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OPTIMAL DISCRIMINATION DESIGNS1

BY HOLGER DETTE AND STEFANIE TITOFF

Ruhr-Universität Bochum

We consider the problem of constructing optimal designs for model dis-
crimination between competing regression models. Various new properties of
optimal designs with respect to the popular T -optimality criterion are derived,
which in many circumstances allow an explicit determination of T -optimal
designs. It is also demonstrated, that in nested linear models the number of
support points of T -optimal designs is usually too small to estimate all para-
meters in the extended model. In many cases T -optimal designs are usually
not unique, and in this situation we give a characterization of all T -optimal
designs. Finally, T -optimal designs are compared with optimal discriminat-
ing designs with respect to alternative criteria by means of a small simulation
study.

1. Introduction. Optimal designs are frequently criticized because they are
constructed from particular model assumptions before the data can be collected.
Often there exist several plausible models which may be appropriate for a fit to
the data. Therefore, in many applications, the data is first used to identify an ap-
propriate model from a class of competing models and in a second step the same
data is analyzed with the identified model. While the optimal design problem for
the latter task has been considered by numerous authors (see, e.g., the monographs
of Silvey [32], Pázman [26], Atkinson and Donev [2] or Pukelsheim [27]), much
less attention has been paid to the problem of designing experiments for model
discrimination. Early work was done by Stigler [34] and Studden [38], who de-
termined optimal designs for discriminating between two nested univariate poly-
nomials. The corresponding optimal design is called Ds -optimal design and mini-
mizes the volume of the confidence ellipsoid for the parameters corresponding to
the extension of the smaller model. This criterion directly refers to a likelihood
ratio test and was discussed by numerous authors (see, e.g., Spruill [33], Dette
[10], Dette and Haller [12] or Song and Wong [35], among others). Atkinson and
Fedorov [3, 4] proposed an alternative criterion, which determines a design such
that the sum of squares for a lack of fit test is large. This optimality criterion is
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meanwhile called T -criterion in the statistical literature and has been considered
by several authors, mostly in the context of regression models (see, e.g., Ucinski
and Bogacka [39], López-Fidalgo, Tommasi and Trandafir [24] or Waterhouse et
al. [40] for some recent references). The Ds - and T -optimality criteria have been
studied separately without exploring the differences between both philosophies of
constructing optimal designs for model discrimination.

The present paper makes an attempt to explore some relations between
the—on a first glance—rather different concepts of constructing discrimination
designs. In Section 2 we discuss some new properties of T -optimal designs and
relate the T -optimal design problem to a problem of nonlinear approximation the-
ory. In general, T -optimal designs are not unique, and in such cases we present
an explicit characterization of the class of all T -optimal designs. In Section 3 the
special case is considered where one of the competing models is linear, and here
it turns out that T -optimal designs are in fact D1-optimal (in the sense of Stigler
[34]) in an extended linear regression model. This relation is then used to derive
several new properties of T -optimal designs, especially bounds on the number of
support points. In particular, it is demonstrated that in many cases the T -criterion
yields designs which cannot be used to estimate all parameters in the extended
model. Section 4 gives some more insight into the case of nonlinear regression
models and also contains an extension of the results to T -optimality-type criteria,
which are based on the Kullback-Leibler distance and have recently been pro-
posed by López-Fidalgo, and Tommasi and Trandafir [24]. Finally, in Section 5
several examples are presented to illustrate the theoretical results. In particular, the
mean squared error of parameter estimates and the power of tests based on T - and
Ds -optimal designs are investigated by means of a simulation study.

2. New properties of T -optimal designs. We consider the common nonlin-
ear regression model

Y = η(x, θ) + ε,(2.1)

where θ ∈ � ⊂ R
m is the vector of unknown parameters, and different obser-

vations are assumed to be independent. The errors are normally distributed with
mean 0 and variance σ 2. In (2.1) the variable x denotes the explanatory variable,
which varies in the design space X (a more general situation with nonnormal,
heteroscedastic errors is discussed in Section 4.2). We assume that η is a contin-
uous and real-valued function of both arguments (x, θ) ∈ X × � and a design is
defined as a probability measure ξ on X with finite support (see Kiefer [21]). If
the design ξ has masses wi at the point xi (i = 1, . . . , k) and n observations can
be made by the experimenter, this means that the quantities win are rounded to
integers, say ni , satisfying

∑k
i=1 ni = n, and the experimenter takes ni observa-

tions at each location xi (i = 1, . . . , k). There are numerous criteria to discrimi-
nate between competing designs, if parameter estimation in a given model is the
main objective for the construction of the design (see Silvey [32], Pázman [26] or
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Pukelsheim [27], among others), but much less attention has been paid to the prob-
lem of developing optimal designs for model discrimination. Early work was done
by Hunter and Reiner [17], Box and Hill [5] and Stigler [34]. A review on dis-
crimination designs can be found in Hill [18]. Stigler [34] proposed a Ds -criterion
for discriminating between two competing (nested) models. Roughly speaking,
the Ds -optimal design yields small variances of the parameter estimates in an
“extended” model. To be precise, consider the case of two rival models for the
mean effect in the nonlinear regression model (2.1), say η1(x, θ(1)) and η2(x, θ(2))

with θ(j) ∈ �(j) ⊂ R
mj (mj ∈ N, j = 1,2). We assume the model η1(x, θ(1)) is

an extension of the model η2(x, θ(2)). In other words, if the last m0 = m1 − m2
components of the vector θ(1) = (θ(2), θ(0)) vanish we obtain the model η2, that is,
η1(x, (θT

(2),0T )T ) = η2(x, θ(2)), where 0 denotes the (m1 − m2)-dimensional vec-
tor with all components identical 0. The Dm1−m2 -optimality criterion is defined by
the expression

�Dm1−m2
(ξ) = |Mm1(ξ)|

|Mm2(ξ)| ,(2.2)

where the matrices Mm1(ξ) and Mm2(ξ) are given by

Mm1(ξ) =
∫

∂

∂θ(1)

η1
(
x, θ(1)

)( ∂

∂θ(1)

η1
(
x, θ(1)

))T

dξ(x) ∈ R
m1×m1,

Mm2(ξ) =
∫

∂

∂θ(2)

η2
(
x, θ(2)

)( ∂

∂θ(2)

η2
(
x, θ(2)

))T

dξ(x) ∈ R
m2×m2,

respectively. A Dm1−m2 -optimal design maximizes the function �Dm1−m2
in the

class of all designs, satisfying Range(K) ⊂ Range(Mm1(ξ)), where the matrix
K is defined by KT = (0, Im1−m2) ∈ R

(m1−m2)×m1, Im1−m2 ∈ R
(m1−m2)×(m1−m2)

is the identity matrix and 0 denotes the (m1 − m2) × m2 matrix with all entries
identical 0. The criterion is motivated by the likelihood ratio test for the hypothesis

H0 :KT θ(1) = 0.(2.3)

Because the volume of the confidence ellipsoid for the parameter KT θ(1) is mini-
mized if the function �Dm1−m2

(ξ) is maximized with respect to ξ (see Pukelsheim
[27]), we expect that a Dm1−m2 -optimal design yields good power for the test of the
hypothesis (2.3). The T -optimality criterion was introduced by Atkinson and Fe-
dorov [3, 4], as a criterion which directly reflects the goal of model discrimination
in the design of experiment and has found considerable interest in the recent liter-
ature (see, e.g., Ucinski and Bogacka [39], López-Fidalgo, Tommasi and Trandafir
[24] or Waterhouse et al. [40], among many others). It does not necessarily refer to
nested models and assumes that one model, say η = η1 is fixed. The T -optimality
criterion determines the design ξ such that the expression


(ξ) = inf
θ(2)∈�(2)

∫
X

(
η(x) − η2

(
x, θ(2)

))2
dξ(x)(2.4)
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is maximal. The statistical interpretation of the T -optimality criterion is as follows.
Assume that we are interested in the problem of testing the hypothesis H0 :η =
η1 versus H1 :η = η2, which corresponds in the context of nested models to the
hypotheses

H0 : θ(1) =
(

θ(2)

0

)
versus H1 : θ(1) �=

(
θ(2)

0

)
.(2.5)

Under local alternatives of the form θ(1),n = ( θ(2)

θ(0)/
√

n

)
it follows that the noncen-

trality parameter of the corresponding likelihood ratio test up to the factor σ 2 is
given by

δ2 = θT
(0)M11.2(ξ)θ(0),

where M11.2(ξ) denotes the Schur complement of the matrix Mm2(ξ) in Mm1(ξ)

and a straightforward calculation shows that

δ2 = 
(ξ) + o (1),

where the function η in (2.4) is given by η(·) = η1(·, (θT
(2), θ

T
(0))

T ). Thus a T -
optimal design maximizes the power of the likelihood ratio test with respect to
local alternatives.

