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MINIMAL SUFFICIENT CAUSATION AND DIRECTED
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Notions of minimal sufficient causation are incorporated within the di-
rected acyclic graph causal framework. Doing so allows for the graphical
representation of sufficient causes and minimal sufficient causes on causal
directed acyclic graphs while maintaining all of the properties of causal di-
rected acyclic graphs. This in turn provides a clear theoretical link between
two major conceptualizations of causality: one counterfactual-based and the
other based on a more mechanistic understanding of causation. The theory
developed can be used to draw conclusions about the sign of the conditional
covariances among variables.

1. Introduction. Two broad conceptualizations of causality can be discerned
in the literature, both within philosophy and within statistics and epidemiology.
The first conceptualization may be characterized as giving an account of the effects
of certain causes; the approach addresses the question, “Given a particular cause
or intervention, what are its effects?” In the contemporary philosophical literature,
this approach is most closely associated with Lewis’ work [17, 18] on counterfac-
tuals. In the contemporary statistics literature, this first approach is closely asso-
ciated with the work of Rubin [30, 31] on potential outcomes, of Robins [25, 26]
on the use of counterfactual variables in the context of time-varying treatment and
of Pearl [21] on the graphical representation of various counterfactual relations on
directed acyclic graphs. This counterfactual approach has been used extensively in
statistics both in the development of theory and in application. The second con-
ceptualization of causality may be characterized as giving an account of the causes
of particular effects; this approach attempts to address the question, “Given a par-
ticular effect, what are the various events which might have been its cause?” In
the contemporary philosophical literature, this second approach is most notably
associated with Mackie’s work [19] on insufficient but necessary components of
unnecessary but sufficient conditions (INUS conditions) for an effect. In the epi-
demiologic literature, this approach is most closely associated with Rothman’s
work [29] on sufficient-component causes. This work is more closely related to
the various mechanisms for a particular effect than is the counterfactual approach.
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Rothman’s work on sufficient-component causes has, however, seen relatively lit-
tle development, extension or application, though the basic framework is routinely
taught in introductory epidemiology courses. Perhaps the only major attempt in
the statistics literature to extend and apply Rothman’s theory has been the work
of Aickin [1] (comments relating Aickin’s work to the present work are available
from the authors upon request).

In this paper, we incorporate notions of minimal sufficient causes, correspond-
ing to Rothman’s sufficient-component causes, within the directed acyclic graph
causal framework [21]. Doing so essentially unites the mechanistic and the coun-
terfactual approaches into a single framework. As will be seen in Section 5, we
can use the framework developed to draw conclusions about the sign of the con-
ditional covariances among variables. Without the theory developed concerning
minimal sufficient causes, such conclusions cannot be drawn from causal directed
acyclic graphs. In a related paper [35] we have discussed how these ideas relate
to epidemiologic research. The present paper develops the theory upon which this
epidemiologic discussion relies.

The theory developed in this paper is motivated by several other considerations.
As will be seen below, the incorporation of minimal sufficient cause nodes allows
for the identification of certain conditional independencies which hold only within
a particular stratum of the conditioning variable (i.e., “asymmetric conditional in-
dependencies,” [7]) which were not evident without the minimal sufficient cau-
sation structures. We note that these asymmetric conditional independencies have
been represented elsewhere by Bayesian multinets [7] or by trees [3]. Another mo-
tivation for the development of the theory in this paper concerns the notion of in-
teraction. Product terms are frequently included in regression models to assess in-
teractions among variables; these statistical interactions, however, even if present,
need not imply the existence of an actual mechanism in which two distinct causes
both participate. Interactions which do concern the actual mechanisms are some-
times referred to as instances of “synergism” [29], “biologic interactions” [32] or
“conjunctive causes” [20], and the development of minimal sufficient cause theory
provides a useful framework to characterize mechanistic interactions. In related
work [37] we have derived empirical tests for interactions in this sufficient cause
sense.

As yet further motivation, we conclude this Introduction by describing how the
methods we develop in this paper clarified and helped resolve an analytic puzzle
faced by psychiatric epidemiologists. Consider the following somewhat simplified
version of a study reported in Hudson et al. [10]. Three hundred pairs of obese
siblings living in an ethnically homogenous upper-middle class suburb of Boston
are recruited and cross classified by the presence or absence of two psychiatric dis-
orders: manic-depressive disorder P and binge eating disorder B . The question of
scientific interest is whether these two disorders have a common genetic cause, be-
cause, if so, studies to search for a gene or genes that cause both disorders would
be useful. Consider two analyses. The first analysis estimates the covariance β
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FIG. 1. Causal directed acyclic graph under the alternative hypothesis of familial coaggregation.

between P2i and B1i , while the second analysis estimates the conditional covari-
ance α between P2i and B1i among subjects with P1i = 1, where Bki is 1 if the kth
sibling in the ith family has disorder B and is zero otherwise, with Pki defined
analogously. It was found that the estimates β and α were both positive with 95%
confidence intervals that excluded zero.

Hudson et al. [10] substantive prior knowledge is summarized in the directed
acyclic graph of Figure 1 in which the i index denoting family is suppressed. In
what follows, we will make reference to some standard results concerning directed
acyclic graphs; these results are reviewed in detail in the following section.

In Figure 1, GB and GP represent the genetic causes of B and P , respectively,
that are not common causes of both B and P. The variables E1 and E2 represent
the environmental exposures of siblings 1 and 2, respectively, that are common
causes of both diseases, for example, exposure to a particularly stressful school
environment. The variables GB and GP are assumed independent as would typi-
cally be the case if, as is highly likely, they are not genetically linked. Furthermore,
as is common in genetic epidemiology, the environmental exposures E1 and E2 are
assumed independent of the genetic factors. The causal arrows from P1 to B1 and
P2 to B2 represent the investigators’ beliefs that manic-depressive disorder may
be a cause of binge eating disorder but not vice-versa. The node F represents the
common genetic causes of both P and B as well as any environmental causes
of both P and B that are correlated within families. There is no data available
for GB , GP , E1, E2 or F . The reason for grouping the common genetic causes
with the correlated environmental causes in F is that, based on the available data
{Pki,Bki; i = 1, . . . ,300, k = 1,2}, we can only hope to test the null hypothesis
that F so defined is absent, which is referred to as the hypothesis of no familial
coaggregation. If this null hypothesis is rejected, we cannot determine from the
available data whether F is present due to a common genetic cause or a correlated
common environmental cause. Thus E1 and E2 are independent on the graph be-
cause, by definition, they represent the environmental common causes of B and P

that are independently distributed between siblings.
Now, under the null hypothesis that F is absent, we note that P2 and B1 are still

correlated due to the unblocked path P2 −Gp −P1 −B1, so we would expect β �= 0
as found. Furthermore, P2 and B1 are still expected to be correlated given P1 = 1
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due to the unblocked path P2 − Gp − P1 − E1 − B1, so we would expect α �= 0
as found. Thus, we cannot test the null hypothesis that F is absent without further
substantive assumptions beyond those encoded in the causal directed acyclic graph
of Figure 1.

Now Hudson et al. [10] were also willing to assume that for no subset of the pop-
ulation did the genetic causes Gp and GB of P and B prevent disease. Similarly,
they assumed there was no subset of the population for whom the environmental
causes E1 and E2 of B and P prevented either disease. We will show in Section 5
that under these additional assumptions, the null hypothesis that F is absent im-
plies that the conditional covariance α must be less than or equal to zero, provided
that there is no interaction, in the sufficient cause sense, between E and GP . If it
is plausible that no sufficient cause interaction between E and GP exists, then the
null hypothesis that F is absent is rejected because the estimate of α is positive
with a 95% confidence interval that does not include zero.

Thus, the conclusion in the argument above that familial coaggregation of dis-
eases B and P was present depended critically on the existence of (i) a formal
definition of a sufficient cause interaction, (ii) a substantive understanding of what
the assumption of no sufficient cause interaction entailed, and (iii) a sound mathe-
matical theory that related assumptions about the absence of sufficient cause inter-
actions to testable restrictions on the distribution of the observed data, specifically
on the sign of a particular conditional covariance. In this paper, we provide a theory
that offers (i)–(iii).

The remainder of the paper is organized as follows. The second section reviews
the directed acyclic graph causal framework and provides some basic definitions;
the third section presents the theory which allows for the graphical representation
of minimal sufficient causes within the directed acyclic graph causal framework;
the fourth section gives an additional preliminary result concerning monotonicity;
the fifth section develops results relating minimal sufficient causation and the sign
of conditional covariances; the sixth section provides some discussion concerning
possible extensions to the present work.

