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MULTISCALE LOCAL CHANGE POINT DETECTION
WITH APPLICATIONS TO VALUE-AT-RISK

BY VLADIMIR SPOKOINY

Weierstrass-Institute and Humboldt University Berlin

This paper offers a new approach to modeling and forecasting of non-
stationary time series with applications to volatility modeling for financial
data. The approach is based on the assumption of local homogeneity: for
every time point, there exists a historical interval of homogeneity, in which
the volatility parameter can be well approximated by a constant. The pro-
posed procedure recovers this interval from the data using the local change
point (LCP) analysis. Afterward, the estimate of the volatility can be simply
obtained by local averaging. The approach carefully addresses the question
of choosing the tuning parameters of the procedure using the so-called “prop-
agation” condition. The main result claims a new “oracle” inequality in terms
of the modeling bias which measures the quality of the local constant ap-
proximation. This result yields the optimal rate of estimation for smooth and
piecewise constant volatility functions. Then, the new procedure is applied to
some data sets and a comparison with a standard GARCH model is also pro-
vided. Finally, we discuss applications of the new method to the Value at Risk
problem. The numerical results demonstrate a very reasonable performance
of the new method.

1. Introduction. This paper presents a novel approach to modeling of non-
stationary time series based on the local parametric assumption, which means that
the underlying process having an arbitrary nonstationary structure can, however, be
well approximated by a simple time-homogeneous parametric time series within
some time interval.

Since the seminal papers of Engle (1982) and Bollerslev (1986), modeling the
dynamic features of the variance of financial time series has become one of the
most active fields of research in econometrics. New models, different applications
and extensions have been proposed, as can be seen by consulting, for example, the
monographs of Engle (1995) and of Gouriéroux (1997). The main idea behind this
strain of research is that the volatility clustering effect that is displayed by stock
or exchange rate returns can be modeled globally by a stationary process. This ap-
proach is somehow restrictive and does not fit some characteristics of the data, in
particular the fact that the volatility process appears to be “almost integrated,” as it
can be seen by usual estimation results and by the very slow decay of the autocorre-
lations of squared returns. Other global parametric approaches have been proposed
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by Engle and Bollerslev (1986) and Baillie, Bollerslev and Mikkelsen (1996) in or-
der to include these features in the model. Furthermore, continuous time models,
and in particular diffusions and jump diffusions, have also been considered [see,
e.g., Andersen, Benzoni and Lund (2002) and Duffie, Pan and Singleton (2000)].

However, Mikosch and Starica (2000b) showed that long memory effects of
financial time series can be artificially generated by structural breaks in the pa-
rameters. This motivates another modeling approach, which borrows its philoso-
phy mainly from the nonparametric statistics. The main idea consists of using a
simple parametric model for describing the conditional distribution of the returns
but allowing the parameters of this distribution to be time dependent. The basic
assumption of local time homogeneity is that the variability in returns is much
higher than the variability in the underlying parameter which allows for estimating
this parameter from the most recent historical data. Some examples of this ap-
proach can be found in Fan and Gu (2003), Dahlhaus and Rao (2006) and Cheng,
Fan and Spokoiny (2003). Furthermore, Mercurio and Spokoiny (2004) proposed
a new local adaptive volatility estimation (LAVE) of the unknown volatility from
the conditionally heteroskedastic returns. The method is based on pointwise data-
driven selection of the interval of homogeneity for every time point. The numerical
results demonstrate a reasonable performance of the new method. In particular, it
usually outperforms the standard GARCH(1,1) approach. Härdle, Herwartz and
Spokoiny (2003) extend this method to estimating the volatility matrix of the multi-
ple returns, and [Mercurio and Torricelli (2003)] apply the same idea in the context
of a regression problem.

The aim of the present paper is to develop another approach which, however,
applies a similar idea of pointwise adaptive choice of the interval of homogene-
ity. One essential difference between the LAVE approach from Mercurio and
Spokoiny (2004) and the new procedure is in the way of testing the homogeneity
of the interval candidate. In this paper, we follow [Grama and Spokoiny (2008)]
and systematically apply the approach based on the local multiscale change point
analysis. This means that for every historical time point, we test on a structural
change at this point for the corresponding scale. The largest interval not contain-
ing any change is used for estimation of the parameters of the return distribution.
This approach has a number of important advantages of being easy to implement
and very sensitive to the structural changes in the return process. We carefully
address the question of selecting the tuning parameters of the procedure, which
is extremely important for practical applications. The proposed “propagation” ap-
proach suggests to tune the parameters under the simple time-homogeneous situa-
tion to provide the prescribed performance of the procedure. This way is justified
by the theoretical results from Section 4, which claim the “oracle” properties of
the resulting estimate in the general situation. Another important feature of the
proposed procedure is that it can be easily extended to multiple volatility model-
ing [cf. Härdle, Herwartz and Spokoiny (2003)].
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The change point detection problem for financial time series was considered in
Mikosch and Starica (2000a), but they focused on asymptotical properties of the
test if only one change point is present. Kitagawa (1987) applied non-Gaussian
random walk modeling with heavy tails as the prior for the piecewise constant
mean for one-step-ahead prediction of nonstationary time series. However, the
mentioned modeling approaches require some essential amount of prior informa-
tion about the frequency of change points and their size. The new approach pro-
posed in this article does not assume smooth or piecewise constant structure of
the underlying process and does not require any prior information. The procedure
proposed below in Section 3 focuses on adaptive choice of the interval of homo-
geneity that allows to proceed in a unified way with smoothly varying coefficient
models and change point models.

The proposed LCP approach is quite general and can be applied to many dif-
ferent problems. Grama and Spokoiny (2008) studied the problem of Pareto tail
estimation, Giacomini, Härdle and Spokoiny (2007) considered time varying cop-
ulae estimation, Čížek, Härdle and Spokoiny (2007) applied it to compare the per-
formance of global and time varying ARCH and GARCH specifications. A com-
prehensive study of the general LCP procedure is to be given in the forthcoming
monograph [Spokoiny (2008)].

The theoretical study given in Sections 2 and 4 focuses on two important fea-
tures of the proposed procedure: stability in the homogeneous situation and sen-
sitivity to spontaneous changes of the model parameter(s). We particularly show
that the procedure provides the optimal sensitivity to changes for the prescribed
“false alarm” probability. Note that the classical asymptotic methods for station-
ary time series do not apply in the considered nonstationary situation with possibly
small samples required to develop new approaches and tools. Our way of analysis
is based on the so-called “small modeling bias” condition, which generalizes the
famous bias-variance trade-off. The main result in Theorem 4.7 claims that the pro-
cedure delivers the estimation accuracy corresponding to the optimal choice of the
historical interval. It is worth mentioning that the result applies to every volatility
process, including piecewise constant, smooth varying or mixed structures.

The paper is organized as follows. Section 2 describes the local parametric ap-
proach for the volatility modeling and presents some results about the accuracy of
the local constant volatility estimation. Section 3 introduces the adaptive modeling
procedure. Theoretical properties of the procedure are discussed in the general sit-
uation and for two particular cases: a change point model with piecewise constant
volatility and a volatility function smoothly varying in time in Section 4. Section 5
illustrates the performances of the new methodology by means of some simulated
examples and real data sets. Note that the same procedure with the default setting
is applied for all the examples and applications, and it precisely follows the the-
oretical description. Section 5.4 discusses applications of the new method to the
Value at Risk problem.
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2. Volatility modeling. Local parametric approach. Let St be an observed
asset process in discrete time, t = 1,2, . . . , while Rt defines the corresponding
return process: Rt = log(St/St−1). We model this process via the conditional het-
eroskedasticity assumption:

Rt = σtεt ,(2.1)

where εt , t ≥ 1 is a sequence of independent standard Gaussian random variables
and σt is the volatility process which is in general a predictable random process,
that is, σt is measurable with respect to Ft−1 with Ft−1 = σ(R1, . . . ,Rt−1)

(σ -field generated by the first t − 1 observations).
In this paper [similar to Mercurio and Spokoiny (2004)] we focus on the prob-

lem of filtering the parameter f (t) = σ 2
t from the past observations R1, . . . ,Rt−1.

This problem naturally arises as an important building block for many tasks of
financial engineering like Value at Risk or Portfolio Optimization.

We start the theoretical analysis from the simplest homogeneous case, applying
the classical maximum likelihood approach. In particular, we show that the corre-
sponding MLE has nice nonasymptotic properties. Later, we indicate how one can
extend these nice results to the general nonhomogeneous situation.

2.1. Parametric modeling. A time-homogeneous (time-homoskedastic) model
means that σt is a constant. The process St is then a Geometric Brownian motion
observed at discrete time moments. For the homogeneous model σ 2

t ≡ θ with t ∈ I ,
the squared returns Yt = R2

t follow the equation Yt = θε2
t , and the parameter θ can

be estimated using the maximum likelihood method

θ̃I = arg max
θ≥0

LI (θ) = arg max
θ≥0

∑
t∈I

�(Yt , θ),

where �(y, θ) = −(1/2) log(2πθ)− y/(2θ) is the log-density of the normal distri-
bution with the parameters (0, θ). This yields

LI (θ) = −(NI/2) log(2πθ) − SI /(2θ),(2.2)

where NI denotes the number of time points in I and SI = ∑
t∈I Yt .