The L2-distance in (2.4) corresponds to the assumption of a normal dis-
tributed, homoscedastic error and alternative metrics could be used reflecting
different assumptions regarding the error distribution and variance structure.
For example, recently López-Fidalgo, Tommasi and Trandafir [24] proposed a
Kullback-Leibler distance, which corresponds to the likelihood ratio test for the
hypothesis H0 :η1 = η2 versus H1 :η1 �= η2 under different distributional assump-
tions. In the present paper we will restrict ourselves to the criteria (2.2) and (2.4),
but mention possible extensions of our results in the second part of Section 4.

Note that the T -optimality criterion, and in the case of nonlinear regression
models also the Ds -optimality criterion, depends on the unknown parameter θ(1),
which may be difficult to choose in concrete applications. However, a robust ver-
sion of the two optimality criteria can easily be obtained applying a sequential,
Bayesian or (standardized) maximin approach (see, e.g., Atkinson and Fedorov
[3], Müller and Pázman [25], Dette and Neugebauer [13, 14] or Dette [11], among
many others).

For the following discussion consider the kernel


(θ(2), ξ) =
∫
X

(
η(x) − η2

(
x, θ(2)

))2
dξ(x)(2.6)

and define for a continuous (real-valued) function f on the design space X its
sup-norm by ‖f ‖∞ = supx∈X |f (x)|. Throughout this paper it is assumed that the
infimum in (2.6) is attained for some θ∗

(2) ∈ �(2) and that a T -optimal design exists.
Moreover, we assume that the regression functions η1 and η2 are differentiable
with respect to the second argument. Our first result characterizes a T -optimal
design as the solution of a nonlinear approximation problem.
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THEOREM 2.1.

sup
ξ


(ξ) = sup
ξ

inf
θ(2)∈�(2)



(
θ(2), ξ

) = inf
θ(2)∈�(2)

∥∥η − η2
(·, θ(2)

)∥∥2
∞.

Moreover, if ξ∗ denotes a T -optimal design and θ∗
(2) is any value corresponding to

the minimum of 
(θ(2), ξ
∗) with respect to θ(2) ∈ �(2), then θ∗

(2) corresponds to a
best uniform approximation of η by the functions η(·, θ(2)), that is,

inf
θ(2)∈�(2)

∥∥η − η2
(·, θ(2)

)∥∥∞ = ∥∥η − η2
(·, θ∗

(2)

)∥∥∞,


(ξ∗) = ‖η − η2(·, θ∗
(2))‖2∞ and

supp(ξ∗) ⊆ A := {
x ∈ X|∣∣η(x) − η2

(
x, θ∗

(2)

)∣∣ = ∥∥η − η2
(·, θ∗

(2)

)∥∥∞
}
.(2.7)

PROOF. A straightforward calculation shows that

sup
ξ


(ξ) = sup
ξ

inf
θ(2)∈�(2)



(
θ(2), ξ

)

≤ inf
θ(2)∈�(2)

sup
x∈X

∣∣η(x) − η2
(
x, θ(2)

)∣∣2 = inf
θ(2)∈�(2)

∥∥η − η2
(·, θ(2)

)∥∥2
∞.

On the other hand, θ∗
(2) minimizes the function defined by (2.6) with ξ = ξ∗ in the

set �(2) and therefore we obtain from the equivalence theorem for T -optimality
(see, e.g., Atkinson and Fedorov [3])

inf
θ(2)∈�(2)

∥∥η − η2
(·, θ(2)

)∥∥2
∞ ≤ ∥∥η − η2

(·, θ∗
(2)

)∥∥2
∞ = 
(ξ∗) = sup

ξ


(ξ),

which proves the first assertion of the theorem. For a proof of the second part as-
sume that the design ξ∗ is a T -optimal design and that θ∗

(2) minimizes the function

(θ(2), ξ

∗), then the function |η(x) − η2(x, θ∗
(2))| attains its maximum at any sup-

port point of ξ∗ (see Atkinson and Fedorov [3]) and θ∗
(2) corresponds to a best uni-

form approximation of the function η by functions of the form η2(·, θ(2)). There-
fore, the assertion follows. �

Theorem 2.1 links the T -optimal design problem to a problem in nonlinear ap-
proximation theory, which will be further discussed in Sections 3 and 4. Note that
the theorem provides a saddle point property of the point (θ∗

(2), ξ
∗) although the

kernel 
(θ(2), ξ) is in general not convex as a function of θ(2). The result is par-
ticularly useful, if the best uniform approximation of the function η by functions
of the form η2(·, θ(2)) is unique, say η2(·, θ(2)). In this case, the set A in (2.7) is
independent of the design ξ∗ and the following result allows us to characterize all
T -optimal designs.

THEOREM 2.2. Assume that the parameter θ(2) corresponding to the best uni-
form approximation of the function η by functions of the form η2(·, θ(2)) is unique
and an interior point of the set �(2).
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(a) If a design ξ∗ is T -optimal, then∫
A

(
η(x) − η2

(
x, θ(2)

)) ∂

∂θ(2)

η2
(
x, θ(2)

)∣∣∣∣
θ(2)=θ(2)

dξ∗(x) = 0.(2.8)

(b) Conversely, assume that a design ξ∗ satisfies (2.8), supp(ξ∗) ⊂ A and that the
minimum of the function

θ(2) −→
∫
A

(
η(x) − η2

(
x, θ(2)

))2
dξ∗(x)(2.9)

is attained at a unique point in the interior of �(2), then the design ξ∗ is T -
optimal.

PROOF. For a proof of part (a) we note that by Theorem 2.1 we have θ∗
(2) =

θ(2), supp(ξ∗) ⊂ A for any T -optimal design ξ∗. Consequently, we obtain


(ξ∗) = inf
θ(2)∈�(2)

∫
A

(
η(x) − η2

(
x, θ(2)

))2
dξ∗(x)

and the assertion follows because θ∗
(2) = θ(2) corresponds to the (unique) minimum

of the function on the right-hand side.
For a proof of part (b) assume that supp(ξ∗) ⊂ A, then it follows from Theo-

rem 2.1

sup
ξ


(ξ) = ∥∥η − η2
(·, θ(2)

)∥∥2
∞ =

∫
A

(
η(x) − η2

(
x, θ(2)

))2
dξ∗(x)

= inf
θ(2)∈�(2)

∫
X

(
η(x) − η2

(
x, θ(2)

))2
dξ∗(x)

because the parameter θ(2) corresponds to the unique minimum of the func-
tion (2.9). �

Roughly speaking Theorem 2.2 provides a characterization of all T -optimal
designs by a system of linear equations, if the parameter θ̄(2) corresponding to the
best approximation is unique, an interior point of the set �(2) and if the cardinality
of the set A defined in (2.7) is finite. If θ̄(2) is a boundary point of �(2) an extension
of condition (2.8) can easily be derived using Lagrangian multipliers.