2. Basic definitions and concepts. In this section, we review the directed
acyclic graph causal framework and give a number of definitions regarding suf-
ficient conjunctions and related concepts. Following Pearl [21], a causal directed
acyclic graph is a set of nodes (X1, . . . ,Xn), corresponding to variables, and di-
rected edges among nodes, such that the graph has no cycles and such that, for
each node Xi on the graph, the corresponding variable is given by its nonparamet-
ric structural equation Xi = fi(pai, εi), where pai are the parents of Xi on the
graph and the εi are mutually independent random variables. These nonparametric
structural equations can be seen as a generalization of the path analysis and linear
structural equation models [21, 22] developed by Wright [43] in the genetics liter-
ature and Haavelmo [9] in the econometrics literature. Robins [27, 28] discusses
the close relationship between these nonparametric structural equation models and
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fully randomized, causally interpreted structured tree graphs [25, 26]. Spirtes, Gly-
mour and Scheines [33] present a causal interpretation of directed acyclic graphs
outside the context of nonparametric structural equations and counterfactual vari-
ables. It is easily seen from the structural equations that (X1, . . . ,Xn) admits
the following factorization: p(X1, . . . ,Xn) = ∏n

i=1 p(Xi |pai). The nonparametric
structural equations encode counterfactual relationships among the variables rep-
resented on the graph. The equations themselves represent one-step ahead coun-
terfactuals with other counterfactuals given by recursive substitution. The require-
ment that the εi be mutually independent is essentially a requirement that there
is no variable absent from the graph which, if included on the graph, would be a
parent of two or more variables [21, 22].

A path is a sequence of nodes connected by edges regardless of arrowhead di-
rection; a directed path is a path which follows the edges in the direction indicated
by the graph’s arrows. A node C is said to be a common cause of A and B if
there exists a directed path from C to B not through A and a directed path from C

to A not through B . A collider is a particular node on a path such that both the
preceding and subsequent nodes on the path have directed edges going into that
node. A backdoor path from A to B is a path that begins with a directed edge
going into A. A path between A and B is said to be blocked given some set of
variables Z if either there is a variable in Z on the path that is not a collider or
if there is a collider on the path such that neither the collider itself nor any of its
descendants are in Z. If all paths between A and B are blocked given Z, then A

and B are said to be d-separated given Z. It has been shown that if all paths be-
tween A and B are blocked given Z, then A and B are conditionally independent
given Z [8, 13, 40].

Suppose that a set of nonparametric structural equations represented by a di-
rected acyclic graph H is such that its variables X are partitioned into two sets
X = V ∪ W . If in the nonparametric structural equation for V ∪ W , by replacing
each occurrence of Xi ∈ W by fi(pai, εi), the nonparametric structural equations
for V can be written so as to correspond to some causal directed acyclic graph G,
then G is said to be the marginalization of H over the set of variables W . A causal
directed acyclic graph with variables X = V ∪ W can be marginalized over W if
no variable in W is a common cause of any two variables in V .

In giving definitions for a sufficient conjunction and related concepts, we will
use the following notation. An event is a binary variable taking values in {0,1}. The
complement of some event E we will denote by E. A conjunction or product of the
events X1, . . . ,Xn will be written as X1 · · ·Xn. The associative OR operator, ∨, is
defined by A ∨ B = A + B − AB . For a random variable A with sample space �

we will use the notation A ≡ 0 to denote that A(ω) = 0, for all ω ∈ �. We will
use the notation 1A=a to denote the indicator function for the random variable A

taking the value a; for some subset S of the sample space �, we will use 1S to
denote the indicator that ω ∈ S. We will use the notation A

∐
B|C to denote that A

is conditionally independent of B given C. We begin with the definitions of a
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sufficient conjunction and a minimal sufficient conjunction. These basic definitions
make no reference to directed acyclic graphs or causation.

DEFINITION 1. A set of events X1, . . . ,Xn is said to constitute a sufficient
conjunction for event, D if X1, . . . ,Xn = 1 ⇒ D = 1.

DEFINITION 2. A set of events X1, . . . ,Xn which constitutes a sufficient con-
junction for D is said to constitute a minimal sufficient conjunction for D if no
proper subset of X1, . . . ,Xn constitutes a sufficient conjunction for D.

Sufficient conjunctions for a particular event need not be causes for an event.
Suppose a particular sound is produced when and only when an individual blows
a whistle. This particular sound the whistle makes is a sufficient conjunction for
the whistle’s having been blown, but the sound does not cause the blowing of the
whistle. The converse, rather, is true; the blowing of the whistle causes the sound
to be produced. Corresponding then to these notions of a sufficient conjunction
and a minimal sufficient conjunction are those of a sufficient cause and a minimal
sufficient cause which will be defined in Section 3.

DEFINITION 3. A set of events M1, . . . ,Mn, each of which may be some prod-
uct of events, is said to be determinative for some event D if D = M1 ∨ M2 ∨
· · · ∨ Mn.

DEFINITION 4. A determinative set M1, . . . ,Mn of (minimal) sufficient con-
junctions for D is nonredundant if no proper subset of M1, . . . ,Mn is determinative
for D.

EXAMPLE 1. Suppose A = B ∨CE and D = EF . If we consider all the min-
imal sufficient conjunctions for A among the events {B,C,D}, we can see that B

and CD are the only minimal sufficient conjunctions, but it is not the case that
A = B ∨ CD. Clearly then, a complete list of minimal sufficient conjunctions
for A generated by a particular collection of events may not be a determinative set
of sufficient conjunctions for A. If we consider all minimal sufficient conjunctions
for A among the events {B,C,D,E}, we see that B and CD and CE are all min-
imal sufficient conjunctions. In this example, B ∨ CD ∨ CE is a determinative
set of minimal sufficient conjunctions for A but is not nonredundant. We see then
that even when a complete list of minimal sufficient conjunctions generated by a
particular collection of events constitutes a determinative set of minimal sufficient
conjunctions, it may not be a nonredundant determinative set of minimal sufficient
conjunctions.

3. Minimal sufficient causation and directed acyclic graphs. In this sec-
tion, we develop theory which allows for the representation of sufficient conjunc-
tions and minimal sufficient conjunctions on causal directed acyclic graphs. We
begin with a motivating example.
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FIG. 2. Causal directed acyclic graphs with sufficient causation structures.

EXAMPLE 2. Consider a causal directed acyclic graph given in Figure 2(i).
Suppose E1E2 and E3E4 constitute a determinative set of sufficient conjunctions
for D. We will show in Theorem 1 below that it follows that the diagram in Fig-
ure 2(ii) is also a causal directed acyclic graph where EiEj is simply the product
or conjunction of Ei and Ej ; because the sufficient conjunctions E1E2 and E3E4
are determinative, it follows that D = E1E2 ∨ E3E4. An ellipse is put around
the sufficient conjunctions E1E2 and E3E4 to indicate that the set is determina-
tive. As will be seen below, in order to add sufficient conjunctions it is important
that a determinative set of sufficient conjunctions is known or can be constructed.
Consider the causal directed acyclic graph given in Figure 2(iii). Suppose that no
determinative set of sufficient conjunctions can be constructed from E1 and E2
alone; suppose further, however, that there exists some other cause of D, say A,
independent of E1 and E2, such that E1E2 and AE2 form a determinative set of
sufficient conjunctions. Then, Theorem 1 below can again be used to show that
Figure 2(iv) is a causal directed acyclic graph. Furthermore, it will be shown in
Theorem 2 that for any causal directed acyclic graph with a binary node which has
only binary parents, a set of variables {Ai}ni=0 always exists such that a determina-
tive set of sufficient causes can be formed from the original parents on the graph
and the variables {Ai}ni=0.

Theorem 1 provides the formal result required for the previous example.

THEOREM 1. Consider a causal directed acyclic graph G with some node D

such that D and all its parents are binary. Suppose that there exists a set of binary
variables A0, . . . ,Au such that a determinative set of sufficient conjunctions for D,
say M1, . . . ,MS , can be formed from conjunctions of A0, . . . ,Au along with the
parents of D on G and the complements of these variables. Suppose further that
there exists a causal directed acyclic graph H such that the parents of D on H

that are not on G consist of the nodes A0, . . . ,Au and such that G is the marginal-
ization of H over the set of variables which are on the graph for H but not G.
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Then, the directed acyclic graph J formed by adding to H the nodes M1, . . . ,MS ,
removing the directed edges into D from the parents of D on H , adding directed
edges from each Mi into D and adding directed edges into each Mi from every
parent of D on H which appears in the conjunction for Mi is itself a causal di-
rected acyclic graph.

