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The paper considers functional linear regression, where scalar responses
Y1, . . . , Yn are modeled in dependence of random functions X1, . . . ,Xn. We
propose a smoothing splines estimator for the functional slope parameter
based on a slight modification of the usual penalty. Theoretical analysis con-
centrates on the error in an out-of-sample prediction of the response for a new
random function Xn+1. It is shown that rates of convergence of the prediction
error depend on the smoothness of the slope function and on the structure of
the predictors. We then prove that these rates are optimal in the sense that they
are minimax over large classes of possible slope functions and distributions
of the predictive curves. For the case of models with errors-in-variables the
smoothing spline estimator is modified by using a denoising correction of the
covariance matrix of discretized curves. The methodology is then applied to a
real case study where the aim is to predict the maximum of the concentration
of ozone by using the curve of this concentration measured the preceding day.

1. Introduction. In a number of important applications the outcome of a re-
sponse variable Y depends on the variation of an explanatory variable X over time
(or age, etc.). An example is the application motivating our study: the data consist
in repeated measurements of pollutant indicators in the area of Toulouse over the
course of a day that are used to explain the maximum (peak) of pollution for the
next day. Generally, a linear regression model linking observations Yi of a response
variable with p repeated measures of an explanatory variable may be written in the
form

Yi = α0 + 1

p

p∑
j=1

αjXi(tj ) + ε∗
i , i = 1, . . . , n.(1.1)

Here t1 < · · · < tp denote observation points which are assumed to belong to a
compact interval I ⊂ R. The possibly varying strength of the influence of Xi at
each measurement point tj is quantified by different coefficients αj . Frequently
p � n and/or there is a high degree of collinearity between the “predictors”
Xi(tj ), j = 1, . . . , p, and standard regression methods are not applicable. In ad-
dition, (1.1) may incorporate a discretization error, since one will often have to
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assume that Yi also depends on unobserved time points t in between the observa-
tion times tj . As pointed out by several authors (Marx and Eilers [22], Ramsay and
Silverman [26] or Cuevas, Febrero and Fraiman [10]) the use of functional mod-
els for these settings has some advantages over discrete, multivariate approaches.
Only in a functional framework is it possible to profit from qualitative assumptions
like smoothness of underlying curves. Assuming square integrable functions Xi on
I ⊂ R, the basic object of our study is a functional linear regression model

Yi = α0 +
∫
I
α(t)Xi(t) dt + εi, i = 1, . . . , n,(1.2)

where εi ’s are i.i.d. centered random errors, E(εi) = 0, with variance E(ε2
i ) = σ 2

ε ,
and α is a square integrable functional parameter defined on I that must be esti-
mated from the pairs (Xi, Yi), i = 1, . . . , n. This type of regression model was first
considered in Ramsay and Dalzell [24]. Obviously, (1.2) constitutes a continuous
version of (1.1), and both models are linked by

ε∗
i = di + εi, where di =

∫
I
α(t)Xi(t) dt − 1

p

p∑
j=1

α(tj )Xi(tj )(1.3)

may be interpreted as a discretization error, and α(tj ) = αj .
As a consequence of developments of modern technology, data that may be

described by functional regression models can be found in a lot of fields such
as medicine, linguistics, chemometrics (see, e.g., Ramsay and Silverman [25, 26]
and Ferraty and Vieu [14], for several case studies). Similarly to traditional re-
gression problems, model (1.2) may arise under different experimental designs.
We assume a random design of the explanatory curves, where X1, . . . ,Xn is a se-
quence of identically distributed random functions with the same distribution as a
generic X. The main assumption on X is that it is a second-order variable, that is,
E(

∫
I X2(t) dt) < +∞, and it is assumed moreover that E(Xi(t)εi) = 0 for almost

every t ∈ I . This situation has been considered, for instance, in Cardot, Ferraty
and Sarda [7] and Müller and Stadtmüller [23] for independent variables, while
correlated functional variables are studied in Bosq [2]. Our analysis is based on a
general framework without any assumption of independence of the Xi’s. We will,
however, assume independence between the Xi’s and the εi ’s in our theoretical
results in Sections 3 and 4.