In many applications the best uniform approximation of the function η by func-
tions of the form η2(·, θ(2)) is in fact unique, and sufficient conditions for this
property can be found in the books of Rice [30] or Braess [7]. Note, there is an
additional assumption in part (b) of Theorem 2.2 concerning the minimum of the
function defined in (2.9). The answer to the question if this assumption is satisfied
depends on the function η and the parameter set �(2) ⊂ R

m2 . For example, in the
linear case, that is η2(x, θ(2)) = θT

(2)f (x) [for an appropriate vector of regression
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functions f (x)], this assumption is always satisfied, because the Hesse-matrix of

(θ(2), ξ) with respect to the parameter θ(2) is given by

∂2

∂2θ(2)



(
θ(2), ξ

) = 2 ·
∫
X

f (x)f T (x) dξ(x),

and therefore positive definite, if the design ξ has more than m2 support points.
An exchange type algorithm for the computation of T -optimal designs was pro-

posed by Atkinson and Fedorov [3]. Theorem 2.2 suggests an alternative method to
determine T -optimal designs. In a first step the best uniform approximation of the
function η by functions of the form η2(·, θ(2)) is determined. For this calculation
the Remes exchange algorithm could be used in many cases, which is a common
tool in approximation theory (see Rice [30], Vol. 1, pages 171–180). The algorithm
also yields the set of all possible support points A defined in (2.7) of T -optimal
designs and will be illustrated in the following example. Secondly, the system of
equations in (2.8) is solved to characterize all T -optimal designs. In contrast to the
method proposed by Atkinson and Fedorov [3], this approach yields all T -optimal
designs.

EXAMPLE 2.3. Consider the T -optimal design problem on the interval
[−1,1] for the functions

η(x) = η1
(
x, θ(1)

) = 1 + x + x3 and η2
(
x, θ(2)

) = θ(2)1 + θ(2)2x.(2.10)

It can be shown that the best approximation of the cubic polynomial η by linear
functions η2 alternates at most 4 times. The Remes algorithm starts with an initial
guess for the best approximation of η, say η2(·, θ(0)

(2) ). Given an approximation

η2(·, θ(k)
(2) ) in the kth step one determines 4 points x

(k+1)
1 < · · · < x

(k+1)
4 ∈ [−1,1]

such that(
η
(
x

(k+1)
j

) − η2
(
x

(k+1)
j , θ

(k)
(2)

))(
η
(
x

(k+1)
j+1

) − η2
(
x

(k+1)
j+1 , θ

(k)
(2)

))
< 0(2.11)

j = 1,2,3 [which means that the difference η(x) − η2(x, θ
(k)
(2) ) has opposite sign

at the adjacent points x
(k+1)
j ],

4
max
j=1

∣∣η(
x

(k+1)
j

) − η2
(
x

(k+1)
j , θ

(k)
(2)

)∣∣ = ∥∥η − η2
(·, θ(k)

(2)

)∥∥∞(2.12)

[at one of the points x
(k+1)
j the function η − η2(·, θ(k)

(2) ) attains its sup-norm] and

4
min
j=1

∣∣η(
x

(k+1)
j

) − η2
(
x

(k+1)
j , θ

(k)
(2)

)∣∣ ≥ 4
max
j=1

∣∣η(
x

(k)
j

) − η2
(
x

(k)
j , θ

(k)
(2)

)∣∣.(2.13)

In the next step the parameter θ
(k+1)
(2) is determined such that

4
max
j=1

∣∣η(
x

(k+1)
j

) − η2
(
x

(k+1)
j , θ

(k+1)
(2)

)∣∣
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TABLE 1
The iterations of the Remes algorithm for the calculation of the best approximation of the function

1 + x + x3 by linear polynomials θ(2)1 + θ(2)2x

k θ
(k)
(2)1 θ

(k)
(2)2 x

(k)
1 x

(k)
2 x

(k)
3 x

(k)
4

0 0.994 1.075 −0.9 −0.2 0.2 0.8
1 1.0000 1.8705 −1.000 −0.153 0.153 1.000
2 1.0000 1.7514 −1.000 −0.538 0.538 1.000
3 1.0000 1.7500 −1.000 −0.500 0.500 1.000

is minimal [in other words, the best approximation of the function η by η2(·, θ(2))

with respect to the sup-norm on the set {x(k+1)
1 , . . . , x

(k+1)
4 } is determined]. It can

be shown that it is always possible to choose the points {x(k+1)
1 , . . . , x

(k+1)
4 } such

that (2.13) is satisfied (see Rice [30] and note that it is easy to satisfy (2.11) and
(2.12)). We have illustrated the performance of the algorithm for the models in
(2.10) in Table 1 and Figure 1, where we show the parameter θ

(k)
(2) = (θ

(k)
(2)1, θ

(k)
(2)2),

the set {x(k)
1 , . . . , x

(k)
4 } and the approximations η − η2(·, θ(k)

(2) ). Note that the algo-
rithm stops after a few iterations which is rather typical for many examples. The
algorithm yields that the best approximation is given by

η(x) − η2
(
x, θ∗

(2)

) = x3 − 3
4x,

which yields A = {−1,−1
2 , 1

2 ,1} for the set defined in (2.7). Because all assump-
tions of Theorem 2.2 are satisfied (note that the regression model η2 is linear),
the system of equations (2.8) characterizes all T -optimal designs. A straightfor-
ward calculation shows that the set of all T -optimal designs is given by the one-
parametric class

ξ∗
p =

( −1 −1
2

1
2 1

−1
6 + p p 2

3 − p 1
2 − p

)
,(2.14)

where p ∈ [1
6 , 1

2 ]. The parameter p could be chosen such that a further optimality
criterion (e.g., D-optimality for the cubic model) is maximized in the class of all
T -optimal designs. We finally note that the exchange type algorithm proposed by
Atkinson and Fedorov [3, 4] only yields the three-point design ξ∗

1/6 as T -optimal
design with a singular information matrix in the cubic regression model.

REMARK 2.4. It is worthwhile to mention that Theorems 2.1 and 2.2 do not
require the assumption of nested models. This assumption is only needed for the
statistical interpretation of the T - and Ds -optimality criterion.
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FIG. 1. Different iteration steps of the function 1+x +x3 − θ
(k)
(2)1 − θ

(k)
(2)2x generated by the Remes

algorithm. Left panel k = 0, middle panel k = 1, right panel k = 3.

3. D1- and T -optimal designs in linear regression models. In this section
we restrict ourselves to the case, where the regression model η2 is a linear model,
that is,

η2
(
x, θ(2)

) = θT
(2)f (x),(3.1)

with θ(2) ∈ �(2) = R
m2 . Note that the model η = η1 is not necessarily linear (this

case will be discussed later in this section). Moreover, the two models are not
necessarily nested, except if it is stated explicitly in the following discussion. It
turns out that in this case the T -optimal design is in fact also D1-optimal in the
sense of Stigler [34] for the regression model

y = θT
(2)f (x) + βη(x) + ε.(3.2)

For a proof of this property let f̃ (x) = (f T (x), η(x))T ∈ R
m2+1 denote the

vector of regression functions in the linear regression model (3.2), let em2+1 =
(0, . . . ,0,1)T ∈ R

m2+1 be the (m2 + 1)th unit vector and define

M(ξ) =
∫
X

f (x)f T (x) dξ(x),(3.3)
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M̃(ξ) =
∫
X

f̃ (x)f̃ T (x) dξ(x)(3.4)

as the information matrices in the regression model η2 and the extended model
(3.2), respectively. Recall that a D1-optimal design in the regression model (3.2)
satisfies em2+1 ∈ Range(M̃(ξ)) and maximizes the expression

(eT
m2+1M̃

−(ξ)em2+1)
−1 = det M̃(ξ)

detM(ξ)

(see, e.g., Stigler [34] or Studden [38]). The D1-optimality criterion is a special
case of the c-optimality criterion, which determines for a given vector c ∈ R

m2+1

the design ξ such that the expression (cT M̃−(ξ)c)−1 is maximal and the condition
c ∈ Range(M̃(ξ)) is satisfied (see Pukelsheim [27]). Note also that the expression
cT M̃−(ξ)c is approximately proportional to the variance of the least squares esti-
mate of (θT

(2), β)c in the regression model (3.2) (see Pukelsheim [27]). Therefore,
a D1-optimal design minimizes the variance of the least squares estimate of the
coefficient β in the extended regression model (3.2).

