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This paper introduces a Monte Carlo method for maximum likelihood in-
ference in the context of discretely observed diffusion processes. The method
gives unbiased and a.s. continuous estimators of the likelihood function for
a family of diffusion models and its performance in numerical examples is
computationally efficient. It uses a recently developed technique for the ex-
act simulation of diffusions, and involves no discretization error. We show
that, under regularity conditions, the Monte Carlo MLE converges a.s. to the
true MLE. For datasize n → ∞, we show that the number of Monte Carlo
iterations should be tuned as O(n1/2) and we demonstrate the consistency
properties of the Monte Carlo MLE as an estimator of the true parameter
value.

1. Introduction. We introduce a Monte Carlo method for maximum like-
lihood inference in the context of discretely observed diffusion processes. The
method gives unbiased and a.s. continuous estimates of the likelihood function,
which converge uniformly in the parameters to the likelihood function as the
Monte Carlo sample size N increases. Additionally, for increasing datasize n, the
asymptotically optimal algorithm corresponds to selecting N = O(n1/2).

Consider scalar time-homogeneous diffusion processes, defined by stochastic
differential equations (SDEs) of the type

dVs = b(Vs; θ) ds + σ(Vs; θ) dBs, Vs ∈ V ⊆ R,(1)

where B is a Brownian motion. The drift and the diffusion coefficient, b(·; θ) and
σ(·; θ) respectively, are assumed to be known up to a vector of parameters θ ∈ � ⊂
Rd . Multivariate extensions of this work are addressed in Section 7. The process
is assumed to be observed without error at a collection of time instances,

{Vt0,Vt1, . . . , Vtn}, 0 = t0 < t1 < · · · < tn,
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and the statistical challenge is to explore characteristics, such as the maximum and
the level sets, of the likelihood function

Ln(θ) =
n∏

i=1

Li(θ); Li(θ) := p�ti (Vti−1,Vti ; θ), θ ∈ �,

where �ti = ti − ti−1 and

pt(v,w; θ) := P[Vt ∈ dw | V0 = v; θ ]/dw, t > 0,w, v ∈ V,(2)

is the transition density of (1). It is well documented (see, e.g., [37] for a recent
review) that inference about diffusion models is complicated by the unavailability
of the transition density (2), except for limited cases. Thus, inference is carried out
using either nonlikelihood approaches, such as estimating equations [10], efficient
method of moments [20] and indirect inference [25], or approximate likelihood-
based approaches, such as computationally intensive Markov chain Monte Carlo
imputation methods [17, 18, 35] and methods which approximate analytically the
transition density [1]. Also, approximate Monte Carlo maximum likelihood ap-
proaches have been suggested, most notably by [32] and [16].

The method described in this paper, termed the Simultaneous Acceptance
Method (SAM), estimates each likelihood contribution Li(·) independently. To
simplify the presentation, let L(·) denote the likelihood contribution of an arbi-
trary pair of consecutive data points Vs = v,Vs+t = w, that is, L(θ) = pt(v,w; θ).
SAM generates a random function L(�, θ), θ ∈ �, where � is a random element
independent of θ , such that for any fixed θ ∈ �, E[L(�, θ)] = L(θ), and w.p.1,
θ �→ L(�, θ) is continuous. We estimate L(·) by the Monte Carlo functional aver-
ages

LN(·) := 1

N

N∑
j=1

L(�j , ·), �1, . . . ,�N independent copies of �.(3)

Having obtained estimates LN
i (·) of Li(·) using (3) independently for each i =

1, . . . , n, we estimate the likelihood function Ln(·) by the product

LN
n (·) :=

n∏
i=1

LN
i (·).

We demonstrate that our Monte Carlo estimator LN
n (·) is computationally effi-

cient and we detail its theoretical properties. From the computational perspective,
the random element consists of standard exponential and Gaussian variables and
can be easily simulated, and L(�, θ) is of a simple calculable form. Moreover,
the a.s. continuity of LN

n (·) facilitates the efficient implementation of optimization
routines for locating its maximizer. From the theoretical perspective, LN

n (θ) is an
unbiased estimator of Ln(θ) with finite moments for any θ ∈ �. More importantly,
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due to the a.s. continuity of LN
n (·), we can resort to the Strong Law of Large Num-

bers (SLLN) in Banach spaces, to establish that w.p.1 LN
n (θ) converges to Ln(θ)

uniformly in θ , as N → ∞. Uniform convergence to the likelihood implies, under
mild conditions, convergence of the maximizers to the MLE, say θ̂n:

w.p.1, θ̂N
n := arg max

θ∈�
LN

n (θ) → θ̂n as N → ∞.(4)

The rate of convergence is shown to be O(N1/2). Also, additional statistics, for
example, profile likelihoods and level sets, can be derived as appropriate limits of
the corresponding characteristics of the Monte Carlo estimate of the likelihood.

We also investigate the properties of the Monte Carlo method for increasing
datasize n. The Monte Carlo MLE θ̂N

n is a consistent estimator of the true pa-
rameter value, say, θ0, when N → ∞, n → ∞. The optimal algorithm, in terms
of computational cost as n → ∞, is obtained when N = Nn = O(n1/2), whence
n1/2(θ̂N

n − θ0) converges in law to a Gaussian random variable.
The construction of the random function L(�, ·) is based on a recently devel-

oped retrospective rejection sampling algorithm called the Exact Algorithm (EA).
EA was introduced in [9] and [7]; it returns a draw from any finite-dimensional dis-
tribution of the target SDE by rejection sampling with proposals from the Wiener
measure. In [8] it was noticed that the transition density of the target diffusion can
be written in terms of the acceptance probability of EA, thus, a simple pointwise
estimator of L(θ) for any θ ∈ � is readily available. The algorithm is termed the
Acceptance Method (AM) in [8]. In that paper a simultaneous version of the algo-
rithm is also presented, but for the case of a specific family of diffusions where its
development (from pointwise to function estimator) is rather straightforward. In
the current paper SAM is applied to a considerably larger family of diffusions and
its construction will involve novel couplings of Brownian motion paths. Also, the
consistency properties of the method (conditional and unconditional, i.e., for fixed
and of increasing number data points respectively) are examined here for the first
time.