The main problem in functional linear regression is to derive an estimator α̂ of
the unknown slope function α. However, estimation of α in (1.2) belongs to the
class of ill-posed inverse problems. Writing (1.2) for generic variables X, Y and ε,
multiplying both sides by X − E(X) and then taking expectations leads to

E
((

Y − E(Y )
)(

X − E(X)
))

(1.4)

= E

(∫
I
α(t)

(
X(t) − E(X)(t)

)
dt

(
X − E(X)

)) =: �(α).
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The normal equation (1.4) is the continuous equivalent of normal equations in the
multivariate linear model. Estimation of α is thus linked with the inversion of the
covariance operator � of X defined in (1.4). But, unlike the finite dimensional
case, a bounded inverse for � does not exist since it is a compact linear opera-
tor defined on the infinite dimensional space L2(I ). This corresponds to the setup
of ill-posed inverse problems (with the additional difficulty that � is unknown).
As a consequence, the parameter α in (1.2) is not identifiable without additional
constraint. Actually, a necessary and sufficient condition under which a unique
solution for (1.2)–(1.4) exists in the orthogonal space of ker(�) and is given by∑

r (
E((Y−E(Y ))

∫
I (X(t)−E(X)(t))ζr (t) dt)

λr
)2 < +∞, where (λr , ζr)r are the eigenele-

ments of � (see Cardot, Ferraty and Sarda [7] or He, Müller and Wang [19] for
a functional response). The set of solutions is the set of functions α which can
be decomposed as a sum of the unique element of the orthogonal space of ker(�)

satisfying (1.4) and any element of ker(�).
It follows from these arguments that any sensible procedure for estimating α (or,

more precisely, of its identifiable part) has to involve regularization procedures.
Several authors have proposed estimation procedures where regularization is ob-
tained in two main ways. The first one is based on the Karhunen–Loève expansion
of X and leads to regression on functional principal components: see Bosq [2],
Cardot, Mas and Sarda [8] or Müller and Stadtmüller [23]. It consists in project-
ing the observations on a finite dimensional space spanned by eigenfunctions of
the (empirical) covariance operator �n. For the second method, regularization is
obtained through a penalized least squares approach after expanding α in some ba-
sis (such as splines): see Ramsay and Dalzell [24], Eilers and Marx [12], Cardot,
Ferraty and Sarda [7] or Li and Hsing [21]. We propose here to use a smoothing
splines approach prolonging a previous work from Cardot et al. [5].

Our estimator is described in Section 2. Note that (1.2) implies that Yi −
Y = ∫

I α(t)[Xi(t) − X(t)]dt + εi − ε̄. Based on the observation times t1 <

· · · < tp , we rely on minimizing the residual sum of squares
∑

i (Yi − Y −
1
p

∑p
j=1 a(tj )(Xi(tj ) − X(tj )))

2 subject to a roughness penalty. A slight modi-
fication of the usual penalty term is applied in order to guarantee the existence of
the estimator under general conditions. The proposed estimator α̂ is then a nat-
ural spline with knots at the observation points tj . An estimator of the intercept
α0 = E(Y )− ∫

I α(t)E(X)(t)]dt is given by α̂0 = Y − ∫
I α̂(t)X(t) dt . For simplic-

ity, we will assume that t1 < · · · < tp are equispaced, but the methodology can
easily be generalized to other situations. It must be emphasized, however, that our
study does not cover the case of sparse points for which other techniques have to be
envisaged; for this specific problem, see the work from Yao, Müller and Wang [32].