PROOF. To prove that the directed acyclic graph J is a causal directed acyclic
graph, it is necessary to show that each of the nodes on the directed acyclic graph
can be represented by a nonparametric structural equation involving only the par-
ents on J of that node and a random term εi which is independent of all other
random terms εj in the nonparametric structural equations for the other variables
on the graph. The nonparametric structural equation for Mi may be defined as the
product of events in the conjunction for Mi . The nonparametric structural equation
for D can be given by

D = M1 ∨ · · · ∨ Mn.

The nonparametric structural equations for all other nodes on J can be taken to
be the same as those defining the causal directed acyclic graph H . Because the
nonparametric structural equations for D and for each Mi on J are determinis-
tic, they have no random-error term. Thus, for the nonparametric structural equa-
tions defining D and each Mi on J , the requirement that the nonparametric struc-
tural equation’s random term εi is independent of all the other random terms εj

in the nonparametric structural equations for the other variables on the graph is
trivially satisfied. That this requirement is satisfied for the nonparametric struc-
tural equations for the other variables on J follows from the fact that it is satisfied
on H . �

In Theorem 1, sufficient conjunctions for D are constructed from some set of
variables that, on some causal directed acyclic graph H , are all parents of D and
thus, within the directed acyclic graph causal framework, it makes sense to speak
of sufficient causes and minimal sufficient causes.

DEFINITION 5. If, on a causal directed acyclic graph, some node D with
nonparametric structural equation D = fD(paD, εD) is such that D and all its
parents are binary, then X1, . . . ,Xn is said to constitute a sufficient cause for D

if X1, . . . ,Xn are all parents of D or complements of the parents of D and are
such that fD(paD, εD) = 1 for all εD whenever paD is such that X1 · · ·Xn = 1;
if no proper subset of X1, . . . ,Xn also constitutes a sufficient cause for D, then
X1, . . . ,Xn is said to constitute a minimal-sufficient cause for D. A set of (mini-
mal) sufficient causes, M1, . . . ,Mn, each of which is a product of the parents of D

and their complements, is said to be determinative for some event D if, for all εD ,
fD(paD, εD) = 1 if and only if paD is such that M1 ∨ M2 ∨ · · · ∨ Mn = 1; if
no proper subset of M1, . . . ,Mn is also determinative for D, then M1, . . . ,Mn is
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said to constitute a nonredundant determinative set of (minimal) sufficient causes
for D.

If, for some directed acyclic graph G there exist A0, . . . ,Au which satisfy the
conditions of Theorem 1 for some node D on G so that a determinative set of
sufficient causes for D can be constructed from A0, . . . ,Au along with the par-
ents of D on G and their complements, then D will be said to admit a sufficient
causation structure. As in Example 2, we will, in general, replace the Mi nodes
with the conjunctions that constitute them. The node D with directed edges from
the Mi nodes is effectively an OR node. The Mi nodes with the directed edges
from the Ai nodes and the parents of D on G are effectively AND nodes. We call
this resulting diagram a causal directed acyclic graph with a sufficient causation
structure (or a minimal sufficient causation structure if the determinative set of
sufficient conjunctions for D are each minimal sufficient conjunctions).

Because a causal directed acyclic graph with a sufficient causation structure is
itself a causal directed acyclic graph, the d-separation criterion applies and allows
one to determine independencies and conditional independencies. A minimal suf-
ficient causation structure will often make apparent conditional independencies
within a particular stratum of the conditioning variable which were not apparent
on the original causal directed acyclic graph. The following corollary is useful in
this regard.

COROLLARY 1. If some node D on a causal directed acyclic graph admits
a sufficient causation structure then conditioning on D = 0 conditions also all
sufficient cause nodes for D on the causal directed acyclic graph with the sufficient
causation structure.

EXAMPLE 2 (Continued). Consider the causal directed acyclic graph with the
minimal sufficient causation structure given in Figure 2(ii). Conditioning on D = 0
also conditions on E1E2 = 0 and E3E4 = 0, and thus, by the d-separation crite-
rion, Ei is conditionally independent of Ej given D = 0 for i ∈ {1,2}, j ∈ {3,4}.
In the causal directed acyclic graph with the minimal sufficient causation structure
in Figure 2(iv), no similar conditional independence relations within the D = 0
stratum holds. Although conditioning on D = 0 conditions also on E1E2 = 0 and
AE2 = 0 there still remains an unblocked path E1 − E1E2 − E2 − AE2 − A be-
tween E1 and A, and so E1 and A are not conditionally independent given D = 0;
Similarly, there are unblocked paths between E1 and E2 given D = 0 and also
between E2 and A given D = 0.

The additional variables A0, . . . ,Au needed to form a set of sufficient causes
for D we will refer to as the co-causes of D. The co-causes A0, . . . ,Au required
to form a determinative set of sufficient conjunctions for D will generally not be
unique. For example, if D = A0 ∨A1E then it is also the case that D = B0 ∨B1E,



1446 T. J. VANDERWEELE AND J. M. ROBINS

where B0 = A0 and B1 = A0A1. Similarly, there will, in general, be no unique
set of sufficient causes that is determinative for D. For example, if E1 and E2
constitute a set of sufficient causes for D so that D = E1 ∨ E2, then it is also the
case that E1E2, E1E2, and E1E2 also constitute a set of sufficient causes for D,
and so we could also write D = E1E2 ∨ E1E2 ∨ E1E2. It can be shown that not
even nonredundant determinative sets of minimal sufficient causes are unique.

Corresponding to the definition of a sufficient cause is the more philosophical
notion of a causal mechanism. A causal mechanism can be conceived of as a set of
events or conditions which, if all present, bring about the outcome under consider-
ation through a particular pathway. A causal mechanism thus provides a particular
description of how the outcome comes about. Suppose, for instance, that an indi-
vidual were exposed to two poisons, E1 and E2, such that in the absence of E2,
the poison E1 would lead to heart failure resulting in death; and that in the absence
of E1, the poison E2 would lead to respiratory failure resulting in death; but such
that when E1 and E2 are both present, they interact and lead to a failure of the
nervous system again resulting in death. In this case, there are three distinct causal
mechanisms for death each corresponding to a sufficient cause for D: death by
heart failure corresponding to E1E2, death by respiratory failure corresponding to
E1E2 and death due to a failure of the nervous system corresponding to E1E2. It
is interesting to note that in this case none of the sufficient causes corresponding
to the causal mechanisms is minimally sufficient. Each of E1E2, E1E2 and E1E2
is sufficient for D but none is minimally sufficient, as either E1 or E2 alone is suf-
ficient for death. We will refer to a sufficient cause for D as a causal mechanism
for D if the node for the sufficient cause corresponds to a variable, potentially sub-
ject to intervention, which whenever the variable takes the value 1, the outcome D

inevitably results.
The last example shows that the existence of a particular set of determinative

sufficient causes does not guarantee that there are actual causal mechanisms corre-
sponding to these sufficient causes; it only implies that a set of causal mechanisms
corresponding to these sufficient causes cannot be ruled out by a complete knowl-
edge of counterfactual outcomes. In particular, in the previous example, the set
{E1,E2} is a determinative set of sufficient causes that does not correspond to the
actual set of causal mechanisms {E1E2,E1E2,E1E2}. If there are two or more
sets of sufficient causes that are determinative for some outcome D then although
the two sets of determinative sufficient causes are logically equivalent for predic-
tion, we nevertheless view them as distinct. In such cases, some knowledge of the
subject matter in question will, in general, be needed to discern which of the sets
of determinative sufficient causes actually corresponds to the true causal mecha-
nisms. For instance, in the previous example, we needed biological knowledge of
how poisons brought about death in the various scenarios. We will, in the inter-
pretation of our results, assume that there always exists some set of true causal
mechanisms which forms a determinative set of sufficient causes for the outcome.
The concept of synergism is closely related to that of a causal mechanism and is
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often found in the epidemiologic literature [11, 29, 32]. We will say that there is
synergism between the effects of E1 and E2 on D if there exists a sufficient cause
for D which represents some causal mechanism and such that this sufficient cause
has E1 and E2 in its conjunction. In related work, we have developed tests for
synergism, that is, tests for the joint presence of two or more causes in a single
sufficient cause [36, 37]. In some of our examples and in our discussion of the
various results in the paper, we will sometimes make reference to the concepts of a
causal mechanism and synergism. However, all definitions, propositions, lemmas,
theorems and corollaries will be given in terms of sufficient causes for which we
have a precise definition.

