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NONLINEAR SEQUENTIAL DESIGNS FOR LOGISTIC ITEM
RESPONSE THEORY MODELS WITH APPLICATIONS TO

COMPUTERIZED ADAPTIVE TESTS1

BY HUA-HUA CHANG AND ZHILIANG YING

University of Illinois at Urbana–Champaign and Columbia University

Computerized adaptive testing is becoming increasingly popular due to
advancement of modern computer technology. It differs from the conven-
tional standardized testing in that the selection of test items is tailored to
individual examinee’s ability level. Arising from this selection strategy is a
nonlinear sequential design problem. We study, in this paper, the sequential
design problem in the context of the logistic item response theory models. We
show that the adaptive design obtained by maximizing the item information
leads to a consistent and asymptotically normal ability estimator in the case
of the Rasch model. Modifications to the maximum information approach
are proposed for the two- and three-parameter logistic models. Similar as-
ymptotic properties are established for the modified designs and the resulting
estimator. Examples are also given in the case of the two-parameter logis-
tic model to show that without such modifications, the maximum likelihood
estimator of the ability parameter may not be consistent.

1. Introduction. Computerized adaptive testing (CAT) is becoming increas-
ingly popular due to advancement of modern computer technology. The concept of
adaptive testing was originally conceived by Lord (1971) in his attempt to utilize
the stochastic approximation algorithm of Robbins and Monro (1951) for design-
ing more efficient tests. Major advances were carried out and documented in Owen
(1975), Weiss (1976) and Wainer (2000). A distinctive feature of adaptive testing
is to tailor test items (questions) to each examinee’s ability level, so that able ex-
aminees can avoid doing too many easy items and less able examinees can avoid
doing too many difficult items. Specifically, if the examinee answers a question
correctly (incorrectly), then the next question administered to him/her will tend to
be easier (more difficult). Through such an adaptive approach, questions with their
difficulty levels suitable to a specific examinee are likely to be allocated. In con-
sequence, examinees are challenged but not discouraged, leading to their ability
levels being measured more accurately with the same or fewer number of items
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than using the conventional tests. Rapid development of computer technology has
made adaptive testing a very promising option and, to a certain extent, the future
of standardized tests. For example, computerized adaptive tests have already been
implemented in GRE, the Graduate Record Examination, and GMAT, the Graduate
Management Admission Test.

Both theoretical and implementational aspects of adaptive testing rely heavily
on the item response theory (IRT) models, which relate examinees’ ability levels
to their responses to test items. Suppose that an examinee’s ability level is charac-
terized by a single parameter θ . A basic assumption of the IRT is that for a given
item the probability of producing a correct answer depends only on examinee’s
ability parameter θ . The resulting probability curve, as θ varies, is known as the
item characteristic curve (ICC) of the given item. Different parametrizations of the
ICC curve lead to different IRT models.

Rasch (1960) proposed using the family of shifted logistic functions, exp(θ −
b)/(1 + exp(θ − b)), to model the ICC. Here, b determines the position of the ICC
along the ability scale and is known as the item difficulty parameter. Exponent
θ − b may be replaced by 1.7(θ − b) to bring the curve closer to the standard
normal distribution function. The latter will not be used in this paper, however,
for mathematical simplicity. Let Y denote an examinee’s response, with values
1 indicating a correct answer and 0 an incorrect answer, to an item whose ICC
follows the Rasch model with difficulty b. Then,

P(Y = 1|θ) = eθ−b

1 + eθ−b
,(1.1)

where θ denotes the ability level of the examinee.
A more general model, which includes the Rasch model as a special case, is the

so-called three-parameter logistic (3-PL) model, whose ICC is defined by

P(Y = 1|θ) = c + (1 − c)
ea(θ−b)

1 + ea(θ−b)
,(1.2)

where Y , θ and b have the same interpretations as those in (1.1) and where the ad-
ditional item parameters c and a measure, respectively, the degree of guessing and
the discriminating power [see Lord (1980), Hambleton and Swaminathan (1985)].
The Rasch model corresponds to the situation in which there is no guessing (c ≡ 0)
and all items have the same discriminating power (a ≡ 1 when properly scaled).
An intermediate model is

P(Y = 1|θ) = ea(θ−b)

1 + ea(θ−b)
,(1.3)

which is known as the two-parameter logistic (2-PL) model.
The conventional IRT model-based design of a test is the advance selection

of a set of n items whose parameters have been precalibrated (known). For each
examinee, there are n responses, say Y1, . . . , Yn, to the n items. Point and interval



1468 H.-H. CHANG AND Z. YING

estimation of θ for the examinee can then be obtained by, for example, maximizing
the likelihood function of θ with Y1, . . . , Yn and calculating the observed Fisher
information, or by other methods that can be found in statistical literature. Lord
(1980) contains detailed descriptions of relevant statistical inference procedures
and theory thereof.

The main focus of the present investigation is on the IRT model-based adaptive
design of computerized tests. An adaptive test differs from a conventional test in
that the assignment of the test items are performed sequentially, with selection
of each item depending on the responses of the examinee to the preceding items.
More specifically, let A be the item bank from which items may be selected and
assigned to the examinee. Suppose that k−1 items, α1, . . . , αk−1 ∈ A have already
been selected and that the responses from the examinees are Y1, . . . , Yk−1. The
selection of the kth item, αk , will be based on the previous items, α1, . . . , αk−1 as
well as the responses Y1, . . . , Yk−1. Arising from this formulation are three aspects
that may be studied: (1) Design of an adaptive rule for selection of test items
α1, α2, . . . , (2) sequential estimation of ability parameter θ at each stage, and (3)
properties of the adaptive design and the resulting estimator.

Lord (1980), Chapter 10, argued that, for a given examinee, the items should be
selected to maximize the Fisher information. Let Pα(θ) be the probability that an
examinee with ability θ answers item α correctly. The Fisher information function
(of θ ) for α is simply

Iα(θ) =
[
∂Pα

∂θ
(θ)

]2/
Pα(θ)Qα(θ),(1.4)

where Qα(θ) = 1 − Pα(θ). If θ were known, then the optimal choice, according
to Lord, is the one that maximizes Iα(θ). Although in reality we do not know θ ,
the sequential approach allows us to use the current estimate of θ in deciding the
next choice of α. Our results, to be presented in this paper, indicate that, for the
Rasch model, such an approach leads to an asymptotically optimal design and that,
for the two-parameter and three-parameter logistic model, the approach does not
in general lead to an optimal design. In fact, the procedure needs to be modified in
order to produce a reasonable design. Note that, throughout the paper, the term op-
timal is referred to that the adaptive design leads to a consistent and asymptotically
normal ability estimator.

