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NEAR-IDEAL MODEL SELECTION BY �1 MINIMIZATION

BY EMMANUEL J. CANDÈS1 AND YANIV PLAN

California Institute of Technology

We consider the fundamental problem of estimating the mean of a vector
y = Xβ + z, where X is an n × p design matrix in which one can have far
more variables than observations, and z is a stochastic error term—the so-
called “p > n” setup. When β is sparse, or, more generally, when there is a
sparse subset of covariates providing a close approximation to the unknown
mean vector, we ask whether or not it is possible to accurately estimate Xβ

using a computationally tractable algorithm.
We show that, in a surprisingly wide range of situations, the lasso happens

to nearly select the best subset of variables. Quantitatively speaking, we prove
that solving a simple quadratic program achieves a squared error within a
logarithmic factor of the ideal mean squared error that one would achieve
with an oracle supplying perfect information about which variables should
and should not be included in the model. Interestingly, our results describe the
average performance of the lasso; that is, the performance one can expect in
an vast majority of cases where Xβ is a sparse or nearly sparse superposition
of variables, but not in all cases.

Our results are nonasymptotic and widely applicable, since they simply
require that pairs of predictor variables are not too collinear.

1. Introduction. One of the most common problems in statistics is to estimate
a mean response Xβ from the data y = (y1, y2, . . . , yn) and the linear model

y = Xβ + z,(1.1)

where X is an n × p matrix of explanatory variables, β is a p-dimensional pa-
rameter of interest and z = (z1, . . . , zn) is a vector of independent stochastic er-
rors. Unless specified otherwise, we will assume that the errors are Gaussian with
zi ∼ N (0, σ 2), but this is not really essential, as our results and methods can eas-
ily accommodate other types of distribution. We measure the performance of any
estimator Xβ̂ with the usual squared Euclidean distance ‖Xβ −Xβ̂‖2

�2
, or with the

mean-squared error, which is simply the expected value of this quantity.
In this paper, although this is not a restriction, we are primarily interested in sit-

uations where there are as many explanatory variables as observations, or more—
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the so-called, and now widely popular, “p > n” setup. In such circumstances, how-
ever, it is often the case that a relatively small number of variables have substantial
explanatory power, so that, to achieve accurate estimation, one needs to select
the “right” variables and determine which components βi are not equal to zero.
A standard approach is to find β̂ by solving

min
b∈Rp

1

2
‖y − Xb‖2

�2
+ λ0σ

2‖b‖�0,(1.2)

where ‖b‖�0 is the number of nonzero components in b. In other words, the
estimator (1.2) achieves the best trade-off between the goodness of fit and the
complexity—in this case, the number of variables included—of the model. Popu-
lar selection procedures such as AIC, Cp , BIC and RIC are all of this form, with
different values of the parameter (λ0 = 1 in AIC [1, 19], λ0 = 1

2 logn in BIC [24],
and λ0 = logp in RIC [14]). It is known that these methods perform well both
empirically and theoretically (see [14] and [2, 4] and the many references therein).
Having said this, the problem, of course, is that these “canonical selection proce-
dures” are highly impractical. Solving (1.2) is, in general, NP-hard [22] and, to the
best of our knowledge, requires exhaustive searches over all subsets of columns
of X, a procedure which is clearly combinatorial in nature and has exponential
complexity, since, for p of size about n, there are about 2p such subsets.

In recent years, several methods based on �1 minimization have been pro-
posed to overcome this problem. The most well-known is probably the lasso
[26], which replaces the nonconvex �0 norm in (1.2) with the convex �1 norm
‖b‖�1 = ∑p

i=1 |bi |. The lasso estimate β̂ is defined as the solution to

min
b∈Rp

1

2
‖y − Xb‖2

�2
+ λσ‖b‖�1,(1.3)

where λ is a regularization parameter that essentially controls the sparsity (or the
complexity) of the estimated coefficients (see [23] and [11] for exactly the same
proposal). In contrast to (1.2), the optimization problem (1.3) is a quadratic pro-
gram that can be solved efficiently. It is known that the lasso performs well in
some circumstances. Further, there is also an emerging literature on its theoretical
properties [3, 5, 6, 16, 15, 20, 21, 28–30] showing that, in some special cases, the
lasso is effective.

In this paper, we will show that the lasso works provably well in a surprisingly
broad range of situations. We establish that, under minimal assumptions guaran-
teeing that the predictor variables are not highly correlated, the lasso achieves a
squared error nearly as good as if one had an oracle supplying perfect information
about which βi ’s were nonzero. Continuing in this direction, we also establish that
the lasso correctly identifies the true model with very large probability, provided
that the amplitudes of the nonzero βi are sufficiently large.



NEAR-IDEAL MODEL SELECTION 2147

1.1. The coherence property. Throughout the paper, we will assume that,
without loss of generality, the matrix X has unit-normed columns, as one can
otherwise always rescale the columns. We denote, by Xi , the ith column of X

(‖Xi‖�2 = 1) and introduce the notion of coherence, which essentially measures
the maximum correlation between unit-normed predictor variables and is defined
by

μ(X) = sup
1≤i<j≤p

|〈Xi,Xj 〉|.(1.4)

In other words, the coherence is the maximum inner product between any two
distinct columns of X. It follows that, if the columns have zero mean, the coherence
is just the maximum correlation between pairs of predictor variables.

We will be interested in problems in which the variables are not highly collinear
or redundant.

DEFINITION 1.1 (Coherence property). A matrix X is said to obey the coher-
ence property if

μ(X) ≤ A0 · (logp)−1,(1.5)

where A0 is some positive numerical constant.

A matrix obeying the coherence property is a matrix in which the predictors
are not highly collinear. This is a mild assumption. Suppose that X is a Gaussian
matrix with i.i.d. entries whose columns are subsequently normalized. The coher-
ence of X is about

√
(2 logp)/n, so that such matrices trivially obey the coherence

property, unless n is ridiculously small [i.e., of the order of (logp)3]. We will give
other examples of matrices obeying this property later in the paper, and we will
soon contrast this assumption with what is traditionally assumed in the literature.

1.2. Sparse model selection. We begin by discussing the intuitive case, where
the vector β is sparse, before extending our results to a completely general case.
The basic question we would like to address here is, how well can one estimate the
response Xβ , when β happens to have only S nonzero components? From now on,
we call such vectors S-sparse.

First and foremost, we would like to emphasize that, in this paper, we are in-
terested in quantifying the performance one can expect from the lasso in an over-
whelming majority of cases. This viewpoint needs to be contrasted with an analysis
concentrating on the worst case performance; when the focus is on the worst case
scenario, one would study very particular values of the parameter β for which the
lasso does not work well. This is not our objective; as an aside, this will enable us
to show that one can reliably estimate the mean response Xβ under much weaker
conditions than what is currently known.
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Our point of view emphasizes the average performance (or the performance one
could expect in a large majority of cases); thus, we need a statistical description
of sparse models. To this end, we introduce the generic S-sparse model, which is
defined as follows:

1. The support I ⊂ {1, . . . , p} of the S nonzero coefficients of β is selected uni-
formly at random.

2. Conditional on I , the signs of the nonzero entries of β are independent and
equally likely to be −1 or 1.

We make no assumption on the amplitudes. In some sense, this is the simplest
statistical model one could think of; it says, simply, that all subsets of a given
cardinality are equally likely, and that the signs of the coefficients are equally
likely. In other words, one is not biased towards certain variables, nor do we have
any reason to believe a priori that a given coefficient is positive or negative.

Our first result is that for most S-sparse vectors β , the lasso is provably accurate.
Throughout, ‖X‖ refers to the operator norm of the matrix A (the largest singular
value).

THEOREM 1.2. Suppose that X obeys the coherence property, and as-
sume that β is taken from the generic S-sparse model. Suppose that S ≤
c0p/[‖X‖2 logp] for some positive numerical constant c0. Then, the lasso esti-
mate (1.3) computed with λ = 2

√
2 logp obeys

‖Xβ − Xβ̂‖2
�2

≤ C0 · (2 logp) · S · σ 2(1.6)

with probability at least 1 − 6p−2 log 2 − p−1(2π logp)−1/2. The constant C0 may
be taken as 8(1 + √

2)2.

For simplicity, we have chosen λ = 2
√

2 logp, but one could take any λ of the
form λ = (1 + a)

√
2 logp with a > 0. Our proof indicates that, as a decreases, the

probability with which (1.6) holds decreases, but the constant C0 also decreases.
Conversely, as a increases, the probability with which (1.6) holds increases, but
the constant C0 also increases.

Theorem 1.2 asserts that one can estimate Xβ with nearly the same accuracy
as if one knew ahead of time which βi’s were nonzero. To see why this is true,
suppose that the support I of the true β was known. In this ideal situation, we
would presumably estimate β by regressing y onto the columns of X, with indices
in I , and construct

β� = arg min
b∈Rp

‖y − Xb‖2
�2 subject to bi = 0 for all i /∈ I.(1.7)
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It is a simple calculation to show that this ideal estimator (it is ideal, because we
would not know the set of nonzero coordinates) achieves2

E‖Xβ − Xβ�‖2
�2

= S · σ 2.(1.8)

Hence, one can see that (1.6) is optimal up to a factor proportional to logp. It is
also known that one cannot, in general, hope for a better result; the log factor is
the price we need to pay for not knowing ahead of time which of the predictors are
actually included in the model.