The applicability of SAM (and AM) is attached to that of EA, whose latest
development [7, 8] covers the class of diffusion processes determined by the set
of conditions (C0)–(C3) on the drift and diffusion coefficient given in Section 2.
Though not universally applicable, SAM can be applied to several diffusion mod-
els for which the likelihood function is intractable, for example, to the class of
diffusion processes generated by one-to-one transformations of the linear diffu-
sion with multiplicative noise (see, e.g., page 119 of [29]):

dVs = (θ1 + θ2Vs) ds + (θ3 + θ4Vs) dBs,(5)

with state space V = (max{−θ3/θ4,−θ1/θ2},∞). We will discuss the potential of
SAM for more general classes of diffusions. Relevant to this direction are under-
going developments in EA [6].
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The paper is organized as follows. In Section 2 we set up the basic notation
and provide the random function L(�, ·); we state its properties in Theorem 1. In
Section 3 we establish a.s. uniform convergence of the estimators LN

n (·) to Ln(·),
as N → ∞, and discuss some important consequences. In Section 4 we illustrate
our method by applying SAM to an example SDE. In Section 5 we allow n → ∞
and present the theory suggesting computational optimality for the choice N =
O(n1/2). In Section 6 we prove Theorem 1. In Section 7 we summarize and discuss
further ideas. The paper is supplemented with a brief Appendix.

2. Basic notation and statement of the main result. In this section we set up
the basic notation, construct explicitly the estimator L(�, ·) of L(·) = pt(v,w; ·),
and state the main, from the applied perspective, result of the paper, which is
proven later in Section 6. Throughout the rest of the paper we assume that � is
a compact subset of Rd which contains the unknown MLE θ̂n. Generally, random
variables will be written in capital letters; typewriter style will be used to
emphasize that the distribution of the variable is independent of θ .

We define

η(u, θ) =
∫ u 1

σ(z; θ)
dz, u ∈ V,(6)

to be any fixed anti-derivative of 1/σ(·; θ). For arbitrary u, let

α(u; θ) = b(η−1(u, θ); θ)

σ (η−1(u, θ); θ)
− σ ′(η−1(u, θ); θ)/2; A(u, θ) =

∫ u

0
α(z; θ) dz,

where η−1 is the inverse of η. Assuming that η(·, θ) is twice continuously differen-
tiable, Itô’s lemma shows that Vs �→ η(Vs; θ) =: Xs is the unique transformation
(up to a change of sign) that maps V to a process of unit diffusion coefficient;
α(·; θ) is the drift of the transformed process X. Throughout the paper we assume
that the following conditions hold for all θ ∈ �:

(C0) η(·; θ) is twice continuously differentiable; the law of Xs = η(Vs, θ) has a
density w.r.t. the Wiener measure provided by Girsanov’s theorem (13);

(C1) α(·; θ) is continuously differentiable;
(C2) (α2 + α′)(·; θ) is bounded below;
(C3) (α2 + α′)(·; θ) is bounded above on (z,∞) for all z ∈ R.

REMARK 1. The essence of Theorem 1 below is to devise an unbiased estima-
tor of the transition density of the unit diffusion coefficient process Xs = η(Vs, θ)

when its drift α(·; θ) satisfies conditions (C1)–(C3) above. Thus, the case when
(α2 + α′)(·; θ) happens to be bounded above on (−∞, z) is covered by symme-
try. One then needs only to consider instead the (unit diffusion coefficient) process
−η(Vs, θ); its drift will then satisfy (C1)–(C3).
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We define

l(θ) = inf
z∈R

(α2 + α′)(z; θ)

2
; φ(u, θ) = (α2 + α′)(u; θ)

2
− l(θ) ≥ 0,

and r(u, θ) = supz∈(u,∞) φ(z, θ) < ∞.
The random element in the estimator L(�, θ) is � = (E,
,Z,N), where E ∼

Ex(1), Z ∼ N (0,1), 
 is a homogeneous Poisson process on [0, t] with time-
ordered points Yj ,1 ≤ j ≤ �, of number � ∼ Poisson(λt), where the intensity λ

is specified below, and conditionally on �, the 3 × �-matrix N = {N
ij
,1 ≤ i ≤

3,1 ≤ j ≤ �} consists of independent standard Gaussian variables. On the event
{� = 0}, 
 and N contain no elements. The intensity λ depends on E and the
observed data, v,w, in the following way: we define the functions

x = x(θ) := η(v, θ), y = y(θ) := η(w, θ),(7)

m = m(E, θ) = (
y + x −

√
2tE+ (y − x)2

)
/2,(8)

and take λ to be any real not less than supθ∈� r(m, θ). The following theorem gives
the random function L(�, ·) as a composition of easily computable functions. We
define Nt (u) := e−u2/(2t)/

√
2πt , u ∈ R, t > 0.

THEOREM 1. Under assumptions (C0)–(C3) and the following regularity con-
ditions:

(Cnt1) (i) α(·; ·), α′(·; ·), and (ii) A(·, ·) are continuous on R × �,
(Cnt2) (i) η(u, ·), (ii) η′(u, ·) are continuous for all u ∈ V , (iii) l(·) is continuous,

the random function L(�, ·) defined below is such that:

(i) for any θ ∈ �, E[L(�, θ)] = L(θ),
(ii) w.p.1 θ �→ L(�, θ) is continuous,

(iii) there exists a constant M such that w.p.1 |L(�, θ)| < M for all θ ∈ �.

L(�, θ) = |η′(w, θ)|Nt (y − x) exp{A(y, θ) − A(x, θ) − l(θ)t} × a(�, θ);

a(�, θ) =
2∑

i=1

pi ×
�∏

j=1

[1 − φ(χ
ij
, θ)/λ];

χ
ij

= m +
√√√√√
(
β

ij
+

j∑
l=1

N1l
γ

ij l

)2

+
( j∑

l=1

N2l
γ

ij l

)2

+
( j∑

l=1

N3l
γ

ij l

)2

;

β
ij

= (x − m)
τi − Yj

τi

I[Yj ≤ τi] + (y − m)
Yj − τi

t − τi

I[Yj > τi];

γ 2
ij l

= (τi − Yj )
2(Yl − Yl−1)

(τi − Yl)(τi − Yl−1)
I[Yj ≤ τi]
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+ (t − Yj )
2(Yl − Yl−1 ∨ τi)

(t − Yl)(t − Yl−1 ∨ τi)
I[Yl > τi], γ

ijl
> 0;

τ1 = t

(
1 + y − m

x − m
g

)−1

, τ2 = t

(
1 + y − m

x − m
g−1

)−1

;

p1 = tgE+ 2(x − m)2

(1 + g)[tE+ 2(x − m)2] , p2 = 1 − p1;

g = 1 + Z2/E−
√

2Z2/E+ Z4/E2 > 0.

REMARK 2. Notice that χ
ij

, β
ij

, γ
ijl

, τi , pi are all functions of θ , the random
element � and the data. Also, � depends on the data points v,w through the
Poisson rate λ.

COROLLARY 1. Under the assumptions of Theorem 1, the likelihood term
L(·) is continuous.

