0, 1 ≤ s ≤ S. Instead of using the true sampling probabili-
ties α0 = (α01, . . . , α0S)′ in the weight function W , we now replace each α0s with
the sampling fraction α̂n,s = n∗

s /ns , 1 ≤ s ≤ S. We can then denote the sampling
probability and its estimator of the ith subject as

πi =
S∑

s=1

1(Z2i = ζs)α0s and π̂i =
S∑

s=1

1(Z2i = ζs)α̂n,s .

We consider the inverse sampling probability weights

W(Xi; α̂n) = �i + (1 − �i)
1(i ∈ SC)

π̂i

.

The second term in the expression for matrix B in Theorem 3.4 becomes zero,
since Ẇα contains the factor (1 − �). The asymptotic variance of α̂n is V0 =
diag{α01(1 − α01)/γ1, . . . , α0S(1 − α0S)/γS}, which can be easily estimated from
observed data.

4. Numerical results.

4.1. Asymptotic efficiency comparison. Considering the standard normal,
standard logistic and standard extreme value error distributions in model (1.1),
we evaluate asymptotic efficiency under a case-cohort setting to illustrate different
extents of efficiency gain by using different weights. The one-dimensional covari-
ate Z is taken to follow a Bernoulli distribution with success probability 0.3 and
θ0 = 0. Censoring time has a uniform distribution on [a, b], where a and b are
chosen to obtain 80% censoring proportion. Let Z∗ be a binary correlate of Z with
Pr(Z∗ = 1|Z = 1) = 0.8 and Pr(Z∗ = 0|Z = 0) = 0.8. The subcohort is a stratified
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subsample selected by independent Bernoulli sampling with selection probability
π(Z∗), chosen so that the two strata determined by Z∗ have the same expected
number of subjects.

For each error distribution, we consider a 23 factorial design with the following
factors:

• logrank weights (ρ̂n = 1) and Gehan weights [see (2.3)];
• subject specific weight: predictable with Wi = 1(i ∈ SC)/πi and nonpredictable

with Wi = �i + (1 − �i)1(i ∈ SC)/πi ;
• subject specific weights: true Wi = W(Xi;α0) and estimated Ŵi = W(Xi; α̂n).

The asymptotic variance of logrank weighted method for the full cohort is used
as the benchmark, and we report the relative efficiency for each of the 8 scenar-
ios with subcohort size fraction ranging from 1% to 100%. Results are given in
Figures 1–3, where: (1) dark curves represent logrank weights, and gray curves
represent Gehan weights; (2) solid curves represent predictable known weights,
and dotted curves represent predictable estimated weights; and (3) dashed curves
represent nonpredictable known weights, and dotted/dashed curves represent non-
predictable estimated weights.

We can see that using estimated weights W(Xi; α̂n) does not improve efficiency
very much compared to using true weights W(Xi;α0) for the settings considered.
The efficiency gain from using the nonpredictable weights is substantial, especially
for small to moderate sampling rates. An interesting feature is that when the subco-
hort size is relatively small, the Gehan weighted method performs much better than
the logrank weighted method for all three error distributions, even though the re-
sult is opposite when subcohort size is close to the full cohort for both logistic and

FIG. 1. Asymptotic efficiency under normal error distribution.
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FIG. 2. Asymptotic efficiency under logistic error distribution.

extreme value error distributions. We do not have an analytical explanation for this
phenomenon, which seems to persist in other simulations as well. It seems safe,
however, to recommend the Gehan weights for the problems with missing data;
it is fortuitous that the Gehan weights also yield a monotone estimating function,
which is a numerically advantageous property. Another interesting phenomenon is
that, for the logistic error, the Gehan weights may be somewhat less efficient than

FIG. 3. Asymptotic efficiency under extreme value error distribution.
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the logrank weights for censored data, even though they are the most efficient for
uncensored data (see [12]).

4.2. Simulations. We conduct simulations under the same settings as that
in the previous subsection. Since the simulation results are basically telling the
same story for different error distributions, we only report the results for the
logistic error. We consider case-cohort designs with cohort size of 2000 and
subcohort sizes of 15%, 20% and 25% of the entire cohort on average, which
lead to on average 640, 720 and 800 completely observed subjects, respectively.
Bias of the point estimator, average of the variance estimator, empirical vari-
ance and 95% coverage probability, based on the variance estimator, are reported
for five different analyses using the following logrank and Gehan weights: full
data analysis, predictable subject-specific weighted analysis using true weights,
predictable subject-specific weighted analysis using estimated weights, nonpre-
dictable subject-specific weighted analysis using true weights and nonpredictable
subject-specific weighted analysis using estimated weights. The asymptotic vari-
ance for each scenario is also reported. From Table 1, we see that all of the methods
work well for finite samples and reflect the patterns observed from the efficiency
results in the previous subsection.

5. Discussion. We consider only the case where weights 	i and Wi are i.i.d.
for all i = 1, . . . , n, which makes the proofs of the asymptotic properties more
straightforward. For the case where the weights are determined by (stratified) sim-
ple random sampling, the method of [3] may be applicable, and this is an interest-
ing topic worthy of further investigation.

6. Proofs.

6.1. Proof of Theorem 3.1. As in [26], for notational simplicity, we assume
one-dimensional θ in the proofs of the theorems in Section 3.