The assumptions of our theorem are pretty mild. Roughly speaking, if the pre-
dictors are not too collinear, and if S is not too large, then the lasso works most of
the time. An important point here is that the restriction on the sparsity can be very
mild. We give two examples to illustrate our purpose:

• Random design. Imagine, as before, that the entries of X are i.i.d. N (0,1) and
then normalized. Then, the operator norm of X is sharply concentrated around√

p/n, so that our assumption essentially reads S ≤ c0n/ logp. Expressed in a
different way, β does not have to be sparse at all. It has to be smaller, of course,
than the number of observations, but not by a very large margin.

Similar conclusions would apply to many other types of random matrices.
• Signal estimation. A problem that has attracted quite a bit of attention in the

signal processing community is that of recovering a signal that has a sparse
expansion as a superposition of spikes and sinusoids. Here, we have noisy data y

y(t) = f (t) + z(t), t = 1, . . . , n,(1.9)

about a digital signal f of interest, which is expressed as the “time-frequency”
superposition

f (t) =
n∑

k=1

α
(0)
k δ(t − k) +

n∑
k=1

α
(1)
k ϕk(t);(1.10)

δ is a Dirac or spike obeying δ(t) = 1 if t = 0, and 0 otherwise. (ϕk(t))1≤k≤n is
an orthonormal basis of sinusoids. The problem (1.9) is of the general form (1.1)
with X = [InFn] in which In is the identity matrix, Fn is the basis of sinusoids
(a discrete cosine transform) and β is the concatenation of α(0) and α(1). Here,
p = 2n and ‖X‖ = √

2. Also, X obeys the coherence property if n or p is not
too small, since μ(X) = √

2/n = 2/
√

p.
Hence, if the signal has a sparse expansion with fewer than on the order of

n/ logn coefficients, then the lasso achieves a quality of reconstruction that is
essentially as good as what could be achieved if we knew in advance the precise
location of the spikes and the exact frequencies of the sinusoids.

This fact extends to other pairs of orthobases and to general overcomplete
expansions, as we will explain later.

2One could also develop a similar estimate with high probability, but we find it simpler and more
elegant to derive the performance in terms of expectation.
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In our two examples, the condition of Theorem 1.2 is satisfied for S as large as
on the order of n/ logp; that is, β may have a large number of nonzero compo-
nents. The novelty here is that the assumptions on the sparsity level S, and on the
correlation between predictors, are very realistic. This is different from the avail-
able literature, which typically requires a much lower bound on the coherence or
a much lower sparsity level (see Section 4 for a comprehensive discussion). In ad-
dition, many published results assume that the entries of the design matrix X are
sampled from a probability distribution (e.g., are i.i.d. samples from the standard
normal distribution), which we are not assuming here (one could of course special-
ize our results to random designs as discussed above). Hence, we do not simply
prove that in some idealized setting the lasso would do well, but that it has a very
concrete edge in practical situations—as shown empirically in a great number of
works.

An interesting fact is that one cannot expect (1.6) to hold for all models, as
one can construct simple examples of incoherent matrices and special β for which
the lasso does not select a good model (see Section 2). In this sense, (1.6) can be
achieved on the average—or better, in an overwhelming majority of cases—but
not in all cases.

1.3. Exact model recovery. Suppose, now, that we are interested in estimating
the set I = {i :βi 
= 0}. Then, we show that, if the values of the nonvanishing βi ’s
are not too small, then the lasso correctly identifies the “right” model.

THEOREM 1.3. Let I be the support of β , and suppose that

min
i∈I

|βi | > 8σ
√

2 logp.

Then, under the assumptions of Theorem 1.2, the lasso estimate with λ =
2
√

2 logp obeys

supp(β̂) = supp(β) and(1.11)

sgn(β̂i) = sgn(βi) for all i ∈ I,(1.12)

with probability at least 1 − 2p−1((2π logp)−1/2 + |I |p−1) − O(p−2 log 2).

In other words, if the nonzero coefficients are significant in the sense that they
stand above the noise, then the lasso identifies all the variables of interest and
only these. Further, the lasso correctly estimates the signs of the corresponding
coefficients. Again, this does not hold for all β’s, as shown in the example of
Section 2, but for a wide majority.

Our condition says that the amplitudes must be larger than a constant times
the noise level times

√
2 logp, which is sharp, modulo a small multiplicative con-

stant. Our statement is nonasymptotic, and relies upon [29] and [6]. In particular,
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[29] requires X and β to satisfy the Irrepresentable Condition, which is sufficient
to guarantee the exact recovery of the support of β in some asymptotic regime;
Section 3.3 connects with this line of work by showing that the Irrepresentable
Condition holds with high probability under the stated assumptions.

As before, we have decided to state the theorem for a concrete value of λ,
namely 2

√
2 logp, but we could have used any value of the form (1 + a)

√
2 logp

with a > 0. When a decreases, our proof indicates that one can lower the threshold
on the minimum nonzero value of β but that, at the same time, the probability of
success is also lowered. When a increases, the converse applies. Finally, our proof
shows that, by setting λ close to

√
2 logp and imposing slightly stronger condi-

tions on the coherence and the sparsity S, one can substantially lower the threshold
on the minimum nonzero value of β and bring it close to σ

√
2 logp.

We would also like to remark that, under the hypotheses of Theorem 1.3, one
can somewhat improve the estimate (1.6) by using a two-step procedure similar to
that proposed in [10]:

1. Use the lasso to find Î ≡ {i : β̂i 
= 0}.
2. Find β̃ by regressing y onto the columns (Xi), i ∈ Î .

Since Î = I with high probability, we have that

‖Xβ̃ − Xβ‖2
�2

= ‖P [I ]z‖2
�2

with high probability, where P [I ] is the projection onto the space spanned by
the variables (Xi). Because ‖P [I ]z‖2

�2
is concentrated around |I | · σ 2 = S · σ 2, it

follows that, with high probability,

‖Xβ̃ − Xβ‖2
�2

≤ C · S · σ 2,

where C is a some small numerical constant. In other words, when the values of the
nonzero entries of β are sufficiently large, one does not have to pay the logarithmic
factor.

1.4. General model selection. In many applications, β is not sparse or does
not have a real meaning, so that it does not make much sense to talk about the
values of this vector. Consider an example to make this precise. Suppose we have
noisy data y (1.9) about an n-pixel digital image f , where z is white noise. We
wish to remove the noise (i.e., estimate the mean of the vector y). A majority of
modern methods express the unknown signal as a superposition of fixed waveforms
(ϕi(t))1≤i≤p ,

f (t) =
p∑

i=1

βiϕi(t),(1.13)

and construct an estimate

f̂ (t) =
p∑

i=1

β̂iϕi(t).
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That is, one introduces a model f = Xβ , in which the columns of X are the sam-
pled waveforms ϕi(t). It is now extremely popular to consider overcomplete rep-
resentations with many more waveforms than samples (i.e., p > n). The reason
for this is that overcomplete systems offer a wider range of generating elements
that may be well suited to represent contributions from different phenomena; po-
tentially, this wider range allows more flexibility in signal representation and en-
hances statistical estimation.

In this setup, two comments are in order. First, there is no ground truth asso-
ciated with each coefficient βi ; there is no real wavelet or curvelet coefficient.
Second, signals of general interest are never really exactly sparse; they are only
approximately sparse, meaning that they may be well approximated by sparse ex-
pansions. These considerations emphasize the need to formulate results to cover
those situations in which the precise values of βi are either ill-defined or meaning-
less.

In general, one can understand model selection as follows. Select a model—a
subset I of the columns of X—and construct an estimate of Xβ by projecting y

onto the subspace generated by the variables in the model. Mathematically, this is
formulated as

Xβ̂[I ] = P [I ]y = P [I ]Xβ + P [I ]z,
where P [I ] denotes the projection onto the space spanned by the variables (Xi),
i ∈ I . What is the accuracy of Xβ̂[I ]? Note that

Xβ − Xβ̂[I ] = (Id − P [I ])Xβ − P [I ]z;
therefore, the mean-squared error (MSE) obeys3

E‖Xβ − Xβ̂[I ]‖2 = ‖(Id − P [I ])Xβ‖2 + |I |σ 2.(1.14)

This is the classical bias variance decomposition; the first term is the squared bias
one gets by using only a subset of columns of X to approximate the true vector
Xβ . The second term is the variance of the estimator and is proportional to the size
of the model I .

Hence, one can now define the ideal model achieving the minimum MSE over
all models

min
I⊂{1,...,p} ‖(Id − P [I ])Xβ‖2 + |I |σ 2.(1.15)

See Figure 1 for a visual representation. We will refer to this as the ideal risk. It is
ideal in the sense that one could achieve this performance if we had available an
oracle which, knowing Xβ , would select for us the best model to use (i.e., the best
subset of explanatory variables).

3It is, again, simpler to state the performance in terms of expectation.
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FIG. 1. The vector Xβ0 is the projection of Xβ on an ideally selected subset of covariates. These
covariates span a plane of optimal dimension, which, among all planes spanned by subsets of the
same dimension, is closest to Xβ .

To connect this with our earlier discussion, one sees that, if there is a represen-
tation of f = Xβ in which β has S nonzero terms, then the ideal risk is bounded
by the variance term, namely, S · σ 2 [just pick I to be the support of β in (1.15)].
The point we would like to make is that, whereas we did not search for an optimal
bias-variance trade off in the previous section, we will here. The reason is that,
even in the case where the model is interpretable, the projection estimate on the
model corresponding to the nonzero values of βi may very well be inaccurate and
have a mean-squared error that is far larger than (1.15). In particular, this typically
happens if, out of the S nonzero βi ’s, only a small fraction are really significant,
while the others are not (e.g., in the sense that any individual test of significance
would not reject the hypothesis that they vanish). In this sense, the main result of
this section, Theorem 1.4, generalizes but also strengthens Theorem 1.2.