In Section 3 we present a detailed asymptotic theory of the behavior of our es-
timator for large values of n and p. The distance between α̂ and α is evaluated
with respect to L2 semi-norms induced by the operator �, ‖u‖2

� = 〈�u,u〉 with
〈u, v〉 = ∫

I u(t)v(t) dt , or its discretized or empirical versions (see, e.g., Cardot,
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Ferraty and Sarda [7] or Müller and Stadtmüller [23] for similar setups). By us-
ing these semi-norms we explicitly concentrate on analyzing the estimation error
only for the identifiable part of the structure of α which is relevant for prediction.
Indeed, it will be shown in Section 3 that ‖α̂ − α‖2

� determines the rate of con-
vergence of the error in predicting the conditional mean α0 + ∫

I α(t)Xn+1(t) dt

of Yn+1 for any new random function Xn+1 possessing the same distribution as X

and independent of X1, . . . ,Xn:

E

((
α̂0 +

∫
I
α̂(t)Xn+1(t) dt − α0 −

∫
I
α(t)Xn+1(t) dt

)2∣∣∣α̂0, α̂

)
(1.5)

= ‖α̂ − α‖2
� + OP (n−1).

We first derived optimal rates of convergence with respect to the L2 semi-
norms induced by � in a quite general setting which substantially improved
existing results in the literature as well as bounds obtained for this estimator
in a previous paper (see Cardot et al. [5]). If α is m-times continuously dif-
ferentiable, then it is shown that rates of convergence for our estimator are of
order n−(2m+2q+1)/(2m+2q+2), where the value of q > 0 depends on the struc-
ture of the distribution of X. More precisely, q quantifies the rate of decrease∑∞

r=k+1 λr = O(k−2q) as k → ∞, where λ1 ≥ λ2 ≥ · · · are the eigenvalues of
the covariance operator �. If, for example, X is a.s. twice continuously differen-
tiable, then q ≥ 2. As a second step, we show that these rates of convergence are
optimal in the sense that they are minimax over large classes of distributions of X

and of functions α. No alternative estimator can globally achieve faster rates of
convergence in these classes.

In an interesting paper Cai and Hall [4] derive rates of convergence on the error
α0 + 〈α,x〉 − α̂0 − 〈α̂, x〉 for a pre-specified, fixed function x. Their approach
is based on regression with respect to functional principal components and the
derived rates are shown to be optimal with respect to this methodology. At first
glance this setup seem to be close, but due to the fact that explanatory variables
are of infinite dimension, inference on fixed functions x cannot generally be used
to derive optimal rates of convergence of the prediction error (1.5) for random
functions Xn+1. We also want to emphasize that in the present paper we do not
consider the convergence of α̂ with respect to the usual L2 norm. Analyzing ‖α̂ −
α‖2 = ∫

I (α̂(t) − α(t))2 dt instead of ‖α̂ − α‖2
� must be seen statistically as a very

different problem, and under our general assumptions it only follows that ‖α̂ −
α‖2 is bounded in probability (see the proof of Theorem 2). It appears that to get
stronger results one needs additional conditions linking the “smoothness” of α and
of the curves Xi as derived in a recent work by Hall and Horowitz [18]. A detailed
discussion of these issues is given in Section 3.2.

In practice the functional values Xi(tj ) are often not directly observed; there
exist only noisy observations Wij = Xi(tj ) + δij contaminated with random er-
rors δij . In Section 4, we consider a modified functional linear model adapting
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to such situations. In this errors-in-variable context, we use a corrected estimator
as introduced in Cardot et al. [5] which can be seen as a modified version of the
so-called total least squares method for functional data. We show again the good
asymptotic performance of the method for a sufficiently dense grid of discretiza-
tion points.

We devote Section 5 to the application of the proposed estimation procedure
to the prediction of the peak of pollution from the curve of pollutant indicators
collected the preceding day. Finally, the proofs of our results can be found in Sec-
tion 6.