PROOF. Consider some θ ∈ � and a sequence {θj } such that θj → θ . Then,
limj→∞ L(θj ) = limj→∞ E[L(�, θj )] = E[limj→∞ L(�, θj )] = L(θ), where the
first equality holds due to the unbiasedness stated in result (i) of Theorem 1, and
the others due to results (ii), (iii) and the bounded convergence theorem. �

3. Uniform convergence of likelihood estimator. The Monte Carlo average
LN

i (θ) in (3) is an unbiased estimator of the likelihood factor Li(θ) for any θ ∈ �,
thus, Kolmogorov’s Strong Law of Large Numbers (SLLN) implies that w.p.1,
LN

n (θ) → Ln(θ) as N → ∞. It is known, however, that this pointwise convergence
is not strong enough to guarantee convergence of the maximizers θ̂N

n of LN
n (·) to

the MLE θ̂n. Similarly, a stronger form of convergence is needed to ensure that
several other interesting features of the Monte Carlo functional averages, such
as level sets, integrals over subsets and profile likelihoods, will converge to the
corresponding features of the likelihood function. A sufficient condition is that the
convergence is uniform in θ :

w.p.1, lim
N→∞ sup

θ∈�

|LN
n (θ) − Ln(θ)| = 0.(9)

Questions which lead to essentially equivalent problems to uniform conver-
gence of functional averages occur in theoretical statistics (see, e.g., [11, 38, 39] for
the Glivenko–Cantelli problem and [13, 40] for the consistency of the maximum
likelihood estimator), dynamical systems and ergodic theory, stochastic optimiza-
tion, econometrics [2] and Monte Carlo methods [22]; see Chapter 1 of [33] for
a review. The general probabilistic framework in which convergence of functional
averages is most naturally addressed is probability on Banach spaces.
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We prove (9) using the following fundamental theorem about SLLN for random
elements in an arbitrary separable Banach space. This result first appeared in [30];
see also [5] and [24]. We recall (see, e.g., [24]) that for an arbitrary random element
X in a Banach space (X,‖ · ‖), ‖X‖ denotes its norm, and when E[‖X‖] < ∞,
the expectation E[X] is defined as the unique element μ ∈ X such that T (μ) =
E[T (X)] for every linear function T :X �→ R in the dual space of X.

THEOREM 2. Let (X,‖ · ‖) be a separable Banach space and X a random
element in X, such that

E[‖X‖] < ∞; E[X] = 0.

If X1,X2, . . . are independent copies of X, then

w.p.1, lim
N→∞

∥∥∥∥∥ 1

N

N∑
j=1

Xj

∥∥∥∥∥= 0.

The uniform convergence in (9) follows easily from the following corollary.

COROLLARY 2. Let L(�, θ) be the random function constructed in Theo-
rem 1, and �1,�2, . . . , independent copies of �. Then

w.p.1, lim
N→∞ sup

θ∈�

∣∣∣∣∣ 1

N

N∑
j=1

L(�j , θ) − L(θ)

∣∣∣∣∣= 0.

PROOF. Take (X,‖·‖) to be the space of continuous real functions on the com-
pact set � equipped with the sup-norm such that, for any element f ∈ X, ‖f ‖ =
supθ∈� |f (θ)|. This is well known to be a separable Banach space. Theorem 1
has shown that L(�, ·) takes values in X, and E[‖L(�, ·)‖] < ∞. Corollary 1 has
shown that L(·) ∈ X, and by uniqueness of expectation, E[L(�, ·) − L(·)] = 0.
Applying Theorem 2 to L(�, ·) − L(·) yields the result. �

The compactness of � and (9) imply the following result, which validates our
Monte Carlo maximum likelihood approach.

COROLLARY 3. If θ̂n is the unique element of arg maxθ∈� Ln(θ) and {θ̂N
n }N

any sequence of maximizers of {LN
n (·)}N , then limN→∞ θ̂N

n = θ̂n w.p.1.

Note that the same result holds for a sequence of so-called ε(N)-maximizers,
that is, a sequence θ̂N

n,ε such that |θ̂N
n − θ̂N

n,ε | ≤ ε(N), where ε(N) → 0 as N → ∞.
This extension allows for numerically efficient implementations of SAM, as in
Section 4.

Certainly, consistency can also be established under the classical approach for
showing convergence of the MLE from i.i.d. data (because of the independence
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of the Monte Carlo samples in the case of SAM) to the true parameter value; see,
for example, [19]. It is our impression though that a generalized SLLN provides a
natural approach for comprehending strong convergence in enlarged spaces.

Note that a.s. continuity of the random function is not a necessary condition for
uniform convergence. For instance, concavity of the functional averages and their
expectation would suffice; see [23]. Uniform convergence might hold even when
�1,�2, . . . , form a stationary (not necessarily ergodic) stochastic process; see, for
example, [13, 15, 22, 33]. On the other hand, consistency results as in Corollary 3
could be obtained by establishing epigraphical/hypographical convergence (see,
e.g., [4] for relevant results from convex analysis) which is weaker than uniform,
although closely related, and requires only semi-continuity properties of L(�, ·);
see [22] and [13] for investigations in the context of functional averages. In our
case, however, concavity does not necessarily hold, but continuity is rather easily
established.

Having shown uniform convergence, we can resort to Theorems 5 and 6 of [22]
to prove that the Monte Carlo profile log-likelihood and the Monte Carlo level sets
converge to the corresponding features of the likelihood function as the number of
Monte Carlo samples increases.

3.1. Asymptotic normality. Having established strong consistency of θ̂N
n as

an estimator of the unknown MLE θ̂n as N → ∞, we can proceed, under some
additional conditions, to prove asymptotic normality for the rescaled sequence
N1/2(θ̂N

n − θ̂n).
We will establish this result by appealing to a general theorem stated below,

which concerns the asymptotic normality of the maximizer of an unbiased simul-
taneous estimator of the likelihood, as the Monte Carlo sample size N → ∞. We
first state the result in a general context and then discuss when the conditions it
requires are satisfied in our context. We will need the log-likelihood function

�n(θ) :=
n∑

i=1

logLi(θ)

and its estimate

�N
n (θ) :=

n∑
i=1

logLN
i (θ); LN

i (θ) =
N∑

j=1

Li(�
j
i , θ)/N.

The random elements �1
i , . . . ,�

N
i are independent copies of, say, �i , which is

used for the estimation of the ith likelihood term Li(θ) = p�ti (Vti−1,Vti ; θ). The
random elements are independent over the data point index i = 1, . . . , n. We use
P→,

L→ to denote convergence in probability and distribution respectively. All
derivatives in the sequel are w.r.t. the parameter argument.