An important question is, of course, whether one can get close to the ideal risk
(1.15) without the help of an oracle. It is known that solving the combinatorial
optimization problem (1.2) with a value of λ0 being a sufficiently large multiple
of logp would provide an MSE within a multiplicative factor of order logp of the
ideal risk. That real estimators with such properties exist is inspiring. Yet, solving
(1.2) is computationally intractable. Our next result shows that, in a wide range
problems, the lasso also nearly achieves the ideal risk.

We are naturally interested in quantifying the performance one can expect from
the lasso in nearly all cases, and, just as before, we now introduce a useful statisti-
cal description of these cases. Consider the best model I0 achieving the minimum
in (1.15). In case of ties, pick one uniformly at random. Suppose I0 is of cardinal-
ity S. Then, we introduce the best S-dimensional subset model, which is defined
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as follows:

1. The subset I0 ⊂ {1, . . . , p} of cardinality S is distributed uniformly at random;
2. Define β0 with support I0 via

Xβ0 = P [I0]Xβ.(1.16)

In other words, β0 is the vector one would get by regressing the true mean vec-
tor Xβ onto the variables in I0; we call β0 the ideal approximation. Conditional
on I0, the signs of the nonzero entries of β0 are independent and equally likely
to be −1 or 1.

We make no assumption on the amplitudes. Our intent is just the same as before.
All models are equally likely (there is no bias towards special variables), and one
has no a priori information about the sign of the coefficients associated with each
significant variable.

THEOREM 1.4. Suppose that X obeys the coherence property, and assume
that the ideal approximation β0 is taken from the best S-dimensional subset model.
Suppose that S ≤ c0p/[‖X‖2 logp] for some positive numerical constant c0. Then,
the lasso estimate (1.3) computed with λ = 2

√
2 logp obeys

‖Xβ − Xβ̂‖2
�2

(1.17)

≤ (
1 + √

2
)[

min
I⊂{1,...,p} ‖Xβ − P [I ]Xβ‖2

�2
+ C′

0 (2 logp) · |I | · σ 2
]

with probability at least 1 − 6p−2 log 2 − p−1(2π logp)−1/2. The constant C′
0 may

be taken as 12 + 10
√

2.

In words, the lasso nearly selects the best model in a very large majority of cases.
This also strengthens our earlier result, since the right-hand side in (1.17) is always
less or equal to O(logp)Sσ 2 whenever there is an S-sparse representation.4

Theorem 1.4 guarantees excellent performance in a broad range of problems.
That is, if we have a design matrix X whose columns are not too correlated,
then, for most responses Xβ , the lasso will find a statistical model with low mean-
squared error; simple extensions would also claim that the lasso finds a statistical
model with very good predictive power, but we will not consider these here. As an
illustrative example, we can consider predicting the clinical outcomes from differ-
ent tumors on the basis of gene expression values for each of the tumors. In typical

4We have assumed that the mean response f of interest is in the span of the columns of X (i.e., of
the form Xβ), which always happens when p ≥ n and X has full column rank, for example. However,
if this is not the case, the error would obey ‖f − Xβ̂‖2

�2
= ‖Pf − Xβ̂‖2

�2
+ ‖(Id − P)f ‖2

�2
, where

P is the projection onto the range of X. The first term obeys the oracle inequality, so that the lasso
estimates Pf in a near-optimal fashion. The second term is simply the size of the unmodelled part
of the mean response.
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problems, one considers hundreds of tumors and tens of thousands of genes. While
some of the gene expressions (the columns of X) are correlated, one can always
eliminate redundant predictors (e.g., via clustering techniques). Once the statisti-
cian has designed an X with low coherence, the lasso is guaranteed, in most cases,
to find a subset of genes with near-optimal predictive power.

There is a slightly different formulation of this general result which may go as
follows. Let S0 be the maximum sparsity level S0 = �c0p/[‖X‖2 logp]�, and, for
each S ≤ S0, introduce AS ⊂ {−1,0,1}p as the set of all possible signs of vectors
β ∈ R

p , with sgn(βi) = 0 if βi = 0, such that exactly S signs are nonzero. Then,
under the hypotheses of our theorem, for each Xβ ∈ R

n,

‖Xβ − Xβ̂‖2
�2

(1.18)
≤ min

S≤S0
min

b : sgn(b)∈A0,S

(
1 + √

2
)[‖Xβ − Xb‖2

�2
+ C′

0(2 logp) · S · σ 2]

with probability at least 1 − O(p−1), where one can still take C′
0 = 12 + 10

√
2

(the probability is with respect to the noise distribution). Above, A0,S is a very
large subset of AS , obeying

|A0,S |/|AS | ≥ 1 − O(p−1).(1.19)

Hence, for most β , the sub-oracle inequality (1.18) is actually the true oracle in-
equality.

For completeness, A0,S is defined as follows. Let b ∈ AS be supported on I ; bI

is the restriction of the vector b to the index set I , and XI is the submatrix formed
by selecting the columns of X with indices in I . Then, we say that b ∈ A0,S if and
only if the following three conditions hold: (1) the submatrix X∗

I XI is invertible
and obeys ‖(X∗

I XI )
−1‖ ≤ 2; (2) ‖X∗

I cXI (X
∗
I XI )

−1bI‖�∞ ≤ 1/4 (recall that b ∈
{−1,0,1}p is a sign pattern); (3) maxi /∈I ‖XI(X

∗
I XI )

−1X∗
I Xi‖ ≤ c0/

√
logp for

some numerical constant c0. In Section 3, we will analyze these three conditions
in detail and prove that |A0,S | is large. The first condition is called the invertibility
condition, and the second and third conditions are needed to establish that a certain
complementary size condition holds (see Section 3).

1.5. Implications for signal estimation. Our findings may be of interest to re-
searchers interested in signal estimation, and we now recast our main results in
the language of signal processing. Suppose we are interested in estimating a signal
f (t) from observations

y(t) = f (t) + z(t), t = 0, . . . , n − 1,

where z is white noise with variance σ 2. We are given a dictionary of waveforms
(ϕi(t))1≤i≤p , which are normalized so that

∑n−1
t=0 ϕ2

i (t) = 1, and are looking for
an estimate of the form f̂ (t) = ∑p

i=1 α̂iϕi(t). When we have an overcomplete
representation in which p > n, there are infinitely many ways of representing f as
a superposition of the dictionary elements.
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Now, introduce the best m-term approximation fm, which is defined via

‖f − fm‖�2 = inf
a:#{i,ai 
=0}≤m

∥∥∥∥∥f − ∑
i

aiϕi

∥∥∥∥∥
�2

;

that is, it is that linear combination of at most m elements of the dictionary that
comes closest to the object f of interest.5 With these notations, if we could some-
how guess the best model of dimension m, one would achieve an MSE equal to

‖f − fm‖2
�2

+ mσ 2.

Therefore, one can rewrite the ideal risk (which could be attained with the help of
an oracle telling us exactly which subset of waveforms to use) as

min
0≤m≤p

‖f − fm‖2
�2

+ mσ 2,(1.20)

which is exactly the trade-off between the approximation error and the number of
terms in the partial expansion.6

Consider, now, the estimate f̂ = ∑
i α̂iϕi , where α̂ is the solution to

min
a∈Rp

1

2

∥∥∥∥∥y − ∑
i

aiϕi

∥∥∥∥∥
2

�2

+ λσ‖a‖�1,(1.21)

with λ = 2
√

2 logp, say. Then, provided that the dictionary is not too redundant
in the sense that max1≤i<j≤p |〈ϕi, ϕj 〉| ≤ c0/ logp, Theorem 1.4 asserts that, for
most signals f , the minimum-�1 estimator (1.21) obeys

‖f̂ − f ‖2
�2

≤ C0

[
inf
m

‖f − fm‖2
�2

+ logp · mσ 2
]

(1.22)

with large probability and for some reasonably small numerical constant C0. In
other words, one obtains a squared error that is within a logarithmic factor of what
can be achieved with information provided by a genie.

Overcomplete representations are now in widespread use, as in the field of arti-
ficial neural networks, for instance [12]. In computational harmonic analysis and
image/signal processing, there is an emerging wisdom, which says that: (1) there is
no universal representation for signals of interest, and (2) different representations
are best for different phenomena (“best” is here understood as providing sparser
representations). For instance:

• sinusoids are best for oscillatory phenomena;

5Note that, again, finding fm is generally a combinatorially hard problem.
6It is also known that, for many interesting classes of signals F and appropriately chosen dictio-

naries, taking the supremum over f ∈ F in (1.20) comes within a log factor of the minimax risk
for F .
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• wavelets [18] are best for point-like singularities;
• curvelets [7, 8] are best for curve-like singularities (edges);
• local cosines are best for textures; and so on.

Thus, many efficient methods in modern signal estimation proceed by forming
an overcomplete dictionary, a union of several distinct representations, and then
extracting a sparse superposition that fits the data well. The main result of this
paper says that, if one solves the quadratic program (1.21), then one is provably
guaranteed near-optimal performance for most signals of interest, which is why
these results might be of interest to people working in this field.

The spikes and sines model has been studied extensively in the literature on in-
formation theory in the nineties, and, there, the assumption that the “arrival times”
of the spikes and the frequencies of the sinusoids are random is legitimate. In other
situations, the model may be less adequate. For instance, in image processing, the
large wavelet coefficients tend to appear early in the series, that is, at low frequen-
cies. With this in mind, two comments are in order. First, it is likely that similar
results would hold for other models (we just considered the simplest). And second,
if we have a lot of a priori information about which coefficients are more likely to
be significant, then we would probably not want to use the plain lasso (1.3) but
rather incorporate this side information.