Since η, η0, ρ and ρ0 belong to Glivenko–Cantelli classes, it follows, from
Theorem 3 of [28], that the set of bounded functions {	ρ(Y, θ){Z − η(εθ , θ)}�}
is a Glivenko–Cantelli class. By adding and subtracting the same term, and by the
triangle inequality, we then have that

‖�n(θ, η,ρ) − �(θ,η0, ρ0)‖
= ‖Pn[	ρ(εθ , θ){Z − η(εθ , θ)}�] − P [	ρ0(εθ , θ){Z − η0(εθ , θ)}�]‖
≤ ‖(Pn − P)[	ρ(εθ , θ){Z − η(εθ , θ)}�]‖

+ ‖P {	(ρ − ρ0)Z�}‖ + ‖P {	(ρη − ρ0η0)�}‖.
The first term on the right-hand side of the above inequality converges to zero in
outer probability by the Glivenko–Cantelli property. Obviously,

‖P {	(ρ − ρ0)Z�}‖ ≤ ‖ρ − ρ0‖P |	Z�| → 0
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TABLE 1
Summary statistics of simulations, where α = subcohort size fraction; Method 1 = full data

analysis, 2 = predictable subject-specific weighted analysis using true weights, 3 = predictable
subject-specific weighted analysis using estimated weights, 4 = nonpredictable subject-specific

weighted analysis using true weights, 5 = nonpredictable subject-specific weighted analysis using
estimated weights; Emp. Var = empirical variance estimator; Ave. Var = average of variance

estimator; CP = coverage probability; Asym. Var = asymptotic variance

α Weight Method θ̂n Emp. Var Ave. Var 95% CP Asym. Var

0.15 Logrank 1 −0.001 0.018 0.019 95.6 0.018
2 0.019 0.074 0.075 93.2 0.073
3 0.018 0.066 0.072 94.4 0.069
4 0.015 0.056 0.059 95.4 0.059
5 0.015 0.052 0.058 95.8 0.056

Gehan 1 0.006 0.020 0.020 96.6 0.020
2 0.018 0.047 0.047 94.0 0.047
3 0.016 0.040 0.042 95.4 0.044
4 0.015 0.038 0.039 96.4 0.039
5 0.014 0.034 0.036 96.2 0.037

0.20 Logrank 1 −0.001 0.018 0.019 95.6 0.018
2 0.007 0.060 0.059 94.0 0.056
3 0.008 0.055 0.057 94.8 0.054
4 0.006 0.049 0.048 93.0 0.046
5 0.007 0.046 0.046 94.6 0.045

Gehan 1 0.006 0.020 0.020 96.6 0.020
2 0.011 0.039 0.039 96.0 0.039
3 0.012 0.035 0.035 95.6 0.037
4 0.011 0.034 0.033 95.2 0.033
5 0.011 0.031 0.031 95.8 0.032

0.25 Logrank 1 −0.001 0.018 0.019 95.6 0.018
2 0.003 0.048 0.049 94.0 0.047
3 0.004 0.043 0.047 95.8 0.045
4 0.002 0.040 0.041 94.4 0.039
5 0.003 0.038 0.040 94.8 0.038

Gehan 1 0.006 0.020 0.020 96.6 0.020
2 0.007 0.034 0.034 95.6 0.034
3 0.008 0.031 0.032 95.4 0.033
4 0.008 0.030 0.030 95.0 0.030
5 0.008 0.028 0.029 94.8 0.029

and

‖P {	(ρη − ρ0η0)�}‖
≤ ‖ρη − ρ0η0‖P |	�| → 0,
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where

‖ρη − ρ0η0‖ = 1
2‖(ρ − ρ0)(η + η0) + (ρ + ρ0)(η − η0)‖

≤ 1
2‖ρ − ρ0‖ · ‖η + η0‖ + 1

2‖ρ + ρ0‖ · ‖η − η0‖
→ 0.

This establishes (3.1), which, in turn, can be shown to imply |θ̂n − θ0| → 0 in outer
probability, as in [8]. For completeness, we include the argument here.

Since θ0 is the unique solution to �(θ,η0(·, θ), ρ0(·, θ)) = 0, for any fixed
ε > 0, there exists a δ > 0 such that

P [|θ̂n − θ0| > ε] ≤ P [|�(θ̂n, η0(·, θ̂n), ρ0(·, θ̂n))| > δ].
We show that |�(θ̂n, η0(·, θ̂n), ρ0(·, θ̂n))| → 0 in outer probability, and the consis-
tency of θ̂n follows immediately. Note that there exists a sequence {δn} ↓ 0 such
that ‖η−η0‖ ≤ δn and ‖ρ −ρ0‖ ≤ δn with probability tending to one. Hence, from
(3.1), we have the inequalities

|�(θ̂n, η0(·, θ̂n)), ρ0(·, θ̂n))|
≤ |�n(θ̂n, η(·, θ̂n), ρ(·, θ̂n))|

+ |�(θ̂n, η0(·, θ̂n), ρ0(·, θ̂n)) − �n(θ̂n, η(·, θ̂n), ρ(·, θ̂n))|
≤ |�n(θ̂n, η(·, θ̂n), ρ(·, θ̂n))| + op∗(1)

= op∗(1).

Hence, θ̂n is consistent.
We now show that (3.1) holds, when η and ρ are replaced by η̂n and ρ̂n given

in (2.2) and (2.3), respectively, and ρ0(t, θ) = Pr(εθ ≥ t). We define

D(0)
n (t, θ) = Pn{W1(εθ ≥ t)}, d(0)(t, θ) = P {W1(εθ ≥ t)};

D(1)
n (t, θ) = Pn{W1(εθ ≥ t)Z}, d(1)(t, θ) = P {W1(εθ ≥ t)Z}.