The volatility model is a particular case of an exponential family, so that
a closed form representation for the maximum likelihood estimate θ̃I and for
the corresponding fitted log-likelihood LI (θ̃I ) are available [see Polzehl and
Spokoiny (2006) for more details].

THEOREM 2.1. For every interval I,

θ̃I = SI /NI = N−1
I

∑
t∈I

Yt .

Moreover, for every θ > 0, the fitted likelihood ratio LI (θ̃ , θ) = maxθ ′ LI (θ
′, θ),

with LI (θ
′, θ) = LI (θ

′) − LI (θ), satisfies

LI (θ̃I , θ) = NIK(θ̃I , θ),(2.3)
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where

K(θ ′, θ) = −{log(θ ′/θ) + 1 − θ ′/θ}/2

is the Kullback–Leibler information for the two normal distributions with vari-
ances θ ′ and θ .

PROOF. Both results follow by simple algebra from (2.2). �

REMARK 2.1. The assumption of normality for the innovations εt is often
criticized in the financial literature. Our empirical examples in Section 5.2 below
also indicate that the tails of estimated innovations are heavier than the normality
would imply. However, the estimate θ̃I remains meaningful even for the nonnormal
innovations, it is just a quasi-likelihood approach.

THEOREM 2.2 [Polzehl and Spokoiny (2006)]. Let f (t) = θ∗ for t ∈ I . If the
innovations εt are i.i.d. standard normal, then, for any z > 0,

Pθ∗
(
LI (θ̃I , θ

∗) > z
) = Pθ∗

(
NIK(θ̃I , θ

∗) > z
) ≤ 2e−z.

The result can be extended to the case of nonnormal innovations εt under the
condition of bounded exponential moments for ε2

t . The general case can be re-
duced to this one by some data transformation [see Chen and Spokoiny (2007) for
details].

The Kullback–Leibler divergence K fulfills K(θ ′, θ∗) ≤ I ∗|θ ′ − θ∗|2 for any
point θ ′ in a neighborhood of θ∗, where I ∗ is the maximum of the Fisher infor-
mation over this neighborhood. Therefore, the result of Theorem 2.2 guarantees
that |θ̃I − θ∗| ≤ CN

−1/2
I with a high probability. Theorem 2.2 can be used for

constructing the confidence intervals for the parameter θ∗.

THEOREM 2.3. If zα satisfies 2e−zα ≤ α, then

Eα = {θ :NIK(θ̃I , θ) ≤ zα}
is an α-confidence set for the parameter θ∗.

Theorem 2.2 claims that the estimation loss measured by K(θ̃I , θ
∗) is with high

probability bounded by z/NI , provided that z is sufficiently large. Similarly, one
can establish a risk bound for a power loss function.

THEOREM 2.4. Let Rt be i.i.d. from N (0, θ∗). Then, for any r > 0 and any
interval I,

Eθ∗ |LI (θ̃I , θ
∗)|r ≡ Eθ∗ |NIK(θ̃I , θ

∗)|r ≤ rr ,

where rr = 2r
∫
z≥0 zr−1e−zdz = 2r�(r). Moreover, there exists a constant Cr de-

pending on r only such that for any z ≥ 1 and any other interval I

Eθ∗ |LI(θ̃I, θ∗)|r1
(
LI (θ̃I , θ

∗) ≥ z
) ≤ Crz

re−z.
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PROOF. Proof by Theorem 2.2

Eθ∗ |LI (θ̃I , θ
∗)|r ≤ −

∫
z≥0

zrdPθ∗
(
L(θ̃I , θ

∗) > z
)

≤ r

∫
z≥0

zr−1
Pθ∗

(
LI (θ̃I , θ

∗) > z
)
dz ≤ 2r

∫
z≥0

zr−1e−z dz

and the first assertion is fulfilled. Similarly, one can show that

Eθ∗ |LI (θ̃I , θ
∗)|r1

(
LI (θ̃I , θ

∗) ≥ z
) ≤ Cre

−z,

where Cr depends on r only. It remains to note that

|LI(θ̃I, θ∗)|r1
(
LI (θ̃I , θ

∗) ≥ z
)

≤ |LI (θ̃I , θ
∗)|r1

(
LI (θ̃I , θ

∗) ≥ z
) + |LI(θ̃I, θ∗)|r1

(
LI(θ̃I, θ∗) ≥ z

)
. �

2.2. Risk of estimation in nonparametric situation. “Small modeling bias” con-
dition. This section extends the bound of Theorem 2.4 to the nonparametric
model R2

t = f (t)ε2
t when the function f (·) is not any longer constant even in a

vicinity of the reference point t�. We, however, suppose that the function f (·) can
be well approximated by a constant θ at all points t ∈ I .

Let Zθ = dP/dPθ be the likelihood ratio of the underlying measure P with
regard to the parametric measure Pθ corresponding to the constant parameter
f (·) ≡ θ . Then,

logZθ = ∑
t

log
p(Yt , f (t))

p(Yt , θ)
.

If we restrict our analysis to an interval I and denote by PI , respectively, PI,θ , the
measure corresponding to the observations Yt for t ∈ I , then in a similar way

logZI,θ := log
dPI

dPI,θ

= ∑
t∈I

log
p(Yt , f (t))

p(Yt , θ)
.

To measure the quality of the approximation of the underlying measure PI by the
parametric measure PI,θ , define

	I(θ) = ∑
t∈I

K(f (t), θ),(2.4)

where K(f (t), θ) means the Kullback–Leibler distance between two parameter
values f (t) and θ .

Let 
(θ̃I , θ) be a loss function for an estimate θ̃I constructed from the observa-
tions Yt , for t ∈ I . Define also the corresponding risk under the parametric mea-
sure Pθ :

R(θ̃I , θ) = Eθ
(θ̃I , θ).

The next result explains how the risk bounds can be translated from the parametric
to the nonparametric situations.
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THEOREM 2.5. Let, for some θ ∈ � and some 	 ≥ 0,

E	I(θ) ≤ 	.(2.5)

Then, it holds for any estimate θ̃ measurable with regard to FI

E log
(
1 + 
(θ̃, θ)/R(θ̃ , θ)

) ≤ 	 + 1.

PROOF. The proof is based on the following general result.

LEMMA 2.6. Let P and P0 be two measures such that the Kullback–Leibler
divergence E log(dP/dP0) satisfies

E log(dP/dP0) ≤ 	 < ∞.

Then, for any random variable ζ with E0ζ < ∞,

E log(1 + ζ ) ≤ 	 + E0ζ.

PROOF. By simple algebra one can check that, for any fixed y, the maxi-
mum of the function f (x) = xy − x logx + x is attained at x = ey , leading to
the inequality xy ≤ x logx − x + ey . Using this inequality and the representation
E log(1 + ζ ) = E0{Z log(1 + ζ )} with Z = dP/dP0, we obtain

E log(1 + ζ ) = E0{Z log(1 + ζ )}
≤ E0(Z logZ − Z) + E0(1 + ζ )

= E0(Z logZ) + E0ζ − E0Z + 1.

It remains to note that E0Z = 1 and E0(Z logZ) = E logZ. �

We now apply this lemma with ζ = 
(θ̃, θ)/R(θ̃ , θ) and show that E0ζ =
Eθ
(θ̃ , θ)/R(θ̃ , θ) = 1. This yields

Eθ (ZI,θ logZI,θ ) = E logZI,θ = E

∑
t∈I

log
p(Yt , f (t))

p(Yt , θ)

= E

∑
t∈I

E

{
log

p(Yt , f (t))

p(Yt , θ)

∣∣∣Ft−1

}
= E	I(θ)

and the result follows. �

This result implies that the bound for the risk of estimation E|LI (θ̃I , θ)|r ≡
|NIEK(θ̃I , θ)|r under the parametric hypothesis can be extended to the nonpara-
metric situation provided that the value 	I(θ) is sufficiently small. For r > 0,
define 
(θ̃I , θ) = |NIK(θ̃I , θ)|r . By Theorem 2.4, R(θ̃I , θ) = Eθ
(θ̃I , θ) ≤ rr .
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COROLLARY 2.7. Let (2.5) hold for some θ . For any r > 0,

E log
(
1 + |NIK(θ̃I , θ)|r/rr) ≤ 	 + 1.

This result means that in the nonparametric situation under the condition (2.5)
with some fixed 	, the losses |NIK(θ̃I , θ)|r are stochastically bounded. Note that
this result applies even if 	 is large, however, the bound is proportional to e	+1

and grows exponentially with 	.

2.3. “Small modeling bias” condition and rate of estimation. This section
briefly comments on relations between the results of Section 2.2 and the usual
rate results under smoothness conditions on the function f (·).