2. Smoothing splines estimation of the functional coefficient. As explained
in the Introduction, we will assume that the functions Xi are observed at p equidis-
tant points t1, . . . , tp ∈ I . In order to simplify further developments, we will take
I = [0,1] so that t1 = 1

2p
and tj − tj−1 = 1

p
for all j = 2, . . . , p.

Our estimator of α in (1.2) is a generalization of the well-known smoothing
splines estimator in univariate nonparametric regression. It relies on the implicit
assumption that the underlying function α is sufficiently smooth as, for example,
m-times continuously differentiable (m = 1,2,3, . . .).

For any smooth function a the discrete sum 1
p

∑p
j=1 a(tj )Xi(tj ) is used to ap-

proximate the integral
∫ 1

0 a(t)Xi(t) dt in (1.2), whereas expectations are estimated
by the sample means Y and X, and an estimate is obtained by minimizing the sum
of squared residuals (Yi −Y − 1

p

∑p
j=1 a(tj )(Xi(tj )−X(tj )))

2 subject to a rough-
ness penalty. More precisely, for some m = 1,2, . . . and a smoothing parameter
ρ > 0, an estimate α̂ is determined by minimizing

1

n

n∑
i=1

(
Yi − Y − 1

p

p∑
j=1

a(tj )
(
Xi(tj ) − X(tj )

))2

(2.1)

+ ρ

(
1

p

p∑
j=1

π2
a (tj ) +

∫ 1

0

(
a(m)(t)

)2
dt

)

over all functions a in the Sobolev space Wm,2([0,1]) ⊂ L2([0,1]), where
πa(t) = ∑m

l=1 βa,l t
l−1 with

∑p
j=1(a(tj ) − πa(tj ))

2 = minβ1,...,βm

∑p
j=1(a(tj ) −∑m

l=1 βlt
l−1)2.

Obviously, πa denotes the best possible approximation of (a(t1), . . . , a(tp)) by
a polynomial of degree m − 1. The extra term 1

p

∑p
j=1 πa(tj )

2 in the roughness
penalty is unusual and does not appear in traditional smoothing splines approaches.
It will, however, be shown below that this term is necessary to guarantee existence
of a unique solution in a general context without any additional assumptions on
the curves Xi .

It is quite easily seen that any solution α̂ of (2.1) has to be an element of the
space NSm(t1, . . . , tp) of natural splines of order 2m with knots at t1, . . . , tp .
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Recall that NSm(t1, . . . , tp) is a p-dimensional linear space of functions with
v(m) ∈ L2([0,1]) for any v ∈ NSm(t1, . . . , tp). Let b(t) = (b1(t), . . . , bp(t))τ be a
functional basis of NSm(t1, . . . , tp). A discussion of several possible basis function
expansions can be found in Eubank [13]. An important property of natural splines
is that there exists a canonical one-to-one mapping between R

p and the space
NSm(t1, . . . , tp) in the following way: for any vector w = (w1, . . . ,wp)τ ∈ R

p ,
there exists a unique natural spline interpolant sw with sw(tj ) = wj , j = 1, . . . , p.
With B denoting the p × p matrix with elements bi(tj ), sw is given by

sw(t) = b(t)τ (Bτ B)−1Bτ w.(2.2)

The important property of such a spline interpolant is the fact that∫ 1

0
s(m)

w (t)2 dt ≤
∫ 1

0
f (m)(t)2 dt(2.3)

for any other function f ∈ Wm,2([0,1])
with f (tj ) = wj , j = 1, . . . , p.

Note that in (2.1) only the integral
∫ 1

0 a(m)(t)2 dt depends on the values of a in
the open intervals (tj−1, tj ) between grid points. It therefore follows from (2.3)
that α̂ = sα̂ , where α̂ = (α̂(t1), . . . , α̂(tp))τ ∈ R

p minimizes

1

n

n∑
i=1

(
Yi − Y − 1

p

p∑
j=1

a(tj )
(
Xi(tj ) − X(tj )

))2

(2.4)

+ ρ

(
1

p

p∑
j=1

π2
a (tj ) +

∫ 1

0
s(m)

a (t)2 dt

)
;

with respect to all vectors a = (a(t1), . . . , a(tp))τ ∈ R
p .