Despite the increased prominence of CAT in standardized testing, in-depth sta-
tistical analysis has yet to be developed. The present paper is aimed at provid-
ing some basic results in certain idealized situations. It is organized as follows.
The Rasch model is studied in Section 2 in the context of the adaptive design
and maximum likelihood estimation. It is shown there that the maximum Fisher
information-based sequential design, in conjunction with updating maximum like-
lihood recursion, is asymptotically optimal, and the resulting maximum likelihood
estimator is consistent and asymptotically normal. In Section 3, a modification
to the maximum Fisher information-based design for the two-parameter logistic
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model is proposed, and the resulting maximum likelihood estimator is shown to
be consistent and asymptotically normal. A counterexample is also given to illus-
trate the necessity of the proposed modification. Treatment of the general three-
parameter logistic model is given in Section 4, where, in addition to modifying
the maximum Fisher information design, we also propose an approximation to the
maximum likelihood estimating equation. The usual large sample properties are
established accordingly. Discussions and some concluding remarks are given in
Section 5.

2. Information-based adaptive design for the Rasch model. Recall that,
under the Rasch model, the probability of answering an item correctly by an ex-
aminee with ability parameter θ is exp(θ − b)/[1 + exp(θ − b)], where b is the
item parameter representing the difficulty level. From (1.4), the Fisher information
of the item can be written as

I (θ |b) = eθ−b

(1 + eθ−b)2 .(2.1)

For a given examinee, Ib(θ) attains its maximum value 1/4 at b = θ . Therefore,
the optimal design is to select items with difficulty parameter b = θ . Since θ is
unknown, successive approximations to the optimal design will be needed.

A general recursive algorithm known as the stochastic approximation for ap-
proximating optimal design points was first proposed by Robbins and Monro
(1951). Lord (1971) discovered use of the stochastic approximation in developing
adaptive (tailored) tests. Wu (1985) introduced a maximum likelihood recursion as
an alternative to the stochastic approximation when the underlying response curve
is of the logistic form. He further showed, through extensive simulation studies,
that his maximum likelihood recursion improves efficiency over the stochastic ap-
proximation when the sample size is moderate.

In this section, we first consider an idealized setting for CAT in which available
items at each stage exhaust all difficulty levels. In other words, for every b, an
item with ICC {exp(θ − b)/[1 + exp(θ − b)], θ ∈ R} can be administered to the
examinee. We will then consider more realistic situations for which available items
are limited, so that we can at best choose items that are closest to the idealized
optimal ones. Results for the idealized CAT will be developed and then extended
for the more realistic situations.

For the idealized CAT, the sequential design based on maximizing the Fisher
information and updating maximum likelihood estimators consists of the following
steps:

1. Initialization. Specify the difficulty level, say b1, of the initial item. If the
examinee’s response is correct (i.e., Y1 = 1), then choose the succeeding
items with increasing difficulty parameters (b1 ≤)b2 ≤ b3 · · · ≤ bk0 , where
k0 = inf{j :Yj = 0} is the first time an incorrect response occurs. On the other
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hand, if the response to the first item is incorrect, then select the succeed-
ing items with decreasing difficulty parameters (b1 ≥)b2 ≥ b3 · · · ≥ bk0 , where
k0 = inf{j : Yj = 1}.

2. Estimation. For each k ≥ k0, define θ̂k by solving the maximum likelihood es-
timating equation

k∑
i=1

(
Yi − eθ−bi

1 + eθ−bi

)
= 0.

Since the response sequence {Y1, . . . , Yk} contains both 0 and 1, θ̂k is uniquely
and well defined.

3. Design. After k(≥ k0) items are administered and θ̂k is obtained, select the
next item by setting bk+1 = θ̂k . Note that this selection is simply the idealized
optimal design, but with unknown parameter θ being replaced by its most recent
estimator.

The preceding adaptive testing procedure was proposed and discussed in Lord
(1971, 1980). It was also studied in the context of sequential optimal design in Wu
(1985), where its connection to Robbins and Monro’s stochastic approximation
algorithm was found. Ying and Wu (1997) established an asymptotic theory for a
class of sequential design problems. The next theorem shows that the sequential
estimator θ̂n is consistent and asymptotically normal. It entails that the adaptive
design is asymptotically efficient.

THEOREM 1. Let {θ̂k} be the sequential estimators specified by steps 1–3 for
the Rasch model. Then, as n → ∞, θ̂n → θ a.s. and

√
n/4(θ̂n − θ) → N(0,1).

Furthermore, 4In(θ̂)/n → 1 a.s., where In(θ) = ∑n
i=1 exp(θ − bi)/(1 + exp(θ −

bi))
2 is the observed Fisher information.

The asymptotic variance for θ̂n is 4/n, which is exactly the inverse of the Fisher
information if all the n items are chosen optimally (i.e., bi ≡ θ ). Thus, the esti-
mator θ̂n is asymptotically optimal. However, under the more realistic situation in
which the item bank has limited capacity, that is bk can only be chosen from a
set of discrete values, then the consistency and asymptotic normality for θ̂k still
hold, but the asymptotic variance needs to be replaced by the inverse of the Fisher
information.

Theorem 1 is implied by the more general result given by Theorem 2. It can
also be inferred from Ying and Wu (1997), Theorem 1. Proof of Theorem 2 uses
the so-called local convergence theorem for martingale sequences.

3. The two-parameter logistic model. Recall that the two-parameter logistic
model is an extension of the Rasch model to include a second item parameter a,
which represents the discriminating power of the item. Under this model, an exam-
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inee with ability θ answers an item, specified by a and b, correctly with probability
ea(θ−b)/[1 + ea(θ−b)] in (1.3).