THEOREM 3.1. Assume that (3.1) is satisfied, then a design ξ∗ is T -optimal
if and only if it is D1-optimal in the extended regression model (3.2).

PROOF. Let f (x) = (f(2)1(x), . . . , f(2)m2(x))T denote the vector of functions
corresponding to the first part in the linear model (3.2) and define for continuous
functions g1, . . . , gk (k ∈ N) with domain X the Gram determinant by

G(g1, . . . , gk) :=
∣∣∣∣
(∫

X
gi(x)gj (x) dξ(x)

)k

i,j=1

∣∣∣∣.
Then a standard result from Hilbert space theory (see Achiezer [1], page 16) shows
that


(ξ) = G(η,f(2)1, f(2)2, . . . , f(2)m2)

G(f(2)1, f(2)2, . . . , f(2)m2)
= det M̃(ξ)

detM(ξ)
,

which proves the assertion. �

In the case where the model η1(·, θ(1)) is also linear, an alternative representa-
tion for the criterion 
(ξ) was given in Section 4.2 of Atkinson and Fedorov [3].
Theorem 3.1 provides a different interpretation of the T -optimality criterion and
does not require the assumption of a linear model η1(·, θ(1)). In the following we
derive several important conclusions from Theorem 3.1. We begin with a general
result on the number of support points of T -optimal designs, which is a direct con-
sequence of Corollary 8.3 in Pukelsheim [27]. Roughly speaking the number of
support points of the T -optimal design is at most m2 + 1, independently of the
dimension m1 of the parameter θ(1) corresponding to the model η1(·, θ(1)).

COROLLARY 3.2. Assume that (3.1) is satisfied, then there exists a T -optimal
design ξ∗ with m2 + 1 support points.
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We now present a refinement of this result in the case, where the design space is
an interval, say I ⊂ R and the regression functions in model (3.2) form a Cheby-
shev system (see Karlin and Studden [20]). In many cases (with a minor additional
assumption) the T -optimal design is supported at precisely m2 + 1 well defined
points, which correspond to the system under consideration and can be found ex-
plicitly. To be precise recall that a set of k functions h1, . . . , hk : I → R is called a
weak Chebyshev system (on the interval I ) if there exists an ε ∈ {−1,1} such that
the inequality

ε ·
∣∣∣∣∣∣∣
h1(x1) . . . h1(xk)

...
. . .

...

hk(x1) . . . hk(xk)

∣∣∣∣∣∣∣ ≥ 0(3.5)

holds for all x1, . . . , xk ∈ I with x1 < x2 < · · · < xk. If the inequality in (3.5)
is strict, then {h1, . . . , hk} is called a Chebyshev system. It is well known (see
Karlin and Studden [20], Theorem II 10.2) that if {h1, . . . , hk} is a Chebyshev
system, then there exists a unique function, say

∑k
i=1 c∗

i hi(x) = c∗T h(x), (h =
(h1, . . . , hk)

T ) with the following properties

(i) |c∗T h(x)| ≤ 1 ∀x ∈ I

(ii) there exist k points x∗
1 < · · · < x∗

k such that(3.6)

c∗T h(x∗
i ) = (−1)i, i = 1, . . . , k.

The function c∗T h(x) is called Chebyshev polynomial, and we say that it is al-
ternating at the points x∗

1 , . . . , x∗
k . The points x∗

1 , . . . , x∗
k are called Chebyshev

points and need not to be unique. They are unique in most applications, in partic-
ular if 1 ∈ span{h1, . . . , hk}, k ≥ 1 and I is a bounded and closed interval, where
in this case x∗

1 = minx∈I x, x∗
k = maxx∈I x. It is well known (see Studden [36],

Pukelsheim and Studden [28] or Imhof and Studden [19], among others) that in
many cases c-optimal designs in regression models are supported at the Cheby-
shev points. The following result shows that a similar statement can be made for
T -optimal designs.

THEOREM 3.3. Assume that (3.1) is satisfied, that the design space is an in-
terval, say X = I ⊂ R and that {f1, . . . , fm2} is a Chebyshev system on the inter-
val I . In this case the set A defined in (2.7) has at least m2 + 1 points.

Moreover, assume that additionally {f1, . . . , fm2, η} is also a Chebyshev system
on the interval I and ∣∣∣∣∣∣∣∣∣

f1(x1) . . . f1(xm2) 0
...

. . .
...

...

fm2(x1) . . . fm2(xm2) 0
η(x1) . . . η(xm2) 1

∣∣∣∣∣∣∣∣∣
�= 0
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for all x1, . . . , xm2 ∈ I satisfying x1 < · · · < xm2 . Let x∗
1 < · · · < x∗

m2+1 denote
m2 + 1 Chebyshev points satisfying (3.6) and define ξ∗ as the design which has
weights

w∗
i = |ui |∑m2+1

j=1 |uj |
at the points x∗

i (i = 1, . . . ,m2 + 1), where u = (u1, . . . , um2+1)
T = (XT X)−1 ×

XT em2+1, and the matrix X is defined by

X =
⎛
⎜⎝

f1(x
∗
1 ) . . . f1(x

∗
m2+1)

...
. . .

...

fm2+1(x
∗
1 ) . . . fm2+1(x

∗
m2+1)

⎞
⎟⎠

(here we put fm2+1 = η). Then ξ∗ is a T -optimal design.

PROOF. It follows from Theorem 1.1 in Chapter IX of Karlin and Studden
[20] that the best uniform approximation of the function η by functions of the
form η2(x, θ(2)) = θT

(2)f (x) is unique. By Theorem 2.1 the support of a T -optimal
design is contained in the set

A =
{
x ∈ I

∣∣∣
∣∣∣∣∣η(x) −

m2∑
j=1

θ(2)j fj (x)

∣∣∣∣∣ =
∥∥∥∥∥η −

m2∑
j=1

θ(2)j fj

∥∥∥∥∥∞

}
,

where the parameters θ(2)1, . . . , θ (2)m2 correspond to the best uniform approxi-
mation of η by linear combinations of f1, . . . , fm2 . Theorem 1.1 in Karlin and
Studden [20] also shows that the cardinality of the set A is at least m2 + 1 and the
first assertion follows.

For a proof of the second part we note that by Theorem 3.1 the T -optimal design
problem is equivalent to the D1-optimal design problem in the extended regression
model (3.2). Because this is exactly the em2+1-optimal design problem it follows
from Kiefer and Wolfowitz [22] (see also Studden [36]) that the T -optimal design
is supported at m2 + 1 points satisfying (3.6). The formula for the corresponding
weights is now a direct consequence of Corollary 8.9 in Pukelsheim [27]. �

If, under the assumptions of Theorem 3.3 there exist exactly m2 + 1 uniquely
determined Chebyshev points, then any T -optimal design is supported at precisely
m2 + 1 points. This situation is rather typical in applications. Note that in Exam-
ple 2.3 (m2 = 2) the functions {1, x} form a Chebyshev system. Thus the first part
of Theorem 3.3 implies that the set A in (2.7) has at least cardinality 3 (in fact
its cardinality is 4). On the other hand, the system {1, x, x3} is not a Chebyshev
system on the interval [−1,1], because the polynomial x3 − 3

4x has 3 roots in the
interval [−1,1]. As a consequence the second part of Theorem 3.3 is not applica-
ble here. In fact, there exist an infinite number of T -optimal designs with 4 support
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points indicating that the Chebyshev property of the system {f1, . . . , fm2, η} is re-
ally necessary in this context.