1.6. Organization of the paper. The paper is organized as follows. In Sec-
tion 2, we explain why our results are nearly optimal and cannot be fundamentally
improved. Section 3 introduces a recent result due to Joel Tropp, regarding the
norm of certain random submatrices, which is essential to our proofs and proves
all of our results. We conclude with a discussion in Section 4, where, for the most
part, we relate our work with a series of other published results and distinguish our
main contributions.

2. Optimality.

2.1. For almost all sparse models. A natural question is whether one can relax
the condition about β being generically sparse, or about Xβ being well approx-
imated by a generically sparse superposition of covariates. The emphasis is on
“generic,” meaning that our results apply to nearly all objects taken from a statis-
tical ensemble but perhaps not all. This begs a question: can one hope to establish
versions of our results that would hold universally? The answer is negative. Even
in the case when X has very low coherence, one can show that the lasso does not
provide an accurate estimation of certain mean vectors Xβ with a sparse coefficient
sequence. This section gives one such example.

Suppose, as in Section 1.2, that we wish to estimate a signal assumed to be a
sparse superposition of spikes and sinusoids. We assume that the length n of the
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signal f (t), t = 0,1, . . . , n − 1, is equal to n = 22j for some integer j . The basis
of spikes is as before, and the orthobasis of sinusoids takes the form

ϕ1(t) = 1/
√

n,

ϕ2k(t) =
√

2/n cos(2πkt/n), k = 1,2, . . . , n/2 − 1,

ϕ2k+1(t) =
√

2/n sin(2πkt/n), k = 1,2, . . . , n/2 − 1,

ϕn(t) = (−1)t /
√

n.

Recall the discrete identity (a discrete analog of the Poisson summation formula)

2j−1∑
k=0

δ(t − k2j ) =
2j−1∑
k=0

1√
n
ei2π k2j t/n

= 1√
n

(
1 + (−1)t

) + 2√
n

2j−1−1∑
k=1

cos(2π k2j t/n)(2.1)

= ϕ1(t) + ϕn(t) + √
2

2j−1−1∑
k=1

ϕk2j+1(t).

Then, consider the model

y = 1 + z = Xβ + z,

where 1 is the constant signal equal to 1, and X is the n × (2n − 1) matrix

X = [ In Fn,2:n ]
in which In is the identity (the basis of spikes) and Fn,2:n is the orthobasis of sinu-
soids minus the first basis vector ϕ1. Note that this is a low-coherence matrix X,
since μ(X) = √

2/n. In plain English, we are simply trying to estimate a constant-
mean vector. It follows, from (2.1), that

1 = √
n

[2j−1∑
k=0

δ(t − k2j ) − ϕn(t) − √
2

2j−1−1∑
k=1

ϕk2j+1(t)

]
,

so that 1 has a sparse expansion, since it is a superposition of at most
√

n spikes and√
n/2 sinusoids (it can also be deduced from existing results that this is actually

the sparsest expansion). In other words, if we knew which column vectors to use,
one could obtain

E‖Xβ� − Xβ‖2
�2

= 3
2

√
nσ 2.

How does the lasso compare? We claim that, with very high probability,

β̂i =
{

yi − λσ, i ∈ {1, . . . , n},
0, i ∈ {n + 1, . . . ,2n − 1},(2.2)
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FIG. 2. Sparse signal recovery with the lasso. (a) Values of the estimated coefficients. All the spike
coefficients are obtained by soft-thresholding y and are nonzero. (b) Lasso signal estimate; Xβ̂ is
just a shifted version of the noisy signal.

so that

Xβ̂ = y − λσ1,(2.3)

provided that λσ ≤ 1/2. In short, the lasso does not find the sparsest model at
all. As a matter of fact, it finds a model as dense as it can be, and the resulting
mean-squared error is awful, since

E‖Xβ̂ − Xβ‖2
�2

≈ (1 + λ2)nσ 2.

Even if one could somehow remove the bias, this would still be a very bad perfor-
mance.

An illustrative numerical example is displayed in Figure 2. In this example,
n = 256 so that p = 512 − 1 = 511. The mean vector Xβ is made up as above,
and there is a representation in which β has only 24 nonzero coefficients. Yet, the
lasso finds a model of dimension 256 (i.e., select as many variables as there are
observations).

We need to justify (2.2), as (2.3) would be an immediate consequence. It fol-
lows, from taking the subgradient of the lasso functional, that β̂ is a minimizer if
and only if

X∗
i (y − Xβ̂) = λσ sgn(β̂i), β̂i 
= 0,

(2.4)
|X∗

i (y − Xβ̂)| ≤ λσ, β̂i = 0.

One can further establish that β̂ is the unique minimizer of (1.3) if

X∗
i (y − Xβ̂) = λσ sgn(β̂i), β̂i 
= 0,

(2.5)
|X∗

i (y − Xβ̂)| < λσ, β̂i = 0,
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and the columns indexed by the support of β̂ are linearly independent (note the
strict inequalities). We then simply need to show that β̂ , given by (2.2), obeys
(2.5). Suppose that mini yi > λσ . A sufficient condition is that maxi |zi | < 1−λσ ,
which occurs with very large probability if λσ ≤ 1/2 and λ >

√
2 logn [see (3.4)

with X = I ]. (One can always allow for larger noise by multiplying the signal by
a factor greater than 1.) Note that y − Xβ̂ = λσ1, so that, for i ∈ {1, . . . , n}, we
have

X∗
i (y − Xβ̂) = λσ = λσ sgn(β̂i),

whereas, for i ∈ {n + 1, . . . ,2n − 1}, we have

X∗
i (y − Xβ̂) = λσ 〈Xi,1〉 = 0,

which proves our claim.
To summarize, even when the coherence is low (i.e., of size about 1/

√
n) there

are sparse vectors β with sparsity level about equal to
√

n, for which the lasso
completely misbehaves (we presented an example but there are of course many
others). Therefore, it is a fact that none of our theorems, namely, Theorems 1.2–
1.4, can hold for all β’s. In this sense, they are sharp.

2.2. For sufficiently incoherent matrices. We now show that predictors cannot
be too collinear, and we begin by examining a small problem in which X is a 2 × 2
matrix X = [X1,X2]. We violate the coherence property by choosing X1 and X2,
so that 〈X1,X2〉 = 1−ε, where we think of ε as being very small. Assume, without
loss of generality, that σ = 1 to simplify. Now, consider

β = a

ε

[
1

−1

]
,

where a is some positive amplitude and observe that Xβ = aε−1(X1 − X2),
and X∗Xβ = a(1,−1)∗. It is well known that the lasso estimate β̂ vanishes if
‖X∗y‖�∞ ≤ λ. Now,

‖X∗y‖�∞ ≤ a + ‖X∗z‖�∞,

so that, if a = 1, say, and λ is not ridiculously small, then there is a positive
probability π0 that β̂ = 0, where π0 ≥ P(‖X∗z‖∞ ≤ λ − 1).7 For example, if
λ > 1 + 3 = 4, then β̂ = 0, as long as both entries of X∗z are within 3 standard
deviations of 0. When β̂ = 0, the squared error loss obeys

‖Xβ‖2
�2

= 2
a2

ε
,

which can be made arbitrarily large if we allow ε to be arbitrarily small.

7π0 can be calculated since X∗z is a bivariate Gaussian variable.
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Of course, the culprit in our 2-by-2 example is hardly sparse, and we now con-
sider the n × n diagonal block matrix X0 (n even)

X0 =

⎡
⎢⎢⎣

X

X
.. .

X

⎤
⎥⎥⎦

with blocks made out of n/2 copies of X. We now consider β from the S-sparse
model with independent entries sampled from the distribution (we choose a = 1
for simplicity but we could consider other values as well)

βi =
⎧⎨
⎩

ε−1, w. p. n−1/2,

−ε−1, w. p. n−1/2,

0, w. p. 1 − 2n−1/2.

Certainly, the support of β is random, and the signs are random. One could
argue that the size of the support is not fixed (the expected value is 2

√
n, so that β

is sparse with very large probability) but this is obviously unessential.8

Because X0 is block diagonal, the lasso functional becomes additive, and the
lasso will minimize each individual term of the form 1

2‖Xb(i)−y(i)‖2
�2

+λ‖b(i)‖�1 ,

where b(i) = (b2i−1, b2i ) and y(i) = (y2i−1, y2i ). If, for any of these subprob-
lems, β(i) = ±ε−1(1,−1) as in our 2-by-2 example above, then the squared er-
ror will blow up (as ε gets smaller) with probability π0. With i fixed, P(β(i) =
±ε−1(1,−1)) = 2/n and, thus, the probability that none of these sub-problems is
poised to blow up is (1 − 2

n
)n/2 → 1

e
as n → ∞. Formalizing matters, we have a

squared loss of at least 2/ε with probability at least π0(1 − (1 − 2
n
)n/2). Note that,

when n is large, λ is large, so that π0 is close to 1, and the lasso badly misbehaves
with a probability greater or equal to a quantity approaching 1 − 1/e.

In conclusion, the lasso may perform badly, even with a random β , when all our
assumptions are met but the coherence property. To summarize, an upper bound
on the coherence is also necessary.