The Fisher information function for an item specified by a and b may be ex-
pressed as

I (θ |a, b) = a2 ea(θ−b)

[1 + ea(θ−b)]2 .(3.1)

If a and b are unrestricted, then the information-based optimal design problem is
singular because

max
a,b

I (θ |a, b)

(
= max

a
max

b
I (θ |a, b)

)
= max

a

a2

4
= ∞.(3.2)

From (3.2), the optimal design appears to be b = θ and a = ∞. But this will be
extremely unstable since, for any b 	= θ ,

lim
a→∞ I (θ |a, b) = 0.

One way to avoid such singularity is to restrict the item pool so that parameter a

will fall into a compact interval in (0,∞).
Analogous to the adaptive design for the Rasch model, we introduce a similar

design for the two-parameter logistic model. However, to avoid the singularity, we
shall put a restriction on the discrimination parameter a. Specifically, let 0 < m <

M < ∞ be fixed in advance, and assume a ∈ [m,M].
1. Initialization. Select the initial coin (item) with parameters a1 and b1. Rea-

sonable choice for them can be made from the prior information about the
population. If the outcome of the first toss Y1 is 1 (head), then choose the
next k0 coins with increasing difficulty parameters (b1 ≤)b2 ≤ · · · ≤ bk0 , where
k0 = inf{j :Yj = 0} is again the first time a tail occurs. If the first toss is a tail,
then choose (b1 ≥)b1 ≥ · · · ≥ bk0 with k0 being the first head. The a-parameters
must satisfy m ≤ aj ≤ M,j = 1, . . . , k0 but can be arbitrary otherwise.

2. Estimation. For each k ≥ k0, define θ̂k , the maximum likelihood estimator, as
the unique solution to

k∑
i=1

ai

(
Yi − eai(θ−bi)

1 + eai(θ−bi)

)
= 0.(3.3)

Note that the left-hand side of (3.3) is a strictly decreasing function with values
ranging from

∑k
i=1 ai(1 − Yi) < 0 to

∑k
i=1 aiYi > 0.

3. Design. After θ̂k is defined, set bk+1 = θ̂k and ak+1 to be a number in [m,M].
The choice for ak+1 can depend on data collected up to the current stage. The
next selection will be the coin (item) with parameters ak+1 and bk+1.

The preceding sequential design is not optimal, not even asymptotically. It is
based on a suboptimal design that maximizes the Fisher information over b with a
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being fixed. Such an approach is intuitively sensible, because the adaptive test is
to match the difficulty level of test items with examinee’s ability and parameter b

represents the item difficulty. Obviously, it does not touch upon selection of the
discrimination parameter a, which involves more complex issues [see Chang and
Ying (1999) and Chang, Qian and Ying (2001)].

THEOREM 2. Under the preceding sequential design for the two-parameter
logistic model, θ̂n → θ a.s. as n → ∞. In addition, suppose the choice of aj satis-
fies

∑n
i=1 a2

i /vn →p 1, as n → ∞, for some nonrandom sequence vn. Then,√√√√ n∑
i=1

a2
i (θ̂n − θ) →L N(0,1).(3.4)

The normalizing factor
√∑n

i=1 a2
i in (3.4) may be replaced by

√
I (n)(θ̂n) or√

I (n)(θ), where

I (n)(θ) =
n∑

i=1

a2
i

eai(θ−bi)

[1 + eai(θ−bi)]2(3.5)

is the observed Fisher information.

REMARK 1. As we stated earlier, the solution to the optimal design problem of
maximizing the Fisher information is singular, in that the discrimination parameter
will reach ∞. The remedial measure taken here is to restrict this parameter to a
compact interval. Next we construct an example to show that if the aj are not
bounded, it is possible that the resulting estimator θ̂n may not even be consistent.

EXAMPLE 1. Suppose we follow the same sequential design as described at
the beginning of this section, but with ak = k3 instead of confining the ak to a
compact interval. Suppose, in addition, that the initial value is taken to be θ̂0 <

θ − 1 − π2/6. If Y1 = · · · = Yj = 0, then the subsequent θ̂k,1 ≤ k ≤ j , will be
chosen in decreasing order, so that θ̂1 = θ̂0 − ε0, . . . , θ̂j = θ̂j−1 − ε0, where ε0 > 0
is a prespecified constant. Let n0 be a large integer, so that the following conditions
are satisfied:

∞∑
k=n0+1

k3

1 + ek
<

1

3
,(3.6)

(n0 + 1)3

1 + e(n0+1)3ε0
<

1

6
,(3.7)

3(n0 + 1)3 <

n0∑
k=1

k3.(3.8)
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FIG. 1. Examples of convergence and nonconvergence.

Define event A = {Yk = 0, k ≤ n0 and Yk = 1, k ≥ n0 + 1}. We prove below that
P(A) > 0 and limn→∞ θ̂n < θ − 1 on A. Therefore, with such a design, θ̂n cannot
be a consistent estimator of θ . Intuitively, this can occur because movement of
successive θ̂j is tied to the a-parameter. A large value of a corresponds to a small
movement size. The constructed example makes the a-parameters so large that the
θ̂j can never move back, even if all the steps after n0 are in right direction. Figure 1
shows graphically two sequences of θ̂j , one converges to the θ and the other does
not.

REMARK 2. The constraint that the discrimination parameters aj are bounded
away from 0 is also needed. To see this, suppose we set aj = 1

j
. Then, the total

Fisher information for a test of length n is bounded by

1

4

n∑
j=1

a2
j <

1

4

∞∑
j=1

1

j2 < ∞.

In view of this, it is straightforward that the resulting maximum likelihood estima-
tor θ̂n will not converge to θ .
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FIG. 2. Mean squared errors under ascending and descending a-parameter designs.

REMARK 3. It was pointed out by the Associate Editor that an item with a
large value of a-parameter could be very uninformative if knowledge about θ is
poor, and also that a natural way to increase efficiency is to use items with small
a-parameter values in early stages and use items with large a-parameter values
in later stages. Indeed, such an approach could lead to, among other things, sub-
stantial efficiency improvement. Figure 2 gives efficiency comparison in terms of
mean squared errors using ascending and descending a-parameter values. For more
details and other related issues in practical settings, we refer to Chang and Ying
(1996, 1999). It is worth noting that, if items with a = ∞ were available, then one
could design a scheme that approaches the true θ exponentially fast, though such
a scheme is likely to be different from the maximum likelihood estimation.