Let n be the parameter meaning length of the largest considered historical inter-
val. More precisely, we assume that the function f (·) is smooth in the sense that,
for θ∗ = f (t�) and any t ≥ t� − n,

K1/2(f (t), θ∗) ≤ (t� − t)/n.(2.6)

In view of the inequality K(θ, θ ′) 
 |θ/θ ′ − 1|2, this condition is equivalent
to the usual Lipschitz property of the rescaled function f (t/n). This condition
bounds the bias of approximating the underlying function f (t) by a constant
f (t�) by (t� − t)/n. The variance of the estimate θ̃I , for I = [t, t�[, is pro-
portional to 1/(t� − t). The usual “bias-variance trade-off” means the relation
“bias2 
 variance,” leading to (t� − t)3 
 n2.

Now note that (2.5) and (2.6) implies

	I(θ
∗) ≤ N3

I /n2.

Therefore, the “small modeling bias” condition 	I(θ) ≤ 	 is essentially equiv-
alent to “bias-variance trade-off.” Moreover, combined with the result of Corol-
lary 2.7, this condition leads to the following classical rate results.

THEOREM 2.8. Assume (2.6). Select I such that NI = cn2/3, for some c > 0.
Then, (2.5) holds with 	 = c3 and, for any r > 0,

log
(
1 + |NIK(θ̃I , θ)|r/rr) ≤ c3 + 1.

This corresponds to the classical accuracy of nonparametric estimation for the
Lipschitz functions [cf. Fan, Farmen and Gijbels (1998)].

3. Adaptive volatility estimation. The assumption of time homogeneity is
too restrictive in practical applications and it does not allow to fit real data well.
In this paper we consider an approach based on the local parametric assumption,
which means that, for every time moment t�, there exists a historic time inter-
val [t� − m, t�[ in which the volatility process σt is nearly constant. Under such
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a modeling, the main intention is both to describe the interval of homogeneity and
to estimate the corresponding value σt� .

Our approach is based on the adaptive choice of the interval of homogeneity
for the fixed end point t�. This choice is made by the local (multiscale) change
point detection (LCP) algorithm described below. The procedure attempts to find
this interval from the data by successive testing of the hypothesis of homogeneity.
An interval-candidate is accepted if every point is negatively tested on a possible
location of a change point. A change point test at a location τ < t� compares two
different estimates of the parameter θ ; one is computed from the most recent inter-
val [τ, t�] while the other one is obtained by using another interval [t ′, τ ] before
the possible jump. The procedure is multiscale in the sense that the choice of the
other interval [t ′, τ ] and the critical value of the test depends on the distance of the
testing point τ from the reference point t�. More precisely, let a growing sequence
of numbers N1 < N2 < · · · < NK be fixed. Each Nk means the scale parameter
describing the length of the historical time interval screened at the step k. Define
a family {Ik, k = 1, . . . ,K} of nested intervals of the form Ik = [t� −Nk, t

�[ with
the right edge at t�. The procedure starts from the smallest interval I1 by testing
the hypothesis of homogeneity within I1 against a change point alternative. If the
hypothesis is not rejected then we take the next larger interval Ik and test for a
change point. We continue this way until we detect a change point or the largest
considered interval IK is accepted. If the hypothesis of homogeneity within some
interval Ik is rejected and a change point is detected at a point τ̂ ∈ Ik , then the
estimated interval of homogeneity is defined as the latest accepted interval, that is,
Î = Ik−1 = [t� − Nk−1, t

�[, otherwise we take Î = IK . Finally, we define the es-
timate f̂ (t�) = θ̂ of the volatility parameter f (t�) = σ 2

t� as f̂ (t�) = θ̃Î. The main
ingredient of this procedure is the homogeneity test which is described in the next
section.

3.1. Test of homogeneity against a change point alternative. Let J be a tested
interval which has to be checked on a possible change point. For carrying out the
test, we also assume a larger testing interval I = [t ′, t ′′[ to be fixed. The hypoth-
esis of homogeneity for J means that the observations Rt follow the parametric
model with the parameter θ for J itself and for the larger interval I . This hy-
pothesis leads to the parametric log-likelihood LI (θ) for the observations Rt ∈ I .
We want to test this hypothesis against a change point alternative that the para-
meter θ spontaneously changes in some internal point τ of the interval J . Every
point τ ∈ J splits the interval I = [t ′, t ′′[ onto two subintervals, I ′′ = I ′′

τ = [τ, t ′′[
and I ′ = I ′

τ = I \ I ′′ = [t ′, τ [ (see Figure 1). The change point alternative means
that f (t) = θ ′′ for t ∈ I ′′ and f (t) = θ ′, for t ∈ I ′′ for some θ ′′ �= θ ′. This corre-
sponds to the log-likelihood LI ′′(θ ′′) + LI ′(θ ′). The likelihood ratio test statistic
for the change point alternative with the change point location at the point τ is of
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FIG. 1. Intervals involved in the change point test.

the form

TI,τ = max
θ ′′,θ ′ {LI ′′(θ ′′) + LI ′(θ ′)} − max

θ
LI (θ)

(3.1)
= min

θ
max
θ ′′,θ ′ {LI ′′(θ ′′, θ) + LI ′(θ ′, θ)}.

For the considered volatility model, this test statistic can be represented in a simple
form given by the next lemma.

LEMMA 3.1. It holds for any interval I and point τ ∈ I,

TI,τ = NI ′′K(θ̃I ′′, θ̃I ) + NI ′K(θ̃I ′, θ̃I )(3.2)

with I ′ = [t ′, τ ] and I ′′ = [τ, t ′′].
PROOF. By (2.3), minimization in (3.1) with regard to θ leads to the choice

θ = θ̃I . Similarly, maximization with regard to θ ′ and θ ′′ leads to θ ′ = θ̃I ′ and
θ ′′ = θ̃I ′′ , and the assertion follows. �

The change point test for the interval J is defined as the maximum of the test
statistics TI,τ over τ ∈ J :

TI,J = max
τ∈J

TI,τ .(3.3)

The change point test compares this statistic with the critical value z which
may depend on the intervals I, J . The hypothesis of homogeneity is rejected
if TI,J ≥ z, in this case the estimate of the change point location is defined as
τ̂ = arg maxτ∈JI

TI,τ .

REMARK 3.1. The change point alternative suggested above is only one pos-
sibility to test the homogeneity assumptions. One can apply many other tests, for
example, omnibus tests against polynomials or trigonometric functions [see, e.g.,
Hart (1998)]. Our choice is motivated by several reasons. First of all, it is simple
to implement and does not require a special model estimation under alternative
because the alternative reduces to the null hypothesis for two smaller intervals.
Secondly, it has a natural interpretation and delivers additional information about
the location of the change and the length of the interval of homogeneity. Finally, it
was shown in Ingster (1986) [see also Horowitz and Spokoiny (2001)] that a test
based on the local constant alternative is powerful against smooth alternatives as
well.
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FIG. 2. The intervals Ik and Jk for the LCP procedure.

3.2. The multiscale procedure. This section describes the LCP procedure. The
procedure is sequential and consists of K steps corresponding to the given grow-
ing sequence of numbers N0 < N1 < · · · < NK . This sequence determines the
sequence of nested intervals I0 ⊂ I1 ⊂ · · · ⊂ IK with the right edge at the point
of estimation t� :Ik = [t�k , t�[= [t� − Nk, t

�[ (see Figure 2). This set of intervals
leads to the set of estimates θ̃Ik

, k = 0,1, . . . ,K . Obviously, NIk
= Nk . For con-

ciseness of notation, we also write θ̃k in place of θ̃Ik
.

The proposed adaptive method chooses an index κ of, equivalently, the esti-
mate θ̃κ from this set. The procedure is sequential and it successively checked the
intervals I0,I1, . . . ,Ik, on change points.

The interval I0 is always accepted and the procedure starts with k = 1. At every
step k, every point of the interval Jk = Ik \ Ik−1 is tested as a potential change
point due to the procedure from Section 3.1. The testing interval I = Ik+1 is ap-
plied. Ik is accepted if the previous interval Ik−1 was accepted and the test sta-

tistic Tk
def= TIk+1,Jk

defined by (3.3) does not exceed the critical value zk . The
latter means that there is no change point detected within Jk . Equivalently, Ik is
accepted if every point is negatively tested on a change point location. The event
{Ik is rejected} means that Tl > zl for some l ≤ k, and hence, a change point has
been detected in the first k steps of the procedure at some point within Ik . For
every k, we define an index κk corresponding to the largest accepted interval after
the first k steps, and θ̂k = θ̃κk

is the corresponding estimate. The estimate θ̃k and θ̂k

coincide if no change point is detected at the first k steps. The final estimate is
defined as θ̂ = θ̂K and corresponds to the largest found interval of homogeneity.
The formal definition reads as follows:

κ = max{k ≤ K :Tl ≤ zl , l = 1, . . . , k}, θ̂ = θ̃κ .

The way of choosing the critical value as well as the other parameters of the
procedure, like the intervals Ik , is discussed in the next section.