The graphical representation of sufficient causes on a causal directed acyclic
graph does not require that the determinative set of sufficient causes for D be
minimally sufficient, nor does it require that the set of determinative sufficient
causes for D be nonredundant. To expand a directed acyclic graph into another
directed acyclic graph with sufficient cause nodes, all that is required is that the
set of sufficient causes constitutes a determinative set of sufficient causes for D.
However, a set of events that constitutes a sufficient cause can be reduced to a
set of events that constitutes a minimal sufficient cause by iteratively excluding
unnecessary events from the set until a minimal sufficient cause is obtained. Also,
a set of determinative sufficient causes that is redundant can be reduced to one
that is nonredundant by excluding those sufficient causes or minimal sufficient
causes that are redundant. It is sometimes an advantage to reduce a redundant set
of sufficient causes to a nonredundant set of minimal sufficient causes. This is so
because allowing sufficient causes that are not minimally sufficient or allowing
redundant sufficient causes or redundant minimal sufficient causes can obscure the
conditional independence relations implied by the structure of the causal directed
acyclic graph. This is made evident in Example 3.

EXAMPLE 3. Consider the causal directed acyclic graph with the minimal
sufficient causation structure given in Figure 3(i). Conditioning on D = 0 condi-
tions also on AB = 0 and EF = 0 and by the d-separation criterion, A and E

are conditionally independent given D = 0. But now consider an expanded struc-
ture for this causal directed acyclic graph which involves only minimal sufficient
causes but which allows redundant minimal sufficient causes. Define Q = BE,
then AQ is a minimal sufficient cause for D since AQ = 1 ⇒ AB = 1 ⇒ D = 1,
but A = 1 � D = 1 and Q = 1 � D = 1. Now AB,AQ,EF is a determinative
but redundant set of minimal sufficient causes for D. Figure 3(ii) gives an alter-
native causal directed acyclic graph with a minimal sufficient causation structure
for the causal relationships indicated in Figure 3(i). In Figure 3(ii), conditioning
on D = 0 conditions also on AB = 0, AQ = 0 and EF = 0, but the d-separation
criteria no longer imply that A and E are conditionally independent given D = 0;
because of conditioning on D = 0, there is an unblocked path between A and E,
namely A − AQ − Q − BE − E. Allowing the redundant minimal sufficient
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FIG. 3. Example illustrating that redundant sufficient causes can obscure conditional indepen-
dence relations.

cause AQ in the minimal sufficient causation structure obscures the conditional
independence relation. Similar examples can be constructed to show that allow-
ing sufficient causes that are not minimally sufficient can also obscure conditional
independence relations [35].

Although allowing sufficient causes that are not minimally sufficient or allow-
ing redundant sufficient causes or redundant minimal sufficient causes can ob-
scure the conditional independence relations implied by the structure of the causal
directed acyclic graph, it may sometimes be desirable to include nonminimal suf-
ficient causes or redundant sufficient causes. For example, as noted above, non-
minimal sufficient cause nodes or redundant sufficient cause nodes may represent
separate causal mechanisms upon which it might be possible to intervene. Further
discussion of conditional independence relations in sufficient causation structures
with nonminimally sufficient causes and redundant sufficient causes is given in
Section 6.

Note a sufficient cause need only involve one co-cause Ai in its conjunction be-
cause if it involved Ai1, . . . ,Aik , then Ai1, . . . ,Aik could be replaced by the product
A′

i = Ai1 · · ·Aik . In certain cases though, it may be desirable to include more than
one Ai in a sufficient cause if this corresponds to the actual causal mechanisms. If
a set of variables A0, . . . ,Au satisfying Theorem 1 can be constructed from func-
tions of the random term U = εG

D of the nonparametric structural equation for D

on G and their complements so that Ai = fi(U), then H can be chosen to be the
graph G with the additional nodes U,A0, . . . ,Au and with directed edges from
U into each Ai and from each Ai into D. This gives rise to the definition, given
below, of a representation for D.

DEFINITION 6. If D and all of its parents on the causal directed acyclic
graph G are binary and there exists some set {Ai,Pi} such that each Pi is some
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conjunction of the parents of D and their complements, such that there exist func-
tions fi for which Ai = fi(εD), where εD is the random term in the nonparametric
structural equation for D on G and such that D = ∨

i AiPi , then {Ai,Pi} is said to
constitute a representation for D.

If the Ai variables are constructed from functions of the random term εD in the
nonparametric structural equation for D on G, then these Ai variables may or may
not allow for interpretation, and they may or may not be such that an intervention
on these Ai variables is conceivable. In certain cases, the Ai variables may simply
be logical constructs for which no intervention is conceivable. Although in certain
cases it may not be possible to intervene on the Ai variables, we will still refer to
conjunctions of the form AiPi as sufficient causes for D, as it is assumed that it is
possible to intervene on the parents of D which constitute the conjunction for Pi .

Suppose that for some node D on a causal directed acyclic graph G, a set of
variables A0, . . . ,Au satisfying Theorem 1 can be constructed from functions of
the random term U = εD in the nonparametric structural equation for D on G, so
that a representation for D is given by D = ∨

i AiPi . Then, in order to simplify
the diagram, instead of adding to G the variable U and directed edges from U into
each Ai so as to form the minimal sufficient causation structure, we will some-
times suppress U and simply add an asterisk next to each Ai indicating that the Ai

variables have a common cause.

PROPOSITION 1. For any representation for D, the co-causes Ai will be in-
dependent of the parents of D on the original directed acyclic graph G.

PROOF. This follows immediately from the fact that for any representation
for D, the co-causes are functions of the random term in the nonparametric struc-
tural equation for D. �

If some of the sufficient causes for D are unknown, then it is not obvious how
one might make use of Theorem 1. The theorem allowed for a sufficient causation
structure on a causal directed acyclic graph, provided there existed some set of
co-causes A0, . . . ,Au. Theorem 2 complements Theorem 1 in that it essentially
states that when D and all of its parents are binary such a set of co-causes always
exists. The variables A0, . . . ,Au are constructed from functions of the random
term εD in the nonparametric structural equation for D on G. Before stating and
proving Theorem 1, we illustrate how the co-causes can be constructed by a simple
example.

EXAMPLE 4. Suppose E is the only parent of D, then the structural equa-
tion for D is given by D = f (E, εD). Define A0, A1 and A2 as follows: let
A0(ω) = 1 if f (1, εD(ω)) = f (0, εD(ω)) = 1 and A0(ω) = 0 otherwise; let
A1(ω) = 1 if f (1, εD(ω)) = 1 and f (0, εD(ω)) = 0, and A1(ω) = 0 otherwise;
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and let A2(ω) = 1 if f (1, εD(ω)) = 0 and f (0, εD(ω)) = 1, and A2(ω) = 0 oth-
erwise. It is easily verified that D = A0 ∨ A1E ∨ A2E and that A0, A1E and
A2E constitute a determinative set of minimal sufficient causes for D. Note that
this construction will give a determinative set of minimal sufficient causes for D

regardless of the form of f and the distribution of εD .

THEOREM 2. Consider a causal directed acyclic graph G on which there
exists some node D such that D and all its parents are binary, then there exist
variables A0, . . . ,Au that satisfy the conditions of Theorem 1 and such that the
sufficient causes constructed from A0, . . . ,Au along with the parents of D on G

and their complements are, in fact, minimal sufficient causes.

PROOF. The nonparametric structural equation for D is given by D =
f (paD, εD). Suppose D has m parents on the original causal directed acyclic
graph G. Since these parents are binary, there are 2m values which paD can take.
Since f maps (paD, εD) to {0,1}, each value of εD assigns to every possible re-
alization of paD either 0 or 1 through f . There are 22m

such assignments. Thus,
without loss of generality, we may assume that εD takes on some finite number
of distinct values N ≤ 22m

; and so, we may write the sample space for εD as
�D = {ω1, . . . ,ωN }, and we may use ω = ωi and εD = εD(ωi) interchangeably.
The co-causes A0, . . . ,Au can be constructed as follows. Let Wi be the indicator
1εD=εD(ωi). Let Pi be some conjunction of the parents of D and their comple-
ments, that is, Pi = F i

1 · · ·F i
ni

, where each F i
k is either a parent of D, say Ej or its

complement Ej . For each Pi , let Ai ≡ 1 if F i
1 · · ·F i

ni
is a minimal sufficient cause

for D and

Ai = ∨
j

{Wj :WjF
i
1 · · ·F i

ni
is a minimal sufficient cause for D}

otherwise. Let Mi = Pi if Ai = 1, and Mi = AiPi otherwise. It must be shown
that each Mi = AiF

i
1 · · ·F i

ni
is a minimal sufficient cause and that the set of Mi ’s

constitutes a minimal sufficient cause representation for D (or more precisely, the
set of Mi ’s for which Ai is not identically 0 constitutes a minimal sufficient cause
representation for D). We first show that each Mi = AiF

i
1 · · ·F i

ni
is a minimal

sufficient cause for D. Clearly, this is the case if Ai ≡ 1. Now consider those Ai

such that Ai is not identically 0 and not identically 1 and suppose Ai = Wi
1 ∨ · · ·∨

Wi
υi

, where each Wi
j is such that Wi

jF
i
1 · · ·F i

ni
is a minimal sufficient cause for D.