REMARK 4. As pointed by one of the reviewers, setting a ≤ M is reason-
able, because no item-writer has ever been able to write a sequence of items with
a-parameters tending to infinity. Also, any reasonable item bank would only in-
clude items with a-parameters bounded away from 0. If we assume the item bank
contains all pairs (a, b) in [m,M] by (−∞,∞), Chang and Ying (1999) proposed
the a-stratified method with an objective to limit the exposure on any given item by



SEQUENTIAL DESIGNS FOR CAT 1475

using that item at the most advantageous point in testing. The a-stratified method
attempts to use less discriminating items early in the test, when estimation is least
precise, and save highly discriminating items until later stages, when finer grada-
tions of estimation are required. One of the advantages of using the a-stratified
method is that it attempts to equalize the item exposure rates for all the items in
the pool.

PROOF OF THEOREM 2. The main line of the proof consists of the following
four steps. First, we show that the observed Fisher information goes to infinity as
n → ∞. The second step is to show that the design leads to bounded maximum
likelihood estimators θ̂n. From the boundedness follows the consistency. The last
step is to show the asymptotic normality.

Throughout the proof, we shall let G(t) = et/(1 + et ) and Ḡ(t) = 1 − G(t).
Define σ -filtration Fk = σ {Yj , θ̂j , aj+1, j ≤ k}, k ≥ 0. Then, conditioning on
Fk−1, Yk is a Bernoulli random variable with success probability G(ak(θ − bk)).
Thus, {Yk − G(ak(θ − bk))} is a martingale difference sequence with respect to
{Fk}. Since ak ∈ Fk−1 is predictable, ak[Yk −G(ak(θ − bk))] are again martingale
differences with conditional variances

Var
{
ak

[
Yk − G

(
ak(θ − bk)

)]∣∣Fk−1
} = a2

kG
(
ak(θ − bk)

)
Ḡ

(
ak(θ − bk)

)
.

Applying the martingale local convergence theorem of Chow (1965), Corollary 5,
we have that

∞∑
k=1

ak[Yk − G(ak(θ − bk))]∑k
j=1 a2

jG(aj (θ − bj ))Ḡ(aj (θ − bj ))
converges a.s.(3.9)

We first prove that

P

( ∞∑
k=1

a2
kG

(
ak(θ − bk)

)
Ḡ

(
ak(θ − bk)

)
< ∞

)
= 0.(3.10)

Let A1 be the event that
∑∞

k=1 a2
kG(ak(θ − bk))[1 − G(ak(θ − bk))] < ∞.

Clearly, on A1, limn→∞ |bn| = ∞ or, equivalently, limn→∞ |θ̂n| = ∞, recalling
that bn+1 = θ̂n as the design requires it. From (3.9) and the monotonicity of the
denominator sequence in (3.9), we have that

∑∞
k=1 ak[Yk − G(ak(θ − bk))] con-

verges on A1. But
∑n

k=1 ak[Yk − G(ak(θ̂n − bk))] = 0 for all n. So, on A1,

∞ >

∣∣∣∣∣
∞∑

k=1

ak

[
Yk − G

(
ak(θ − bk)

)]∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣
n∑

k=1

ak

[
Yk − G

(
ak(θ − bk)

)] −
n∑

k=1

ak

[
Yk − G

(
ak(θ̂n − bk)

)]∣∣∣∣∣(3.11)

= lim
n→∞

∣∣∣∣∣
n∑

k=1

ak

[
G

(
ak(θ̂n − bk)

) − G
(
ak(θ − bk)

)]∣∣∣∣∣.
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From (3.11) we claim that lim sup θ̂n < ∞ on A1. We prove this claim by con-
tradiction. Suppose it is not true. Then there exists a subsequence nj such that
θ̂nj

→ ∞ and θ̂nj
≥ θ̂k for all k ≤ nj . This implies the following:

ak

[
G

(
ak(θ̂nj

− bk)
) − G

(
ak(θ − bk)

)] ≥ 0 for all k ≤ nj ;(3.12)

for any constant K, #{k ≤ nj :ak(θ − bk) ≤ −K} → ∞
(3.13)

as nj → ∞.

Combining (3.12) with (3.13), we know that (3.11) cannot be true. Thus,
lim sup θ̂n < ∞ on A1. Likewise, we can show that lim inf θ̂n > −∞ on A1. These
two contradict a previous conclusion that lim supn→∞ |θ̂n| = ∞ on A1 unless A1

is a null event. Hence (3.10) holds.
From (3.9), (3.10) and the Kronecker lemma [Chow and Teicher (1988),

page 114], it follows that∑n
k=1 ak[Yk − G(ak(θ − bk))]∑n

k=1 a2
kG(ak(θ − bk))Ḡ(ak(θ − bk))

→ 0 a.s.(3.14)

Substituting the likelihood equation into (3.14), we get

∑n
k=1 ak[G(ak(θ̂n − bk)) − G(ak(θ − bk))]∑n

k=1 a2
kG(ak(θ − bk))Ḡ(ak(θ − bk))

→ 0 a.s.,(3.15)

which certainly implies that

1

n

n∑
k=1

ak

[
G

(
ak(θ̂n − bk)

) − G
(
ak(θ − bk)

)] → 0 a.s.(3.16)

Next, we show that lim sup |θ̂n| < ∞ a.s. Suppose that this is not true and that,
without loss of generality, there exists a subsequence {nj } such that θ̂nj

↑ ∞ and

θ̂nj
≥ θ̂k−1 = bk for all k ≤ nj . Let δ0 > 0 be a fixed constant. Since m ≤ ak ≤ M ,

we have

ak(θ − bk) ≤ −δ0 if bk ≥ θ + δ0

m
.(3.17)

But G(ak(θ̂nj
− bk)) ≥ G(0) = 1

2 for all k ≤ nj , which, together with (3.17), im-
plies that

G
(
ak(θ̂nj

− bk)
) − G

(
ak(θ − bk)

) ≥ 1

2
− G(−δ0) > 0

(3.18)
if bk ≥ θ + δ0

m
.
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Thus, lim supj→∞ #{k ≤ nj :bk ≥ θ + δ0
m

}/nj = 0, since we can otherwise select
a subsequence of nj such that (3.16) does not hold. On the other hand,