MONTE CARLO MAXIMUM LIKELIHOOD FOR DIFFUSIONS 231

THEOREM 3. Assume the following:

(a) θ̂n is unique, in the (assumed nonempty) interior of �.

(b) θ̂N
n

P→ θ̂n as N → ∞.
(c) L(θ) = E[L(�, θ)] can be differentiated twice under the expectation sign.
(d) There is convergence in distribution

N1/2∇�N
n (θ̂n)

L→N (0,An)

for some covariance matrix An.
(e) Bn = −∇2�n(θ̂n) is positive definite.
(f) ∇3�N

n (θ) is bounded in probability uniformly in a neighborhood of θ̂n.

It is then true that as N → ∞,

−∇2�N
n (θ̂N

n )
P→Bn

and

N1/2(θ̂N
n − θ̂n)

L→N (0,B−1
n AnB

−1
n ).

PROOF. This is a known result; see, for instance, [19, 22]. Briefly, for the
first result note that (b) and the uniform bound in (f) imply, from the mean value
theorem, that ∇2�N

n (θ̂N
n ) − ∇2�N

n (θ̂n) → 0 in probability. From (c) and SLLN we
get that a.s. ∇2�N

n (θ̂n) → ∇2�n(θ̂n). For the second result one takes a first order
Taylor expansion with integral remainder for ∇�N

n (θ̂N
n ) − ∇�N

n (θ̂n) and rescales
by N1/2. �

The most restrictive condition of this theorem in the context of SAM is the dif-
ferentiability of θ �→ L(�, θ). The formula in Theorem 1 suggests that L(�, ·) is
typically nondifferentiable at {θ ∈ � : τi(θ) = Yj , i = 1,2, j = 1, . . . ,�}. A sim-
ple case where this is guaranteed to be an empty set is when the diffusion co-
efficient σ does not depend on θ . If σ(u; θ) = σ(u), then also η(u, θ) = η(u),
and θ is involved in L(�, θ) only through the second argument of φ(u, θ). Dif-
ferentiability for L(�, ·) can now be implied by straightforward conditions on
θ �→ α(u; θ). Thus, Theorem 3 applies directly to SAM under the assumption that
σ(u; θ) = σ(u). Note, however, that we have experimentally verified consistency
of the same rate O(N1/2) even for the general case; see, for example, the numeri-
cal example in the next section. The points of nondifferentiability are of a.s. finite
number, and their presence does not seem to effect the result (of local character
anyway) of Theorem 3.

We exploit the independence of the transition density estimators Li(�i, θ) over
i = 1, . . . , n to establish condition (d) and identify An. Notice that

N1/2∇�N
n (θ̂n) =

n∑
i=1

{
N1/2

(∇LN
i (θ̂n)

LN
i (θ̂n)

− ∇Li(θ̂n)

Li(θ̂n)

)}
.
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PROPOSITION 1. Let {Xj,Yj } be an i.i.d. sequence of vectors Xj and positive
scalars Yj with expected values μx and μy respectively, and running averages
X̄N =∑N

j=1 Xj/N , ȲN =∑N
j=1 Yj/N . When N → ∞, then

N1/2
(

X̄N

ȲN

− μx

μy

)
L→ 1

μ2
y

N
(
0,Var(μyX1 − Y1μx)

)
.

PROOF. It follows directly from Slutsky’s theorems; see [19]. �

Using this proposition, we find that

An =
n∑

i=1

Var(Li(θ̂n)∇Li(�i, θ̂n) − Li(�i, θ̂n)∇Li(θ̂n))

Li(θ̂n)4

=
n∑

i=1

Var
(
∇ Li(�i, θ̂n)

Li(θ̂n)

)
.

An can be estimated via the simulated sequences {Li(�
j
i , θ̂

N
n ),∇Li(�

j
i , θ̂

N
n )}j .

Note that An increases only linearly with n.

4. Numerical illustration. We applied SAM to the logistic growth SDE [7]:

dVs = δVs(1 − c−1Vs) ds + σVs dBs, Vs ∈ V = (0,∞),(10)

which is used to model the evolution of a population in an environment of ca-
pacity c; δ is the rate of growth per individual and σ > 0 a noise parameter. It
is known (see, e.g., page 123 of [29]) that (10) is the inverse of the linear SDE
with multiplicative noise (5) after making the correspondence (θ1, θ2, θ3, θ4) =
(δ/c, σ 2 − δ,0,−σ). Here, we take θ = (δ, c, σ ), and

η(u, θ) = − log(u)/σ, α(u; θ) = σ/2 − δ/σ + δ/(σc)e−σu,

l(θ) = σ 2/8 − δ/2, r(u, θ) = [(α2 + α′)(u; θ)/2 − l(θ)] ∨ [δ2/(2σ 2)].
Note that, following Remark 1, η(u, θ) is defined here as the negative of the trans-
formation (6). If � = [δl, δu] × [cl, cu] × [σl, σu], then for any given pair of suc-
cessive data points v,w of time increment t ,

λ = δ2
u

2σ 2
l

× [(eq/2/cl − 1)2 ∨ 1]; q := log(vw) +
√

2tσ 2
uE+ log2(w/v).

It is easy to verify that all conditions of Theorem 1 hold.
In Figure 1 we demonstrate numerically the consistency of the Monte Carlo

MLE as an estimator of the unknown MLE. We applied SAM to a dataset of size
n = 1000 under the specifications V0 = 700, θ0 = (0.1,1000,0.1) and �ti = 1.
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TABLE 1
Consistency, N → ∞: The ε(N)-maximizers of the estimated likelihood LN

n (·) for a dataset of size
n = 1000 from the logistic growth model simulated under the parameter values θ0 = (0.1,

1000,0.1). In parenthesis the standard errors found by inverting −∇2�N
n (θ̂N

n,ε).

N δN
n,ε cN

n,ε σN
n,ε

1 0.1063 (0.01493) 1010.0 (30.25) 0.10051 (0.002354)
2 0.1105 (0.01539) 1009.8 (29.67) 0.10053 (0.002352)
5 0.1115 (0.01562) 1010.4 (29.31) 0.10057 (0.002369)

10 0.1103 (0.01559) 1012.3 (29.84) 0.10060 (0.002364)
20 0.1097 (0.01558) 1012.3 (29.99) 0.10057 (0.002372)
50 0.1100 (0.01563) 1012.9 (30.02) 0.10058 (0.002374)

100 0.1099 (0.01563) 1014.2 (30.07) 0.10058 (0.002371)
200 0.1095 (0.01559) 1014.4 (30.19) 0.10057 (0.002368)
300 0.1096 (0.01560) 1014.4 (30.19) 0.10057 (0.002367)

Large N(= 104) 0.1096 (0.01561) 1014.5 (30.18) 0.10057 (0.002366)

(The dataset was simulated using the Exact Algorithm of [7].) We chose � =
[0.03,0.18]×[850,1200]×[0.09,0.12], outside which a preliminary investigation
showed that the likelihood is of negligible value. The maximizers θ̂N

n of LN
n (·) for

the various values of N in Table 1 were found numerically with the downhill sim-
plex method (see, e.g., Section 10.4 of [34]) up to some precision error ε(N) which
decreased with increasing N . The initial search point for each maximization was
the output of the previous one; for N = 1 the initial point was (0.05,1150,0.115).
Computer implementation in C on a Pentium IV 2.6 GHz processor yielded (in 14
minutes) the sequence of ε(N)-maximizers shown in Table 1. The simulated � was
on average, over all consecutive data points and Monte Carlo iterations, 2.004 and
never exceeded 11.