If AiF
i
1 · · ·F i

ni
is not a minimal sufficient cause, then either F i

1 · · ·F i
ni

= 1 ⇒ D =
1 or there exists j such that

AiF
i
1 · · ·F i

j−1F
i
j+1 · · ·F i

ni
⇒ D = 1.

Suppose first that F i
1 · · ·F i

ni
= 1 ⇒ D = 1 then there does not exist a Wj such that

WjF
i
1 · · ·F i

ni
is a minimal sufficient cause for D; but this contradicts Ai is not iden-

tically 1. On the other hand, if there exists j such that AiF
i
1 · · ·F i

j−1F
i
j+1 · · ·F i

ni
⇒
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D = 1, then it is also the case that

Wi
1F

i
1 · · ·F i

j−1F
i
j+1 · · ·F i

ni
⇒ D = 1,

since Ai is simply a disjunction of the Wi
j ’s. However, it would then follow that

Wi
1F

i
1 · · ·F i

ni
is not a minimal sufficient cause for D. But this contradicts the defini-

tion of Wi
1. Thus, AiF

i
1 · · ·F i

ni
must be a minimal sufficient cause for D. It remains

to be shown that the set of Mi ’s for which Ai is not identically 0 constitutes a min-
imal sufficient cause representation for D. We must show that if D = 1, then there
exists a Mi = AiPi for which Mi = 1. Now D is a function of (εD,E1, . . . ,Em),
so let (ε∗

D,E∗
1 , . . . ,E∗

m) be any particular value of (εD,E1, . . . ,Em) for which
D = 1. Consider the set {E1, . . . ,Em}. If for any j ,

εD = ε∗
D, E1 = E∗

1 , . . . ,Ej−1 = E∗
j−1,

Ej+1 = E∗
j+1, . . . ,Em = E∗

m ⇒ D = 1,

remove Ej from {E1, . . . ,Em}. Continue to remove those Ej from this set which
are not needed to maintain the implication D = 1. Suppose the set that remains is
{Eh1, . . . ,EhS

}, then either we have Eh1 = E∗
h1

, . . . ,EhS
= E∗

hS
⇒ D = 1 or we

have

Eh1 = E∗
h1

, . . . ,EhS
= E∗

hS
� D = 1

and

εD = ε∗
D, Eh1 = E∗

h1
, . . . ,EhS

= E∗
hS

⇒ D = 1.

If Eh1 = E∗
h1

, . . . ,EhS
= E∗

hS
⇒ D = 1, then if we define Fj as the indicator

Fj = 1(Ehj
=E∗

hj
), F1 · · ·FS is a minimal sufficient cause for D and there thus exists

an i, such that Pi = F1 · · ·FS and Mi = Pi , and when Eh1 = E∗
h1

, . . . ,EhS
= E∗

hS
,

we have Mi = 1. If Eh1 = E∗
h1

, . . . ,EhS
= E∗

hS
� D = 1 but εD = ε∗

D,Eh1 =
E∗

h1
, . . . ,EhS

= E∗
hS

⇒ D = 1, then if we define Fj as the indicator 1(Ehj
=E∗

hj
),

1εD=ε∗
D
F1 · · ·FS is a minimal sufficient cause for D; and there exists an i such that

Mi = AiPi and Pi = F1 · · ·FS ; and εD = ε∗
D ⇒ Ai = 1, such that

εD = ε∗
D, Eh1 = E∗

h1
, . . . ,EhS

= E∗
hS

⇒ Mi = 1.

We have thus shown when D = 1, there exists an Mi such that Mi = 1 and so
the Mi’s constitutes a minimal sufficient cause representation for D. �

The variables Ai constructed in Theorem 2, along with their corresponding con-
junctions Pi of the parents of D and their complements, we define below as the
canonical representation for D. It is easily verified that the co-causes and repre-
sentation constructed in Example 4 is the canonical representation for D in that
example.
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DEFINITION 7. Consider a causal directed acyclic graph G, such that some
node D and all of its parents are binary. Let �D be the sample space for the random
term εD in the nonparametric structural equation for D on G. The conjunctions
Pi = F i

1 · · ·F i
ni

, where each F i
k is either a parent of D or the complement of a par-

ent of D, along with the variables Ai constructed by Ai ≡ 1 if F i
1 · · ·F i

ni
is a min-

imal sufficient cause for D and Ai = ∨
ωj∈�D

{1εD=εD(ωj ) : 1εD=εD(ωj )F
i
1 · · ·F i

ni
is

a minimal sufficient cause for D}; otherwise, is said to be the canonical represen-
tation for D.

As noted above, there will in general exist more than one set of co-causes
A0, . . . ,Au, which together with the parents of D and their complements can be
used to construct a sufficient cause representation for D. The set of Ai ’s in the
canonical representation constitutes only one particular set of variables which can
be used to construct a sufficient cause representation. If D has three or more par-
ents, examples can be constructed in which the canonical representation is redun-
dant. Examples can also be constructed to show that when the canonical represen-
tation is redundant, it is not always uniquely reducible to a nonredundant minimal
sufficient cause representation. Although the canonical representation will not al-
ways be nonredundant, it does however guarantee that for a binary variable with
binary parents, a determinative set of minimal sufficient causes always exists. The
canonical representation in a sense “favors” conjunctions with fewer terms. As can
be seen in the simple illustration given in Example 4, the canonical representation
will never have Ai = 1, for some conjunction Pi , when there is a conjunction Pj

with Aj = 1 and such that the components of Pj are a subset of those in the con-
junction for Pi .

4. Monotonic effects and minimal sufficient causation. Minimal sufficient
causes for a particular event D may have present in their conjunction the parents
of D or the complements of these parents. In certain cases, no minimal sufficient
cause will involve the complement of a particular parent of D. Such cases closely
correspond to what will be defined below as a positive monotonic effect. Essen-
tially, a positive monotonic effect will be said to be present when a function in
a nonparametric structural equation is nondecreasing in a particular argument for
all values of the other arguments of the function. In this section, we develop the
relationship between minimal sufficient causation and monotonic effects.

DEFINITION 8. The nonparametric structural equation for some node D

on a causal directed acyclic graph with parent E can be expressed as D =
f (p̃aD,E, εD), where p̃aD are the parents of D other than E; E is said to
have a positive monotonic effect on D if, for all p̃aD and εD , f (p̃aD,E1, εD) ≥
f (p̃aD,E2, εD) whenever E1 ≥ E2. Similarly, E is said to have a negative
monotonic effect on D if, for all p̃aD and εD , f (p̃aD,E1, εD) ≤ f (p̃aD,E2, εD)

whenever E1 ≥ E2.
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Note that this notion of a monotonic effect is somewhat stronger than Wellman’s
qualitative probabilistic influence [41]. See [38, 39] for further discussion.

THEOREM 3. If E is parent of D and if D and all of its parents are binary,
then the following are equivalent: (i) E has a positive monotonic effect on D;
(ii) there is some representation for D which is such that none of the representa-
tion’s conjunctions contain E; (iii) the canonical representation of D,

∨
i AiPi , is

such that no conjunction Pi contains E.