G
(
ak(θ̂n − bk)

) − G
(
ak(θ − bk)

)

= eak(θ̂n−bk) − eak(θ−bk)

[1 + eak(θ̂n−bk)][1 + eak(θ−bk)]
(3.19)

= eak(θ−bk)(eak(θ̂n−θ) − 1)

[1 + eak(θ̂n−bk)][1 + eak(θ−bk)]

= eak(θ−bk)(1 + e−ak(θ̂n−θ))

[e−ak(θ̂n−θ) + eak(θ−bk)][1 + eak(θ−bk)] .
Since nj → ∞, we have, in view of (3.19),

G
(
ak(θ̂nj

− bk)
) − G

(
ak(θ − bk)

) = (
1 + o(1)

) eak(θ−bk)

[o(1) + eak(θ−bk)][1 + eak(θ−bk)] ,
which has the same order as

G
(
ak(θ − bk)

)
Ḡ

(
ak(θ − bk)

) = eak(θ−bk)

[1 + eak(θ−bk)]2

for all bk ≤ θ + δ0/m. But, we know that #{k ≤ nj :bk ≤ θ + δ0/m}/nj → 1. So,
(3.15) cannot hold along n = nj . This contradiction proves that lim sup |θ̂n| < ∞
a.s.

Now, by the mean value theorem, there exists θ̂∗
n between θ and θ̂n such that

n∑
k=1

ak

[
G

(
ak(θ̂n − bk)

) − G
(
ak(θ − bk)

)]

=
n∑

k=1

a2
kG

(
ak(θ̂

∗
n − bk)

)
Ḡ

(
ak(θ̂

∗
n − bk)

)
(θ̂n − θ).

Furthermore, lim infn−1 ∑n
k=1 a2

kG(ak(θ̂
∗
n − bk))Ḡ(ak(θ̂

∗
n − bk)) > 0 since

lim sup |θ̂n| < ∞. Hence, (3.15) implies that θ̂n → θ a.s.
To prove the asymptotic normality, we follow the standard approach by taking

the Taylor expansion; that is,

0 =
n∑

k=1

ak

[
Yk − G

(
ak(θ̂n − bk)

)]

=
n∑

k=1

ak

[
Yk − G

(
ak(θ − bk)

)]
(3.20)

−
n∑

k=1

a2
kG

(
ak(θ̂

∗
n − bk)

)
Ḡ

(
ak(θ̂

∗
n − bk)

)
(θ̂n − θ),
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where θ̂∗
n is between θ̂n and θ and therefore converges to θ a.s. From (3.20), we

have

θ̂n − θ =
[

n∑
k=1

a2
kG

(
ak(θ̂

∗
n − bk)

)
Ḡ

(
ak(θ̂

∗
n − bk)

)]−1 n∑
k=1

ak

[
Yk − G

(
ak(θ − bk)

)]
.

Since θ̂∗
n → θ a.s. and bn → θ a.s., it follows that (3.4) holds if we can show that

(
n∑

k=1

a2
k

)−1/2 n∑
k=1

ak

[
Yk − G

(
ak(θ − bk)

)] →L N(0,1).(3.21)

By the assumption, there is a nonrandom sequence vn → ∞ such that
∑n

k=1 a2
k/

vn →p 1. Thus, we can apply the martingale central limit theorem, as stated in
Pollard [(1984), page 171] to get (3.21). Because θ̂ → θ a.s., we can easily see
that

∑n
k=1 a2

k is asymptotically equivalent to I (n)(θ̂n) as well as I (n)(θ). �

4. The three-parameter logistic model and a modification to the maximum
likelihood recursions. The three-parameter logistic model, as specified by (1.2),
extends the two-parameter model by including an additional parameter known as
the guessing parameter. Recall that the ICC, in this case, is c+ (1−c)ea(θ−b)/[1+
ea(θ−b)]. It is not difficult to see that, when c > 0, the family of probability distri-
butions indexed by θ no longer forms an exponential family. Therefore, we expect
that there will be extra technical difficulties to deal with.

For an item with parameters a, b and c, the associated Fisher information func-
tion may be calculated using (1.4) to be

I (θ |a, b, c) = (1 − c)a2e2a(θ−b)

[c + ea(θ−b)][1 + ea(θ−b)]2 .(4.1)

For fixed a and c, the Fisher information reaches its maximum when

b = θ − 1

a
log

1 + √
1 + 8c

2
(4.2)

[see Lord (1980), page 152]. As the two examples indicated in Section 3, the dis-
crimination parameter cannot be chosen arbitrarily because otherwise it may lead
to inconsistency. It is also reasonable to put restrictions on selecting c, the guess-
ing parameter. This is because, in view of (4.1), the Fisher information reaches the
maximum if and only if c = 0. So if no constraint is put, then only those items with
no guessing will be used. The design problem we shall be considering will only
involve choice of b, with a and c being confined to certain reasonable regions.

In view of (4.2), we can select the optimal b if θ is specified. The adaptive
optimal design is then to replace θ by its current estimator. As we shall see, it turns
out that the maximum likelihood estimating equation may have multiple roots. To
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avoid such a situation, we shall propose a modification, which is asymptotically
equivalent to the likelihood estimating equation and has a unique root.

Suppose that the examinee has answered n items, which are specified by
(ak, bk, ck), k = 1, . . . , n, and the results are Y1, . . . , Yn. Then, the maximum like-
lihood estimating equation for θ may be written as

n∑
k=1

ake
ak(θ−bk)

ck + eak(θ−bk)

[
Yk − ck − (1 − ck)

eak(θ−bk)

1 + eak(θ−bk)

]
= 0.(4.3)

Unlike in the two-parameter logistic model, the left-hand side of (4.3) is not a
monotone function of θ . In fact, (4.3) may have multiple roots [Samejima (1973)].
On the other hand, when the choice of the difficulty parameter satisfies (4.2) (θ will
be replaced by the current estimator), it is easy to see that weights in (4.3)

ake
ak(θ−bk)

ck + eak(θ−bk)
≈ ak(1 + √

1 + 8ck)

2ck + 1 + √
1 + 8ck

.