In the following we specialize the result of Theorem 3.1 to the case, where
the model η1 is in fact an extension of the linear regression model (3.1), that is
θ(1) = (θT

(2), θ
T
(0))

T ,

η(x) = η1
(
x, θ(1)

) = θT
(2)f (x) + θT

(0)g(x),(3.7)

where g(x) = (g1(x), . . . , gm0(x))T is a further vector of regression functions and
m0 + m2 = m1. In this case, Theorem 3.1 can be slightly simplified.

COROLLARY 3.4. Assume that (3.1) and (3.7) are satisfied, then a design ξ∗
is T -optimal if and only if it is D1-optimal in the extended regression model

y = θT
(2)f (x) + βφ(x) + ε,(3.8)

where φ(x) = θT
(0)g(x).

PROOF. From Theorem 3.1 and its proof it follows that a design is T -optimal
if and only if it maximizes

det M̃(ξ)

detM(ξ)
= G(η,f(2)1, f(2)2, . . . , f(2)m2)

G(f(2)1, f(2)2, . . . , f(2)m2)
(3.9)

= G(θT
(0)g, f(2)1, f(2)2, . . . , f(2)m2)

G(f(2)1, f(2)2, . . . , f(2)m2)
,

where the matrix M̃(ξ) is defined by (3.4). The last equality follows from (3.7)
and the multi-linearity of the Gram determinant. Therefore the T -optimal design
is D1-optimal in the regression (3.8). �

We conclude this section with an alternative interpretation of the T -optimality
criterion as a compound criterion in the situation considered in Corollary 3.4. To
be precise, we define the m0 = m1 − m2 regression models

y = θT
(2)f (x) + βjgj (x) + ε, j = 1, . . . ,m0.

Then, by Theorem 3.1, the T -optimal design for discriminating between η2 and
the j th model (θT

(2), βj )f̃j (x) with f̃j (x) = (f T (x), gj (x))T maximizes


j(ξ) = det M̃j (ξ)

detM(ξ)
= G(gj , f(2)1, . . . , f(2)m2)

G(f(2)1, . . . , f(2)m2)
, j = 1, . . . ,m0,

where

M̃j (ξ) =
∫
X

f̃j (x)f̃ T
j (x) dξ(x)
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and the matrix M(ξ) is defined in (3.3). The proof of the next result is now a
direct consequence of the representation (3.9) and the multilinearity of the Gram
determinant.

COROLLARY 3.5. A T -optimal design for discriminating between the models
(3.1) and (3.7) maximizes the weighted average


(ξ) =
m0∑
j=1

θ(0)j
j (ξ),

where θ(0)j denotes the j th component of the vector θ(0) in (3.7).

Note that by Corollary 3.5 the T -optimal design for discriminating between the
models (3.1) and (3.7) can be interpretated as a compound optimality criterion
in the sense of Läuter [23] and therefore results for calculating optimal designs
with respect to compound criteria can be used to find T -optimal designs (see, e.g.,
Pukelsheim [27], Cook and Wong [9] or Clyde and Chaloner [8], among many
others).

4. Further discussion.

4.1. Some comments on nonlinear models. As mentioned before, in general
Theorems 2.1 and 2.2 link the T -optimal design problem to a problem in nonlinear
approximation theory, which has a long history in mathematics (see Braess [7] or
Rice [30]), and is substantially more difficult to analyze compared to the linear
case considered in Section 3. We will now indicate how this theory can be used to
transfer some of the results of Section 3 to the nonlinear case. For this we assume
that the design space X is an interval and that the function η2 is continuous on
X × �(2). The following definition is taken from Rice [30].

DEFINITION 4.1. The class of functions M = {η2(·, θ(2))| θ(2) ∈ �(2)} has
property Z of degree m = m(θ∗

(2)) at the point θ∗
(2) ∈ �(2), if for any θ(2) ∈ �(2)

with θ(2) �= θ∗
(2) the difference η2(x, θ∗

(2)) − η2(x, θ(2)) has at most m − 1 zeros
in X.

The class of functions {η2(·, θ(2))|θ(2) ∈ �(2)} is called locally solvent of degree
m = m(θ∗

(2)) at the point θ∗
(2) ∈ �(2), if given a set {x1, . . . , xm} ⊂ X and ε > 0,

there exists a number δ = δ(θ∗
(2), ε, x1, . . . , xm) > 0 such that the inequalities∣∣Yi − η2

(
xi, θ

∗
(2)

)∣∣ < δ (i = 1, . . . ,m)

imply the existence of a solution θ(2) ∈ �(2) of the system of nonlinear equations

η2
(
xi, θ(2)

) = Yi, i = 1,2, . . . ,m
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which satisfies ∥∥η2
(·, θ(2)

) − η2
(·, θ∗

(2)

)∥∥∞ < ε.

The class M is called varisolvent if at each point the local solvency property and
property Z are satisfied with the same degree.

Examples of varisolvent families include sums of exponentials and rational
functions (see Rice [30]). If the class of functions {η2(·, θ(2))| θ(2) ∈ �(2)} is vari-
solvent, the following result gives a rough estimate of the number of support points
of the T -optimal design. The proof can be found in Braess [7].

THEOREM 4.2. Assume that the class of functions M = {η2(·, θ(2))|θ(2) ∈
�(2)} is varisolvent and that η is a continuous function on X such that η −
η2(·, θ̄(2)) is not constant. The function η2(·, θ̄(2)) is a best approximation of the
function η if and only if the difference η − η2(·, θ̄(2)) alternates m(θ̄(2)) + 1 times,
that is, there exists at least m(θ̄(2)) + 1 points x∗

0 < · · · < x∗
m(θ̄(2))

in X such that

η(x∗
i ) − η2

(
x∗
i , θ̄(2)

) = ε(−1)i
∥∥η − η2

(·, θ̄(2)

)∥∥∞, i = 0, . . . ,m
(
θ̄(2)

)
,

where ε ∈ {−1,1}.

Theorem 4.2 gives some hint of the number of support points of the T -optimal
design. By this result, there exists a best approximation of η by functions of
the form η2(·, θ(2)) (θ(2) ∈ �(2)), such that r∗ = η − η2(·, θ̄(2)) alternates at least
m(θ̄(2)) + 1 times. In many cases there are no other points in X where the differ-
ence r∗ attains its maximum, and it follows from Theorem 2.1 that the T -optimal
design has at most m(θ̄(2))+1 support points. We illustrate this heuristic argument
by an example, where we consider sums of exponentials.

EXAMPLE 4.3. Assume that

η2
(
x, θ(2)

) =
m2∑
j=1

θ(2)2j−1 e−θ(2)2j x,

where x ∈ X ⊂ [0,∞), θ(2)2k−1 ∈ R, θ(2)2k ∈ R
+ (k = 1, . . . ,m2) and the design

space is a compact interval. Models of this type have numerous applications in
pharmacokinetics (see, e.g., Shargel and Yu [31] or Rowland [29]). It follows from
Braess [7], pages 190–191, that for each

u(x) =
l∑

j=1

aj e
−bj x

with b1, . . . , bl �= 0, the class of functions F = {η2(·, θ(2)) | θ(2) ∈ R
2m2, θ(2)2j ∈

R
+; j = 1, . . . ,m2} is locally solvent at u of order m2 + l. Similarly, the class
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F has property Z of degree m2 + l at u, and therefore it is varisolvent at u of
degree m2 + l. If η = η1 is a continuous function and η2(·, θ̄(2)) is the best approx-
imation of η, it follows from Theorem 4.2 that the difference η − η2(·, θ̄(2)) alter-
nates (at least) m(θ̄(2)) + 1 = m2 + l(θ̄(2)) + 1, where l(θ̄(2)) denotes the number
of non-vanishing coefficients among θ̄(2)1, θ̄(2)3, . . . , θ̄(2)2m2−1 in η2(x, θ̄(2)). By
Theorem 2.1 the support points of a T -optimal design must be among the points,
where the function η − η2(·, θ̄(2)) attains its maximum. If none of the coefficients
θ̄2(2j−1) vanishes, the cardinality of the set A in (2.7) is at least 2m2 + 1.