3.3. Choice of the parameters zk using “propagation” condition. The “crit-
ical value” zk defines the level of significance for the test statistics Tk = TIk,Jk

.
A proper choice of the parameters zk is crucial for the performance of the proce-
dure. We propose in this section one general approach for selecting the zk’s, which
is similar to the bootstrap idea in the hypothesis testing problem. Indeed, the pro-
posed procedure can be viewed as a multiple test with the scale dependent critical
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values. We select these values to provide the prescribed performance of the proce-
dure in the parametric situation (under the null hypothesis). In the classical testing
approach, the performance of the method is measured by the errors of the first and
second kind, and the critical value is selected to ensure the prescribed test level
which is the probability of rejecting the null under the null hypothesis. In the con-
sidered framework, the null hypothesis means a time-homogeneous model with a
constant volatility θ∗. We apply a slightly modified condition on the first kind error
which suits better the considered estimation problem. Our primary goal is to select
one estimate out of family θ̃k, rather than testing on a change point. In the homo-
geneous situation, our optimal choice, corresponds to the largest interval IK lead-
ing to the estimate θ̃K with the smallest variability in the considered family (see
Theorem 2.4). A “false alarm” means that a nonexisting change point is detected,
which leads to selecting an estimate with a larger variability than that of θ̃K . Our
condition accounts not only for the frequency of false alarms but also at which k

step a “false alarm” occurs. Before giving a precise formulation, we mention one
important and helpful property of the volatility parametric model f (·) ≡ θ∗: for
any intervals J ⊂ I , the distribution of the test statistic TI,J does not depend on
the parameter value θ∗. This is a simple corollary of the fact that volatility is a
scale parameter of the corresponding parametric family. However, in view of its
importance for our study we state it in a separate lemma.

LEMMA 3.2. Let the return Rt follow the parametric model with the constant
volatility parameter θ∗, that is, R2

t = θ∗ε2
t . Then, for any J ⊂ I and any τ ∈ J , the

distribution of the test statistics TI,τ and TI,J under Pθ∗ is the same for all θ∗ > 0.

PROOF. It suffices to notice that for every interval I the estimate θ̃I can be
represented under Pθ∗ as

θ̃I = N−1
I

∑
t∈I

Y 2
t = θ∗N−1

I

∑
t∈I

ε2
t

and for each two intervals I, I ′, the Kullback–Leibler divergence K(θ̃I , θ̃I ′) is a
function of the ratio θ̃I /θ̃I ′ . �

The result of Lemma 3.2 allows us to reduce the parametric null situation to
the case of a simple null consisting of one point θ∗, for example, θ∗ = 1. The
corresponding distribution of the observation under this measure will be denoted
by Pθ∗ .

For every step k, we require that in the parametric situation f (·) ≡ θ∗ the esti-
mate θ̂k is sufficiently close to the “oracle” estimate θ̃k in the sense that

Eθ∗ |NkK(θ̃k, θ̂k)|r ≤ αrr(3.4)

for all k = 1, . . . ,K with rr , is the parametric risk bound from Theorem 2.4:
Eθ∗ |NkK(θ̃k, θ

∗)|r ≤ rr .
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Note that the θ̂k differs from θ̃k only if a change point is detected at the first k

steps. The usual condition to any change point detector is that such “false alarms”
occur with a small probability. Our condition (3.4) has the same flavor but it is a bit
stronger. Namely, a false alarm at an early stage of the procedure is more crucial
because it results in selecting an estimate with a high variability. Our condition
penalizes not only for occurrence of a false alarm but also for the deviation of the
selected estimate θ̂k from the optimal estimate θ̃k . The choice of penalization is
motivated by Theorem 2.4. A small value of NkK(θ̃k, θ̂k) means that θ̂k belongs
to the confidence set based on the estimate θ̃k , that is, θ̂k does not differ signifi-
cantly from θ̃k . On the contrary, big values of NkK(θ̃k, θ̂k) indicate that θ̂k differs
significantly from θ̃k . The choice of the power loss r in the condition (3.4) close to
zero leads back to counting the numbers of false alarms. Larger values of r result
in the criteria which also accounts for the deviation of θ̂k from θ̃k . We refer to (3.4)
as a “propagation” condition because it ensures that, under homogeneity at every
step, the current accepted interval Îk extends to Ik with a high probability.

The values α and r in (3.4) are two global parameters. The role of α is similar to
the level of the test in the hypothesis testing problem, while r describes the power
of the loss function. A specific choice is subjective and depends on the particu-
lar application at hand. Taking a large r and small α would result in an increase
of the critical values and, therefore, improves the performance of the method in
the parametric situation at cost of some loss of sensitivity to parameter changes.
Theorem 4.1 presents some upper bounds for the critical values zk as functions
of α and r in the form a0 logK + 2 log(Nk/α) + 2r log(NK/Nk), with some co-
efficient a0. We see that these bounds linearly depend on r and on logα−1. For
our applications to volatility estimation, we apply a relatively small value r = 1/2
which makes the procedure more stable and robust against outliers. We also apply
α = 0.2, although the other values in the range [0.1,1] lead to very similar results.

The set of conditions (3.4) do not directly define the critical values zk . We
present below one constructive method for selecting zk to provide the “propaga-
tion” conditions (3.4).

3.3.1. A sequential choice. Here we present a proposal for a sequential choice
of the zk’s. Consider the situation after the first k steps of the algorithm. We distin-
guish between two cases. In the first, change point is detected at some step l ≤ k,
and in the other case no change point is detected. In the first case, we denote by Bl

the event meaning the rejection at the step l, that is,

Bl = {T1 ≤ z1, . . . , Tl−1 ≤ zl−1, Tl > zl}
and θ̂k = θ̃l−1 on Bl , l = 1, . . . , k. The sequential choice of the critical values zk is
based on the decomposition

|K(θ̃k, θ̂k)|r =
k∑

l=1

|K(θ̃k, θ̃l−1)|r1(Bl)(3.5)
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for every k ≤ K . Now, we show that the event Bl only depends on z1, . . . , zl . In
particular, the event B1 means that T1 > z1 and θ̂j = θ̃0, for all j ≥ 1. We select z1
as the minimal value providing that

max
k=1,...,K

Eθ∗ |NkK(θ̃k, θ̃0)|r1(T1 > z1) ≤ αrr/K.(3.6)

Similarly, for every l ≥ 2, select zl by considering the event Bl = {κ = l}, mean-
ing that the first false alarm occurs at the step l and θ̂k = θ̃l−1 for all k > l. If
z1, . . . , zl−1 have already been fixed, the event Bl is only controlled by zl leading
to the following condition on zl : this is the minimal value that ensures

max
k≥l

Eθ∗ |NkK(θ̃k, θ̃l−1)|r1(Bl) = αrr/K.(3.7)

Such a value zl can be found numerically by the Monte Carlo simulations from the
parametric model Pθ∗ for any fixed θ∗ [see Lemma 3.2]. It is straightforward to
check that such defined zk fulfill (3.4) in view of the decomposition (3.5).

3.3.2. Examples of choosing the intervals Ik . To start the procedure, one has
to specify the set of intervals I0,I1, . . . ,IK . Note, however, that this choice is
not a part of the LCP procedure. The method applies to whatever intervals Ik are
selected under condition (MD) (see Section 4). This section presents one example
which is at the same time the default choice for our simulation study and applica-
tions.

The set N0,N1, . . . ,NK is defined geometrically by the rule Nk = [N0a
k] for

some fixed value N0 and the growth rate a > 1. Such a proposal is motivated by the
condition (MD) from the next section. Note also that the sets Jk do not intersect for
different k ,and every point τ ∈ [t� − Nk, t

� − N0] is tested as a possible location
of the change point at some of the first k steps of the procedure.

Our numerical results (not reported here) indicate that the procedure is quite sta-
ble with regard to the choice of the parameters like N0 and a. We apply a = 1.25.
The other values of a in the range 1.1 to 1.3 lead to very similar results. We also
apply N0 = 5, which is motivated by our applications to risk management in finan-
cial engineering.

4. Theoretical properties. This section discusses some useful theoretical
properties of the adaptively selected interval of homogeneity Î and then of the
adaptive volatility estimate θ̂ that corresponds to the selected interval Î, that is,
θ̂ = θ̃Î. Our main “oracle” result claims that the final estimate θ̂ delivers essen-
tially the same quality of estimation as the estimate with the optimal (“ideal”)
choice of the interval Ik∗ . It is worth noting that the oracle result does not as-
sume any particular structure of the volatility function f (t). It can be an arbitrary,
predictable positive random process. Particular cases include piecewise constant,
smooth transition and other models. As shown in Section 2.2, the oracle result au-
tomatically ensures the optimal estimation rate under usual smoothness conditions
on the function f (·).
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The “oracle” result is in its turn, a corollary of two important properties of the
procedure: “propagation” under homogeneity and “stability.” The first one means
that in the nearly homogeneous situation, the procedure would not terminate (no
false alarm) with a high probability. In other words, if the parametric (constant) ap-
proximation well applies in the interval Ik , then this interval will be accepted with
a high probability. The “stability” property ensures that the estimation quality will
not essentially deteriorate in the steps “after propagation” when the local constant
approximation is not sufficiently accurate. Typically, the procedure terminates in
such situations.