Therefore, an approximation to (4.3) is

n∑
k=1

ak(1 + √
1 + 8ck)

2ck + 1 + √
1 + 8ck

[
Yk − ck − (1 − ck)

eak(θ−bk)

1 + eak(θ−bk)

]
= 0,(4.4)

which will be called approximate maximum likelihood estimating equation. It is
obvious that the left-hand side of (4.4) is monotone decreasing in θ . Therefore, the
solution to (4.4), if it exists, will be unique. Notice also that the weights in (4.4)
do not depend on the bk .

An extension of the adaptive design procedure proposed in the preceding section
to the three-parameter model is described below:

1. Initialization. In the same way as that for the two-parameter logistic model,
choose the initial k0 items so that {Yi, i ≤ k0} contains both 0 and 1.

2. Selection of θ̂k . For each k ≥ k0, if

k∑
i=1

ai(1 + √
1 + 8ci)

2ci + 1 + √
1 + 8ci

Yi >

k∑
i=1

ai(1 + √
1 + 8ci)

2ci + 1 + √
1 + 8ci

ci,(4.5)

then define θ̂k as the unique solution to (4.4). Otherwise, set θ̂k = rk , where
rk ↓ −∞ is a predetermined sequence.

3. Design. After selecting θ̂k , set bk+1 = θ̂k . Also, set ak+1 and ck+1 such that
ak+1 ∈ [m,M], and ck+1 ≤ 1 − δ0, where δ0 > 0 is some constant.

REMARK 5. If ci ≡ 0, then (4.5) is always satisfied, since there is at least one i

such that Yi = 1. In fact, it is easily seen that (4.5) is a necessary and sufficient
condition for the modified maximum likelihood estimating equation (4.4) to have
a solution.
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REMARK 6. The use of upper and lower bounds M and m for the ak is ex-
plained in the preceding section. The requirement that the ck be bounded above
by 1 − δ0 is natural as the guessing parameter would never exceed 0.5. However,
as indicated by one reviewer, there should be other constraints in real applications
(e.g., we can not allow the algorithm to only select items with a = M and c = 0).

Theorem 2 can now be extended to cover the sequential design as just described
for the three-parameter logistic model.

THEOREM 3. For the sequential design defined in this section, the modified
maximum likelihood estimating equation (4.4) has, with probability 1, a unique
solution for all large n. The solution is strongly consistent (i.e. θ̂n → θ a.s.). Fur-
thermore, provided that

1

vn

n∑
k=1

a2
k

8(1 − ck)2 [1 − 20ck − 8c2
k + (1 + 8ck)

3/2]→
P

1

for some nonrandom sequence vn,
√

vn(θ̂n − θ) →L N(0,1).(4.6)

The normalizing constant vn in (4.6) may be replaced by the estimated Fisher
information

In(θ̂n) =
n∑

k=1

(1 − ck)a
2
k [eak(θ̂n−bk)]2

[ck + eak(θ̂n−bk)][1 + eak(θ̂n−bk)]2
.(4.7)

PROOF. As in the proof of Theorem 2, define G(t) = et/(1 + et ), Ḡ(t) =
1 − G(t) and Fk = σ {Yj , θ̂j , aj+1, cj+1; j ≤ k}. Applying the martingale local
convergence theorem, we have that, analogous to (3.24),

∞∑
k=1

wk[Yk − ck − (1 − ck)G(ak(θ − bk))]∑k
j=1 w2

j [cj + (1 − cj )G(aj (θ − bj ))](1 − cj )Ḡ(aj (θ − bj ))
(4.8)

converges a.s.,

where wk = ak(1 +√
1 + 8ck)/(2ck + 1+√

1 + 8ck). A slight modification of the
proof leading to (3.10) can be constructed to show that

P

( ∞∑
k=1

w2
k

[
ck + (1−ck)G

(
ak(θ −bk)

)]
(1−ck)Ḡ

(
ak(θ −bk)

)
< ∞

)
= 0.(4.9)

To provide a sketch to the proof of (4.9), let A1 denote the event inside the prob-
ability sign in (4.9). Then, on A1, lim |θ̂n| = ∞. We next prove, by contradiction,
that lim sup θ̂n = ∞ is impossible. Suppose that lim sup θ̂n = ∞. Then, there is a
subsequence nj such that θ̂k ≤ θ̂nj

, k ≤ nj .
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By the definition of θ̂n, for n ≥ k0,

n∑
k=1

wk

[
Yk − ck − (1 − ck)G

(
ak(θ̂n − bk)

)] ≤ 0,(4.10)

with the equality holding if and only if
∑n

k=1 wkYk >
∑n

k=1 wkck . From (4.10), we
have

n∑
k=1

wk(1 − ck)
[
G

(
ak(θ̂n − bk)

) − G
(
ak(θ − bk)

)]
(4.11)

≥
n∑

k=1

wk

[
Yk − ck − (1 − ck)G

(
ak(θ − bk)

)]
,

which converges to a finite limit on A1. However, we can easily see that (3.12)
and (3.13) still hold here. But they imply that the left-hand side of (4.11) can be
arbitrarily small, which is a contradiction. Thus, lim sup θ̂n < ∞ on A1. Similarly,
lim inf θ̂n > −∞ on A1. Hence, A1 must be a null set, and (4.9) holds.

Now, by the Kronecker lemma, we get from (4.8) and (4.9) that∑n
k=1 wk[Yk − ck − (1 − ck)G(ak(θ − bk))]∑n

k=1 w2
k [ck + (1 − ck)G(ak(θ − bk))](1 − ck)Ḡ(ak(θ − bk))

→ 0

(4.12)
a.s.