A closer study of α̂ requires the use of matrix notation: Y = (Y1 − Y , . . . , Yn −
Y)τ , Xi = (Xi(t1) − X(t1), . . . ,Xi(tp) − X(tp))τ for all i = 1, . . . , n, α =
(α(t1), . . . , α(tp))τ , ε = (ε1 − ε, . . . , εn − ε)τ and let X be the n×p matrix with a
general term Xi(tj ) − X(tj ) for all i = 1, . . . , n, j = 1, . . . , p. Moreover, Pm will
denote the p × p projection matrix projecting into the m-dimensional linear space
Em := {w = (w1, . . . ,wp)τ ∈ R

p|wj = ∑m
l=1 θlt

l−1
j , j = 1, . . . , p} of all (dis-

cretized) polynomials of degree m− 1. By (2.2), we have
∫ 1

0 s
(m)
a (t)2 dt = aτ A∗

ma,
where A∗

m = B(Bτ B)−1[∫ 1
0 b(m)(t)b(m)(t)τ dt](Bτ B)−1Bτ is a p × p matrix.

When defining Am := Pm + pA∗
m, minimizing (2.4) is equivalent to solving

min
a∈Rp

{
1

n

∥∥∥∥Y − 1

p
Xa

∥∥∥∥2

+ ρ

p
aτ Ama

}
,(2.5)

where ‖ · ‖ stands for the usual Euclidean norm. The solution is given by

α̂ = 1

np

(
1

np2 Xτ X + ρ

p
Am

)−1

Xτ Y = 1

n

(
1

np
Xτ X + ρAm

)−1

Xτ Y.(2.6)
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Then α̂ = sα̂ constitutes our final estimator of α while α̂0 = Y − 〈α̂,X〉 is used to
estimate the intercept α0. Based on a somewhat different development, this esti-
mator of α has already been proposed by Cardot et al. [5].

In order to verify existence of α̂, let us first cite some properties of the eigen-
values of pA∗

m which have been studied by many authors (see Eubank [13]). For
instance, in Utreras [28], it is shown that this matrix has exactly m zero eigen-
values μ1,p = · · · = μm,p = 0. The corresponding m-dimensional eigenspace is
the space Em of discretized polynomials as defined above. The p − m nonzero
eigenvalues 0 < μm+1,p < · · · < μp,p are such that there exist constants 0 < D0 <

D1 < ∞ such that D0 ≤ μj+m,p(πj)−2m ≤ D1 for j = 1, . . . , p − m and all suf-
ficiently large p. Therefore, there exist some constant 0 < C0 < +∞ and some
p0 ∈ {0,1,2, . . .} such that for all p ≥ p0 and k = 0, . . . , p − m − 1

k2m 1

μk+m+1,p

≤ C0.(2.7)

We can conclude that all eigenvalues of the matrix Am are strictly positive, and
existence as well as uniqueness of the solution (2.6) of the minimization prob-
lem (2.5) are straightforward consequences. Note that Introduction of the addi-
tional term 1

p

∑p
j=1 πa(tj )

2 in (2.1) is crucial. Dropping this term in (2.1) as well
as (2.4) results in replacing Am by pA∗

m in (2.5). Existence of a solution then
cannot be guaranteed in a general context since, due to the m zero eigenvalues of
pA∗

m, the matrix ( 1
np2 Xτ X + ρA∗

m) may not be invertible.