Thus, η̂n(t, θ) = D
(1)
n (t, θ)/D

(0)
n (t, θ) and η0(t, θ) = d(1)(t, θ)/d(0)(t, θ). The lat-

ter equality holds because

P {W1(εθ ≥ t)} = P {1(εθ ≥ t)} and P {W1(εθ ≥ t)Z} = P {1(εθ ≥ t)Z}.
Since the class of functions {1(εθ ≥ t)} is a VC-class (see, e.g., Exercise 9 on
page 151 and Exercise 14 on page 152 in [27]) and, thus, a Donsker class, we know
that the sets of functions F0 = {W1(εθ ≥ t)} and F1 = {W1(εθ ≥ t)Z} are Donsker
classes (see, e.g., [27], Section 2.10). Since Donsker classes are Glivenko–Cantelli
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classes, it follows that ‖D(k)
n (t, θ) − d(k)(t, θ)‖ → 0 in outer probability, k = 0,1.

Let τ correspond to T ∗ in [26] and represent the longest follow-up time. Since
both D

(0)
n (with probability 1) and d(0) are bounded away from zero when t ≤ τ ,

we have

‖η̂n(t, θ) − η0(t, θ)‖ → 0(6.1)

in outer probability. Similarly, we have

‖ρ̂n(t, θ) − ρ0(t, θ)| → 0(6.2)

in outer probability.
Let F̄k be the closure of Fk , k = 0,1, respectively, in which the convergence

is both pointwise and in L2(P ). Then, D
(k)
n (t, θ) and d(k)(t, θ) are in the convex

hull of F̄k , k = 0,1, and, thus, belong to Donsker classes (see, e.g., [27], The-
orems 2.10.2 and 2.10.3). Hence, both {η̂n(t, θ)} and {η0(t, θ)} are Donsker (by
[27], Example 2.10.9) and, thus, Glivenko–Cantelli. Similarly, we can argue that
both {ρ̂n(t, θ)} and {ρ0(t, θ)} are Donsker and, hence, Glivenko–Cantelli. Then,
by the first half of the proof we obtain

‖�n(θ, η̂n, ρ̂n) − �(θ,η0, ρ0)‖ → 0

in outer probability.

6.2. Proof of Theorem 3.2. From the proof of Theorem 3.1 we see that
n1/2{D(k)

n (t, θ) − d(k)(t, θ)}, k = 0,1, converge to zero mean Gaussian processes
for all θ ∈ 
0, and ‖n1/2{D(k)

n (t, θ) − d(k)(t, θ)}‖0 = Op∗(1), k = 0,1, by the tail
bounds for the supremum of empirical processes in [27], Section 2.14. We then
have

n1/2{η̂n(t, θ) − η0(t, θ)}
= n1/2

[
1

d(0)(t, θ)

{
D(1)

n (t, θ) − d(1)(t, θ)
}

− D
(1)
n (t, θ)

D
(0)
n (t, θ)d(0)(t, θ)

{
D(0)

n (t, θ) − d(0)(t, θ)
}]

= n1/2
[

1

d(0)(t, θ)

{
D(1)

n (t, θ) − d(1)(t, θ)
}

− d(1)(t, θ)

d(0)(t, θ)2

{
D(0)

n (t, θ) − d(0)(t, θ)
}] + op∗(1)

= d(0)(t, θ)−1n1/2[{
D(1)

n (t, θ) − D(0)
n (t, θ)η0(t, θ)

}
− {

d(1)(t, θ) − d(0)(t, θ)η0(t, θ)
}] + op∗(1)

= d(0)(t, θ)−1
Gn[W1(εθ ≥ t){Z − η0(t, θ)}] + op∗(1).
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Since the classes of functions {W }, {1(εθ ≥ t)}, {Z} and {η0} are Donsker, we
know that {W1(εθ ≥ t){Z − η0(t, θ)}} is Donsker (e.g., [27], Section 2.10). Thus,
n1/2‖η̂n − η0‖0 = Op∗(1), since d(0)(t, θ)−1 is bounded.

We now show n1/2|θ̂n − θ | = Op∗(1). First, we have

‖n1/2{�n(θ, η̂n(·, θ), ρ̂n(·, θ)) − �(θ,η0(·, θ), ρ0(·, θ))}‖0 = Op∗(1)(6.3)

by applying the triangle inequality, and that {η̂n} and {ρ̂n} are Donsker, as well as
n1/2‖ρ̂n − ρ0‖0 = Op∗(1) and n1/2‖η̂n − η0‖0 = Op∗(1) in the following calcula-
tion:

‖n1/2{�n(θ, η̂n(·, θ), ρ̂n(·, θ)) − �(θ,η0(·, θ), ρ0(·, θ))}‖0

= ‖n1/2(Pn − P)[	ρ̂n(εθ , θ){Z − η̂n(εθ , θ)}�]
+ n1/2P [	{ρ̂n(εθ , θ) − ρ0(εθ , θ)}Z�]
+ n1/2P [	ρ̂n(εθ , θ)η̂n(εθ , θ) − ρ0(εθ , θ)η0(εθ , θ)�]‖0

≤ ‖Gn[	ρ̂n(εθ , θ){Z − η̂n(εθ , θ)}�]‖0 + n1/2‖ρ̂n − ρ0‖0 · P(	Z�)

+ 1
2(n1/2‖ρ̂n − ρ0‖0 · ‖η̂n + η0‖0

+ ‖ρ̂n + ρ0‖0 · n1/2‖η̂n − η0‖0)P (	�)

= Op∗(1).