PROOF. We see that (iii) implies (ii) because the representation required by (ii)
is met by the canonical representation of D, as constructed in Theorem 2. To show
that (ii) implies (i), we assume that we have a representation for D such that D =∨

i AiPi , where each Pi is some conjunction of the parents of D and their com-
plements but does not contain E. If f (p̃aD,E, εD) = 1, then f (p̃aD,E, εD) = 1
because D = ∨

i AiPi and none of the Pi involve E; from this, (i) follows. To
show that (i) implies (iii) we prove the contrapositive. Suppose that the canonical
representation of D, {Ai,Pi}, is such that there exists a Pi which contains E in its
conjunction. Then there exists some value ε∗

D of εD and some conjunction of the
parents of D and their complements, say F1 · · ·Fn, such that WiF1 · · ·FnE con-
stitutes a minimal sufficient cause for D, where Wi = 1(ε∗

D=εD). Let p̃a∗
D take the

values given by F1 · · ·Fn. This may not suffice to fix p̃a∗
D , but there must exist

some value of the remaining parents of D other than E which, in conjunction with
WiF1 · · ·FnE, gives D = 0; for if there were no such values of the other parents,
then WiF1 · · ·Fn itself would be sufficient for D, and WiF1 · · ·FnE would not be a
minimal sufficient cause for D. Let p̃a∗

D be such that p̃a∗
D and E together with ε∗

D

give D = 1, but p̃a∗
D and E with ε∗

D give D = 0. Then, f (p̃a∗
D,E, ε∗

D) = 1, but
f (p̃a∗

D,E, ε∗
D) = 0, and thus, (i) does not hold. This completes the proof. �

5. Conditional covariance and minimal sufficient causation. When two bi-
nary parents of some event D have positive monotonic effects on D, it is in some
cases possible to determine the sign of the conditional covariance of these two par-
ents. In general, even in the setting of monotonic effects, the conditional covariance
may be of either positive or negative sign; however, when additional knowledge is
available concerning the minimal sufficient causation structure of D, it is often
possible to determine the sign of the conditional covariance of two parents of D.
Theorem 4 gives conditions under which the sign of the conditional covariance
can be determined. Theorems 5 and 6 extend the conclusions of Theorem 4 to cer-
tain cases concerning the conditional covariance of two variables that may not be
parents of the conditioning variable. The proof of Theorem 4 is suppressed; the
proof involves extensive but routine algebraic manipulation and factoring (details
are available from the authors upon request).
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THEOREM 4. Suppose that E1 and E2 are the only parents of D on some
causal directed acyclic graph, that E1, E2 and D are all binary and that both E1
and E2 have a positive monotonic effect on D. Then, for any representation for D

such that D = A0 ∨ A1E1 ∨ A2E2 ∨ A3E1E2, the following hold:

(i) If A0 ≡ 0, then Cov(E1,E2|D) ≤ 0.
(ii) If A0 ≡ 0, A1 and A2 are independent and E1 and E2 are independent,

then Cov(E1,E2|D) ≤ 0.
(iii) If A1 ≡ 1 or A2 ≡ 1, then Cov(E1,E2|D) ≤ 0 provided Cov(E1,E2) ≤ 0.
(iv) If A1 ≡ 1 or A2 ≡ 1, then Cov(E1,E2|D) = 0.
(v) If A1 ≡ 0 or A2 ≡ 0, then Cov(E1,E2|D) ≥ 0 provided Cov(E1,E2) ≥ 0.

(vi) If A1 ≡ 0 or A2 ≡ 0, then Cov(E1,E2|D) ≤ 0 provided Cov(E1,E2) ≤ 0.
(vii) If A3 ≡ 0, then Cov(E1,E2|D) ≤ 0 provided Cov(E1,E2) ≤ 0.
(viii) If A3 ≡ 0, A1 and A2 are independent, E1 and E2 are independent and

also A0 is independent of either A1 or A2, then Cov(E1,E2|D) = 0.

Note that parts (i)–(viii) of Theorem 4 all require some knowledge of a sufficient
cause representation for D, that is, that A0 = 0, A1 ≡ 1 or A1 ≡ 0, etc. Conclusions
about the sign of the conditional covariance cannot be drawn from Theorem 4 with-
out some knowledge of a sufficient causation structure. In general, this knowledge
of a sufficient causation structure would come from prior beliefs about the actual
causal mechanisms for D. As can be seen from Theorem 4, if no knowledge of
the sufficient causes is available, the conditional covariances Cov(E1,E2|D) and
Cov(E1,E2|D) may be of either sign, even if E1 and E2 have positive monotonic
effects on D. For example, if E1 and E2 have positive monotonic effects on D

and (v) holds then Cov(E1,E2|D) ≥ 0; but if E1 and E2 have positive monotonic
effects on D and (i) holds, then Cov(E1,E2|D) ≤ 0.

If E1 and E2 are the only parents of D, possibly correlated due to some common
cause C, and have positive monotonic effects on D then the minimal sufficient
causation structure for the causal directed acyclic graph is that given in Figure 4.

Recall the asterisk is used to indicate that A0, A1, A2 or A3 may have a com-
mon cause U . If one of A0, A1, A2 or A3 is identically 0 or 1, then Theorem 4
may be used to draw conclusions about the sign of the conditional covariance
Cov(E1,E2|D). For example, if one believes that there is no synergism between
E1 and E2 in the actual causal mechanisms for D then A3 ≡ 0; if this holds, then
parts (vii) and (viii) of Theorem 4 can be used to determine the sign of the condi-
tional covariance. Theorem 4 has an obvious analogue if one or both of E1 or E2
have a negative monotonic effect on D. If D has more than two parents, but if the
two parents, E1 and E2, are independent of all other parents of D, then the causal
directed acyclic graph can be marginalized over these other parents, and Theorem
4 could be applied to the resulting causal directed acyclic subgraph.

Some of the conclusions of Theorem 4 require knowing the sign of Cov(E1,E2)

and Proposition 2 below (proved elsewhere [39]) relates the sign of Cov(E1,E2) to
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FIG. 4. Minimal sufficient causation structure when E1 and E2 have positive monotonic effects
on D.

the presence of monotonic effects. In order to state this proposition and to allow for
the development of extensions to Theorem 4, we need a few additional definitions.

DEFINITION 9. An edge on a causal directed acyclic graph from X to Y is
said to be of positive (negative) sign if X has a positive (negative) monotonic
effect on Y . If X has neither a positive monotonic effect nor a negative monotonic
effect on Y , then the edge from X to Y is said to be without a sign.

DEFINITION 10. The sign of a path on a causal directed acyclic graph is the
product of the signs of the edges that constitute that path. If one of the edges on a
path is without a sign, then the sign of the path is said to be undefined.

DEFINITION 11. Two variables X and Y are said to be positively monotoni-
cally associated if all directed paths between X and Y are of positive sign, and all
common causes Ci of X and Y are such that all directed paths from Ci to X not
through Y are of the same sign as all directed paths from Ci to Y not through X;
the variables X and Y are said to be negatively monotonically associated if all
directed paths between X and Y are of negative sign, and all common causes Ci

of X and Y are such that all directed paths from Ci to X not through Y are of the
opposite sign as all directed paths from Ci to Y not through X.

PROPOSITION 2. If X and Y are positively monotonically associated, then
Cov(X,Y ) ≥ 0. If X and Y are negatively monotonically associated, then
Cov(X,Y ) ≤ 0.

Rules for the propagation of signs have been developed elsewhere [38, 39, 41]
and, as seen from Proposition 2, are useful for determining the sign of covari-
ances; however, as will be seen below, rules for deriving the sign of conditional



1456 T. J. VANDERWEELE AND J. M. ROBINS

FIG. 5. Examples requiring extensions to Theorem 4.

covariances are more subtle. Theorem 4 concerns the conditional covariance of
two parents of the node D. However, often what will be desired is the sign of the
conditional covariance of two variables which are not parents of the conditioning
node. For example, in the coaggregation problem discussed in the Introduction,
we wanted to draw conclusions about Cov(P2,B1|P1 = 1), but neither P2 nor B1
are parents of P1 in Figure 1. In the remainder of the paper we will thus extend
Theorem 4 so as to allow for application to two variables, say F and G, which are
not parents of the conditioning node D. The variables F and G might be ancestors,
descendants or have common causes with the parents, E1 and E2, of D. Consider,
for example, the causal directed acyclic graphs in Figure 5.

If we were interested in the sign of Cov(F,G|D) in Figures 5(i)–(iii), then
clearly Theorem 4 is insufficient. Theorems 5 and 6 below will allow us to extend
the conclusions of Theorem 4 to examples such as those in Figure 5 and to certain
other cases involving two variables that may not be parents of the conditioning
variable. Lemmas 1–5 below will be needed in the proofs and application of Theo-
rems 5 and 6. Lemmas 1 and 2 are consequences of Theorems 1 and 2 in the work
of Esary, Proschan and Walkup [5]. Lemmas 3–5 are proved elsewhere in related
work concerning the properties of monotonic effects [38].

LEMMA 1. Let f and g be functions with n real-valued arguments, such that
both f and g are nondecreasing in each of their arguments. If X = (X1, . . . ,Xn)

is a multivariate random variable with n components, such that each component is
independent of the other components, then Cov(f (X), g(X)) ≥ 0.

LEMMA 2. If F and G are binary and u1 and u2 are nondecreasing functions,
then sign(Cov(u1(F ), u2(G))) = sign(Cov(F,G)).

LEMMA 3. Let X denote some set of nondescendants of A that blocks all
backdoor paths from A to Y . If all directed paths between A and Y are positive,
then P(Y > y|a, x) and E[y|a, x] are nondecreasing in a.