3. Proofs. In this section, we prove all of our results. It is sufficient to estab-
lish our theorems with σ = 1, as the general case is treated by a simple rescaling.
Therefore, we conveniently assume that σ = 1 from now on. Here, and in the re-
mainder of this paper, xI is the restriction of the vector x to an index set I , and, for
a matrix X, XI is the submatrix formed by selecting the columns of X with indices
in I . In the following, it will also be convenient to denote, by K , the functional

K(y, b) = 1
2‖y − Xb‖2

�2
+ 2λp‖b‖�1,(3.1)

in which λp = √
2 logp.

8We could alternatively select the support at random and randomly assign the signs, and this would
not change our story in the least.
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3.1. Preliminaries. We will make frequent use of subgradients, and we begin
by briefly recalling what these are. We say that u ∈ R

p is a subgradient of a convex
function f : Rp → R at x0 if f obeys

f (x) ≥ f (x0) + 〈u,x − x0〉(3.2)

for all x.
Further, our arguments will repeatedly use two general results that we now

record. The first states that the lasso estimate is feasible for the Dantzig selector
optimization problem.

LEMMA 3.1. The lasso estimate obeys

‖X∗(y − Xβ̂)‖�∞ ≤ 2λp.(3.3)

PROOF. Since β̂ minimizes f (b) = K(y, b) over b, 0 must be a subgradient
of f at β̂ . Now, the subgradients of f at b are of the form

X∗(Xb − y) + 2λpε,

where ε is any p-dimensional vector obeying εi = sgn(bi) if bi 
= 0 and |εi | ≤ 1
otherwise. Hence, since 0 is a subgradient at β̂ , there exists ε as above such that

X∗(Xβ̂ − y) = −2λpε.

The conclusion follows from ‖ε‖�∞ ≤ 1. �

The second general result states that ‖X∗z‖�∞ cannot be too large. With large
probability, z ∼ N (0, I ) obeys

‖X∗z‖�∞ = max
i

|〈Xi, z〉| ≤ λp.(3.4)

This is standard and simply follows from the fact that 〈Xi, z〉 ∼ N (0,1). Hence,
for each t > 0,

P(‖X∗z‖�∞ > t) ≤ 2p · φ(t)/t,(3.5)

where φ(t) ≡ (2π)−1/2e−t2/2. Better bounds may be possible, but we will not
pursue these refinements here. Also, note that ‖X∗z‖�∞ ≤ √

2λp with probability
at least 1 − p−1(2π logp)−1/2. These two general facts have an interesting con-
sequence, since it follows from the decomposition y = Xβ + z and the triangle
inequality that, with high probability,

‖X∗X(β − β̂)‖�∞ ≤ ‖X∗(Xβ − y)‖�∞ + ‖X∗(y − Xβ̂)‖�∞

= ‖X∗z‖�∞ + ‖X∗(y − Xβ̂)‖�∞(3.6)

≤ (√
2 + 2

)
λp.
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3.2. Proof of Theorem 1.2. Put I for the support of β . To prove our claim,
we first establish that (1.6) holds provided that the following three deterministic
conditions are satisfied:

• Invertibility condition. The submatrix X∗
I XI is invertible and obeys

‖(X∗
I XI )

−1‖ ≤ 2.(3.7)

The number 2 is arbitrary; we just need the smallest eigenvalue of X∗
I XI to be

bounded away from zero.
• Orthogonality condition. The vector z obeys ‖X∗z‖�∞ ≤ √

2λp .
• Complementary size condition. The following inequality holds

‖X∗
I cXI (X

∗
I XI )

−1X∗
I z‖�∞ + 2λp‖X∗

I cXI (X
∗
I XI )

−1sgn(βI )‖�∞
(3.8)

≤ (
2 − √

2
)
λp.

This section establishes the main estimate (1.6), assuming these three condi-
tions hold, whereas the next will show that all three conditions hold with large
probability, hence proving Theorem 1.2. Note that, when z is white noise, we
already know that the orthogonality condition holds with probability at least
1 − p−1(2π logp)−1/2.

Assume, then, that all three conditions above hold. Since β̂ minimizes K(y, b),
we have K(y, β̂) ≤ K(y,β) or, equivalently,

1
2‖y − Xβ̂‖2

�2
+ 2λp‖β̂‖�1 ≤ 1

2‖y − Xβ‖2
�2

+ 2λp‖β‖�1 .

Set h = β̂ − β , and note that

‖y − Xβ̂‖2
�2

= ‖(y − Xβ) − Xh‖2
�2

= ‖Xh‖2
�2

+ ‖y − Xβ‖2
�2

− 2〈Xh,y − Xβ〉.
Plugging this identity with z = y − Xβ into the above inequality and rearranging
the terms gives

1
2‖Xh‖2

�2
≤ 〈Xh,z〉 + 2λp(‖β‖�1 − ‖β̂‖�1).(3.9)

Next, break h up into hI and hIc (observe that β̂I c = hIc ) and rewrite (3.9) as

1
2‖Xh‖2

�2
≤ 〈h,X∗z〉 + 2λp(‖βI‖�1 − ‖βI + hI‖�1 − ‖hIc‖�1).

For each i ∈ I , we have

|β̂i | = |βi + hi | ≥ |βi | + sgn(βi) hi

and, thus, ‖βI + hI‖�1 ≥ ‖β‖�1 + 〈hI , sgn(βI )〉. Inserting this inequality above
yields

1
2‖Xh‖2

�2
≤ 〈h,X∗z〉 − 2λp

(〈hI , sgn(βI )〉 + ‖hIc‖�1

)
.(3.10)
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Observe, now, that 〈h,X∗z〉 = 〈hI ,X
∗
I z〉 + 〈hIc ,X∗

I cz〉 and that the orthogonality
condition implies

〈hIc ,X∗
I cz〉 ≤ ‖hIc‖�1‖X∗

I cz‖�∞ ≤ √
2λp‖hIc‖�1 .

The conclusion is the useful estimate
1
2‖Xh‖2

�2
≤ 〈hI , v〉 − (

2 − √
2
)
λp‖hIc‖�1,(3.11)

where v ≡ X∗
I z − 2λp sgn(βI ).

We complete the argument by bounding 〈hI , v〉. The key here is to use the fact
that ‖X∗Xh‖�∞ is known to be small, as pointed out by Terence Tao [25]. We have

〈hI , v〉 = 〈(X∗
I XI )

−1X∗
I XIhI , v〉

= 〈X∗
I XIhI , (X

∗
I XI )

−1v〉(3.12)

= 〈X∗
I Xh, (X∗

I XI )
−1v〉 − 〈X∗

I XIchIc , (X∗
I XI )

−1v〉 ≡ A1 − A2.

We address each of the two terms individually. First,

A1 ≤ ‖X∗
I Xh‖�∞ · ‖(X∗

I XI )
−1v‖�1

and

‖(X∗
I XI )

−1v‖�1 ≤ √
S · ‖(X∗

I XI )
−1v‖�2

≤ √
S · ‖(X∗

I XI )
−1‖‖v‖�2

≤ S · ‖(X∗
I XI )

−1‖‖v‖�∞ .

Consider the following: (1) ‖X∗
I Xh‖�∞ ≤ (2 + √

2) λp by Lemma 3.1 together
with the orthogonality condition [see (3.6)], and (2) ‖(X∗

I XI )
−1‖�2 ≤ 2 by the

invertibility condition. Because of this, we have

A1 ≤ 2
(
2 + √

2
)
λpS‖v‖�∞ .

However,

‖v‖�∞ ≤ ‖X∗
I z‖�∞ + 2λp ≤ (

2 + √
2
)
λp,

so that

A1 ≤ 2
(
2 + √

2
)2

λ2
p · S.(3.13)

Second, we simply bound the other term A2 = 〈hIc ,X∗
I cXI (X

∗
I XI )

−1v〉 by

|A2| ≤ ‖hIc‖�1‖X∗
I cXI (X

∗
I XI )

−1v‖�∞
with v = X∗

I z − 2λp sgn(βI ). Since

‖X∗
I cXI (X

∗
I XI )

−1v‖�∞

≤ ‖X∗
I cXI (X

∗
I XI )

−1X∗
I z‖�∞ + 2λp‖X∗

I cXI (X
∗
I XI )

−1 sgn(βT )‖�∞

≤ (
2 − √

2
)
λp
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because of the complementary size condition, we have

|A2| ≤ (
2 − √

2
)
λp‖hIc‖�1 .

To summarize,

|〈hI , v〉| ≤ 2
(
2 + √

2
)2

λ2
p · S + (

2 − √
2
)
λp‖hIc‖�1 .(3.14)

We conclude by inserting (3.14) into (3.11), which gives

1
2‖X(β̂ − β)‖2

�2
≤ 2

(
2 + √

2
)2

λ2
p · S,

which is what we needed to prove.

3.3. Norms of random submatrices. In this section, we establish that the in-
vertibility and the complementary size conditions hold with large probability.
These essentially rely on a recent result of Joel Tropp, which we state first.