Because �(θ0, η0(·, θ0), ρ0(·, θ0)) = 0 and |θ̂n − θ0| = op∗(1) by Theorem 3.1, we
then have

Op∗(1) = −n1/2{�n(θ̂n, η̂n(·, θ̂n), ρ̂n(·, θ̂n)) − �(θ̂n, η0(·, θ̂n), ρ0(·, θ̂n))}
= op∗(1) + n1/2�(θ̂n, η0(·, θ̂n), ρ0(·, θ̂n))

− n1/2�(θ0, η0(·, θ0), ρ0(·, θ0))(6.4)

= op∗(1) + n1/2(θ̂n − θ0)�̇θ (θ
∗, η0(·, θ∗), ρ0(·, θ∗))

= op∗(1) + n1/2(θ̂n − θ0){�̇θ (θ0, η0(·, θ0), ρ0(·, θ0)) + op∗(1)},
where θ∗ is a point between θ0 and θ̂n. Thus, n1/2(θ̂n − θ0) = Op∗(1).

Let Cn = n−1 ∑n
i=1 Wi . By the central limit theorem, n1/2(Cn − 1) = Op(1).

Thus, when ρ̂n takes the form, in (2.3) and ρ0(t, θ) = Pr(εθ ≥ t), they are clearly
bounded, and we can show n1/2‖ρ̂n −ρ0‖0 = Op∗(1) by the following calculation:

n1/2{ρ̂n(t, θ) − ρ0(t, θ)}

= n1/2
[{

D(0)
n (t, θ) − d(0)(t, θ)

} − D
(0)
n (t, θ)

Cn

{Cn − 1}
]

= n1/2[{
D(0)

n (t, θ) − d(0)(t, θ)
} − d(0)(t, θ){Cn − 1}] + op∗(1)
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= n1/2[{
D(0)

n (t, θ) − Cnd
(0)(t, θ)

}] + op∗(1)

= Gn

[
W

{
1(εθ ≥ t) − d(0)(t, θ)

}] + op∗(1).

We have already shown in the proof of Theorem 3.1 that such chosen ρ̂n and ρ0
belong to a Donsker class.

6.3. Proof of Theorem 3.3. The differentiability of both ρ0(εθ , θ) and η0(εθ , θ)

in θ and its implication of the differentiability of �(θ,η0(·, θ), ρ0(·, θ)) in θ , as
well as the continuity and boundedness of the derivatives, can be shown by in-
terchanging integration and differentiation, which is warranted by the dominated
convergence theorem under the given regularity conditions. From Theorem 3.2,
we know that |θ̂n − θ0| = Op∗(n−1/2). Let |θ − θ0| ≤ Kn−1/2 with K < ∞. Then,
we have

n1/2{�n(θ, η̂n(·, θ), ρ̂n(·, θ)) − �n(θ0, η̂n(·, θ0), ρ̂n(·, θ0))}
= n1/2[Pn	ρ̂n(εθ , θ){Z − η̂n(εθ , θ)}�

(6.5)
− Pn	ρ̂n(εθ , θ){Z − η̂n(ε0, θ0)}�]

+ n1/2[Pn	ρ̂n(εθ , θ){Z − η̂n(ε0, θ0)}�
(6.6)

− Pn	ρ̂n(ε0, θ0){Z − η̂n(ε0, θ0)}�].
We first look at term (6.5), which can be rewritten as

n1/2[−Pn	ρ̂n(εθ , θ)η̂n(εθ , θ)� + Pn	ρ̂n(εθ , θ)η̂n(ε0, θ0)�]
= −Gn[	ρ̂n(εθ , θ){η̂n(εθ , θ) − η̂n(ε0, θ0)}�](6.7)

− n1/2P [	ρ̂n(εθ , θ){η̂n(εθ , θ) − η̂n(ε0, θ0)}�].(6.8)

Term (6.7) converges to zero in outer probability, because 	ρ̂nη̂n� belongs to
a Donsker class by arguments similar to those in the proof of Theorem 3.1, and
	ρ̂n(εθ , θ){η̂n(εθ , θ)− η̂n(ε0, θ0)}� converges to zero in quadratic mean. Let t ′ =
t − (θ − θ0)z. Direct calculation yields

n1/2P [	ρ̂n(εθ , θ){η̂n(εθ , θ) − η0(εθ , θ)}�]

= n1/2P

[
ρ̂n(εθ , θ)

{
D

(1)
n (εθ , θ)

D
(0)
n (εθ , θ)

− d(1)(εθ , θ)

d(0)(εθ , θ)

}
�

]

= n1/2
∫

ρ̂n(t
′, θ)

[
1

d(0)(t ′, θ)

{
D(1)

n (t ′, θ) − d(1)(t ′, θ)
}

× D
(1)
n (t ′, θ)

D
(0)
n (t ′, θ)d(0)(t ′, θ)

{
D(0)

n (t ′, θ) − d(0)(t ′, θ)
}]

× δ dPε0,�,Z(t, δ, z)(6.9)
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= n1/2
∫

ρ̂n(t
′, θ)

[
1

d(0)(t ′, θ)

{
D(1)

n (t ′, θ) − d(1)(t ′, θ)
}

× d(1)(t ′, θ)

d(0)(t ′, θ)2

{
D(0)

n (t ′, θ) − d(0)(t ′, θ)
}]