REMARK. Our requirement of equidistant grid points tj has to be seen as
a restrictive condition. There are many applications where the functions Xi are
only observed at varying numbers pi of irregularly spaced points ti1 ≤ · · · ≤ tipi

.
Then our estimation procedure is not directly applicable. Fortunately there ex-
ists a fairly simple modification. Define a smooth function X̃i ∈ L2([0,1]) by
smoothly interpolating the observations (e.g., using natural splines) such that
X̃i(tij ) = Xi(tij ), j = 1, . . . , pi . Then define p > max{p1, . . . , pn} equidistant
grid points t1, . . . , tp , and determine an estimator α̂ by applying the smooth-
ing spline procedure (2.1) with 1

p

∑p
j=1 a(tj )(Xi(tj ) − X(tj )) being replaced by

1
p

∑p
j=1 a(tj )(X̃i(tj ) − X̃(tj )). For example, in the case of a random design with

i.i.d. observations tij from a strictly positive design density on I , it may be shown
that the asymptotic results of Section 3 generalize to this situation if min{p1, . . . ,

pn} is sufficiently large compared to n. A detailed analysis is not in the scope of
the present paper.

3. Theoretical results.

3.1. Rates of convergence for smoothing splines estimators. We will de-
note the standard inner product of the Hilbert space L2([0,1]) by 〈f,g〉 =
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0 f (t)g(t) dt and ‖ · ‖ by its associated norm. As outlined in the Introduction,

our analysis is based on evaluating the error between α̂ and α with respect to the
semi-norm ‖ · ‖� defined in Section 1,

‖u‖2
� := 〈�u,u〉, u ∈ L2([0,1]),

where � is the covariance operator of X given by

�u := E
(〈(

X − E(X)
)
, u

〉(
X − E(X)

))
, u ∈ L2([0,1]).

The above L2 semi-norm has already been used in similar contexts as the one
studied in the present paper; see, for example, Wahba [30], Cardot, Ferraty and
Sarda [7] or Müller and Stadtmüller [23]. By (1.5) the asymptotic behavior of
‖α̂ −α‖2

� constitutes a major object of interest, since it quantifies the leading term
in the expected squared prediction error for a new random function Xn+1.

As first steps, we will consider in Theorems 1 and 2 the error between α̂ and α

with respect to simplified versions of the above semi-norm: the discretized empir-
ical semi-norm defined for any u ∈ R

p as

‖u‖2
�n,p

:= 1

p
uτ

(
1

np
Xτ X

)
u,

and the empirical semi-norm defined for any u ∈ L2([0,1]) as

‖u‖2
�n

:= 1

n

n∑
i=1

〈(Xi − X),u〉2 = 〈�nu,u〉,

where �n is the empirical covariance operator from X1, . . . ,Xn given by

�nu := 1

n

n∑
i=1

〈(Xi − X),u〉(Xi − X).

Obviously, ‖α̂ − α‖2
�n,p

= 1
n

∑
i[ 1

p

∑p
j=1(α̂(tj ) − α(tj ))(Xi(tj ) − X(tj ))]2 and

‖α̂ −α‖2
�n

= 1
n

∑
i[

∫
I (α̂(t)−α(t))(Xi(t)−X(t)) dt]2 quantify different modes of

convergence of 〈α̂,X − X〉 to 〈α, (X − X)〉.
As mentioned in Section 2, the function α is required to have a certain degree of

regularity. Namely, it satisfies the following assumption for some m ∈ {1,2, . . .}:
α is m-times differentiable and α(m) belongs to L2([0,1]).(A.1)

Let C1 = ∫ 1
0 α(m)(t)2 dt and C∗

2 = ∫ 1
0 α(t)2 dt . By construction of Pm, Pmα pro-

vides the best approximation (in a least squares sense) of α by (discretized) poly-
nomials of degree m − 1, and 1

p
ατ Pmα ≤ 1

p
ατ Amα −→ C∗

2 as p → ∞. Let C2

denote an arbitrary constant with C∗
2 < C2 < ∞. There then exists a p1 ∈ {0,1, . . .}

with p1 ≥ p0 such that 1
p
ατ Pmα ≤ C2 for all p ≥ p1.