THEOREM 3.2 [27]. Suppose that a set I of predictors is sampled using a
Bernoulli model by first creating a sequence (δj )1≤j≤p of i.i.d. random variables
with δj = 1 w.p. S/p and δj = 0 w.p. 1 − S/p, and then setting I ≡ {j : δj = 1} so
that E|I | = S. Then, for q = 2 logp,

(E‖X∗
I XI − Id‖q)1/q ≤ 30μ(X) logp + 13

√
2S‖X‖2 logp

p
(3.15)

provided that S‖X‖2/p ≤ 1/4. In addition, for the same value of q(
E max

i∈I c
‖X∗

I Xi‖q

�2

)1/q

≤ 4μ(X)
√

logp +
√

S‖X‖2/p.(3.16)

The first inequality (3.15) can be derived from the last equation in Section 4
of [27]. To be sure, using the notations of that paper and letting H ≡ X∗X − Id,
Tropp shows that

Eq‖RHR‖ ≤ 15q̄Eq‖RHR′‖max + 12
√

δq̄‖HR‖1→2 + 2δ‖H‖, δ = S/p,

where q̄ = max{q,2 logp}. Now, consider the following three facts: (1) ‖R ×
HR′‖max ≤ μ(X); (2) ‖HR‖1→2 ≤ ‖X‖; and (3) ‖H‖ ≤ ‖X‖2. The first asser-
tion is immediate. The second is justified in [27]. For the third, observe that
‖X∗X − Id‖ ≤ max{‖X‖2 − 1,1} (this is an equality when p > n), and the claim
follows from ‖X‖ ≥ 1, which holds, since X has unit-normed columns. With
q = 2 logp, this gives

Eq‖RHR‖ ≤ 30μ(X) logp + 12

√
2S logp‖X‖2

p
+ 2S‖X‖2

p
.
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Suppose that S‖X‖2/p ≤ 1/4; then, we can simplify the above inequality and
obtain

Eq‖RHR‖ ≤ 30μ(X) logp + (
12

√
2 logp + 1

)√
S‖X‖2/p,

which implies (3.15). The second inequality (3.16) is exactly Corollary 5.1 in [27].
The inequalities (3.15) and (3.16) also hold for our slightly different model, in

which I ⊂ {1, . . . , p} is a random subset of predictors with S elements, provided
that the right-hand side of both inequalities be multiplied by 21/q . This follows
from a simple Poissonization argument, which is similar to that posed in the proof
of Lemma 3.6.

It is now time to investigate how these results imply our conditions, and we
first examine how (3.15) implies the invertibility condition. Let I be a random set
and put Z = ‖X∗

I XI − Id‖. Clearly, if Z ≤ 1/2, then all the eigenvalues of X∗
I XI

are in the interval [1/2,3/2] and ‖(X∗
I XI )

−1‖ ≤ 2. Suppose that μ(X) and S are
sufficiently small, so that the right-hand side of (3.15) is less than 1/4, say. This
happens when the coherence μ(X) and S obey the hypotheses of the theorem.
Then, by Markov’s inequality, we have that, for q = 2 logp,

P(Z > 1/2) ≤ 2q
EZq ≤ (1/2)q .

In other words, the invertibility condition holds with probability exceeding 1 −
p−2 log 2.

Recalling that the signs of the nonzero entries of β are i.i.d. symmetric vari-
ables, we now examine the complementary size condition and begin with a simple
lemma.

LEMMA 3.3. Let (Wj )j∈J be a fixed collection of vectors in �2(I ) and con-
sider the random variable Z0 defined by Z0 = maxj∈J |〈Wj, sgn(βI )〉|. Then,

P(Z0 ≥ t) ≤ 2|J | · e−t2/2κ2
(3.17)

for any κ obeying κ ≥ maxj∈J ‖Wj‖�2 . Similarly, letting (W ′
j )j∈J be a fixed col-

lection of vectors in R
n and setting Z1 = maxj∈J |〈W ′

j , z〉|, we have

P(Z1 ≥ t) ≤ 2|J | · e−t2/2κ2
(3.18)

for any κ obeying κ ≥ maxj∈J ‖W ′
j‖�2 .9

PROOF. The first inequality is an application of Hoeffding’s inequality. In-
deed, letting Z0,j = 〈Wj, sgn(βI )〉, Hoeffding’s inequality gives

P(|Z0,j | > t) ≤ 2e
−t2/2‖Wj‖2

�2 ≤ 2e
−t2/2 maxj ‖Wj‖2

�2 .(3.19)

9Note that this lemma also holds if the collection of vectors (Wj )j∈J is random, as long as it is
independent of sgn(βI ) and z.
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Inequality (3.17) then follows from the union bound. The second part is even eas-
ier, since Z1,j = 〈W ′

j , z〉 ∼ N (0,‖W ′
j‖2

�2
); thus,

P(|Z1,j | > t) ≤ 2e
−t2/2‖W ′

j ‖2
�2 ≤ 2e

−t2/2 maxj ‖W ′
j ‖2

�2 .(3.20)

Again, the union bound gives (3.18). �

For each i ∈ I c, define Z0,i and Z1,i as

Z0,i = X∗
i XI (X

∗
I XI )

−1 sgn(βI ) and Z1,i = X∗
i XI (X

∗
I XI )

−1X∗
I z.

With these notations, in order to prove the complementary size condition, it is
sufficient to show that, with large probability,

2λpZ0 + Z1 ≤ (
2 − √

2
)
λp,

where Z0 = maxi∈I c |Z0,i | and likewise for Z1. Therefore, it is sufficient to prove
that, with large probability,

Z0 ≤ 1/4 and Z1 ≤ (
3/2 − √

2
)
λp.

The idea is of course to apply Lemma 3.3 together with Theorem 3.2. We have

Z0,i = 〈Wi, sgn(βI )〉 and Z1,i = 〈W ′
i , z〉,

where

Wi = (X∗
I XI )

−1X∗
I Xi and W ′

i = XI(X
∗
I XI )

−1X∗
I Xi.

Recall the definition of Z above and consider the event E = {Z ≤ 1/2} ∩
{maxi∈I c ‖X∗

I Xi‖ ≤ γ } for some positive γ . On this event, all the singular values
of XI are between 1/

√
2 and

√
3/2; thus, ‖(X∗

I XI )
−1‖ ≤ 2 and ‖XI(X

∗
I XI )

−1‖ ≤√
2, which gives

‖Wi‖ ≤ 2γ and ‖W ′
i‖ ≤ √

2γ.

Applying (3.17) and (3.18) gives

P({Z0 ≥ t} ∪ {Z1 ≥ u}) ≤ P({Z0 ≥ t} ∪ {Z1 ≥ u}|E) + P(Ec)

≤ P(Z0 ≥ t |E) + P(Z1 ≥ u |E) + P(Ec)

≤ 2p e−t2/8γ 2 + 2pe−u2/4γ 2

+ P(Z > 1/2) + P

(
max
i∈I c

‖X∗
I Xi‖ > γ

)
.

We already know that the second to last term of the right-hand side is less than
p−2 log 2, provided that μ(X) and S obey the conditions of the theorem. For the
other three terms, let γ0 be the right-hand side of (3.16). For t = 1/4, one can
find a constant c0 such that, if γ < c0/

√
logp, then 2pe−t2/8γ 2 ≤ 2p−2 log 2, say.
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Likewise, for u = (3/2 − √
2)λp , we may have 2pe−u2/4γ 2 ≤ 2p−2 log 2. The last

term is treated by Markov’s inequality, since, for q = 2 logp, (3.16) gives

P

(
max
i∈I c

‖X∗
I Xi‖ > γ

)
≤ γ −q · E

(
max
i∈I c

‖X∗
I Xi‖q

)
≤ (γ0/γ )q.

Therefore, if γ0 ≤ γ /2 = c0/2
√

logp, we have that this last term does not exceed
1 − p−2 log 2. For μ(X) and S obeying the hypotheses of Theorem 1.2, it is in-
deed the case that γ0 ≤ c0/2

√
logp. In conclusion, we have shown that all three

conditions hold under our hypotheses with probability at least 1 − 6p−2 log 2 −
p−1(2π logp)−1/2.

In passing, we would like to remark that proving that Z0 ≤ 1/4 establishes that
the strong irrepresentable condition from [29] holds (with high probability). This
condition states that, if I is the support of β ,

‖X∗
I cXI (X

∗
I XI )

−1sgn(βI )‖�∞ ≤ 1 − ν,

where ν is any (small) constant greater than zero (this condition is used to show
the asymptotic recovery of the support of β).

3.4. Proof of Theorem 1.4. The proof of Theorem 1.4 parallels that of Theo-
rem 1.2, and we only sketch it, although we carefully detail the main differences.
Let I0 be the support of β0. Just as before, all three conditions of Section 3.2, with
I0 in place of I and β0 in place of β , hold with overwhelming probability. From
now on, we just assume that they are all true.

Since β̂ minimizes K(y, b), we have K(y, β̂) ≤ K(y,β0) or, equivalently,

1
2‖y − Xβ̂‖2

�2
+ 2λp‖β̂‖�1 ≤ 1

2‖y − Xβ0‖2
�2

+ 2λp‖β0‖�1 .(3.21)

Expand ‖y − Xβ̂‖2
�2

as

‖y − Xβ̂‖2
�2

= ‖z − (Xβ̂ − Xβ)‖2
�2

= ‖z‖2
�2

− 2〈z,Xβ̂ − Xβ〉 + ‖Xβ̂ − Xβ‖2
�2

and ‖y − Xβ0‖2
�2

in the same way. Then, plug these identities into (3.21) to obtain

1
2‖Xβ̂ − Xβ‖2

�2
≤ 1

2‖Xβ0 − Xβ‖2
�2

+ 〈z,Xβ̂ − Xβ0〉
(3.22)

+ 2λp(‖β0‖�1 − ‖β̂‖�1).