The upper bound on the cardinality of the set A depends on the particular prop-
erties of the function η = η1 and is in many cases close to the lower bound 2m2 +1.
For example, if η1 is also a sum of exponentials, say

η1
(
x, θ(1)

) =
m1∑
j=1

θ(1)2j−1 e−θ(1)2j x,

θ(1)2j−1 ∈ R, θ(1)2j ∈ R
+, where m1 = m2 + m0 > m2, the difference r∗ = η1 −

η2(·, θ̄(2)) consists of at most m1 + m2 different exponential terms. Because of
the Chebyshev property of the function {eaj x |j = 1, . . . , l} on the nonnegative line
(0,∞) (see Karlin and Studden [20]) it follows that the derivative of the difference
r∗ (which is also a sum of at most m1 + m2 exponential terms) has at most m1 +
m2 −1 roots. Observing that limx→∞ r∗(x) = 0 it therefore follows that there exist
at most m1 +m2 alternating points of the difference r∗. Moreover, if the cardinality
of the set A is exactly m1 + m2, then a boundary point of the design space X is
an element of the set A. Consequently any T -optimal design has at most m1 +
m2 support points. Note that the number of parameters in the exponential models
η1 and η2 is 2m1 and 2m2, respectively. Because m2 < m1 the T -optimal design
cannot be used to estimate all parameters in the extended model η1. For example, if
m1 = m2 +1, it follows from these arguments that a T -optimal design has precisely
2m2 + 1 support points, although the model η1 has 2m2 + 2 parameters.

4.2. T -optimality based on the Kullback–Leibler distance. Recently López-
Fidalgo, Tommasi and Trandafir [24] considered a generalization of the
T -optimality criterion, which is based on the popular Kullback–Leibler (KL)-
distance. The general criterion addresses the problem of a nonnormal error distri-
bution and heteroscedasticity in model (2.1). It reduces to the T -criterion in the
case of normal and homoscedastic data. We briefly indicate that the results of the
previous sections can be easily extended to this more general class of optimality
criteria.

Following López-Fidalgo, Tommasi and Trandafir [24] we specify the two dif-
ferent models by their densities, say fj (y, x, θ(j), σ

2); θ(j) ∈ �(j); j = 1,2, where
σ 2 is a nuisance parameter corresponding to the variances of the responses. We fix
one model, say f (y, x, σ 2) = f1(y, x, θ(1), σ

2), and consider for a design ξ the
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optimality criterion


KL(ξ) = inf
θ(2)∈�(2)

∫
X

dKL
(
f,f2, x, θ(2)

)
dξ(x),(4.1)

where (for any x ∈ X)

dKL
(
f,f2, x, θ(2)

) =
∫

f (y, x, σ 2) log
{

f (y, x, σ 2)

f2(y, x, θ(2), σ 2)

}
dy

denotes the KL-distance between the “true” model f and the alternative model
f2(y, x, θ(2), σ

2). A KL-optimal design ξ∗
KL maximizes 
KL(ξ) in the class of all

designs. The goal of this criterion is to determine designs maximizing the power
of the likelihood ratio test for the hypotheses

H0 :f (x, y, σ 2) = f2
(
x, y, θ(2), σ

2)
vs. H1 :f (y, x, σ 2) = f1

(
y, x, θ(1), σ

2)
for the “worst” choice θ(2) ∈ �(2). Similar arguments as given in the proof of The-
orem 2.1 show that

sup
ξ


KL(ξ) = inf
θ(2)∈�(2)

∥∥dKL
(
f,f2, ·, θ(2)

)∥∥∞ = ∥∥dKL
(
f,f2, ·, θ∗

(2)

)∥∥∞,

where θ∗
(2) corresponds to the minimum in (4.1) for the design ξ∗

KL and the support
of a KL-optimal design ξ∗

KL satisfies

supp(ξ∗
KL) ⊂ AKL = {

x ∈ X|dKL
(
f,f2, x, θ∗

(2)

) = ∥∥dKL
(
f,f2, ·, θ∗

(2)

)∥∥∞
}
.

This means that the KL-optimal design problem is closely related to the problem
of determining the best uniform approximation of the function η ≡ 0 by the (non-
linear) parametric family{

dKL
(
f,f2, ·, θ(2)

) | θ(2) ∈ �(2)

}
.(4.2)

Therefore, all results of the previous sections remain valid, where the class
{η2(·, θ(2)) | θ(2) ∈ �(2)} has to be replaced by the set defined in (4.2) and the func-
tion η = η1 is given by η(x) ≡ 0. We will illustrate these ideas with an example
for heteroscedastic regression models with normal distributed responses.

EXAMPLE 4.4. We consider the problem of discriminating between two re-
gression models with heteroscedastic but normally distributed errors, that is,

P
Y |x
j ∼ N

(
ηj

(
x, θ(j)

)
, (1 − x2)−1)

, j = 1,2,

where η1(x, θ(1)) = η(x) = 8x3 is a cubic, η2(x, θ(2)) = θ(2)1 + θ(2)2x a linear
polynomial and the explanatory variable satisfies x ∈ (−1,1). D-optimal designs
for polynomial regression models with variance function (1 − x2)−1 have been
studied extensively in the literature (see, e.g., Fedorov [16]), but discrimination
designs have not been considered so far. If fj (y, x, θ(j)) denotes the density of
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P
Y |x
j with respect to the Lebesgue measure it follows by a straightforward but

tedious calculation that

dKL
(
f,f2, x, θ(2)

) = (1 − x2)
(
8x3 − θ(2)2x − θ(2)1

)2
,(4.3)

and the best uniform approximation of the function η ≡ 0 by functions of the form
(4.3) is unique and given by dKL(f, f2, x, θ̄(2)) = (8x3 − 4x)2(1 − x2) with corre-
sponding set

AKL = {−1
2

√
2 + √

2,−1
2

√
2 − √

2, 1
2

√
2 − √

2, 1
2

√
2 + √

2
}

and ‖dKL(f, f2, x, θ̄(2))‖∞ = 1. The analogue of Theorem 2.2 shows that all KL-
optimal designs are supported in AKL and characterized by the analogue of (2.8),
which yields∫

AKL

∂

∂θ(2)

dKL
(
f,f2, x, θ∗

(2)

)
dξ∗(x) = −2

∫
AKL

(1 − x2)(8x3 − 4x)

(
1
x

)
dξ∗(x)

= 0.

A straightforward calculation shows that all KL-optimal designs are given by the
one-parametric class

ξ∗
KL =⎛
⎜⎜⎝

−
√

2 + √
2

2

−
√

2 − √
2

2

√
2 − √

2

2

√
2 + √

2

2

p
(2 − √

2) + 4p(
√

2 − 1)

4

√
2 − 4p(

√
2 − 1)

4

1

2
− p

⎞
⎟⎟⎠ ,

where p ∈ [0, 1
2 ]. We finally note that the algorithm proposed by López-Fidalgo,

Tommasi and Trandafir [24] yields to the 3-point design obtained for p = 1/2,
which cannot be used for estimating the parameters in the cubic model.

5. Examples. In this section we compare T - and Ds -optimal designs with
respect to their power properties and estimation error by means of a simulation
study. We begin with the case of discriminating between two polynomials of de-
gree m2 − 1 and m1 − 1 = m0 + m2 − 1 on a nonnegative interval. Our second
example considers a nonlinear case, namely exponential regression models.