Recall that our basic setup implies that X1, . . . ,Xn are identically distributed
random functions with the same distribution as a generic variable X. Expected
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values Eε(·) as stated in the theorems below will refer to the probability distribu-
tion induced by the random variable ε, that is, they stand for conditional expecta-
tion given X1, . . . ,Xn. We assume moreover that εi is independent of the Xi’s.
In the following, for any real positive number x, [x] will denote the smallest
integer which is larger than x. In addition, let λx,1 ≥ λx,2 ≥ · · · ≥ λx,p ≥ 0 de-
note the eigenvalues of the matrix 1

np
Xτ X. We start with a theorem giving finite

sample bounds for bias and variance of the estimator α̂ with respect to the semi-
norm ‖ · ‖�n,p .

THEOREM 1. Under assumption (A.1) and the above definitions of C0, C1,
C2, p1, the following bounds hold for all n = 0,1, . . . , all p ≥ p1, all ρ > n−2m

and every n × p matrix X = (Xi(tj ))i,j :

‖Eε(α̂) − α‖2
�n,p

≤ 2ρ

(
1

p
ατ Pmα + C1

)
+ 4

n

n∑
i=1

(di − d)2

(3.1)

≤ ρ(C2 + C1) + 4

n

n∑
i=1

(di − d)2,

as well as

Eε

(‖α̂ − Eε(α̂)‖2
�n,p

) ≤ σ 2
ε

n

(
m + [

ρ−1/(2m+2q+1)](2 + C · C0)
)
,(3.2)

for any C > 0 and q ≥ 0 with the property that
∑p

j=k+1 λx,j ≤ C · k−2q holds for

k := [ρ−1/(2m+2q+1)].

The rate of convergence of ‖α̂ − α‖2
�n,p

thus depends on assumptions on the
distribution of X and on the size of the discretization error. In order to complement
our basic setup, we will rely on the following conditions:

(A.2) There exists some constant κ , 0 < κ < 1, such that for every δ > 0, there
exists a constant C3 < +∞ such that

P
(|X(t) − X(s)| ≤ C3|t − s|κ, t, s ∈ I

) ≥ 1 − δ.

(A.3) For some constant C4 < ∞ and all k = 1,2, . . . there is a k-dimensional
linear subspace Lk of L2([0,1]) with

E

(
inf

f ∈Lk

sup
t

|X(t) − f (t)|2
)

≤ C4k
−2q .

Before proceeding any further, let us consider assumption (A.3) more closely.
The following lemma provides a link between assumption (A.3) and the degree of
smoothness of the random functions Xi .
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LEMMA 1. For some q1 = 0,1,2, . . . and 0 ≤ r2 ≤ 1 assume that X is almost
surely q1-times continuously differentiable and that there exists some C5 < ∞ such
that

E

(
sup

|t−s|≤d

∣∣X(q1)(t) − X(q1)(s)
∣∣2)

≤ C5d
2r2

holds for all d > 0. There then exists a constant C6 < ∞, depending only on q1,
such that for all k = 1,2, . . .

E

(
inf

f ∈Ek

sup
t

|X(t) − f (t)|2
)

≤ C6C5k
−2(q1+r2),

where Ek denotes the space of all polynomials of order k on [0,1].

PROOF. The well-known Jackson’s inequality in approximation theory im-
plies the existence of some C6 < ∞, only depending on q1, such that for all
k = 1,2, . . .

inf
f ∈Ek

p∑
j=1

(
X(tj ) − f (tj )

)2 ≤ C6k
−2q1 sup

|t−s|≤1/k

∣∣X(q1)(t) − X(q1)(s)
∣∣2

holds with probability 1. The lemma is an immediate consequence. �

The lemma implies that if assumption (A.2) can be replaced by the stronger re-
quirement E(sup|t−s|≤d |X(t) − X(s)|2) ≤ C5d

−2r2 , d > 0, then assumption (A.3)
necessarily holds for some q ≥ κ . Indeed, q � κ will result from a very high de-
gree of smoothness of Xi .