The results require some regularity conditions on the growth of the intervals Ik .
Namely, we require that the length Nk of Ik grows exponentially with k.

(MD) For some constants u0,u with 0 < u0 ≤ u < 1, it holds

u0 ≤ Nk−1/Nk ≤ u.

In addition, we assume that the parameter set � satisfies the condition
(�) for some constant a with 0 < a ≤ 1, and, for any θ0, θ ∈ �,

a2 ≤ θ0/θ ≤ a−2.

We start by discussing the behavior of the procedure in the time-homogeneous
situation with the constant volatility parameter θ∗. In this case the properties of the
resulting estimate θ̂ are guaranteed by the condition (3.4). Our first result claims
a possibility of selecting the critical values zk to provide (3.4) and states some
upper bounds for the zk’s. Similar results can be stated in the local parametric
situation when the homogeneity condition f (t) = θ∗ is only fulfilled for some
time interval I .

4.1. Behavior under (local) homogeneity. First, we consider the homogeneous
situation with the constant parameter value f (x) = θ∗. Our first result presents an
upper bound for the parameters zk which ensures condition (3.4).

THEOREM 4.1. Assume (MD). Let f (t) = θ∗, for all t ∈ IK . Then, there is
a constant a0 > 0 depending on r and u0, u such that the choice

zk = a0 logK + 2 log(Nk/α) + 2r log(NK/Nk)(4.1)

ensures (3.4), for all k ≤ K .

REMARK 4.1. The present result only describes an upper bound for the crit-
ical values which will be used for our theoretical study. This upper bound is not
used for computing the values zk in practical applications. However, it qualitatively
describes how every critical value zk depends on the index k and on the parame-
ter r, α.
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PROOF OF THEOREM 4.1. Before proving the result of the theorem, we
present two useful technical lemmas. The first one shows that the maximum test
statistic TI,J is stochastically bounded in a rather strong sense.

LEMMA 4.2. Let J, I be tested and testing intervals, and TI,J be the test
statistic from (3.1). For any other interval I and any z ≥ 1, it holds

Eθ∗ |NIK(θ̃I, θ∗)|r1(TI,J > z) ≤ 2NJ Crz
re−z/2,

where Cr is the constant from Theorem 2.4.

PROOF. Every τ ∈ J splits the interval I into I ′ and I ′′. For any interval I, by
Theorem 2.4,

Eθ∗ |NIK(θ̃I, θ∗)|r1(TI,τ > z)

≤ Eθ∗ |NIK(θ̃I, θ∗)|r{1
(
NI ′′K(θ̃I ′′, θ∗) > z/2

) + 1
(
NI ′K(θ̃I ′, θ∗) > z/2

)}
≤ 2Crz

re−z/2.

Now, by definition of TI,J ,

1(TI,J > z) ≤ ∑
τ∈J

1(TI,τ > z)

and the assertion follows. �

Below, we also utilize the metric-like property of the Kullback–Leibler diver-
gence K(θ, θ ′).

LEMMA 4.3 [Polzehl and Spokoiny (2006), Lemma 5.2]. Under condi-
tion (�), it holds that, for every sequence θ0, θ1, . . . , θm ∈ �,

K1/2(θ1, θ2) ≤ a{K1/2(θ1, θ0) + K1/2(θ2, θ0)},
K1/2(θ0, θm) ≤ a{K1/2(θ0, θ1) + · · · + K1/2(θm−1, θm)}.

With given constants zk , define, for k > 1, the random sets

Ak = {Tk ≤ zk}, A(k) = A1 ∩ · · · ∩ Ak.

Obviously, θ̂k = θ̃k on A(k), for all k ≤ K , and we have to bound the risk of θ̂k on
the complement Ā(k) of Ak . Define Bl = A(l−1) \ A(l). The event Bl means the
false alarm at step l and hence, κ = l − 1. We aim to bound the portion of the risk
Eθ∗ |NkK(θ̃k, θ̂k)|r = Eθ∗ |NkK(θ̃k, θ̃l)|r associated with the false alarm Bl , for
every l < k. The definition of Bl implies that 1(Bl) ≤ 1(TIl+1,Jl

> zl). Lemma 4.3
and the elementary inequality (a + b)2r ≤ 2(2r−1)+(a2r + b2r ) with any a, b ≥ 0
imply

Eθ∗Kr (θ̃k, θ̃l)1(Bl) ≤ 2(2r−1)+{Eθ∗Kr (θ̃k, θ
∗) + Eθ∗Kr (θ̃l, θ

∗)}1(Bl).
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The interval Jl is of length Nl , and by Lemma 4.2,

Eθ∗Kr (θ̃k, θ̃l)1(Bl)

≤ 2(2r−1)+a2r{Eθ∗Kr (θ̃k, θ
∗) + Eθ∗Kr (θ̃l, θ

∗)}1(TIl+1,Jl
> zl)

≤ 2(2r−1)+a2rCrNlz
r
l e

−zl/2(N−r
k + N−r

l ).

This and Theorem 2.4 imply, for every k ≤ K ,

Eθ∗ |NkK(θ̃k, θ̂k)|r ≤ Nr
k Eθ∗

k∑
l=1

Kr (θ̃k, θ̃l)1(Bl)

≤ 2(2r−1)+a2rCr

k∑
l=1

[
1 +

(
Nk

Nl

)r]
4Nlz

r
l e

−zl/2.

It remains to check using the condition (MD) that the choice zk = a0 logK +
2 logα−1 + 2r log(NK/Nk) + 2 logNk , with properly selected a0, provides the re-
quired bound Eθ∗ |NkK(θ̃k, θ̂k)|r ≤ αrr . �

4.2. Behavior under “small modeling bias” condition. Now, we extend the
previous result to the situation when the parametric assumption is not precisely
fulfilled but the deviation from the parametric structure within the considered lo-
cal model is sufficiently small. At the step k, the procedure involves the interval
Ik+1 used for testing a change point within Jk . Therefore, the deviation from the
parametric situation can be measured for the step k by

	k(θ)
def= 	Ik+1(θ) = ∑

Ik+1

K(θ, f (t))

[see (2.4)]. By definition, the modeling bias 	k(θ) increases with k. We suppose
that there is a number k∗, such that 	k(θ) is small for some θ and k = k∗, and
hence also for all k ≤ k∗. Consider the corresponding estimate θ̂k∗ obtained af-
ter the first k∗ steps of the algorithm. Theorem 2.5 implies in this situation the
following result.

THEOREM 4.4. Assume (MD). Let θ and k∗ be such that E	k∗(θ) ≤ 	, for
some 	 ≥ 0. Then,

E log
(

1 + |Nk∗K(θ̃k∗, θ̂k∗)|r
αrr

)
≤ 1 + 	,

E log
(

1 + |Nk∗K(θ̃k∗, θ)|r
rr

)
≤ 1 + 	.
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4.3. “Stability after propagation” and “oracle” results. Due to the “propa-
gation” result, the procedure performs well as long as the “small modeling bias”
condition 	k(θ) ≤ 	 is fulfilled. To establish the accuracy result for the final esti-
mate θ̂ , we have to check that the aggregated estimate θ̂k does not vary much at the
steps “after propagation” when the divergence 	k(θ) from the parametric model
becomes large.

THEOREM 4.5. Suppose (MD) and (�). Let, for some k ≤ K , the interval Ik

be accepted by the procedure and hence, θ̂k = θ̃k . Then, it holds that

NkK(θ̂k, θ̂k+1) ≤ zk.(4.2)

Moreover, under (MD), it holds for every k′ with k < k′ ≤ K

NkK(θ̂k, θ̂k′) ≤ a2c2
uz̄k(4.3)

with cu = (u−1/2 − 1)−1 and z̄k = maxl≥k zl .

REMARK 4.2. An interesting feature of this result is that it is fulfilled with
probability one; that is, the control of stability “works” not only with a high prob-
ability, but it always applies. This property follows directly from the construction
of the procedure.

PROOF OF THEOREM 4.5. If Ik+1 is rejected, then θ̂k+1 = θ̂k and the assertion
(4.2) trivially follows. Now, we consider the case when Ik+1 is accepted yielding
θ̂k = θ̃k and θ̂k+1 = θ̃k+1. The acceptance of Ik implies, by definition of the pro-

cedure. that Tk
def= TIk+1,Jk

≤ zk and, in particular, TIk+1,τ ≤ zk , with τ = t� − Nk

being the left edge of Jk . This yields [see (3.2)] that

NkK(θ̃k, θ̃k+1) ≤ zk

and the assertion (4.2) is proved.
Now, assumption (�) and Lemma 4.3 yield

K1/2(θ̂k, θ̂k′) ≤ a

k′−1∑
j=k

K1/2(θ̂j , θ̂j+1) ≤ a

k′−1∑
j=k

(zj /Nj )
1/2.