Furthermore, by the definition of θ̂n, for n large enough such that rn ≤ θ ,

n∑
k=1

wkYk ≤
n∑

k=1

wk

[
ck + (1 − ck)G

(
ak(θ̂n − bk)

)]
,

which is ≤ ∑n
k=1 wk[ck + (1 − ck)G(ak(θ − bk))] if θ̂n = rn. Therefore, (4.12)

implies that ∑n
k=1 wk(1 − ck)[G(ak(θ̂n − bk)) − G(ak(θ − bk))]∑n

k=1 w2
k [ck + (1 − ck)G(ak(θ − bk))](1 − ck)Ḡ(ak(θ − bk))

→ 0

(4.13)
a.s.,

which is analogous to (3.15).
By examining the derivation following (3.15), we see that the same argument

can be used to show that lim |θ̂n| < ∞ a.s. In particular, this implies that, for all
large n, θ̂n is the solution to (4.4). It also implies, together with (4.13), that θ̂n → θ

a.s.
Finally, we can apply the Taylor series expansion to (4.4) to obtain asymptotic

normality. The argument is exactly the same as that in the proof of Theorem 2. �
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5. Discussion. CAT has become a popular mode of educational assessment
in the United States. Examples of large-scale applications include the Graduate
Record Examination (GRE), the Graduate Management Admission Test (GMAT),
the National Council of State Boards of Nursing and the Armed Services Voca-
tional Aptitude Battery (ASVAB). The most important component in a CAT is the
item selection procedure that is used to select items during the course of the test.
To date the most commonly used item selection procedure is the maximum Fisher
information method. The motivation for maximizing the Fisher information is to
make the trait estimator the most efficient. This can be achieved by recursively
estimating θ with current available data and assigning further items adaptively.
However, it is necessary to establish the corresponding theoretical properties for
the maximum information approach.

The main objective of this paper is to tackle the sequential design and related
convergence problems arising from the inherent mechanism of adaptive testing. It
is clear that the logistic item response theory models are natural choices for CAT.
We showed that, for the Rasch model, the usual plug-in adaptive design anchored
in the current maximum likelihood estimator of the ability parameter converges
to the optimal limit, and is therefore asymptotically efficient; moreover, the rate
of the convergence can be characterized by the asymptotic normality of the maxi-
mum likelihood estimator. For the two-parameter logistic model, a similar asymp-
totic theory was developed based on an additional parameter modeling assumption
that the discrimination power is restricted to a compact interval. Examples were
given to illustrate that such restriction is necessary. As to the three-parameter lo-
gistic model, since the maximum likelihood estimating function is not generally
a monotone function of the ability parameter, the maximum likelihood estimator
may not be unique and, therefore, establishing convergence for the three-parameter
logistic model is more complicated. Recognizing this potential problem, we pro-
posed an asymptotically equivalent estimating function that is monotone in the
ability parameter. Consistency and asymptotic normality were then proved for the
adaptive design based on the modified maximum likelihood estimator.

The large scale implementation of CAT has created many interesting statistical
issues in design, modeling and analysis. Our theory is established for the idealized
setup that assumes existence of an infinite item pool. Even though, in reality, only
finitely many items are available, the theory can still serve as a useful guidance to
CAT practitioners as to how to choose an item selection strategy and how to design
a simulation validation as well. In practice, simulation studies are always needed to
help practitioners to evaluate the performance of their adaptive designs. According
to the divergence examples created for the two-parameter logistic model, items
with low discrimination should be used at the beginning of the test while items with
high discrimination should be used at later stages. Therefore, a significant aspect
of the new developments presented in this paper is to provide theoretical support
to the item selection strategy of the a-stratified item selection method [Chang and
Ying (1999)].
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In order to design a good CAT algorithm, many complex controls are needed
such as item exposure control and content balance. The item exposure rate for
each item is defined as the ratio of the number of times the item is administered
to the total number of examinees. Since CAT is designed to select the best items
for each examinee, certain types of items tend to be most often selected by the
computers, and many items are not selected at all, thereby making item exposure
rates quite uneven. In addition, various nonstatistical constraints need to be con-
sidered during item selection. Today’s large-scale application of computer-based
achievement tests and licensure exams has generated great challenges to test de-
velopment. Maintaining content representation and other constraints is central to
test defensibility and validity. Examples of the nonstatistical constraints include:
a certain proportion of items should be selected from each content area, correct
answers should fall approximately equally on options A, B, C and D, and a limited
number of special items are allowed on a test, such as items with negative stems
(e.g, “Which of the following choices is NOT true?”), just to name a few.

The a-stratified method was proposed with the objective of limiting the ex-
posure of any given item by using that item at the most advantageous point in
testing. The a-stratified method attempts to control item exposure by using less
discriminating items early in the test, when estimation is least precise, and saving
highly discriminating items until later stages, when finer gradations of estimation
are required. One of the advantages of the a-stratified method is that it attempts to
equalize the item exposure rates for all the items in the pool. Recently, methods
of controlling content balance for the a-stratified method were proposed [see, e.g.,
van der Linden and Chang (2003), Yi and Chang (2003) and Cheng, Chang and
Yi (2007)]. The advantages for using these methods are twofold: First, they allow
the implementation of constraint on item selection in a-stratified adaptive testing;
second, the constrained a-stratified methods may result in a set of theoretical ad-
vantages. It is evident that, by enforcing certain reasonable regularity conditions,
the consistency results presented in this paper can be generalized to the constrained
a-stratified methods, along with other reasonable item selection methods, such as
the Bayesian item-selection criteria [see, e.g., van der van der Linden (1998)] and
several Kullback–Leibler information based methods [see, e.g., Chang and Ying
(1996)].

Similar procedures can be developed, and their properties can be established for
other parametric item response theory models. A particularly useful class is the
normal ogive models, in which the logistic link function is replaced by the normal
distribution function. A minor technical complication in dealing with the normal
ogive is that, even in the one-parameter case, the maximum likelihood estimat-
ing function is not monotone and may have multiple roots. But this complication
may be dealt with by slightly modifying the estimating function, as we did for
the three-parameter logistic model. The example presented in Remark 1 following
Theorem 2 appears to be somewhat paradoxical in that the design is intended to
increase efficiency by making the discrimination parameter large.
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The example presented in Remark 1 following Theorem 2 also appears to be
somewhat paradoxical, in that the design is intended to increase efficiency by mak-
ing the discrimination parameter large. But a closer look at the design reveals that
the inconsistency of θ̂n should be expected. This is because the amount of informa-
tion at θ , the true ability parameter, for the kth item may be extremely small when
bk is not close enough to θ and ak is large. More specifically, when the magnitude
of ak(θ − bk) is large, the Fisher information for the item is exponentially small,
with the exponent proportional to −|ak(θ − bk)|. Since under the normal circum-
stances, bk = θk−1 is about O(k−1/2) away from θ [Chang and Stout (1993)], the
choice ak = k3 effectively makes |ak(θ − bk)| very large. However, we still do not
know if by choosing ak = o(

√
k) it will be sufficient to guarantee the consistency

of θ̂k .
Finally, it should be pointed out that Mislevy and Wu (1996) and Mislevy and

Chang (2000) showed that item selection in CAT leads to a design with missing
data that are missing at random (MAR). Therefore, most of the standard theory for
MLE holds from a missing data point of view.