5.1. Polynomial regression. Consider the polynomial regression models

η2
(
x, θ(2)

) = θ(2)1 + θ(2)2x + · · · + θ(2)m2x
m2−1,

η1
(
x, θ(1)

) = θ(1)1 + θ(1)2x + · · · + θ(1)m2x
m2−1 + · · · + θ(1)m0+m2x

m0+m2−1,

where the explanatory variable x varies in a nonnegative interval, say I ⊂ [0,∞).
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Note that under the additional assumption of positive coefficients θ(1)1+m2, . . . ,

θ(1)m0+m2 the two systems of functions

{
1, x, . . . , xm2−1, θ(1)1 + θ(1)2x + · · · + θ(1)m0+m2x

m0+m2−1}
(5.1)

{1, x, · · · , xm2−1}
form a Chebyshev system on the interval I and that the number of corresponding
Chebyshev points is exactly m2 + 1 (see Karlin and Studden [20], page 9). Conse-
quently, Theorem 3.3 is applicable here and any T -optimal design is supported at
m2 +1 points. We note that in the case m0 > 1 the T -optimal design cannot be used
for the F -test, which is commonly applied to discriminate between the two nested
polynomials and requires at least m0 + m2 different design points. Note also that
this problem was already observed by Atkinson and Donev [2] in the case m2 = 1
and m0 = 2 (see Example 20.2 in this reference). The results in the present paper
show that this situation is not an exception but rather typical for discrimination
designs constructed from the T -optimality criterion.

If the system in (5.1) is not a Chebyshev system the results of Sections 2 and 3
indicate that there exist several T -optimal designs. For example, consider the case
of discriminating between a linear and a cubic polynomial, that is, m2 = 2, m0 = 2
on the interval [−1,1]. For the cubic model we investigate the model

η(x) = 1 + x + c0x
2 + d0x

3.(5.2)

Some T -optimal designs for various values of the parameters c0 and d0 are given
in Table 2.

The T -optimal design obtained from the algorithm of Atkinson and Fedorov [3]
for the parameters c0 = 0 and d0 = 1 has weights 1/6, 1/2 and 1/3 at the points
−1/2, 1/2 and 1. This design corresponds to the choice p = 1/6 in Example 2.3
and will be called T1/6-optimal design in this example. In order to compare the
different designs with respect to their ability to discriminate between a cubic and a
linear regression model by the common F -test we have modified the T1/6-optimal
design slightly and have put 2% of the observations at a fourth point, namely the
left boundary of the design space. A further T -optimal design with four support
points is obtained from formula (2.14) with p = 1/3 and denoted as T1/3-optimal
design. Stigler [34] proposed the D2-criterion for the construction of a discrimi-
nating design between a linear and a cubic model. If M1(ξ) and M3(ξ) denote the
information matrices of a design in the linear and cubic model, respectively, the
corresponding D2-optimal design maximizes |M3(ξ)|/|M1(ξ)| and has weights
1/5, 3/10, 3/10 and 1/5 at the points −1, −0.408, 0.408 and 1 (see Studden [37]).

We have conducted a small simulation study and generated normally distributed
random variables with mean given by (5.2) and variance σ 2 = 0.1, where the de-
sign was either the T1/3-optimal, the (modified) T1/6-optimal or the D2-optimal
design. In Figure 2 we display the power function of the F -test for the hypothesis
of a linear regression H0 : (c0, d0) = (0,0) for various choices of the parameters
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TABLE 2
T -optimal designs for discriminating between a linear and a cubic polynomial given in (5.2) for a

special choice of the parameters c0 and d0 (the parameter z satisfies z ∈ R \ {0}). In the case
(c0, d0) = (0, z) the T -optimal design is not uniquely determined

c0 d0 x1 x2 x3 ω1 ω2 ω3

0 z −0.5 0.5 1 1/6 1/2 1/3
z 0 −1 0 1 1/4 1/2 1/4
z z −1 0.33 1 1/6 1/2 1/3
z z −1 −0.33 1 1/3 1/2 1/6
2z z −1 0.2 1 1/5 1/2 3/10
z 2z −0.77 0.411 1 1/6 1/2 1/3
−2z z −1 −0.2 1 3/10 1/2 1/5
z −2z −1 −0.411 0.77 1/3 1/2 1/6

c0 and d0. The level is 5% and the sample size is n = 50. We have considered
three values for the parameter c0 and display the power as a function of the para-
meter d0. The solid line corresponds to the power function of the F -test based on
the (modified) T1/6-optimal design, while the dotted and dashed line refer to the
T1/3-optimal and D2-optimal design, respectively. If c0 = 0 the curves are almost
identical if d0 is also small, while we observe some advantages for the T1/3- and
D2-optimal design for moderate and large values of d0. Here the T1/3-optimal de-
sign has the best performance (see the left panel in Figure 2). The case of a positive
parameter c0 = 0.05, c0 = 0.1 corresponds to an alternative. For small values of d0,
the D2-optimal and T1/3-optimal design seem to have better discrimination prop-
erties than the T1/6-optimal design, while the opposite behavior is observed if d0
is large (see the middle and right panel in Figure 2). Next we consider the situation
where d0 is fixed and the parameter c0 is varied. If d0 = 0 the D2-optimal design
always yields more power than both T -optimal designs, where the T1/3-optimal
design shows some advantages compared to the T1/6-optimal design (see the left

FIG. 2. Simulated rejection probabilities of the F -test H0 : (c0, d0) = (0,0) based on the
D2-optimal design (dashed line), the modified T1/6-optimal design (solid line) and the T1/3-optimal
design (dotted line) for the parameters (c0, d0) = (0,1) in the cubic regression model (5.2). The
errors are centered normally distributed with variance σ 2 = 0.1.
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FIG. 3. Simulated rejection probabilities of the F -test H0 : (c0, d0) = (0,0) based on the
D2-optimal design (dashed line), the modified T1/6-optimal design (solid line) and the T1/3-optimal
design (dotted line) for the parameters (c0, d0) = (0,1) in the cubic regression model (5.2). The
errors are centered normally distributed with variance σ 2 = 0.1

panel in Figure 3). For larger values of d0 the situation is similar. If d0 = 0.05
all three designs yield very similar results for small values of the parameter c0,
while for larger values of c0 the T1/3- and D2-optimal design yield more power
than the T1/6-optimal design. Finally, in the case d0 = 0.1 the T1/6-optimal design
should be preferred for small values of c0 if model discrimination is the main goal
of the experimenter. On the other hand, if d0 is large, the D2-optimal design has
the best performance and both T -optimal designs show a similar behavior (see
the right panel in Figure 3). Summarizing these observations, we conclude that
the superiority of one of the two discrimination designs depends sensitively on the
alternative under consideration. We finally also note that the D2-optimal design
does not require any preliminary information regarding the (unknown) parameters
and that the modified T1/6-optimal and the T1/3-optimal design were constructed
for the particular alternative (c0, d0) = (0,1) corresponding to the “true” model.
Therefore we expect these designs to be particularly powerful in the examples
considered in the simulation study.