× δ dPε0,�,Z(t, δ, z) + op∗(1)

=
∫

Gnρ̂n(t
′, θ)d(0)(t ′, θ)−1W1(εθ ≥ t ′)

× {Z − η0(t
′, θ)}dPε0,�,Z(t,1, z) + op∗(1)

=
∫

Gnρ̂n(t
′, θ)�(t ′, θ,W,Z, εθ) dPε0,�,Z(t,1, z) + op∗(1)

where �(t ′, θ,W,Z, εθ ) = d(0)(t ′, θ)−1W1(εθ ≥ t ′){Z − η0(t
′, θ)} and Pε0,�,Z

denotes the joint probability law of (ε0,�,Z). Clearly, the class of functions
{ρ̂n(t, θ)�(t, θ,W,Z, εθ)} is Donsker. The above middle equality holds because

∣∣∣∣n1/2
∫

ρ̂n(t
′, θ)

[
1

d(0)(t ′, θ)

{
D(1)

n (t ′, θ) − d(1)(t ′, θ)
}

− D
(1)
n (t ′, θ)

D
(0)
n (t ′, θ) d(0)(t ′, θ)

{
D(0)

n (t ′, θ) − d(0)(t ′, θ)
}]

× δ dPε0,�,Z(t, δ, z)

− n1/2
∫

ρ̂n(t
′, θ)

[
1

d(0)(t ′, θ)

{
D(1)

n (t ′, θ) − d(1)(t ′, θ)
}

− d(1)(t ′, θ)

d(0)(t ′, θ)2

{
D(0)

n (t ′, θ) − d(0)(t ′, θ)
}]

× δ dPε0,�,Z(t, δ, z)

∣∣∣∣

=
∣∣∣∣
∫

ρ̂n(t
′, θ)

{
d(1)(t ′, θ)

d(0)(t ′, θ)2 − D
(1)
n (t ′, θ)

D
(0)
n (t ′, θ)d(0)(t ′, θ)

}

× n1/2{
D(0)

n (t ′, θ) − d(0)(t ′, θ)
}
δ dPε0,�,Z(t, δ, z)

∣∣∣∣

≤ 1 ·
∥∥∥∥ d(1)(t, θ)

d(0)(t, θ)2 − D
(1)
n (t, θ)

D
(0)
n (t, θ)d(0)(t, θ)

∥∥∥∥
· ∥∥n1/2{

D(0)
n (t, θ) − d(0)(t, θ)

}∥∥ · 1

= op∗(1) · Op∗(1) · 1 = op∗(1)
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by the tail bounds for the supremum of empirical processes in [27], Section 2.14.
Similarly, we have

n1/2P [	ρ̂n(εθ , θ){η̂n(ε0, θ0) − η0(ε0, θ0)}�]
=

∫
Gnρ̂n(t

′, θ)�(t, θ0,W,Z, ε0) dPε0,�,Z(t,1, z) + op∗(1).

Thus, (6.8) becomes

− n1/2P [ρ̂n(εθ , θ){η0(εθ , θ) − η0(ε0, θ0)}�]
+

∫
Gnρ̂n(t

′, θ)

(6.10)
× {�(t ′, θ,W,Z, εθ ) − �(t, θ0,W,Z, ε0)}dPε0,�,Z(t,1, z)

+ op∗(1).

Note that n1/2{η0(εθ , θ)−η0(ε0, θ0)} = n1/2(θ − θ0){η̇0θ (εθ∗, θ∗)} is bounded (by
assumptions of bounded density functions for failure and censoring times in [30]),
where η̇0θ denotes the derivative of η0 with respect to θ , and θ∗ is a point between
θ0 and θ . Thus, by repeatedly using the dominate convergence theorem, we know
that the first term in (6.10) equals

−n1/2(θ − θ0)P {ρ0(εθ , θ)η̇0θ (ε0, θ0)�} + op∗(1),

which in turn equals

−n1/2(θ − θ0)P {ρ0(ε0, θ0)η̇0θ (ε0, θ0)�} + op∗(1).

It can be verified that ρ̂n(t
′, θ){�(t ′, θ,W,Z, εθ)− �(t, θ0,W,Z, ε0)} converges to

zero in quadratic mean; thus,

‖Gnρ̂n(t
′, θ){�(t ′, θ,W,Z, εθ ) − �(t, θ0,W,Z, ε0)}‖ = op∗(1),

then the second term in (6.10) converges to zero in outer probability. So we
have shown that term (6.5) is asymptotically equivalent to −n1/2(θ − θ0) ×
P {ρ0(ε0, θ0)η̇0θ (ε0, θ0)�}.

We now consider term (6.6), which can be rewritten as

n1/2
Pn[	{Z − η̂n(ε0, θ0)}�{ρ̂n(εθ , θ) − ρ̂n(ε0, θ0)}]
= Gn[	{Z − η̂n(ε0, θ0)}�{ρ̂n(εθ , θ) − ρ̂n(ε0, θ0)}](6.11)

+ n1/2P [	{Z − η̂n(ε0, θ0)}�{ρ̂n(εθ , θ) − ρ̂n(ε0, θ0)}].(6.12)

Because 	{Z − η̂n(ε0, θ0)}�{ρ̂n(εθ , θ) − ρ̂n(ε0, θ0)} belongs to a Donsker class
and converges to zero in quadratic mean, we know that term (6.11) converges to
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zero in outer probability. Similar to the calculation in (6.9), for (6.12), we have

n1/2P [	{Z − η̂n(ε0, θ0)}�{ρ̂n(εθ , θ) − ρ0(εθ , θ)}]
= n1/2

∫
{z − η̂n(t, θ0)}

[{
D(0)

n (t ′, θ) − d(0)(t ′, θ)
}

− D
(0)
n (t ′, θ)