The use of assumption (MD) leads to the bound

K1/2(θ̂k, θ̂k′) ≤ a(z̄k/Nk)
1/2

k′−1∑
j=k

u(j−k)/2 ≤ a
(
1 − √

u
)−1

(z̄k/Nk)
1/2,

which proves (4.3). �

Combination of the “propagation” and “stability” statements implies the main
result concerning the properties of the adaptive estimate θ̂ .
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THEOREM 4.6 [“Oracle” property]. Let E	k(θ) ≤ 	, for some θ ∈ � and
k ≤ k∗. Then, θ̂ is close to the “oracle” estimate θ̃k∗ in the sense that

E log
(

1 + |Nk∗K(θ̃k∗, θ̂k∗)|r
αrr

)
≤ 1 + 	,

Nk∗K(θ̂k∗, θ̂ ) ≤ a2c2
uz̄k∗ .

The result claims the “oracle” property of the estimate θ̂ in the sense that it
belongs with a high probability to a confidence set of the oracle estimate θ̃k∗ , and
thus, there is no significant difference between θ̂ and θ̃k∗ .

We also present one corollary about the risk of adaptive estimation for r = 1/2.
An extension to an arbitrary r > 0 is straightforward.

THEOREM 4.7. Assume (MD) and E	k∗(θ) ≤ 	, for some k∗, θ and 	. Then,

E log
(

1 + N
1/2
k∗ K1/2(θ̂ , θ)

ar1/2

)
≤ log

(
1 + cu

√
z̄k∗

r1/2

)
+ 	 + α + 1,

where cu is the constant from Theorem 4.5.

PROOF. By Lemma 4.3, similarly to the proof of Theorem 4.5,

a−1|Nk∗K(θ̂ , θ)|1/2

≤ |Nk∗K(θ̂k∗, θ̂ )|1/2 + |Nk∗K(θ̃k∗, θ̂k∗)|1/2 + |Nk∗K(θ̃k∗, θ)|1/2

≤ cu

√
z̄k∗ + |Nk∗K(θ̃k∗, θ̂k∗)|1/2 + |Nk∗K(θ̃k∗, θ)|1/2.

This, the elementary inequality log(1 + a + b) ≤ log(1 + a) + log(1 + b) for all
a, b ≥ 0, Lemma 2.6, Theorem 2.4 and (3.4) yield

E log
(
1 + (ar1/2)

−1N
1/2
k∗ K1/2(θ̂ , θ)

)

≤ log
(

1 + cu

√
z̄k∗

r1/2

)

+ E log
(

1 + N
1/2
k∗ K1/2(θ̃k∗, θ̂k∗)

r1/2
+ N

1/2
k∗ K1/2(θ̃k∗, θ)

r1/2

)

≤ log
(

1 + cu

√
z̄k∗

r1/2

)
+ 	 + α + 1

as required. �

REMARK 4.3. Recall that by Theorem 4.4, the “oracle” choice k∗ leads to the
risk bound for the loss |Nk∗K(θ̃k∗, θ∗)|1/2 of the corresponding estimate θ̃k∗ . The
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adaptive choice states a similar bound but for the loss |Nk∗K(θ̂ , θ∗)|1/2/z̄
1/2
k∗ . This

means that the accuracy of the adaptive estimate θ̂ is worse by factor
√

z̄k∗ which
can be considered the payment for adaptation. Due to Theorem 4.1, z̄k∗ is bounded
from above by a0 logK + 2 log(Nk∗/α) + 2r log(NK/Nk∗). Therefore, the risk of
the adaptive estimate corresponds to the best possible risk among the family {θ̃k},
for the choice k = k∗ up to a logarithmic factor in the sample size. Lepski, Mam-
men and Spokoiny (1997) established a similar result in the regression setup for the
pointwise adaptive Lepski procedure. Combining the result of Theorem 4.7 with
Theorem 2.8 yields the rate of adaptive estimation (n−1 logn)1/(2+d) under Lip-
schitz smoothness of the function f and the usual design regularity [see Polzehl
and Spokoiny (2006) for more details]. It was shown by Lepski (1990) that in the
problem of pointwise adaptive estimation this rate is optimal and cannot be im-
proved by any estimation method. This gives an indirect proof of the optimality
of our procedure. The factor z̄k∗ in the accuracy of estimation cannot be removed
or reduced in the rate because otherwise the similar improvement would appear in
the rate of estimation.

4.4. Switching regime model. A switching regime model is described by a se-
quence ν1 < ν2 < · · · of Markov moments with respect to the filtration (Ft ) and by
values θ1, θ2, . . . , where each θj is Fνj

-measurable. By definition, σ 2
t = f (t) = θj ,

for νj ≤ t < νj+1, and σt is constant for t < ν1. This is an important special
case of the model (2.1). It is worth mentioning that any volatility process σt can
be approximated by a switching regime model. For this special case, the above
procedure has a very natural interpretation. When estimating at the point t�, we
search for a largest interval of the form [t� − m, t�[ which does not contain
a change point. More precisely, with a giving sequence of interval-candidates
Ik = [t� − Nk, t

�[, we are looking for the largest homogeneous interval among
them. This is done via successive testing for a change point within the intervals
Jk = [t� − Nk, t

� − Nk−1[.
The construction of the procedure automatically provides the prescribed risk

level associated with the first kind error (a false alarm). In this section, we aim to
show that the procedure ensures a near-optimal quality of change point detection.
The quality (sensitivity) of a change point procedure is usually measured by the
mean delay between the occurrence of the change points and its detection. To
study this property of the proposed method, we consider the case of estimation at
a point t� next after a change point ν. The “ideal” choice Ik∗ among I1, . . . ,IK

is obviously the largest one which does not contain ν. Theorem 4.7 claims that the
procedure accepts with a high probability all the intervals Ik for which the testing
interval Ik+1 does not contain the point of change ν. This particularly implies that
the quality of estimation of θt� by our adaptive procedure is essentially the same
as if we knew the latest change point ν a priori. Now we additionally show that the
procedure rejects with a high probability the first interval Ik∗+1 which contains the
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point of change ν provided that the magnitude of the change is sufficiently large.
This fact can be treated as the sensitivity of the procedure to the changes of regime.

In our study, we assume that the changes occur not too often, and there is exactly
one change within Jk∗+1 and moreover, within the larger interval Ik∗+2 which is
used as the testing interval for Jk∗+1. Let θ ′ be the value of the parameter before
the change and θ ′′ after it. The point τ splits the interval I = Ik∗+2 into two ho-
mogeneous intervals. f (t) = θ ′′ for t ∈ I ′′ = [τ, t�[, while f (t) = θ� within the
complementary interval t ∈ I \ I ′′. Define c1 = Nk∗/Nk∗+2, c2 = Nk∗+1/Nk∗+2.
By condition (MD), c1 ≥ u2

0 and c2/c1 ≥ u−1. The length t� − τ of the interval
[τ, t�[ fulfills c1 ≤ (t� − τ)/Nk∗+2 ≤ c2. Based on these considerations, define the
following measure of change from θ ′ to θ ′′:

d2(θ ′, θ ′′) = inf
θ

inf
c∈[c1,c2]

{(1 − c)K(θ ′, θ) + cK(θ ′′, θ)}.(4.4)

The following simple bound can be useful for bounding the distance d2(θ ′, θ ′′).

LEMMA 4.8. There is a constant b > 0 depending on c1 and c2 only such that

d2(θ ′, θ ′′) ≥ b(θ ′/θ ′′ − θ ′′/θ ′)2.

PROOF. For every fixed θ ′, θ ′′, θ , the expression (1− c)K(θ ′, θ)+ cK(θ ′′, θ)

is a linear function of c. Therefore, its minimum with regard to c is attained in one
of the edge points c1, c2, and it suffices to check the assertion only for these two
values of c. Now, the assertion follows directly from the definition of the Kullback–
Leibler distance K(θ ′, θ) as a smooth function of the ratio θ ′/θ with K(θ,

θ) ≡ 0. �

We aim to show that if the contrast d(θ ′, θ ′′) is sufficiently large then the test
statistic Tk∗+1 will be large as well, yielding that the interval Ik∗+1 will be rejected
with a high probability.

THEOREM 4.9. Let f (t) = θ ′ before the change point at ν and f (t) = θ ′′
after it. If, for some z > 0,

Nk∗+2d
2(θ ′, θ ′′) ≥ 2a2(zk∗+1 + z) · m,(4.5)

then

P(Ik∗+1 is not rejected) ≤ 4e−z.

PROOF. Let ν be the location of the change within Jk∗+1 = Ik∗+1 \ Ik∗ . It
suffices to show that, under the conditions of the theorem, the corresponding test
statistic TI,ν exceeds with a high probability the value zk∗+1. This would ensure
that the interval Ik∗+1 is rejected. The point ν splits the testing interval I = Ik∗+2
into two subintervals I ′ and I ′′, and within each of the intervals I ′ and I ′′ the
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function f (t) is constant. f (t) ≡ θ ′ for t ∈ I ′, and f (t) ≡ θ ′′ for t ∈ I ′′. Let a value
z > 0 be fixed. Introduce the event

A(z) = 1{NI ′K(θ̃I ′, θ ′) ≤ z, NI ′′K(θ̃I ′′, θ ′′) ≤ z}.
By Theorem 2.2,

P(A(z)) ≥ 1 − 4e−z.