In Table 2 we investigate the mean of the asymptotic distribution of the scaled
variable N1/2(θ̂N

n − θ̂n) theoretically demonstrated in Theorem 3. Note that in
this context the diffusion coefficient depends on unknown parameters, so θ �→

TABLE 2
Asymptotic Unbiasedness, N → ∞: The sample means from 1000 realizations of N1/2(θ̂N

n − θ̂n)

for various N . In parenthesis the corresponding standard errors. The data were of size n = 250;
θ0 = (0.1,1000,0.1). The MLE θ̂n was found using large N (= 104).

N1/2(δ̂N
n − δ̂n) N1/2(ĉN

n − ĉn) N1/2(σ̂N
n − σ̂n)

N = 25 −129e−5 (30e−5) 0.825 (0.320) −2.28e−5 (0.79e−5)
N = 50 −81e−5 (30e−5) 0.414 (0.321) −0.47e−5 (0.78e−5)
N = 100 −46e−5 (30e−5) 0.092 (0.317) 1.40e−5 (0.81e−5)
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L(�, θ) will exhibit points of nondifferentiability with positive probability. Yet,
the numerical study suggests agreement with the conclusions of the theorem.

5. Unconditional asymptotics, n → ∞. We find the optimal choice of Monte
Carlo iterations N = Nn asymptotically as n → ∞. In accordance, we will now
write θ̂

Nn
n for the sequence of Monte Carlo maximizers (4) and L

Nn

i (θ) for the
unbiased estimators of Li(θ). The data points are now treated as random variables.
The analysis follows a rather intuitive approach. The objective is to provide a rule
for the selection of N but, at the same time, avoid the mathematical rigor that
would take up the space of a full paper; see, for example, [27] or [12]. So, we will
state the main result in Theorem 4 under reasonable ergodicity assumptions on
the diffusion dynamics without insisting on technical details. Note that the precise
formula for the estimator L(�, θ) of L(θ) is not essential for this section: given
that Assumptions 1–4 below are satisfied, Theorem 4 holds for any given unbiased
estimator of L(θ). As in Section 3.1, the asymptotic normality result in Theorem 4
requires differentiability of θ �→ L(�, θ) and will apply directly to SAM under the
known diffusion coefficient assumption, σ(u; θ) = σ(u).

We assume that the diffusion is ergodic, with π denoting its invariant density
corresponding to the correct parameter value θ0, and that the data are equidistant,
that is, ti = i� for some � > 0. We define the family of mappings which satisfy a
Law of Large Numbers criterion:

� =
{
f | f : R2 → R,

n∑
i=1

f
(
V(i−1)�,Vi�

)
/n

P→Eπ [f (V0,V�)]
}
,

where Eπ [·] is expectation in stationarity, that is, (V0,V�) ∼ π(dx)p�(x, dy; θ0).
We follow the approach of [27]. In that paper the discretization increment of

a diffusion approximation is adjusted to the datasize n → ∞. In our case, had it
been possible to construct an unbiased estimator of the log-transition density, then
the Monte Carlo error would be averaged out for increasing n and

√
n-consistency

of θ̂
Nn
n (as an estimator of θ0) would follow even for fixed N ; see Theorem 2 of

[27]. We will now allow N = Nn → ∞ as n → ∞ and identify the magnitude of
the log-bias through an error expansion. For simplicity, we set

ζi = ζi,N := ∇ logLN
i (θ0) − ∇ logLi(θ0),

and Fi = σ(V(i−1)�,Vi�), for i = 1, . . . , n. Recall that d is the dimensionality of
the parameter vector.

ASSUMPTION 1. There exist ψ : R2 �→ Rd , g : R2 �→ Rd×d , h : R2 �→ R with
scalar components in � such that∣∣∣∣E[ζi,N | Fi] − ψ

(
V(i−1)�,Vi�

) 1

N

∣∣∣∣+
∣∣∣∣E[ζi,Nζ�

i,N | Fi] − g
(
V(i−1)�,Vi�

) 1

N

∣∣∣∣
≤ h

(
V(i−1)�,Vi�

)
o(1/N).



MONTE CARLO MAXIMUM LIKELIHOOD FOR DIFFUSIONS 235

The assumption is not on the expansion itself, but on the regularity of the co-
efficients ψ,g,h. Indeed, for given V(i−1)�,Vi�, the O(1/N)-bias follows from a
second-order Taylor expansion for ζi,N . Analytically, for sequence {Xj,Yj } as in
Proposition 1, one can write

X̄N

ȲN

− μx

μy

= 1

μy

(X̄N − μx) − μx

μ2
y

(ȲN − μy) − 1

μ2
y

(X̄N − μx)(ȲN − μy)

+ μx

μ3
y

(ȲN − μy)
2 + R(X̄N, ȲN ,μx,μy),

for some lower order residual R(X̄N, ȲN ,μx,μy). Making the correspondence
X̄N ↔ ∇LN

i (θ0), ȲN ↔ LN
i (θ0), assuming that E[Li(�i, θ)] = Li(θ) can be dif-

ferentiated under the integral sign, and taking expectations conditionally on the
data, ψ(V(i−1)�,Vi�) in Assumption 1 is analytically identified as

− 1

L2
i (θ0)

Cov(∇Li(�i, θ0),Li(�i, θ0)) + ∇Li(θ0)

L3
i (θ0)

Var(Li(�i, θ0)).

The corresponding expressions we can obtain for g, h are much more complicated.

ASSUMPTION 2. The matrix A(θ) := Eπ [−∇2 logp�(V0,V�; θ)] is positive
definite for any θ ∈ � and

−∇2�
Nn
n (θ)

n

P→ A(θ)

uniformly for θ in a neighborhood of θ0.