Usually the next step after model identification is the statistical analysis based
on the identified model. Therefore it is also of interest to investigate the perfor-
mance of the three discrimination designs for this purpose. In Table 3 we present
the mean squared errors of the least squares estimates â, b̂, ĉ and d̂ based on
data obtained from a D2-optimal design, the (modified) T1/6-optimal and the T1/3-
optimal design for the special choice of the parameters (c0, d0) = (0,1). The
model under consideration is in fact the cubic regression 1 + x + x3, for which
the T -optimal designs were constructed. We observe that the mean squared error
of the estimates obtained from the (modified) T1/6-optimal design is substantially
larger compared to the mean squared error obtained from the D2-optimal and T1/3-
optimal design. For the last named designs the situation is very similar, where there
are slight advantages for the D2-optimal design with respect to the estimation of
the parameters a and c and the opposite behavior can be observed for the estimates
of the parameters b and d .
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TABLE 3
Mean squared error of the least squares estimates in the cubic regression model. The data is

obtained from the D2-optimal, the T1/3-optimal and (modified) T1/6-optimal design for the special

choice of the parameters (c0, d0) = (0,1). The variance is chosen as σ 2 = 0.1

D2-optimal design Modified T1/6-optimal design T1/3-optimal design

MSE(â) 0.0050 0.0103 0.0060
MSE(b̂) 0.0290 0.0324 0.0220
MSE(ĉ) 0.0120 0.0545 0.0160
MSE(d̂) 0.0360 0.0766 0.0320

5.2. A nonlinear example. In this section we consider the problem of discrim-
ination between the exponential regression models

η1
(
x, θ(1)

) = θ(1)1 exp
(−θ(1)2x

) + θ(1)3 exp
(−θ(1)4x

)
,(5.3)

η2
(
x, θ(2)

) = θ(2)1 exp
(−θ(2)2x

)
,(5.4)

where the explanatory variable varies in the interval X = [−1,1]. These models
have numerous applications in pharmacokinetics (see, e.g., Shargel and Yu [31]
or Rowland [29]) and optimal designs have been discussed extensively in the re-
cent literature (see, Dette, Melas and Pepelysheff [15] or Biedermann, Dette and
Pepelysheff [6]). It follows by similar arguments as given in Example 4.3 that a T -
optimal design has at most three support points. The T -optimal designs are listed
in Table 4 for various combinations of the parameters θ(1)j , j = 1, . . . ,4.

We have again performed a small simulation study in order to study the rejection
probabilities of the likelihood ratio test of the hypothesis

H0 : θ(1)3 = 0,(5.5)

where the data is generated by the different designs. Because this test requires
measurements at at least 4 locations, we have modified the T -optimal designs by
putting 2% of the observations at a fourth point.

TABLE 4
T -optimal designs for discriminating between the exponential regression models given in (5.3) and

(5.4) for a special choice of the parameter θ(1)

θ(1) = (θ(1)1, θ(1)2, θ(1)3, θ(1)4) x1 x2 x3 ω1 ω2 ω3

(1,2,1,4) −1 −0.8 −0.02 0.088 0.22 0.692
(1,−1,1,−2) −1 0.6 1 0.645 0.246 0.109
(1,−1,1,2) −1 −0.272 1 0.168 0.437 0.395
(−1,1,−1,2) −1 −0.59 1 0.109 0.252 0.639
(−1,−1,−1,−0.5) −1 0.35 1 0.394 0.425 0.181
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For a comparison, there are now two natural candidates based on the Ds -
optimality criterion. The first design is obtained by maximizing the power of the
test for the hypothesis (5.5) and corresponds to the D1-criterion, while the second
design is a D2-optimal design in the sense of Stigler [34], and corresponds to the
test for the hypothesis

H0 :
(
θ(1)3, θ(1)4

) = (0,0).(5.6)

The corresponding local optimal designs are presented in Table 5.
We have simulated data according to the model η1 and calculated the power of

the likelihood ratio test for the hypothesis (5.5) in various situations. The errors
are normally distributed with variance σ 2 = 0.05 (θ(1)2 = −1, θ(1)4 = −2) and
σ 2 = 0.2 (θ(1)2 = −1, θ(1)4 = 2; θ(1)2 = 2, θ(1)4 = 4), the sample size is n = 50
and 1000 simulation runs are used to calculate the rejection probabilities. Some
typical results are depicted in Figure 4, which shows the probability of rejection as
a function of the parameter θ(1)3.

If both parameters in the exponential functions are negative (left panel in Fig-
ure 4) the power of the test obtained from the modified T -optimal design is larger
than the power of the test based on the D2-optimal design. On the other hand the
D2-optimal design seems to have slightly better discrimination properties than the
D1-optimal design in this case. If both parameters are of opposite sign (middle
panel in Figure 4) the situation is different and the D2-optimal design yields a
bit more power for small values of the parameter θ(1)3. In this example the D1-
optimal design is totally defective. Finally, the right panel of Figure 4 shows a
situation where both parameters in the exponential functions are positive. If both
parameters are of opposite sign (middle panel in Figure 4) the situation is different

TABLE 5
Ds -optimal designs, s = 1,2, for discriminating between the exponential regression models given in

(5.3) and (5.4) for a special choice of the parameter θ(1)

(θ(1)1, θ(1)2, θ(1)3, θ(1)4) s x1 x2 x3 x4 ω1 ω2 ω3 ω4

(1,2,1,4) 1 −1 −0.859 −0.394 0.717 0.087 0.197 0.257 0.459
2 −1 −0.838 −0.404 0.52 0.144 0.258 0.206 0.392

(1,−1,1,−2) 1 −1 −0.03 0.758 1 0.293 0.346 0.249 0.112
2 −1 0.03 0.697 1 0.308 0.253 0.281 0.158

(1,−1,1,2) 1 −1 −0.636 0.394 1 0.142 0.444 0.311 0.103
2 −1 −0.616 0.313 1 0.341 0.309 0.268 0.082

(−1,1,−1,2) 1 −1 −0.758 0.03 1 0.112 0.249 0.346 0.293
2 −1 −0.697 −0.03 1 0.158 0.281 0.253 0.308

(−1,−1,−1,−0.5) 1 −1 −0.273 0.657 1 0.215 0.631 0.29 0.134
2 −1 −0.242 0.576 1 0.324 0.271 0.275 0.13
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FIG. 4. Simulated rejection probabilities of the likelihood ratio test for the hypothesis (5.5) based
on the D1-optimal design (dashed line), D2-optimal design (dotted line) and the T -optimal design
(solid line) in the exponential regression model (5.3), where θ(1)1 = θ(1)3 = 1.

and the D2-optimal design yields a bit more power for small values of the para-
meter θ(1)3. In this example the D1-optimal design is totally defective. Finally, the
right panel of Figure 4 shows a situation where both parameters in the exponential
functions are positive. Here almost the same behavior as in the case of negative
parameters is observed. While the D2-optimal design yields more power than the
D1-optimal design, the test based on the (modified) T -optimal shows the best per-
formance. On the other hand the D2-optimal design advices the experimenter to
take observations at 4 different locations and therefore it also allows the estimation
of all parameters in the extended model.

The impact of the discriminating designs on the parameter estimates is in-
vestigated in Table 6, where we exemplarily show two typical examples of the
simulated mean squared error of the parameter estimates under the different de-
signs. If θ(A) = (1,−1,1,2) the D1- and D2-optimal designs yield substantially
smaller mean squared errors than the T -optimal design, and the D1-optimal de-
sign shows a slightly better performance than the D2-optimal design. In the case
θ(B) = (1,2,1,4) the D1- and D2-optimal design yield the smallest mean squared

TABLE 6
Simulated mean squared error of the least squares estimates in the exponential regression model.
The data is obtained from the D1-, D2- and (modified) T -optimal design for the special choice of

the parameters θ(A) = (1,−1,1,2) and θ(B) = (1,2,1,4). The variance is chosen as σ 2 = 0.2

D1-optimal design D2-optimal design T -optimal design

MSE(â) 0.04491 0.05507 0.31266
MSE(b̂) 0.05468 0.06687 1.07216

θ(A) MSE(ĉ) 0.02503 0.03137 0.15910
MSE(d̂) 0.02414 0.02803 0.15603

MSE(â) 0.18217 0.18552 0.37235
MSE(b̂) 0.57880 0.80178 2.94709

θ(B) MSE(ĉ) 0.18374 0.17361 0.37019
MSE(d̂) 0.25151 0.21136 0.43687
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errors, while the (modified) T -optimal shows again the worst performance. The
mean squared errors obtained by the D2-optimal design are slightly larger than
those obtained by the D1-optimal design. Summarizing these and similar results
(which are not shown for the sake of brevity) we conclude that the D1- and D2-
optimal designs have good properties for model discrimination and additionally
have good properties for parameter estimation if the null hypothesis (5.6) has been
rejected. In many cases the mean squared error of the parameter estimates obtained
from the modified T -optimal design is at least two times larger compared to the
results obtained from the D1- and D2-optimal designs.
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