APPENDIX

PROOF OF INCONSISTENCY FOR EXAMPLE 1. On event A, we know that
θ̂k, k ≤ n0, are initialized so that θ̂1 = θ̂0 − ε0, . . . , θ̂n0 = θ̂n0−1 − ε0 and θ̂k, k ≥
n0 + 1, satisfy the maximum likelihood equations. We first claim that, on A,

θ̂n0+1 ≤ θ̂0 = max
0≤k≤n0

θ̂k.(A.1)

Recall that bk = θ̂k−1. So, (3.3) entails

(n0 + 1)3

1 + exp[(n0 + 1)3(θ̂n0+1 − θ̂n0)]
=

n0∑
k=1

k3 exp[k3(θ̂n0+1 − θ̂k−1)]
1 + exp[k3(θ̂n0+1 − θ̂k−1)]

.(A.2)

Suppose that (A.1) does not hold. Then, θ̂n0+1 ≥ θ̂k , k ≤ n0, implying

left-hand side of (A.2) ≤ 1
2(n0 + 1)3

and

right-hand side of (A.2) ≥ 1

2

n0∑
k=1

k3.

These two inequalities contradict (3.8). Thus, (A.1) holds.
Applying (3.3) to θ̂n0+2, we get

(n0 + 2)3

1 + exp[(n0 + 2)3(θ̂n0+2 − θ̂n0+1)]
+ (n0 + 1)3

1 + exp[(n0 + 1)3(θ̂n0+2 − θ̂n0)]
(A.3)

=
n0∑

k=1

k3 exp[k3(θ̂n0+2 − θ̂k−1)]
1 + exp[k3(θ̂n0+2 − θ̂k−1)]

.
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Note that, on A, since Yk = 1, k ≥ n0 + 1, θ̂n0+k is increasing in k. From (A.3), we
claim either θ̂n0+2 ≤ θ̂n0 + ε0 or

θ̂n0+2 − θ̂n0+1 ≤ 1

(n0 + 2)2 .(A.4)

To prove this claim, suppose θ̂n0+2 ≥ θ̂n0 + ε0 = θ̂n0−1. Then,

(n0 + 1)3

1 + exp[(n0 + 1)3(θ̂n0+2 − θ̂n0)]
≤ (n0 + 1)3

1 + exp[(n0 + 1)3ε0] <
1

6
,(A.5)

where the last inequality comes from (3.7). But θ̂n0+2 ≥ θ̂n0−1, implying that

n0∑
k=1

k3 exp[k3(θ̂n0+2 − θ̂k−1)]
1 + exp[k3(θ̂n0+2 − θ̂k−1)]

≥ n3
0 exp[n3

0(θ̂n0+2 − θ̂n0−1)]
1 + exp[n3

0(θ̂n0+2 − θ̂n0−1)]
>

1

2
.(A.6)

Combining (A.5), (A.6) with (A.3), we have

(n0 + 2)3

1 + exp[(n0 + 2)3(θ̂n0+2 − θ̂n0+1)]
>

1

3
,

which, in conjunction with (3.6), entails (A.4).
Likewise, for θ̂n0+3, we claim one of the following must be true:

θ̂n0+3 ≤ θ̂n0 + ε0 = θ̂n0−1,(A.7)

θ̂n0+3 − θ̂n0+1 ≤ 1

(n0 + 2)2 ,(A.8)

θ̂n0+3 − θ̂n0+2 ≤ 1

(n0 + 3)2 .(A.9)

To show this, suppose all of them are not true. Then the likelihood equation

(n0 + 3)3

1 + exp[(n0 + 3)3(θ̂n0+3 − θ̂n0+2)]

+ (n0 + 2)3

1 + exp[(n0 + 2)3(θ̂n0+3 − θ̂n0+1)]
(A.10)

+ (n0 + 1)3

1 + exp[(n0 + 1)3(θ̂n0+3 − θ̂n0)]
=

n0∑
k=1

k3 exp[k3(θ̂n0+3 − θ̂k−1)]
1 + exp[k3(θ̂n0+3 − θ̂k−1)]

cannot hold since, in view of (3.6) and (3.7),

left-hand side of (A.10)
(A.11)

≤ (n0 + 3)3

1 + exp(n0 + 3)
+ (n0 + 2)3

1 + exp(n0 + 2)
+ 1

6
<

1

2
.
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Furthermore,

right-hand side of (A.10) ≥ n3
0 exp[n3

0(θ̂n0+3 − θ̂n0−1)]
1 + exp[n3

0(θ̂n0+3 − θ̂n0−1)]
>

1

2
.(A.12)

From (A.11) and (A.12), we obtain the desired contradiction and therefore the
claim that one of (A.7)–(A.9) must hold is true.

In view of the preceding derivations, we have, for k = 1,2,3,

θ̂n0+k ≤ θ̂0 +
n0+k∑

j=n0+1

1

j2 .(A.13)

We now apply the mathematical induction to show that (A.13) holds for every k.
Suppose it is true for k ≤ j . We claim that one of the following must hold:

θ̂n0+j+1 ≤ θ̂n0 + ε0,(A.14)

θ̂n0+j+1 − θ̂n0+k ≤ 1

(n0 + k + 1)2 for some k ≤ j.(A.15)

This can be proved by showing that if none of the above inequalities holds, then
the likelihood equation for θ̂n0+j+1 implies

n0+j+1∑
k=n0+2

k3

1 + exp(k)
>

1

3
,

which is a contradiction to (3.6). Clearly (A.14) or (A.15) and the induction as-
sumption imply that (A.13) holds with k = j + 1. Hence, (A.13) holds for every k

on event A. Thus, on A,

lim sup
n→∞

θ̂n < θ̂0 +
n0+k∑

j=n0+1

1

j2

< θ − 1 − π2

6
+

∞∑
j=n0+1

1

j2(A.16)

< θ − 1. �
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