We now consider z such that (4.5) holds and show that TI,ν > zk∗+1 on A(z). By
definition, it holds on the set A(z) that NI ′K(θ̃I ′, θ ′) ≤ z and NI ′′K(θ̃I ′′, θ ′′) ≤ z.
By Lemma 4.3,

K1/2(θ ′, θ̃I ) ≤ aK1/2(θ̃I ′, θ ′) + aK1/2(θ̃I ′, θ̃I )

≤ a(z/NI ′)1/2 + aK1/2(θ̃I ′, θ̃I ).

Hence,

K(θ ′, θ̃I ) ≤ 2a2z/NI ′ + 2a2K(θ̃I ′, θ̃I )

and

K(θ̃I ′, θ̃I ) ≥ (2a2)−1K1/2(θ ′, θ̃I ) − z/NI ′ .

Similarly,

K(θ̃I ′′, θ̃I ) ≥ (2a2)−1K1/2(θ ′′, θ̃I ) − z/NI ′′ .

Now, by definition of TI,ν [see (3.2)]

TI,ν = NI ′K(θ̃I ′, θ̃I ) + NI ′′K(θ̃I ′′, θ̃I )

≥ (2a2)−1{NI ′K(θ ′, θ̃I ) + NI ′′K(θ ′′, θ̃I )} − z

= (2a2)−1Nk∗+2{cK(θ ′, θ̃I ) + (1 − c)K(θ ′′, θ̃I )} − z

with c = NI ′/Nk∗+2. This and the definition of d(θ ′, θ ′′) [see (4.4)] yields on A(z)

TI,ν ≥ Nk∗+2

(2a2)
d2(θ ′, θ ′′) − z.

The theorem assertion follows. �

The result of Theorem 4.9 delivers some additional information about the sensi-
tivity of the proposed procedure to changes in the volatility parameter. One possi-
ble question is about the minimal delay m∗ between the change point ν and the first
moment t� when the procedure starts to detect this change. Due to Theorem 4.9,
the change will be “detected” with a high probability if (4.5) meets. With fixed
θ ′ �= θ ′′, condition (4.5) is fulfilled if m∗ is larger than a prescribed constant, that
is, we need only a finite number of observations to detect a change point. In gen-
eral, m∗ should be of order d−2(θ ′, θ ′′) 
 |θ ′ − θ ′′|−2, if the size of the change
becomes small. All these issues are in agreement with the theory of change point
detection [see, e.g., Pollak (1985), Csorgő and Horváth (1997) and Brodskij and
Darkhovskij (1993)] and with our numerical results from Section 5.
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5. Simulated results and applications. This section illustrates the perfor-
mance of the proposed local change point detection (LCP) procedure by means
of some simulated and real data sets. We aim to show that the theoretical proper-
ties of the method derived in the previous section are confirmed by the numerical
results. We focus especially on the two main features of the method: stability under
homogeneity and sensitivity to changes of volatility.

5.1. Some simulated examples. Three different jump processes are simulated,
whose relative jump magnitude is 3.00, 2.00 and 1.75, respectively. Each process
is simulated and estimated 1000 times, and the median and the quartiles of the es-
timates are plotted in Figure 3. We show the results for the final estimate θ̂ and for
the length of the selected interval Î. One can see that, if the size of the change is
large enough, the procedure performs as if the location of the change were known.
As one can expect, the sensitivity of the change point detection decreases when the
magnitude of the jump becomes smaller. However, the accuracy of the volatility
estimate remains rather good even for small jumps that corresponds to our theoret-
ical results.

The algorithm proposed in this paper is compared with the LAVE proce-
dure from Mercurio and Spokoiny (2004) with the optimized tuning parameters
γ = 0.5, M = 40 and z = 2.40. Figure 4 shows the quartiles of estimation for the
two approaches for the model with the relative jump magnitude 3. One can see that
the new procedure outperforms LAVE both with respect to the variance and to the
bias of the estimator, especially for the points immediately after the changes.

Our simulation study has been done for the conditional normal model (2.1).
We mentioned in Section 2.1 that this assumption is questionable as far as the

FIG. 3. A process with Gaussian innovations and jumps of different magnitudes. Top panel: jump
process (thin solid line), pointwise median (solid line) and quartiles (dashed lines) for the esti-
mates θ̂t . Bottom panel: length of the selected interval Ît (solid line) and its quartiles (dashed
lines). The results were obtained with parameters r = 0.5 and α = 0.2 and interval lengths
5,7,10,13,16,20,24,30,38,47,59,73,92 points.
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FIG. 4. Comparison of the proposed estimator with the one from Mercurio and Spokoiny (2004) for
change point model with θ/θ ′ = 3. Quartiles of θ̂ for the LCP method (solid lines) and for the LAVE
method from Mercurio and Spokoiny (2004) (dotted lines) against the true volatility (thick line).

real financial data is considered. To gain an impression about the robustness of
the method against violation of the normality assumption, we also simulated using
i.i.d. innovations from the t5-distribution with five degrees of freedom. The results
are shown in Figure 5. As one can expect, they are slightly worse than in the
case of normal innovations, however, the procedure continues to work in a quite
reasonable way. The sensitivity of the procedure remains as good as with normal

FIG. 5. Estimation results with respect to jump processes with jumps of different magnitudes.
The results are obtained with tuning parameters r = 0.5 and α = 0.2 and interval lengths
5,7,10,13,16,20,24,30,38,47,59,73,92 points. The conditional distribution is scaled student t5
with five degrees of freedom.
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innovations, but a probability to reject a homogeneous interval became larger. This
results in a higher variability of the estimated volatility.

5.2. Volatility estimation for different exchange rate data sets. The volatil-
ity estimation is performed on a set of nine exchange rates, which are avail-
able from the web page of the US Federal Reserve. The data sets represent
daily exchange rates of the US Dollar (USD) against the following currencies:
Australian Dollar (AUD), British Pound (GBP) Canadian Dollar (CAD), Danish
Krone (DKR), Japanese Yen (JPY), Norwegian Krone (NKR), New Zealand Dollar
(NZD), Swedish Krone (SKR) and Swiss Franc (SFR). The period under consid-
eration goes from January 1, 1990 to April 7, 2000. For each time series we have
2583 observations. All selected time series display excess kurtosis and volatility
clustering.

Figure 6 show the GBP/USD exchange rate returns together with the volatility
estimated with the default parameters. The results of the estimation are in accor-
dance with the data, and the procedure seems to recognize changes in the underly-
ing volatility process quickly.

The assumption of local homogeneity leads to the constant forecast σ̂ 2
t of the

volatility σt+h for a small or moderate time horizon h. This results in the following
forecast of the conditional variance of the aggregated returns Rt+1 + · · · + Rt+h:

V LCP
t,h := hσ̂ 2

t .

In order to assess the performance of the proposed algorithm, we compare its
forecasting ability with that of the GARCH(1,1) model, which represents one of
the most popular parameterizations of the volatility process of financial time series.
The GARCH(1,1) model is described by the following equations:

Rt = σtεt , σ 2
t = ω + αR2

t−1 + βσ 2
t−1,

α > 0, β > 0, α + β < 1, εt ∼ N (0,1) ∀t.

FIG. 6. Returns and estimated volatility for the GBP/USD exchange rate.
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The h-step ahead variance forecast of the GARCH(1,1) is given by

σ
2,GARCH
t+h|t := EtR

2
t+h = σ̄ 2 + (α + β)h(σ 2

t − σ̄ 2),

where σ̄ represents the unconditional volatility and Et ξ means E(ξ |Ft ) [see
Mikosch and Starica (2000a)]. Since the returns are conditionally uncorrelated,
the conditional variance of the aggregated returns is given by the sum of the con-
ditional variances:

V GARCH
t,h := Et (Rt+1 + · · · + Rt+h)

2 =
h∑

k=1

EtR
2
t+k =

h∑
k=1

σ
2,GARCH
t+h|t .

The assumption of constant parameters for a GARCH(1,1) model over a time
interval of the considered length of about 2500 time points can be too restrictive.
We therefore considered a scrolling estimate, that is, for every date, the preceding
1000 observations are used for estimation of the GARCH parameters, and then
the estimated parameters are used to forecast the variance at different horizons.
This method is nonadaptive in the choice of the observation window, but it takes
advantage of a more flexible GARCH-modeling. The LCP algorithm suggested
in this paper applies a very simple local constant modeling but benefits from a
data-driven choice of the interval of homogeneity.

The quality of forecasting is measured by comparing the forecasts V LCP
t,h , re-

spectively, V GARCH
t,h with the realized volatility

V̄t,h := R2
t+1 + · · · + R2

t+h.