LEMMA 4. Suppose that E is binary. Let Q be some set of variables which
are not descendants of F nor of E, and let C be the common causes of E and F
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not in Q. If all directed paths from E to F (or from F to E) are of positive sign
and all directed paths from C to E not through {Q,F } are of the same sign as all
directed paths from C to F not through {Q,E}, then E[F |E,Q] is nondecreasing
in E.

LEMMA 5. Suppose that E is not a descendant of F . Let Q be some set of
nondescendants of E that block all backdoor paths from E to F and let D be a
node on a directed path from E to F such that all backdoor paths from D to F

are blocked by {E,Q}. If all directed paths from E to F , except possibly those
through D, are of positive sign, then E[F |D,Q,E] is nondecreasing in E.

Obvious analogues concerning negative signs hold for all of the lemmas above.
Theorem 5 below will allow us to determine the sign of the conditional covariance
of F and G on graphs like those in Figure 5, provided there are appropriate signs
on the edges. The conclusion of Theorem 5 concerns the equality of the sign of
two conditional covariances, Cov(F,G|D) and Cov(E1,E2|D). The theorem it-
self does not require knowledge of a sufficient causation representation and thus
applies to general causal directed acyclic graphs. However, to draw conclusions
about the sign of Cov(E1,E2|D), one must still appeal to Theorem 4 which does
require some knowledge of a sufficient causation representation.

THEOREM 5. Suppose that E1, E2 and D are binary variables, that E1
and E2 are parents of D, that F and G are d-separated given {E1,E2,D}, that F

and {E2,D} are d-separated given E1 and that G and {E1,D} are d-separated
given E2. If Cov(F,E1) ≥ 0 and Cov(G,E2) ≥ 0 then sign(Cov(F,G|D)) =
sign(Cov(E1,E2|D)).

PROOF. Conditioning on E1 and E2, we have

Cov(F,G|D) = E[Cov(F,G|D,E1,E2)|D]
+ Cov(E[F |D,E1,E2],E[G|D,E1,E2]|D).

The first expression is 0 since F and G are d-separated given {E1,E2,D}. Fur-
thermore, since F and {E2,D} are d-separated given E1 and G and {E1,D} are
d-separated given E2, the second expression can be reduced to Cov(E[F |E1],
E[G|E2]|D). Thus,

Cov(F,G|D) = Cov(E[F |E1],E[G|E2]|D).

If Cov(F,E1) ≥ 0 and Cov(G,E2) ≥ 0 then, since E1 and E2 are binary, we have
that E[F |E1] is nonincreasing in E1 and E[G|E2] is nonincreasing in E2, and so
by Lemma 2, sign(Cov(E[F |E1],E[G|E2]|D)) = sign(Cov(E1,E2|D)). We thus
have

sign(Cov(F,G|D)) = sign(Cov(E1,E2|D))

and this completes the proof. �
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Note Theorem 5 requires that Cov(F,E1) ≥ 0 and Cov(G,E2) ≥ 0; Proposi-
tion 2 can be used to check whether these covariances are nonnegative; that is, the
covariances will be nonnegative if F and E1 are positively monotonically associ-
ated and if G and E2 are positively monotonically associated.

EXAMPLE 5. Note that the graphs in Figures 5(i) and (ii) satisfy the
d-separation restrictions of Theorem 5. In Figure 5(i), G is an ancestor of E2
whereas F is related to E1 as a descendant and by a common cause. In Fig-
ure 5(ii), F is a descendant of E1 and G is related to E2 both as an ancestor and
by a common cause. The d-separation restrictions of Theorem 5 would still hold
in Figures 5(i) and (ii) if F and E1 or G and E2 had multiple common causes
or if there were several intermediate variables between E1 and F and between G

and E2.

Note, however, that Theorem 5 requires that F be d-separated from {E2,D}
given E1 and that G be d-separated from {E1,D} given E2. Thus, if F or G were a
descendant of D, these assumptions would be violated. Consequently, Theorem 5
could not be applied to the diagram in Figure 5(iii). Nor could Theorem 5 be
applied to the paper’s introductory motivation to draw conclusions about the sign
of Cov(P2,B1|P1 = 1) for the graph in Figure 1, since B1 is a descendant of the
conditioning variable P1.

Theorem 6 below gives a result that allows for F and G to be descendants of D.
Before stating this result we note, however, that Theorem 5 is restricted in yet
another way. Theorem 5 required that F and G be d-separated given {E1,E2,D}.
If F and G have common causes then the d-separation restrictions required by
Theorem 5 will again, in general, not hold. Theorem 5 would thus not apply to the
graphs given in Figure 6.

Theorem 6 gives a result similar to Theorem 5 which allows for F or G to be
descendants of D and allows also for F and G to have common causes. As with

FIG. 6. Examples in which F and G have a common cause.
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Theorem 5, the conclusion of Theorem 6 concerns the equality of the sign of two
conditional covariances and the theorem itself does not require knowledge of a suf-
ficient causation representation. But once again, to draw conclusions about the sign
of Cov(F,G|D) using Theorem 6, one must know the sign of Cov(E1,E2|D) and
thus, appeal must again be made to Theorem 4 which does require some knowl-
edge of a sufficient causation representation.

THEOREM 6. Suppose that E1, E2 and D are binary variables, that E1
and E2 are parents of D, that F and G are d-separated given {E1,E2,D,Q},
where Q is some set of common causes of F and G (each component of which
is univariate and independent of the other components in Q) that F and E2 are
d-separated given {E1,D,Q}, that G and E1 are d-separated given {E2,Q,D},
that Q and {E1,E2} are d-separated given D and that Q and D are d-separated.
Suppose also that E[F |E1,D,Q] is nondecreasing in E1 and that E[G|E2,D,Q]
is nondecreasing in E2. If Cov(E1,E2|D) ≥ 0, and for each element of Qi of Q,
every directed path from Qi to F is the same sign as every directed path from Qi

to G, then Cov(F,G|D) ≥ 0. If Cov(E1,E2|D) ≤ 0, and for each element of Qi

of Q, every directed path from Qi to F is the opposite sign as every directed path
from Qi to G, then Cov(F,G|D) ≤ 0.

PROOF. We will prove the first of the results above; the proof of the second is
similar. Conditioning on {E1,E2,Q}, we have

Cov(F,G|D) = E[Cov(F,G|D,Q,E1,E2)|D]
+ Cov(E[F |D,Q,E1,E2],E[G|D,Q,E1,E2]|D).

The first expression is 0 since F and G are d-separated given {E1,E2,Q,D}. We
can furthermore re-write the second expression as follows:

Cov(F,G|D)

= Cov(E[F |D,Q,E1,E2],E[G|D,Q,E1,E2]|D)

= E[Cov(E[F |D,Q,E1,E2],E[G|D,Q,E1,E2]|Q,D)|D]
+ Cov(E[E[F |D,Q,E1,E2]|Q,D],E[E[G|D,Q,E1,E2]|Q,D]|D).

We will show that each of these two expressions is positive. Since F and E2 are
d-separated given {E1,D,Q}, E[F |D,Q,E1,E2] = E[F |E1,D,Q]; and since G

and E1 are d-separated given {E2,D,Q}, E[G|D,Q,E1,E2] = E[G|E2,D,Q].
By assumption, we have that E[F |E1,D,Q] is nondecreasing in E1 and that
E[G|E2,D,Q] is nondecreasing in E2. For fixed q ,

Cov(E[F |D,Q = q,E1,E2],E[G|D,Q = q,E1,E2]|Q = q,D)

= Cov(E[F |E1,D,Q = q],E[G|E2,D,Q = q]|Q = q,D)

= Cov(E[F |E1,D,Q = q],E[G|E2,D,Q = q]|D),
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since Q and {E1,E2} are d-separated given D. And since E[F |E1,D,Q = q] is
nondecreasing in E1 and E[G|E2,D,Q = q] is nondecreasing in E2, by Lemma 2,
Cov(E[F |E1,D,Q = q],E[G|E2,D,Q = q]|D) = Cov(E1,E2|D) ≥ 0. Thus,
we have that Cov(E[F |D,Q = q,E1,E2],E[G|D,Q = q,E1,E2]|Q = q,D) ≥
0 for all q and taking expectations over Q we have E[Cov(E[F |D,Q,E1,E2],
E[G|D,Q,E1,E2]|Q,D)|D] ≥ 0. We have shown that the first of the two expres-
sions above is nonnegative. We now show that the second expression