Under the standard maximum likelihood assumption for convergence in prob-
ability of ∇2�n(θ)/n to A(θ) uniformly in a neighborhood of θ0, it remains to
explain the same mode of convergence for {∇2�

Nn
n (θ)−∇2�n(θ)}/n toward 0. We

define

ζ̇i = ζ̇i,N = ∇2 logLN
i (θ) − ∇2 logLi(θ).

From Lemma 9 of [21], used also in [27], the following conditions imply the re-
quired convergence for fixed θ :∑n

i=1 E[ζ̇i,Nn | Fi]
n

P→0;
∑n

i=1 E[ζ̇i,Nn ζ̇
�
i,Nn

| Fi]
n2

P→0.(11)

Similarly to Assumption 1, a Taylor expansion can provide estimates:∣∣E[ζ̇i,N | Fi]
∣∣+ ∣∣E[ζ̇i,N ζ̇�

i,N | Fi]
∣∣≤ Ṙθ

(
V(i−1)�,Vi�

)
O(1/N).

Assuming that Ṙθ ∈ �, and since Nn → ∞, these estimates imply (11). It is tech-
nically much harder to illustrate convergence uniformly in a neighborhood of θ0.
Following Theorem 2 in [27], it suffices (assuming stationarity) to obtain a bound
on the L2d+1-norm of ζ̇i,N (θ) and a Lipschitz condition for θ �→ ζ̇i,N (θ) uniformly
in N , again in the L2d+1-norm. We avoid further details.
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ASSUMPTION 3. The following two sequences converge in probability to 0:∑n
i=1 ζ 2

i,Nn
− E[ζ 2

i,Nn
| Fi]

n
,

∑n
i=1 ζi,NnE[ζi,Nn | Fi] − E2[ζi,Nn | Fi]

n
.

Note that the summands have zero expectation. This can therefore be interpreted
as an ergodicity assumption on the diffusion dynamics upon the consideration of
the enlarged σ -algebra from the Monte Carlo scheme.

ASSUMPTION 4. The following weak convergence holds:

∇�n(θ0)√
n

L→ N (0,V ),

where

V = Eπ [∇ logp�(V0,V�; θ0)∇ logp�(V0,V�; θ0)
�].

This is a standard ergodicity assumption for maximum likelihood inference for
discretely observed diffusions. Of course, V = A(θ0), assuming exchangeability
of differentiation and integration at Eπ [∇2p�(V0,V�; θ0)].

THEOREM 4. Let N = Nn grow to infinity with n → ∞. Then

θ̂Nn
n

P→ θ0.

Also, if θ0 is in the interior of � and Assumptions 1–4 hold, then:

(i) if limn→∞
√

n/Nn = 0 then
√

n(θ̂
Nn
n − θ0)

L→N (0,A−1),

(ii) if limn→∞
√

n/Nn = c ∈ (0,∞) then
√

n(θ̂
Nn
n − θ0)

L→N (cμ,A−1),

(iii) if limn→∞
√

n/Nn = ∞ then Nn(θ̂
Nn
n − θ0)

P→μ,

for A = A(θ0) and μ = A−1Eπ [ψ(V0,V�)].
PROOF. Consistency of the Monte Carlo MLE can be proved in line with [12].

We proceed directly at the proof of the asymptotic results for the various scalings
of Nn. We use a Taylor expansion as in the classical MLE theory. The additional
complexity is due to the presence of the Monte Carlo scheme. The basic equation
is the following:

∇�N
n (θ̂N

n ) = ∇�N
n (θ0) +

∫ 1

0
∇2�N

n

(
θ0 + ρ(θ̂N

n − θ0)
)
dρ × (θ̂N

n − θ0),(12)

where the term ∇�N
n (θ̂N

n ) = 0 can be ignored. From the consistency of θ̂
Nn
n and

Assumption 2,

− ∫ 1
0 ∇2�

Nn
n (θ0 + ρ(θ̂

Nn
n − θ0)) dρ

n

P→A.
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Consider now the remaining gradient term. We rewrite

∇�N
n (θ0) = {∇�N

n (θ0) − ∇�n(θ0)} + ∇�n(θ0).

Assumption 4 controls ∇�n(θ0). For the last term {∇�N
n (θ0)−∇�n(θ0)} we employ

a martingale decomposition as in [27]. We rewrite

∇�N
n (θ0) − ∇�n(θ0) =

n∑
i=1

{ζi,N − E[ζi,N | Fi]} +
n∑

i=1

E[ζi,N | Fi].

Assumption 1 controls the extreme right term. Under Assumptions 1 and 3,∑n
i=1(ζi,Nn − E[ζi,Nn | Fi])2

n

P→0,

so the martingale CLT in Theorem 3.2 of [26] implies∑n
i=1{ζi,Nn − E[ζi,Nn | Fi]}√

n

L→0.

For (i) and (ii), multiply both sides of (12) with n−1/2, whence, from Assump-
tion 1, the log-bias term n−1/2∑n

i=1 E[ζi,Nn | Fi] will converge in probability ei-
ther to 0 if n1/2/Nn → 0 or to cμ if n1/2/Nn → c. For (iii), multiply both sides of
(12) with Nn/n. �

The theorem shows that, as long as N = o(n1/2), the Monte Carlo MLE has the
same asymptotic behavior with the unknown MLE.

6. Proof of Theorem 1. The notation in this section follows the definitions in
Section 2. We prove the result in several stages.

6.1. Diffusion transformation and densities. We consider the modified process
Xs = η(Vs, θ). Condition (C0) allows the application of Itô’s lemma to show that
Xs is the solution of the unit diffusion coefficient SDE:

dXs = α(Xs; θ) ds + dBs.

Let p̃t (·, ·; θ) be the transition density of X defined analogously to (2). Recall that
we have defined x = x(θ) = η(v, θ) and y = y(θ) = η(w, θ). A standard change-
of-variables argument yields

L(θ) ≡ pt(v,w; θ) = |η′(w, θ)| · p̃t (x, y; θ).

Let Qθ be the law of the paths of X on [0, t] conditioned to begin at X0 = x and
finish at Xt = y. We call such a path “a bridge from (0, x) to (t, y).” Let Wθ be the
distribution of the Brownian bridges (BBs) from (0, x) to (t, y); a random process
distributed according to Wθ will be denoted by W . Both Qθ and Wθ apply on the
space C of continuous mappings from [0, t] to R equipped with the corresponding
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cylinder σ -algebra; we denote by ω a typical element of C. We have assumed in
(C0) absolute continuity of the law of (unconditional) paths of X w.r.t. the Wiener
measure with density given by Girsanov’s theorem (see, e.g., [31]):

exp
{∫ t

0
α(ωs; θ) dωs − 1

2

∫ t

0
α2(ωs; θ) ds

}
.(13)

Bayes’ theorem and an application of Itô’s formula gives the following expression
for the corresponding bridge density:

dQθ

dWθ

(ω) = Nt (y − x)

p̃t (x, y; θ)
exp

{
A(y, θ) − A(x, θ) −

∫ t

0

1

2
(α2 + α′)(ωs; θ) ds

}
.