Put h = β̂ − β0. We follow the same steps as in Section 3.2 to arrive at

1
2‖Xβ̂ − Xβ‖2

�2
≤ 1

2‖Xβ0 − Xβ‖2
�2

+ 〈hI0, v〉 − (
2 − √

2
)
λp‖hIc

0
‖�1,

where v = X∗
I0

z − 2λpsgn(βI0). Just as before,

〈hI0, v〉 = 〈X∗
I0

Xh, (X∗
I0

XI0)
−1v〉 − 〈hIc

0
,X∗

I0
XIc

0
(X∗

I0
XI0)

−1v〉 ≡ A1 − A2.
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By assumption, |A2| ≤ (2 − √
2)λp · ‖hIc

0
‖�1 . The difference is now in A1, since

we can no longer claim that ‖X∗Xh‖�∞ ≤ (2 + √
2)λp . Decompose A1 as

A1 = 〈X∗
I0

X(β̂ − β), (X∗
I0

XI0)
−1v〉 + 〈X∗

I0
X(β − β0), (X

∗
I0

XI0)
−1v〉 ≡ A0

1 + A1
1.

Because ‖X∗X(β̂ − β)‖�∞ ≤ (2 + √
2)λp , one can use the same argument as be-

fore to obtain

A0
1 ≤ 2

(
2 + √

2
)2

λ2
pS.

We now look at the other term. Since we assume ‖XI0(X
∗
I0

XI0)
−1‖ ≤ √

2, we have

|A1
1| = 〈X(β − β0),XI0(X

∗
I0

XI0)
−1v〉

≤ ‖X(β − β0)‖�2‖XI0(X
∗
I0

XI0)
−1v‖�2

≤ √
2‖X(β − β0)‖�2‖v‖�2 .

Using ab ≤ (a2 + b2)/2 and ‖v‖2
�2

≤ (2 + √
2)2λ2

pS gives

|A1
1| ≤

√
2

2 ‖X(β − β0)‖2
�2

+
√

2
2

(
2 + √

2
)2

λ2
pS.

To summarize,

〈hI0, v〉 ≤
√

2
2 ‖X(β − β0)‖2

�2
+ (

2 +
√

2
2

)(
2 + √

2
)2

λ2
pS + (

2 − √
2
)
λp · ‖hIc

0
‖�1 .

It follows that

1
2‖Xβ̂ − Xβ‖2

�2
≤ 1+√

2
2 ‖Xβ0 − Xβ‖2

�2
+ (

4 + √
2
)(

1 + √
2
)2

λ2
pS.

This concludes the proof.
We close this section by arguing about (1.18) and (1.19). First, it follows from

our proof that (1.18) holds. Second, our analysis also shows that the set A0,S is
very large and obeys (1.19).

3.5. Proof of Theorem 1.3. Just as with our other claims, we begin by stating
a few assumptions that hold with very large probability, and then we show that,
under these conditions, the conclusions of the theorem hold. These assumptions
are as follows:

(i) The matrix X∗
I XI is invertible and obeys ‖(X∗

I XI )
−1‖ ≤ 2;

(ii) ‖X∗
I cXI (X

∗
I XI )

−1sgn(βI )‖�∞ < 1
4 ;

(iii) ‖(X∗
I XI )

−1X∗
I z‖�∞ ≤ 2λp;

(iv) ‖X∗
I c (I − P [I ])z‖�∞ ≤ √

2λp;
(v) The matrix–vector product (X∗

I XI )
−1sgn(βI ) obeys

‖(X∗
I XI )

−1sgn(βI )‖�∞ ≤ 3.(3.23)
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We already know that conditions (i) and (ii) hold with large probability [see
Section 3.3; the change from 1/2 to 1/4 in (ii) is unessential]. As before, we let
E be the event {‖X∗

I XI − Id‖ ≤ 1/2}. For (iii), the idea is the same, and we ex-
press ‖(X∗

I XI )
−1X∗

I z‖�∞ as maxi∈I |〈Wi, z〉|, where Wi is now the ith row of
(X∗

I XI )
−1X∗

I . On E, maxi ‖Wi‖ ≤ ‖(X∗
I XI )

−1X∗
I ‖ ≤ √

2, and the claim now fol-
lows from (3.5). Indeed, one can check that conditional on E

P
(‖(X∗

I XI )
−1X∗

I z‖�∞ > 2λp

) ≤ |I | · p−2 · (2π logp)−1/2.

For (iv), we write ‖X∗
I c (I − P [I ])z‖�∞ as maxi∈I c |〈Wi, z〉|, where Wi = (I −

P [I ])Xi . We have ‖Wi‖ ≤ ‖Xi‖ = 1 and, conditional on E, it follows, from (3.5),
that

P
(‖X∗

I c (I − P [I ])z‖�∞ >
√

2λp

) ≤ |I c| · p−2 · (2π logp)−1/2.

The subtle estimate is (v), and it is proven in the next section. There, we show
that (3.23) holds with probability at least 1 − 2p−2 log 2 − 2|I |p−2. Hence, un-
der the assumptions of Theorem 1.3, (i)–(v) hold with probability at least 1 −
2p−1((2π logp)−1/2 + |I |/p) − O(p−2 log 2).

LEMMA 3.4. Suppose that the assumptions (i)–(v) hold, and assume that
mini∈I |βi | obeys the condition of Theorem 1.3. Then, the lasso solution is given
by β̂ ≡ β + h with

hI = (X∗
I XI )

−1[X∗
I z − 2λp sgn(βI )],

(3.24)
hIc = 0.

PROOF. The point β̂ is the unique solution to the lasso functional if

X∗
i (y − Xβ̂) = 2λp sgn(β̂i), β̂i 
= 0,

(3.25)
|X∗

i (y − Xβ̂)| < 2λp, β̂i = 0,

and the columns of XT are linearly independent where T is the support of β̂ .
Consider, then, h as in (3.24), and observe that

‖hI‖�∞ ≤ ‖(X∗
I XI )

−1X∗
I z‖�∞ + 2λp‖(X∗

I XI )
−1sgn(βI )‖�∞ ≤ 2λp + 6λp.

It follows that ‖hI‖�∞ < mini∈I |βi | and, therefore, β̂ = β + h obeys

supp(β̂) = supp(β),

sgn(β̂I ) = sgn(βI ).

We now check that β̂ = β + h obeys (3.25). By definition, we have

y − Xβ̂ = z − Xh = z − XI(X
∗
I XI )

−1[X∗
I z − 2λpsgn(β̂I )],
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since β and β̂ share the same support and the same signs. Clearly,

X∗
I (y − Xβ̂) = 2λp sgn(β̂I ),

which is the first half of (3.25). For the second half, let P [I ] = XI(X
∗
I XI )

−1X∗
I

be the orthonormal projection onto the span of XI . Then,

‖X∗
I c (y − Xβ̂)‖�∞ = ‖X∗

I c (I − P [I ])z + 2λpX∗
I cXI (X

∗
I XI )

−1sgn(βI )‖�∞

≤ ‖X∗
I c (I − P [I ])z‖�∞ + 2λp‖X∗

I cXI (X
∗
I XI )

−1sgn(βI )‖�∞

<
√

2λp + 1
2λp

< 2λp.

Finally, note that X∗
T XT is indeed invertible, since T = I ; this is just our invert-

ibility condition. This concludes the proof. �

Lemma 3.4 proves that β̂ has the same support as β and the same signs as β ,
which is of course the content of Theorem 1.3.

3.6. Proof of (3.23). We need to show that ‖(X∗
I XI )

−1sgn(βI )‖�∞ ≤ 3 with
high probability. To begin, we write

‖(X∗
I XI )

−1 sgn(βI )‖�∞ ≤ ‖ sgn(βI )‖�∞ + ∥∥(
(X∗

I XI )
−1 − Id

)
sgn(βI )

∥∥
�∞

≤ 1 + max
i∈I

|〈Wi, sgn(βI )〉|,
where Wi is the ith row of (X∗

I XI )
−1 − Id (or column since this is a symmetric

matrix).

LEMMA 3.5. Let Wi be the ith row of (X∗
I XI )

−1 − Id. Under the hypotheses
of Theorem 1.3, we have

P

(
max
i∈I

‖Wi‖ ≥ (logp)−1/2
)

≤ 2p−2 log 2.

PROOF. Set A ≡ Id − X∗
I XI . On the event E ≡ {‖Id − X∗

I XI‖ ≤ 1/2} (which
holds w.p. at least 1 − p−2 log 2), we have

(X∗
I XI )

−1 = I + A + A2 + · · · .
Therefore, since Wi = ((X∗

I XI )
−1 − Id)ei where ei is the vector whose ith com-

ponent is 1 and the others 0, Wi = Aei + A2ei + · · · and

‖Wi‖ ≤ ‖Aei‖ + ‖A‖‖Aei‖ + ‖A2‖‖Aei‖ + · · ·

≤ ‖Aei‖
∞∑

k=0

‖A‖k

≤ ‖Aei‖/(1 − ‖A‖).
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Hence, on E, ‖Wi‖ ≤ 2‖Aei‖.
For each i ∈ I , Aei is the ith row or column of Id − X∗

I XI and for each j ∈ I ,
its j th component is equal to −〈Xi,Xj 〉 if j 
= i, and 0 for j = i since ‖Xi‖ = 1.
Thus,

‖Wi‖2 ≤ 4
∑

j∈I :j 
=i

|〈Xi,Xj 〉|2.