Cn

{Cn − 1}
]
dPε0,�,Z(t,1, z)

= n1/2
∫

{z − η̂n(t, θ0)}(6.13)

× [{
D(0)

n (t ′, θ) − Cnd
(0)(t ′, θ)

}]
dPε0,�,Z(t,1, z) + op∗(1)

=
∫

Gn

[{z − η̂n(t, θ0)}

× W
{
1(εθ ≥ t ′) − d(0)(t ′, θ)

}]
dPε0,�,Z(t,1, z) + op∗(1).

Similarly, we have

n1/2P [	{Z − η̂n(ε0, θ0)}�{ρ̂n(ε0, θ0) − ρ0(ε0, θ0)}]
=

∫
Gn

[{z − η̂n(t, θ0)}W{
1(ε0 ≥ t) − d(0)(t, θ0)

}]
dPε0,�,Z(t,1, z)

+ op∗(1).

Then, term (6.12) becomes

n1/2P [	{Z − η̂n(ε0, θ0)}�{ρ0(εθ , θ) − ρ0(ε0, θ0)}]
+

∫
Gn{z − η̂n(t, θ0)}

× W
[{

1(εθ ≥ t ′) − d(0)(t ′, θ)
}

− {
1(ε0 ≥ t) − d(0)(t, θ0)

}]
dPε0,�,Z(t,1, z) + op∗(1).

Similar to the arguments following (6.10), we know that the first term above is
asymptotically equivalent to n1/2(θ − θ0)P [{Z − η0(ε0, θ0)}�ρ̇0θ (ε0, θ0)], and
the second term, above, is op∗(1). So, term (6.6) can be replaced by n1/2(θ −
θ0)P [{Z − η0(ε0, θ0)}�ρ̇0θ (ε0, θ0)] + op∗(1).

Then, from the above calculation for terms (6.5) and (6.6), we obtain

n1/2{�n(θ, η̂n(·, θ), ρ̂n(·, θ)) − �n(θ0, η̂n(·, θ0), ρ̂n(·, θ0))}
= −n1/2(θ − θ0)P {ρ0(ε0, θ0)η̇0θ (ε0, θ0)�}

(6.14)
+ n1/2(θ − θ0)P [{Z − η0(ε0, θ0)}�ρ̇0θ (ε0, θ0)] + op∗(1)

= n1/2(θ − θ0)�̇θ (θ0, η0(·, θ0), ρ0(·, θ0)) + op∗(1),
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which yields the asymptotic linearity (3.2) when θ is replaced by θ̂n. In fact, in the
above expression, we have P [{Z−η0(ε0, θ0)}�ρ̇0θ (ε0, θ0)] = 0, given the equality
η0(ε0, θ0) = E(Z|ε0,� = 1), which can be verified directly (see, also, [21]). We
keep it in the above calculation so as to clearly show the relationship of �̇θ and
(η̇0θ , ρ̇0θ ).

Since θ̂n satisfies �n(θ̂n, η̂n(·, θ̂n), ρ̂n(·, θ̂n)) = op∗(n−1/2), showing asymptotic
normality for n1/2(θ̂n − θ0) is equivalent to showing asymptotic normality for
n1/2�n(θ0, η̂n(·, θ0), ρ̂n(·, θ0)). The following shows the calculation. By adding,
subtracting and rearranging terms, we have

n1/2�n(θ0, η̂n(·, θ0), ρ̂n(·, θ0))

= Gn[	ρ0(ε0, θ0){Z − η0(ε0, θ0)}�]
− Gn[	ρ̂n(ε0, θ0){η̂n(ε0, θ0) − η0(ε0, θ0)}�](6.15)

+ Gn[	{Z − η0(ε0, θ0)}�{ρ̂n(ε0, θ0) − ρ0(ε0, θ0)}](6.16)

− n1/2P [	ρ̂n(ε0, θ0){η̂n(ε0, θ0) − η0(ε0, θ0)}�](6.17)

+ n1/2P [	{Z − η0(ε0, θ0)}�{ρ̂n(ε0, θ0) − ρ0(ε0, θ0)}].(6.18)

Repeatedly using similar arguments, we can show that terms (6.15) and (6.16) are
op∗(1). Term (6.17) can be calculated similarly, as in (6.9), but with t = t ′, so that
the lower case variable z is not involved in the integrand, and ρ̂n can be further
replaced by ρ0. Term (6.18) can be calculated similarly, as in (6.13). We then have

n1/2�n(θ0, η̂n(·, θ0), ρ̂n(·, θ0))

= Gn

[
	ρ0(ε0, θ0){Z − η0(ε0, θ0)}�

−
∫

ρ0(t, θ0)d
(0)(t, θ0)

−1W1(ε0 ≥ t){Z − η0(t, θ0)}dPε0,�(t,1)

+
∫

{z − η0(t, θ0)}W{
1(ε0 ≥ t) − d(0)(t, θ0)

}
dPε0,�,Z(t,1, z)

]
(6.19)

+ op∗(1)

= Gn

[
	ρ0(ε0, θ0){Z − η0(ε0, θ0)}�

−
∫

ρ0(t, θ0)W1(ε0 ≥ t){Z − η0(t, θ0)}d�0(t)