Taking expectations at both sides w.r.t. Wθ , using (C2) and re-arranging, we get
that

p̃t (x, y; θ) = Nt (y − x) exp{A(y, θ) − A(x, θ) − l(θ)t} × a(θ),

where

a(θ) = EWθ

[
exp

{
−
∫ t

0
φ(ωs, θ) ds

}]
≤ 1.

A heuristic description of the remainder of the proof is as follows. We initially
derive an unbiased estimator a(�, θ) of a(θ), where the distribution of the random
element � depends on θ . We then construct jointly the family {�; θ ∈ �} by ex-
pressing � = f (�,X, θ) for � given in Theorem 1, X some other random element
also independent of θ and f an appropriately specified function. Finally, we show
that a(�, θ) defined in Theorem 1 is given as a(�, θ) = E[a(f (�,X, θ), θ) | �],
where X is integrated out to ensure a.s. continuity of the mapping θ �→ a(�, θ).

6.2. Connection with exact diffusion bridge simulation. In [8] it is noticed
that a(θ) coincides with the acceptance probability of a rejection sampling algo-
rithm for the simulation of paths with law Qθ . The algorithm, developed in [7]
and termed the Exact Algorithm (EA), proposes paths from Wθ and accepts them
according to the density ratio

dQθ

dWθ

(ω) ∝ exp
{
−
∫ t

0
φ(ωs, θ) ds

}
≤ 1.(14)

Let m = inf{ωs, s ∈ [0, t]} be the minimum of ω. Condition (C3) implies that
φ(ωs, θ)/r(m, θ) ≤ 1, for all s ∈ [0, t]. When ω is a realization of the Brownian
bridge W ∼ Wθ , the distribution of its minimum is given in terms of the Rayleigh
distribution (see, e.g., [36]) and can be simulated precisely according to (8) using
the exponential random variable E. Notice that if � is a Poisson process of inten-
sity r(m, θ) on [0, t] × [0,1] and N the number of the points of � lying below the
curve s �→ φ(ωs, θ)/r(m, θ), then

P[N = 0 | ω] = exp
{
−
∫ t

0
φ(ωs, θ) ds

}
.
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Thus, in [7] the following simulation algorithm is suggested. Let 
 be the pro-
jection of � on the time-axis with time-ordered points Yj ,1 ≤ j ≤ �, where
� ∼ Poisson(r(m, θ)t).

THE EXACT ALGORITHM (EA).

1. Simulate E∼ Ex(1), set m = (y + x −
√

2tE+ (y − x)2)/2.
2. Simulate 
 .
3. Simulate {WYj

,1 ≤ j ≤ �}, so that its minimum is m.
4. With probability 1 −∏�

j=1[1 − φ(WYj
, θ)/r(m, θ)] goto Step 1.

5. Output all information about W .

Step 3 requires the simulation of the skeleton {WYj
,1 ≤ j ≤ �} with a given

minimum. This can be achieved (see Section 6.4 below) using existing theory on
the decomposition of the Brownian path at its minimum; see, for example, Proposi-
tion 2 of [3]. Therefore, a pointwise unbiased estimator of a(θ) is readily available:

a(�, θ) =
�∏

j=1

[1 − φ(WYj
, θ)/r(m, θ)],(15)

where � = (E,
, {WYj
,1 ≤ j ≤ �}). This is the Acceptance Method proposed

in [8].

6.3. Coupling of the Poisson processes. We define the joint structure of the
collection of random variables {
; θ ∈ �} using the thinning property of the Pois-
son process (see, e.g., Section 5 of [28]). Let 
 be a Poisson process of rate
λ ≥ supθ∈� r(m(E, θ), θ) on the interval [0, t] with time-ordered points Yj ,1 ≤
j ≤ � and U = (U1, . . . ,U�) a vector of i.i.d. variables, U1 ∼ Un[0,1]. We set

 = {Yj ∈ 
 :Uj < r(m, θ)/λ,1 ≤ j ≤ �}. Then the right-hand side of (15)
rewrites as

�∏
j=1

{1 − I[Uj < r(m, θ)/λ] · φ(WYj
, θ)/r(m, θ)}.

After integrating out U, we have the following pointwise unbiased estimator of
a(θ):

a(�, θ) =
�∏

j=1

[1 − φ(WYj
, θ)/λ],(16)

where now � = (E,
, {WYj
,1 ≤ j ≤ �}).
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6.4. Coupling of the proposed paths. For a path ω with given minimum m,
let τ = {s ∈ [0, t] :ωs = m} be the instance when m is attained. As shown in the
Appendix, when ω is a realization of W , the time instance of the minimum can be
simulated conditionally on m as follows:

τ = I[V≤ p1]τ1 + I[V> p1]τ2,(17)

for V∼ Un[0,1], where we recall that p1, τ1, τ2 are given in terms of E, Z and θ .
A Brownian bridge W with a given minimum m attained at time τ can be con-
structed in terms of two Bessel bridges which can in turn be obtained through six
independent standard [from (0,0) to (1,0)] BBs; see [3]. In detail, the theory al-
lows us to construct W at the time instances Yj ,1 ≤ j ≤ �, in the following way:

WYj
= m +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
τ

√(
(x − m)(τ − Yj )

τ 3/2 + W1,Yj /τ

)2

+ W2
2,Yj /τ + W2

3,Yj /τ ,

if Yj ≤ τ,

√
t − τ

((
(y − m)(Yj − τ)

(t − τ)3/2 + W4,(Yj−τ)/(t−τ)

)2

+ W2
5,(Yj−τ)/(t−τ) + W6,(Yj−τ)/(t−τ)2

)1/2

,

if Yj > τ,

(18)

where W= {(Wi,s ,0 ≤ s ≤ 1),1 ≤ i ≤ 6} is the required collection of standard BBs.
We define Wi,Yj

as WYj
in (18) under the specification τ = τi , for i = 1,2 and

1 ≤ j ≤ �. Under this convention, substituting (17), (18) into (16) and integrating
out V, we rewrite the function we wish to estimate as

a(θ) = E

{
E

[
�∏

j=1

[1 − φ(WYj
, θ)/λ] | E,Z,W,


]}

=
2∑

i=1

E

{
�∏

j=1

[1 − φ(Wi,Yj
, θ)/λ] × pi

}
= a1(θ) + a2(θ),

where a1(θ), a2(θ) are defined in the obvious way. In the sequel, we construct
estimators ai(�, θ) of ai(θ), i = 1,2, and take a(�, θ) = a1(�, θ) + a2(�, θ).