We apply the following mean square root error criterion (MSqE) for an interval I :

MSqEI = ∑
t∈I

|V LCP
t,h − V̄t,h|1/2

/∑
t∈I

|V GARCH
t,h − V̄t,h|1/2.

The MSqE is considered instead of the more common MSE for robustness reasons.
Actually, in this way outliers are prevented from having a strong influence on the
results. The MSqE is computed for six nonoverlapping intervals of 250 observa-
tions, and the results are shown in Table 1. One can observe that both methods are
comparable and that the relative performance depends on the particular situation
at hand. For periods with stable volatility the LCP forecast is clearly better, but for
periods with high volatility variation the GARCH method is slightly preferable.

5.3. Analysis of standardized returns. Our model (2.1) assumes the standard
normal innovations εt . Many empirical researches argued that this assumption is
too strong and often violated [see, e.g., McNeil and Frey (2000)]. Here, we briefly
discuss this issue by looking at the standardized returns ξ̂t = Rt/σ̂t . The first ob-
servation is that even after standardization by the estimated variance, the density of
standardized returns ξ̂t still displays tails which are fatter than the normal. We illus-
trate this effect in Figure 7 where the kernel estimate of the density of standardized
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TABLE 1
Forecasting performance (MSqE) of LCP relative to GARCH(1,1)

on six consecutive time periods of 250 observations each

CAD h = 1 0.994 0.983 0.833 0.967 1.022 0.998
h = 5 0.941 0.999 0.720 0.994 1.105 1.009
h = 10 0.862 1.038 0.645 0.960 1.149 0.999

DKR h = 1 0.881 0.924 0.844 0.979 0.976 1.013
h = 5 0.849 0.968 0.802 1.035 0.987 1.007
h = 10 0.870 0.971 0.691 1.053 0.986 0.989

JPY h = 1 0.931 0.987 0.892 1.004 1.021 0.992
h = 5 0.876 1.006 0.858 1.002 1.032 0.998
h = 10 0.889 0.978 0.828 1.033 1.061 1.001

AUD h = 1 0.973 0.919 0.895 1.017 1.022 0.993
h = 5 0.966 0.943 0.877 1.012 0.967 0.959
h = 10 0.932 0.958 0.887 1.032 1.023 0.990

GBP h = 1 0.874 0.969 0.904 1.029 0.947 0.960
h = 5 0.814 0.960 0.914 1.090 0.941 0.952
h = 10 0.775 0.890 0.884 1.087 0.972 0.949

NZD h = 1 0.845 0.941 0.928 1.042 0.987 0.700
h = 5 0.816 0.918 0.913 1.065 1.002 0.657
h = 10 0.742 0.984 0.884 1.095 1.013 0.632

returns Rt/σ̂t is plotted against the normal density and the scaled student t5 den-
sity with five degrees of freedom. One can observe that the t-distribution delivers
a much better approximation to the empirical density of returns.

FIG. 7. Kernel density estimate of exchange rate returns JPY/USD, normal density and scaled
student’s t5 density with five degrees of freedom.
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FIG. 8. ACF of the absolute GBP/USD returns (upper plot) and of the standardized absolute
GBP/USD returns (lower plot). Dotted straight line denotes the 95% significance level.

The volatility clustering effect, though, disappears after standardization and au-
tocorrelations of squared returns are not significant any more (see Figure 8 for the
case of GBP/USD returns). The other exchange rate examples deliver similar re-
sults. A short conclusion of this empirical study is that the standardized returns can
be treated as i.i.d. random variables with a distribution whose tails are fatter than
the ones of the normal distribution.

5.4. Application to value at risk. The Value at Risk (VaR) measures the ex-
treme loss of a portfolio over a predetermined holding period with a prescribed
confidence level 1 − α. This problem can be reduced to computing the quantiles
of the distribution of aggregated returns [see, e.g., Fan and Gu (2003)] for a recent
overview of this topic.

Our modeling approach can easily be adapted to the VaR problem. Namely, one
may forecast the 1% and 5% quantile of the next return Rt+1 and of the aggregated
returns Rt+1 + · · · + Rt+h = log(St+h/St ), for each date t , in the following way.
The volatility parameter σ̂t is estimated from the historical data Rs , for s ≤ t ,
and one can consider different distributions for the innovations εt . In our study,
we compare the Gaussian, the scaled student t5-distribution with five degrees of
freedom and the empirical distribution F̂t of the past empirical innovations ξ̂s for
s ≤ t , that is,

Rt+h = σ̂t ξt+h with ξt+h ∼ N (0,1) or
√

5/3ξt+h ∼ t5 or ξt+h ∼ F̂t .

Similar approaches have been applied in McNeil and Frey (2000) with the use of
the GARCH(1,1) model for estimating the volatility and extreme value theory for
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evaluating the distribution of returns, while Eberlein and Prause (2002) assume the
Generalized Hyperbolic Distribution for the innovations.

In order to better interpret the results, we notice that the scaled t5 distribution has
higher 5%-quantiles than the ones of the Gaussian at any of the considered hori-
zons and lower 1%-quantiles. Therefore, the Gaussian distribution of innovations
is more conservative for 5%-quantiles, while the opposite is true for 1%-quantiles.

We apply the procedure to the set of nine exchange rates with about 2500 ob-
servations in each one. The frequency of overshooting the predicted quantile for
the given realizations of the returns is given in Table 2. The first 500 observations
in every time series are taken as presample for estimating the parameters. Notice,
that for the five and ten day horizon, overlapping intervals of data are used as in
Fan and Gu (2003).

According to the requirement of the regulators [BIS (1996)], a bank has to de-
termine its capital requirements in order to cover from market risk proportionally
to the 1% quantile of the distribution of the portfolio losses over a ten-day horizon.
Internal models calculating this quantile are regularly monitored. The coefficient
of proportionality is set to 3 for models whose performance is satisfactory (green
zone), and it can be increased up to 4 by a discretionary judgment of the regula-
tors for models which appear to estimate the quantile imprecisely (yellow zone).
If the model performance is considered very poor, the coefficient is automatically
increased to 4 (red zone).

The official criterion for the evaluation of an internal model is the statistical
significance of the 1% quantile estimates of the portfolio loss distribution over a
one-day horizon. The prescribed procedure, called backtesting, checks whether the

TABLE 2
Percentage of overshooting the prescribed VaR level for six series of exchange rates for nominal

quantile levels 1% and 5%, three different distributions of innovations and time horizon h = 1,5,10

Gaussian Student 5 Empirical

h 1 5 10 1 5 10 1 5 10

1% quantile AUD 2.0 1.7 1.0 1.6 1.5 0.8 0.6 1.2 0.3
CAD 1.9 2.2 1.9 1.4 1.8 1.6 0.6 1.2 1.0
DKR 1.1 1.3 1.0 0.5 0.9 0.8 0.2 0.6 0.4
GBP 1.6 1.6 1.2 1.2 1.3 1.1 0.3 0.8 0.5
JPY 0.8 0.6 0.5 0.5 0.4 0.4 0.1 0.1 0.1
NZD 2.3 1.7 1.4 1.8 1.4 1.1 0.8 0.9 0.4

5% quantile AUD 5.4 5.5 4.9 6.3 5.6 5.1 4.6 4.3 5.8
CAD 5.5 6.7 7.1 6.2 6.9 7.2 4.5 5.0 7.6
DKR 5.0 5.6 5.4 6.0 5.7 5.7 4.2 4.0 6.2
GBP 5.1 5.7 5.5 5.9 5.8 5.7 4.3 4.1 6.1
JPY 4.0 3.7 4.0 5.0 3.9 4.1 3.4 2.3 4.6
NZD 5.0 5.5 5.4 5.4 5.7 5.6 4.1 4.3 6.1
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observed frequency of days out of the last 250 for which the losses were larger than
the value computed by the prescribed VaR procedure does not significantly deviate
from the nominal level 0.01 [see Deutsch (2001)]. Every procedure is classified as
green, yellow and red. The green zone means that the empirical frequency is in
agreement with the nominal probability 0.01. The yellow zone begins at the point,
such that the probability of exceptions for the tested VaR procedure exceeds the
value 0.01 with a 95% confidence interval. One can easily verify that such proba-
bility corresponds to 5 or more exceptions out of 250 days, that is, the frequency
of exceptions equals 2%. Similarly, the red zone corresponds to the 99.99% level,
evidence that the tested procedure does not provide the required probability of ex-
ceptions. For a sample of 250 observations, this corresponds to 10 exceptions, or
equivalently, 4% frequency of overshooting the VaR value.

The comparison of these requirements with our results presented in Table 2
shows that, on average, none of the procedures we tried are in the red zone, and
that the procedure using empirical distribution function for the residuals is always
in the green zone. The use of the student t5 distribution also allows us to get the
green zone results for most of the examples, while the procedure with Gaussian
innovations is often in the yellow zone.

We conclude that the use of the t5 distribution for the innovations slightly im-
prove the results, and the VaR quality is acceptable for both Gaussian and scaled
student quantiles, while the application of the empirical distribution of the residu-
als leads to an almost perfect fit of the prescribed quantiles for all considered time
horizons.
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