]
(6.20)

+ op∗(1),

which converges in distribution to a normal random variable by the central limit
theorem, because the influence function in the above expression is bounded. Here,
�0 is the cumulative hazard function of e0 = T − θ ′

0Z. So, from equation (3.2), we



2372 B. NAN, J. D. KALBFLEISCH AND M. YU

know that n1/2(θ̂n − θ0) is asymptotically normal with asymptotic representation
(3.3) if �̇θ (θ0, η0(·, θ0), ρ0(·, θ0)) is nonsingular. That the term (6.19), yielded by
estimating the weight function ρ0(t, θ), is equal to zero can be verified directly,
again, by using the equality η0(ε0, θ0) = E(Z|ε0,� = 1). Term (6.20) is obtained
from the following calculation:

d(0)(t, θ0) = P {W1(Y − θ ′
0Z ≥ t)}

= P {1(Y − θ ′
0Z ≥ t)}

= E[E{1(Y − θ ′
0Z ≥ t)|Z}]

= E[Pr(T − θ ′
0Z ≥ t |Z)Pr(C − θ ′

0Z ≥ t |Z)]
=

∫
exp{−�0(t)}{1 − G(t |z)}dH(z),

where G(·|z) is the conditional distribution function of the centered censoring time
C − θ ′

0Z given Z = z, and H is the marginal distribution function of covariate Z.
On the other hand, from the joint distribution of (ε0,�,Z), we obtain

dPε0,�(t,1) =
[∫

exp{−�0(t)}{1 − G(t |z)}dH(z)

]
d�0(t)

= d(0)(t, θ0) d�0(t).

That term (6.19) is zero becomes even more straightforward from term (6.18) if
the weight function ρ0 is given and, thus, need not be estimated (e.g., ρ̂n = ρ0 = 1).

6.4. Proof of Theorem 3.4. We will sequentially show consistency, root-n
rate convergence and the asymptotic normality of θ̂∗

n . It is easy to see that
{W(x;α) :α ∈ A0} is Lipschitz in α and, hence, Donsker (see Example 3.2.12
of [27]), so we have that {η̂∗

n} and {ρ̂∗
n} are Donsker (see Section 2.10 of [27]).

Based on the smoothness of W(X;α) in α and the structures of η̂n, ρ̂n, η̂∗
n and ρ̂∗

n

given in (2.2), (2.3), (3.5) and (3.6), we have

‖W(X; α̂n) − W(X;α)‖ → 0, ‖η̂∗
n − η̂n‖ → 0 and ‖ρ̂∗

n − ρ̂n‖ → 0

in outer probability by the mean value theorem and boundedness of the corre-
sponding derivatives, with respect to α. The above three quantities are actually
Op∗(n−1/2) by the root-n consistency of α̂n and the smoothness assumption of
W(X;α). Thus, with 	i replaced by Wi in �n, we have

‖�∗
n(θ, η̂∗

n(·, θ), ρ̂∗
n(·, θ)) − �n(θ, η̂∗

n(·, θ), ρ̂∗
n(·, θ))‖

≤ ‖W(X; α̂n) − W(X;α)‖‖ρ̂∗
n(εθ , θ){Z − η̂∗

n(εθ , θ)}�‖(6.21)

= op∗(1)
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by the boundedness of ρ̂∗
n(εθ , θ){Z − η̂∗

n(εθ , θ)}�. By (6.1), (6.2) and the triangle
inequality, we have

‖η̂∗
n − η0‖ → 0 and ‖ρ̂∗

n − ρ0‖ → 0

in outer probability, which by Theorem 3.1 imply that

‖�n(θ, η̂∗
n(·, θ), ρ̂∗

n(·, θ)) − �n(θ, η0(·, θ), ρ0(·, θ))‖ = op∗(1),

since Donsker implies Glivenko–Cantelli. Hence, by the triangle inequality we
have

‖�∗
n(θ, η̂∗

n(·, θ), ρ̂∗
n(·, θ)) − �(θ,η0(·, θ), ρ0(·, θ))‖ = op∗(1),

which yields the consistency of θ̂∗
n by the same argument as in the proof of Theo-

rem 3.1.
From (6.21), we know that

‖n1/2{�∗
n(θ, η̂∗

n(·, θ), ρ̂∗
n(·, θ)) − �n(θ, η̂∗

n(·, θ), ρ̂∗
n(·, θ))}‖0 = Op∗(1).

Replacing (η̂n, ρ̂n) with (η̂∗
n, ρ̂

∗
n) in (6.3), we obtain

‖n1/2{�n(θ, η̂∗
n(·, θ), ρ̂∗

n(·, θ)) − �(θ,η0(·, θ), ρ0(·, θ))}‖0 = Op∗(1).