Cov(E[E[F |D,Q,E1,E2]|Q,D],E[E[G|D,Q,E1,E2]|Q,D]|D)

is also nonnegative. As before, E[F |D,Q,E1,E2] = E[F |E1,D,Q] and E[G|D,

Q,E1,E2] = E[G|E2,D,Q]. By hypothesis, for each element of Qi of Q every
directed path from Qi to F is the same sign as every directed path from Qi to G;
without loss of generality, we may assume that the sign of all of these directed
paths are positive. By Lemma 3 with X = {E1,D} and X = {E2,D}, respectively,
E[F |E1,D,Q = q] and E[G|E2,D,Q = q] are both nondecreasing in each di-
mension of q . Note that we may apply Lemma 3 because if there were any back-
door paths from Q to F or to G, then Q would have some parent which would
also be a common cause of F and G and thus also a member of the set Q, but
this would violate the assumption that the members of Q were independent of one
another. Furthermore,

E[E[F |D,Q = q,E1,E2]|Q = q,D] = E[E[F |E1,D,Q = q]|Q = q,D]
= E[E[F |E1,D,Q = q]|D]

and similarly, E[E[G|D,Q = q,E1,E2]|Q = q,D] = E[E[G|E2,Q = q]|D] =
E[E[G|E2,Q = q]|Q = q,D] since Q and {E1,E2} are d-separated given D.
Thus,

E[E[F |D,Q = q,E1,E2]|Q = q,D] = E[E[F |E1,D,Q = q]|D]
and

E[E[G|D,Q = q,E1,E2]|Q = q,D] = E[E[G|E2,D,Q = q]|D]
are both nondecreasing in each dimension of q from which it follows by
Lemma 1 that Cov(E[E[F |D,Q,E1,E2]|Q,D],E[E[G|D,Q,E1,E2]|Q,D]) ≥
0. Since Q and D are d-separated we also have

Cov(E[E[F |D,Q,E1,E2]|Q,D],E[E[G|D,Q,E1,E2]|Q,D]|D)

= Cov(E[E[F |D,Q,E1,E2]|Q,D],E[E[G|D,Q,E1,E2]|Q,D]) ≥ 0

and this completes the proof. �

Note the application of Theorem 6 requires that E[F |E1,D,Q] is nondecreas-
ing in E1 and that E[G|E2,D,Q] is nondecreasing in E2. Either of the following
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will suffice for E[F |E1,D,Q] to be nondecreasing in E1 (similar remarks hold
for E[G|E2,D,Q]): (i) F and D are d-separated given {Q,E1} and F and E1

are positively monotonically associated or (ii) if F is a descendant of E1 and D,
F and E1 do not have common causes and all directed paths from E1 to F not
through D are of positive sign. Condition (i) suffices by Lemma 4; condition (ii)
suffices by Lemma 5.

EXAMPLE 6. Although the graphs in Figure 5(iii) and in Figure 6 do not sat-
isfy the d-separation restrictions of Theorem 5, it can be verified that the these
graphs do satisfy the d-separation restrictions of Theorem 6.

At first glance, the d-separation restrictions of Theorems 5 and 6 appear to
severely limit the settings to which conclusions about conditional covariances can
be drawn. The d-separation requirements are, in fact, somewhat less restrictive
than they may first seem. We argue that the d-separation restrictions of either The-
orems 5 or 6 will apply to most graphs in which neither F nor G is a cause of
the other (though the restrictions on the set of common causes Q, if any, of F

and G in Theorem 6 are more substantial). Theorem 5 requires (i) that F and G

are d-separated given {E1,E2,D} and (ii) that F and {E2,D} are d-separated
given E1 and that G and {E1,D} are d-separated given E2. In Theorems 5 and 6
(and Figures 5 and 6), F was either an ancestor or descendant of or shared a com-
mon cause with E1; and G was either an ancestor or descendant of or shared a com-
mon cause with E2. The d-separation restrictions essentially just require that F

and G are sufficiently structurally separated so that (i) F and G are only associ-
ated because of {E1,E2,D} and (ii) F is associated with {E2,D} only through E1;
and G is associated with {E1,D} only through E2. If neither F or G is a descen-
dant of D, then the conditions will, in general, only be violated if one of F or G is
a cause of the other or if they share a common cause. Theorem 6, however, allowed
for F and G to have common causes Q. The restrictions on Q in Theorem 6 were
somewhat substantial, but the restrictions on F and G are very similar to those of
Theorem 5 except that they were made conditional on Q. Theorems 5 and 6 will
thus apply to a wide range of graphs, as can also be seen by the variety of graphs
in Figures 5 and 6, in which neither F nor G is a cause of the other.

As is clear from Proposition 2, rules concerning the propagation of signs were
sufficient to determine the sign of the covariance between two variables. For con-
ditional covariances, the principles guiding such a determination are more subtle.
The principle behind the proofs of Theorems 5 and 6 was to partition the condi-
tional covariance into two components

Cov(F,G|D) = E[Cov(F,G|D,Q,E1,E2)|D]
+ Cov(E[F |D,Q,E1,E2],E[G|D,Q,E1,E2]|D)
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FIG. 7. Causal directed acyclic graph with signed edges, under the null hypothesis of no familial
coaggregation.

with Q = ∅ in the proof of Theorem 5. The d-separation restrictions allowed for
the conclusion that Cov(F,G|D,Q,E1,E2) = 0. Additional d-separation restric-
tions were needed so that the second expression Cov(E[F |D,Q,E1,E2],E[G|D,

Q,E1,E2]|D) could be reduced to a form in which the sign of this conditional
covariance could be determined from signed edges and an appeal to Theorem 4.

Having stated Theorem 6, we can now return to the motivating example pre-
sented in the paper’s Introduction.

EXAMPLE 7. In the motivating example described in Figure 1, with data avail-
able only on P1,P2,B1,B2, we wish to test the null hypothesis of no familial
coaggregation (i.e., the null hypothesis that there are no directed edges emanat-
ing from F ). Note that Hudson et al. [10] consider an alternative approach using
a threshold model with additive multivariate normal latent factors. Here we use
a sufficient causation approach. Given the substantive knowledge that for no sub-
set of the population do the genetic causes Gp and GB of P and B prevent disease
and that for no subset of the population do the environmental causes E1 and E2
of B and P prevent either disease, we have that E1 and E2 have positive monotonic
effects on P1 and B1 and on P2 and B2, respectively, and that GP has a positive
monotonic effect on P1 and on P2 and that GB has a positive monotonic effect
on B1 and on B2. The null hypothesis of no familial coaggregation can then be
represented by the signed causal directed acyclic graph given in Figure 7.

If, in addition, using prior biological knowledge, it is assumed that there is no
synergism between E1 and GP in the sufficient cause sense, then we can apply
part (vii) of Theorem 4 and, under the null hypothesis of no familial coaggrega-
tion, we have that Cov(E1,GP |P1 = 1) ≤ 0. By Theorem 6 with Q = ∅ we have
that sign(Cov(B1,P2|P1 = 1)) = sign(Cov(E1,GP |P1 = 1)). Under the null hy-
pothesis of no familial coaggregation we thus have sign(Cov(B1,P2|P1 = 1)) =
sign(Cov(E1,GP |P1 = 1)) ≤ 0. Thus, as claimed in the Introduction, a test of
the null Cov(B1,P2|P1 = 1) ≤ 0 is a test of no familial coaggregation under the
assumption of no synergism between E1 and GP . Note that by the symmetry of
this example, a test of the null Cov(B2,P1|P2 = 1) ≤ 0 is a test of no familial
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coaggregation under the assumption of no synergism between E2 and GP . The
development of a theory of minimal sufficient causation on directed acyclic graphs
provided the concepts necessary to derive these results.

6. Discussion. In this paper we have incorporated notions of minimal suffi-
cient causation into the directed acyclic graph causal framework. Doing so has
provided a clear theoretical link between two major conceptualizations of causal-
ity. Causal directed acyclic graphs with minimal sufficient causation structures
have furthermore allowed for the development of rules governing the sign of con-
ditional covariances and of rules governing the presence of conditional indepen-
dencies which hold only in a particular stratum of the conditioning variable.

The present work could be extended in a number of directions. Theory could
be developed concerning cases in which a sufficient causation structure involves
redundant sufficient causes or sufficient causes that are not minimally sufficient.
Specifically, it might be possible to develop a system of axiomatic rules which
govern conditional independencies within strata of variables on a causal directed
acyclic graph with a sufficient causation structure, to furthermore demonstrate the
soundness and completeness of this axiomatic system and to construct algorithms
for applying the rules to identify all conditional independencies inherent in the
graph’s structure. Another direction of further research might involve the incor-
poration of the AND and OR nodes that arise from sufficient causation structures
into other graphical models such as summary graphs [4], MC-graphs [12], chain
graph models [2, 6, 14–16, 23, 34, 42] and ancestral graph models [24]. Finally,
further work could be done extending the results of Theorem 4 to yet more general
settings than those of Theorems 5 and 6.
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