Now, it follows from Lemma 3.6 that∑
j∈I :j 
=i

|〈Xi,Xj 〉|2 ≤ S‖X‖2/p + t

with probability at least 1 − 2e−t2/[2μ2(X)(S‖X‖2/p+t/3)]. Under the assumptions of
Theorem 1.3, we have S‖X‖2/p ≤ c0(logp)−1 ≤ (8 logp)−1 provided that c0 ≤
1/8. With t = (8 logp)−1, this gives∑

j∈I :j 
=i

|〈Xi,Xj 〉|2 ≤ 1/(4 logp)(3.26)

with probability at least 1 − 2e−3/[64μ2(X) logp]. Now, the assumption about the
coherence guarantees that μ(X) ≤ A0/ logp so that (3.26) holds with probability
at least 1 − 2e−3 logp/[64A2

0]. Hence, by choosing A0 sufficiently small, the lemma
follows from the union bound. �

LEMMA 3.6. Suppose that I ⊂ {1, . . . , p} is a random subset of predictors
with at most S elements. For each i, 1 ≤ i ≤ p, we have

P

( ∑
j∈I :j 
=i

|〈Xi,Xj 〉|2 >
S

p
‖X‖2 + t

)

(3.27)

≤ 2 exp
(
− t2

2μ2(X)(S‖X‖2/p + t/3)

)
.

PROOF. The inequality (3.27) is essentially an application of Bernstein’s in-
equality, which states that, for a sum of uniformly bounded independent random
variables with |Yk − EYk| < c,

P

(
n∑

k=1

(Yk − EYk) > t

)
≤ e−t2/(2σ 2+2ct/3),(3.28)

where σ 2 is the sum of the variances, σ 2 ≡ ∑n
k=1 Var(Yk). The issue here is that∑

j∈I :j 
=i |〈Xi,Xj 〉|2 is not a sum of independent variables and we need to use a
kind of Poissonization argument to reduce this to a sum of independent terms.
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A set I ′ of predictors is sampled using a Bernoulli model by first creating the
sequence

δj =
{

1, w.p. S/p,

0, w.p. 1 − S/p,

and then setting I ′ ≡ {j ∈ {1, . . . , p} : δj = 1}. The size of the set I ′ follows a
binomial distribution, and E|I ′| = S. We make two claims: first, for each t > 0, we
have

P

( ∑
j∈I :j 
=i

|〈Xi,Xj 〉|2 > t

)
≤ 2P

( ∑
j∈I ′:j 
=i

|〈Xi,Xj 〉|2 > t

)
;(3.29)

second, for each t > 0,

P

( ∑
j∈I ′:j 
=i

|〈Xi,Xj 〉|2 >
S

p
‖X‖2 + t

)

(3.30)

≤ exp
(
− t2

2μ2(X)(S‖X‖2/p + t/3)

)
.

Clearly, (3.29) and (3.30) give (3.27).
To justify the first claim, observe that

P

( ∑
j∈I ′:j 
=i

|〈Xi,Xj 〉|2 > t

)
=

p∑
k=0

P

( ∑
j∈I ′:j 
=i

|〈Xi,Xj 〉|2 > t
∣∣∣|I ′| = k

)
P(|I ′| = k)

≥
p∑

k=S

P

( ∑
j∈I ′:j 
=i

|〈Xi,Xj 〉|2 > t
∣∣∣|I ′| = k

)
P(|I ′| = k)

=
p∑

k=S

P

( ∑
j∈Ik :j 
=i

|〈Xi,Xj 〉|2 > t

)
P(|I ′| = k),

where Ik is selected uniformly at random with |Ik| = k. We make two observa-
tions: (1) since S is an integer, it is the median of |I ′| and P(|I ′| ≥ S) ≥ 1/2; and
(2) P(

∑
j∈Ik :j 
=i |〈Xi,Xj 〉|2 > t) is a nondecreasing function of k. To see why

this is true, consider that a subset Ik+1 of size k + 1 can be sampled by first
choosing a subset Ik of size k uniformly and then choosing the remaining en-
try uniformly at random from the complement of Ik . It follows that, with Zk =∑

j∈Ik
|〈Xi,Xj 〉|21{i 
=j}, we have that Zk+1 and Zk + Yk , where Yk is a nonnega-

tive random variable have the same distribution. Hence, P(Zk+1 ≥ t) ≥ P(Zk ≥ t).
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With these two observations in mind, we continue

P

( ∑
j∈I ′:j 
=i

|〈Xi,Xj 〉|2 > t

)
≥ P

( ∑
j∈I :j 
=i

|〈Xi,Xj 〉|2 > t

) p∑
k=S

P (|I ′| = k)

≥ 1

2
P

( ∑
j∈I :j 
=i

|〈Xi,Xj 〉|2 > t

)
,

which is the first claim (3.29).
For the second claim (3.30), observe that∑

j∈I ′:j 
=i

|〈Xi,Xj 〉|2 = ∑
1≤j≤p:j 
=i

δj |〈Xi,Xj 〉|2 ≡ ∑
1≤j≤p:j 
=i

Yj .

The Yj are independent and obey:

1. |Yj − EYj | ≤ supj 
=i |〈Xi,Xj 〉|2 ≤ μ2(X).
2. The sum of means is bounded by

∑
1≤j≤p:j 
=i

EYj = S

p

∑
1≤j≤p:j 
=i

|〈Xi,Xj 〉|2 ≤ S‖X‖2

p
.

The last inequality follows from
∑

1≤j≤p:j 
=i |〈Xi,Xj 〉|2 ≤ ∑
1≤j≤p|〈Xi,Xj 〉|2

where the right-hand side is equal to ‖X∗Xi‖2 ≤ ‖X∗‖2‖Xi‖2 = ‖X‖2 since
the columns are unit-normed.

3. The sum of variances is bounded by

∑
1≤j≤p:j 
=i

Var(Yj ) = S

p

(
1 − S

p

) ∑
1≤j≤p:j 
=i

|〈Xi,Xj 〉|4 ≤ Sμ2(X)‖X‖2

p
.

The last inequality follows from
∑

1≤j≤p:j 
=i |〈Xi,Xj 〉|4≤ μ2(X)
∑

1≤j≤p|〈Xi,

Xj 〉|2, which is less or equal to μ2(X)‖X‖2 as before.

The claim (3.30) is now a simple application of Bernstein’s inequality (3.27). �

Lemma 3.5 establishes that (3.23) holds with probability at least 1−2p−2 log 2 −
2|I |p−2. Indeed, on the event maxi ‖Wi‖ ≤ (logp)−1/2, it follows from Lem-
ma 3.3 that

P

(
max
i∈I

|〈Wi, sgn(βI )〉| ≥ 2
)

≤ 2|I |e−2 logp ≤ 2|I |p−2.



NEAR-IDEAL MODEL SELECTION 2175

4. Discussion.

4.1. Connection with other works. In the last few years, there have been many
beautiful works that attempt to understand the properties of the lasso and other
minimum �1 algorithms, such as the Dantzig selector when the number of variables
may be larger than the sample size [3, 5, 6, 10, 13, 15, 16, 20, 21, 29, 30]. Some
papers focus on the estimation of the parameter β and on recovering its support;
others focus on estimating Xβ . These are quite distinct problems, especially when
p > n; consider, for instance, the noiseless case.

In [5, 6, 13], it is required that the level of sparsity S be smaller than 1/μ(X).
For instance, [5] develops an oracle inequality that requires S ≤ 1/(32μ(X)). Even
when μ(X) is minimal [i.e., of size about 1/

√
n, as in the case where X is the time-

frequency dictionary or about
√

(2 logp)/n as for Gaussian matrices and many
other kinds of random matrices] one sees that the sparsity level must be consid-
erably smaller than

√
n. When the coherence is of the order of (logp)−1 (as we

have allowed in our paper), one would need a sparsity level of order logp. Hav-
ing a sparsity level substantially smaller than the inverse of the coherence is a
common assumption in the modern literature on the subject, although, in some cir-
cumstances, a few papers have developed some weaker assumptions. To be a little
more specific, [29] reports an asymptotic result in which the lasso recovers the ex-
act support of β provided that the strong irrepresentable condition of Section 3.3
holds. The references [20, 28] develop very similar results and use very similar
requirements. The recent paper [17] develops similar results but requires either a
good initial estimator or a level of coherence on the order of n−1/2. In [10, 21] the
singular values of X restricted to any subset of size proportional to the sparsity
of β must be bounded away from zero while [3] introduces an extension of this
condition. In nearly all these works, a sufficient condition is that the sparsity be
much smaller than the inverse of the coherence.

4.2. Our contribution. It follows from the previous discussion that there is a
disconnect between the available literature and what practical experience shows.
For instance, the lasso is known to work very well empirically when the spar-
sity far exceeds the inverse of the coherence 1/μ(X) [13], even though the proofs
assume that the sparsity is less than a fraction of 1/μ(X). In that paper, the co-
herence is 1/

√
n so that, as mentioned earlier, results are available only when the

sparsity is much smaller than
√

n, which does not explain what series of computer
experiments reveal.

Our work bridges this gap. We do so by considering the performance of the lasso
one expects in almost all cases but not all. By considering statistical ensembles
much as in [9], one shows that, in the above examples, the lasso works provided
that the sparsity level is bounded by about n/ logp; that is, for generic signals, the
sparsity can grow almost linearly with the sample size. We also prove that, under
these conditions, the “Irrepresentable Condition” holds with high probability, and
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we show that, as long as the entries of β are not too small, one can recover the
exact support of β with high probability.

Finally, there does not seem much room for improvement, as all of our condi-
tions appear necessary as well. In Section 2, we have proposed special examples
in which the lasso performs poorly. On the one hand, these examples show that,
even with highly incoherent matrices, one cannot expect good performance in all
cases unless the sparsity level is very small. And on the other hand, one cannot re-
ally eliminate our assumption about the coherence, since we have shown that, with
coherent matrices, the lasso would fail to work well on generically sparse objects.

One could of course consider other statistical descriptions of sparse β’s and/or
ideal models, and leave this issue open for further research.
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