Hence, by applying the triangle inequality, we have

‖n1/2{�∗
n(θ, η̂∗

n(·, θ), ρ̂∗
n(·, θ)) − �(θ,η0(·, θ), ρ0(·, θ))}‖0 = Op∗(1),

and the same calculation as in (6.4), with �n replaced by �∗
n and θ̂n replaced

by θ̂∗
n , shows that n1/2(θ̂∗

n − θ0) = Op∗(1).
We now prove the asymptotic normality of n1/2(θ̂∗

n − θ0). Consider the follow-
ing decomposition:

n1/2�∗
n(θ̂∗

n , η̂∗
n(·, θ̂∗

n ), ρ̂∗
n(·, θ̂∗

n ))

= n1/2�∗
n(θ̂∗

n , η̂∗
n(·, θ̂∗

n ), ρ̂∗
n(·, θ̂∗

n )) − n1/2�n(θ̂
∗
n , η̂n(·, θ̂∗

n ), ρ̂n(·, θ̂∗
n ))(6.22)

+ n1/2�n(θ̂
∗
n , η̂n(·, θ̂∗

n ), ρ̂n(·, θ̂∗
n )) − n1/2�n(θ0, η̂n(·, θ0), ρ̂n(·, θ0))(6.23)

+ n1/2�n(θ0, η̂n(·, θ0), ρ̂n(·, θ0)) − n1/2�n(θ̂n, η̂n(·, θ̂n), ρ̂n(·, θ̂n))(6.24)

+ n1/2�n(θ̂n, η̂n(·, θ̂n), ρ̂n(·, θ̂n)).(6.25)

Then, applying (6.14) to (6.23) and (6.24), respectively, we can replace (6.23) with

n1/2(θ̂∗
n − θ0)�̇θ (θ0, η0(·, θ0), ρ0(·, θ0)) + op∗(1)(6.26)

and replace (6.24) with

−n1/2(θ̂n − θ0)�̇θ (θ0, η0(·, θ0), ρ0(·, θ0)) + op∗(1).(6.27)
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Term (6.25), clearly, is op∗(1). We then calculate term (6.22). Let

η̂n,α(t, θ) = Pn{W(X;α)1(εθ ≥ t)Z}/Pn{W(X;α)1(εθ ≥ t)},
ρ̂n,α(t, θ) = Pn{W(X;α)1(εθ ≥ t)}/Pn{W(X;α)}.

Then, we have η̂n ≡ η̂n,α0 , ρ̂n ≡ ρ̂n,α0 , η̂∗
n ≡ η̂n,α̂n

, and ρ̂∗
n ≡ ρ̂n,α̂n

. Let

�n(α, θ) = Pn[W(X;α)ρ̂n,α(εθ , θ){Z − η̂n,α(εθ , θ)}�].
It can be seen by direct calculation that the second derivative of �n(α, θ) to α is
bounded with outer probability 1. So, by the Taylor expansion, we have

�∗
n(θ, η̂∗

n, ρ̂
∗
n) − �n(θ, η̂n, ρ̂n) = �n(α̂n, θ) − �n(α0, θ)

= �̇n,α(α0, θ)(α̂n − α0) + op∗(n−1/2),

where

�̇n,α(α0, θ) = Pn

[
ρ̂n,α0(εθ , θ){Z − η̂n,α0(εθ , θ)}∂W(X;α)

∂α′
∣∣∣∣
α=α0

�

+ W(X;α0){Z − η̂n,α0(εθ , θ)}∂ρ̂n,α(εθ , θ)

∂α′
∣∣∣∣
α=α0

�

+ W(X;α0)ρ̂n,α0(εθ , θ)

{
−∂η̂n,α(εθ , θ)

∂α′
}

α=α0

�

]
.

It is also easy to see, by direct calculation, that {∂η̂n,α/∂α|α=α0 : θ ∈ 
0} and
{∂ρ̂n,α/∂α|α=α0 : θ ∈ 
0} are (componentwise) Glivenko–Cantelli, so, with outer
probability 1, we have

�̇n,α(α0, θ̂
∗
n ) → P [ρ0(ε0, θ0){Z − η0(ε0, θ0)}(Ẇα(X;α0))

′�]
+ P [W(X;α0){Z − η0(ε0, θ0)}A1(ε0, θ0)�]
− P [W(X;α0)ρ0(ε0, θ0)A2(ε0, θ0)�]

(6.28)
= P [ρ0(ε0, θ0){Z − η0(ε0, θ0)}(Ẇα(X;α0))

′�]
− P [ρ0(ε0, θ0)A2(ε0, θ0)�]

≡ −B,

where Ẇα(X;α) = ∂W(X;α)/∂α, A1 is the limit of ∂ρ̂n,α/∂α′|
α=α0,θ=θ̂∗

n
and

A2 is the limit of ∂η̂n,α/∂α′|
α=α0,θ=θ̂∗

n
. The term (6.28) is zero since E(Z|ε0,

� = 1) = η0(ε0, θ0). Note that E(W |X) = 1 is also used in the above calculation.
It can be directly verified that

A2(t, θ0) = 1

P {(1(ε0 ≥ t)} [P {1(ε0 ≥ t)Z(Ẇα(X;α0))
′}

− η0(t, θ0)P {(Ẇα(X;α0))
′1(ε0 ≥ t)}].
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Hence, we have

�∗
n(θ, η̂∗

n, ρ̂
∗
n) − �n(θ, η̂n, ρ̂n) = −B(α̂n − α0) + op∗(n−1/2).(6.29)

Replacing (6.22), (6.23) and (6.24) by (6.29), (6.26) and (6.27), respectively, we
obtain

n1/2(θ̂∗
n − θ0) = n1/2(θ̂n − θ0) + {�̇θ (θ0, η0, ρ0)}−1Bn1/2(α̂n − α0) + op∗(1).

By (3.3) we know that θ̂n is an asymptotically linear estimator. Given that α̂n is also
an asymptotically linear estimator, we know that n1/2(θ̂n − θ0) and n1/2(α̂n − α0)

are asymptotically jointly normal by the multivariate central limit theorem. Hence,
by [18], we know that n1/2(θ̂∗

n − θ0) is asymptotically normal with variance given
in (3.7).
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