For each Yj , we need to simulate the bridges W1,W2,W3 at the instance Yj /τi

or simulate W4,W5,W6 at the instance (Yj − τi)/(t − τi) if Yj ≤ τi or Yj > τi

respectively, 1 ≤ j ≤ �; see also Figure 1 for a graphical illustration. Thus, in total
we need 3×� simulations, which can be done using the same number of Gaussian
random variables as we now show. We can simulate a standard BB (Ws;0 ≤ s ≤ 1)

at some time instances 0 < s1 < · · · < sd < 1 using the formula (derived using
standard properties of BB)

Wsj =
j∑

l=1

Nl

√
(1 − sj )2(sl − sl−1)

(1 − sl−1)(1 − sl)
, 1 ≤ j ≤ d,(19)
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FIG. 1. Scheme for simulating Wk and Wk+3, k = 1,2,3, at the required discrete time instances; we
have defined hi =∑�

j=1 I[Yj ≤ τi ].

where N1,N2, . . . ,Nd are i.i.d. with N1 ∼ N (0,1). Consider now the collection
N = {Nkj ,1 ≤ k ≤ 3,1 ≤ j ≤ �} of independent N (0,1) variables. We will use
{Nkj ,1 ≤ j ≤ �} for the generation of the required instances of the bridges Wk and
Wk+3, 1 ≤ k ≤ 3; see Figure 1. Following (19), we obtain

Wk,Yj /τi
=

j∑
l=1

Nkl

√
(τi − Yj )2(Yl − Yl−1)

τi(τi − Yl)(τi − Yl−1)
, Yj ≤ τi,

Wk+3,(Yj−τi )/(t−τi) =
j∑

l=1

Nkl

√
(τi − Yj )2(Yl − Yl−1 ∨ τi)

(t − τi)(τi − Yl)(τi − Yl−1 ∨ τi)
I[Yl > τi],

Yj > τi,

for 1 ≤ j ≤ �, k = 1,2,3, and for both i = 1,2. Notice that there are alternative
choices for the realization of the required locations of the standard BBs. How-
ever, the above formula has been carefully developed to ensure continuity in the
parameter θ . These expressions allow us now to write the proposed paths as de-
terministic functions of E,
,Z and N. In particular, substituting the above expres-
sions into (18) and setting χ

ij
equal to the right-hand side of (18) for τ = τi , with

i = 1,2,1 ≤ j ≤ �, we obtain the final estimator:

ai(�, θ) = pi ×
�∏

j=1

[1 − φ(χ
ij
, θ)/λ], i = 1,2.

6.5. A.s. continuity of the random function. (Cnt2)(i) implies that βij , γij l are
continuous functions of θ for all i, j, l (even at values of θ such that Yj = τi or
Yl = τi); so, χ

ij
is continuous in θ . (Cnt1)(i), (Cnt2)(iii) suggest that φ(·, ·) is con-

tinuous on R × �, thus, φ(χ
ij
, θ) and a(�, θ) are continuous in θ . The continuity

of L(�, θ) follows from assumptions (Cnt1)(ii) and (Cnt2).
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6.6. A.s. boundedness of the random function. Note that a(�, θ) ≤ 1 a.s., thus,
w.p.1 |L(�, θ)| < M for all θ ∈ �, where

M = sup
θ∈�

{|η′(w, θ)|Nt (y − x) exp{A(y, θ) − A(x, θ) − l(θ)t}}< ∞.

M is finite as the supremum of a continuous function over a compact set.

7. Discussion. In this paper we have introduced a new method for likelihood
inference for discretely observed diffusions. The method is computationally effi-
cient and simple to implement, and expands significantly the family of diffusion
models for which routine maximum likelihood calculations are possible. Applica-
tions of the approach advocated here together with other likelihood methods based
on EA are given in [8].

Our methodology is a Monte Carlo approach based on two types of probabilistic
constructions. The first of these exploits a duality between diffusions and Poisson
processes, which has become transparent since the development of EA in [7]. The
second involves explicit representations of conditioned Brownian sample paths
constructed so as to be suitably continuous in model parameters. Although the
entire mathematical construction is quite involved, in this paper we are able to
distill its implementation down to a very simple Monte Carlo algorithm requiring
merely collections of Gaussian and exponential random variables, as described in
Theorem 1. The computer code for implementing our algorithm is freely available
by e-mail request to any of the authors.

The scope of the methodology we introduce here can be extended in various
directions. A direct extension is to certain multivariate diffusions. For example, it
can be seen that our methods extend to processes which (possibly after a transfor-
mation) can be written as

dXs = ∇A(Xs; θ) ds + dBs, Xs ∈ X ⊆ Rm,

and B is a m-dimensional Brownian motion. The conditions (C0)–(C3) have to
be appropriately modified, particularly (C3) now becomes that α = ∇A is such
that (α2 + α′)(·; θ) is bounded above on (z1,∞) × (z2,∞) × · · · × (zm,∞) for
all z1, . . . , zm ∈ R. Furthermore, it is likely that our methods will be extended by
currently ongoing work on simulating diffusions for which condition (C3) is not
required to hold.

APPENDIX: SIMULATION OF τ

The joint distribution of the minimum and the time instance when this is attained
(m, τ) for a Brownian bridge W is of a known form; see [36]. In [7] we noticed that
the distribution of τ conditionally on m can be expressed in terms of the mixture
of two inverse Gaussian laws. The exact simulation formula is the following:

τ−1 = {
1 + I

[
U0 <

(
1 +√

c1/c2
)−1] · I1 + I

[
U0 ≥ (

1 +√
c1/c2

)−1] · I−1
2

}
/t,
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where c1 = (y − m)2/(2t), c2 = (x − m)2/(2t), and I1 ∼ IGau(
√

c1/c2,2c1),
I2 ∼ IGau(

√
c2/c1,2c2) and U0 ∼ Un[0,1]. We denoted by IGau(·, ·) the inverse

Gaussian distribution specified by two positive parameters (see, e.g., Chapter IV.4
of [14]). An inverse Gaussian random variable I with parameters (c, d) can be
represented as (see page 149 of [14])

I = I[V0 ≤ 1/(1 + z)]cz + I[V0 > 1/(1 + z)]c
z
,

where z = 1 + (c/d)Z2/2 −
√

4(c/d)Z2 + (c/d)2Z4/2, V0 ∼ Un[0,1]. Using this
formula for I1, I2 with the same V0,Z, and after some algebra, the expression for
τ simplifies to (17).
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