On the other hand, assumption (A.3) only requires that the functions Xi be
well approximated by some arbitrary low dimensional linear function spaces (not
necessarily polynomials). Even if Xi are not smooth, assumption (A.3) may be
satisfied for a large value of q (the Brownian motion provides an example).

Theorem 1 together with assumptions (A.2) and (A.3) now allows us to de-
rive rates of convergence of our estimator α̂. First note that assumption (A.3)
determines the rate of decrease of the eigenvalues λx,j of 1

np
Xτ X. For any

k-dimensional linear space Lk ⊂ L2([0,1]), let Pk denote the corresponding p×p

projection matrix projecting into the k-dimensional subspace Lk,p = {v ∈ R
p|v =

(f (t1), . . . , f (tp))τ , f ∈ Lk}. Basic properties of eigenvalues and eigenvectors
then imply that

p∑
j=k+1

λx,j ≤ inf
Pk

Tr
(
(Ip − Pk)

1

np
Xτ X

)
(3.3)

= 1

np

n∑
i=1

inf
f ∈Lk

p∑
j=1

(
Xi(tj ) − X − f (tj )

)2
,
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and assumption (A.3) implies that for any δ > 0 there exists a Cδ < ∞ such that
P(

∑p
j=k+1 λx,j ≤ Cδk

−2q) ≥ 1 − δ.
Assumptions (A.1) and (A.2) obviously lead to

1

n

n∑
i=1

(di − d)2 = OP (p−2κ).(3.4)

If n,p → ∞, ρ → 0, 1/(nρ) → 0, then relations (3.1), (3.2) and (3.3) imply that

‖α̂ − α‖2
�n,p

= OP

(
ρ + (

nρ1/(2m+2q+1))−1 + p−2κ)
.

In the following we will require that p is sufficiently large compared to n so that
the discretization error is negligible. It therefore suffices that np−2κ = O(1) as
n,p → ∞. This condition imposes a large number p of observation points if κ

is small. However, if the functions Xi are smooth enough such that κ = 1, then

np−2κ = O(1) is already fulfilled if
√

n
p

= O(1) as n,p → ∞, which does not
seem to be restrictive in view of practical applications. The above result then be-
comes

‖α̂ − α‖2
�n,p

= OP

(
ρ + (

nρ1/(2m+2q+1))−1)
.(3.5)

Choosing ρ ∼ n−(2m+2q+1)/(2m+2q+2), we can conclude that

‖α̂ − α‖2
�n,p

= OP

(
n−(2m+2q+1)/(2m+2q+2)).(3.6)

The next theorem studies the behavior of the estimator for the empirical L2-
norm ‖ · ‖�n . It is shown that if p is sufficiently large compared to n, then based
on an optimal choice of ρ, the rate of convergence given in (3.6) generalizes to the
semi-norm ‖ · ‖�n .

THEOREM 2. Assume (A.1)–(A.3) as well as np−2κ = O(1), ρ → 0, 1/

(nρ) → 0 as n,p → ∞. Then

‖α̂ − α‖2
�n

= OP

(
ρ + (

nρ1/(2m+2q+1))−1)
.(3.7)

We finally investigate in the next theorem the behavior of ‖α̂ − α‖2
� . The fol-

lowing assumption describes the additional conditions used to derive our results.
It is well known that the covariance operator � is a nuclear, self-adjoint and
nonnegative Hilbert–Schmidt operator. We will use ζ1, ζ2, . . . to denote a com-
plete orthonormal system of eigenfunctions of � corresponding to the eigenvalues
λ1 ≥ λ2 ≥ · · ·.

(A.4) There exists a constant C7 < ∞ such that

Var

(
1

n

∑
i

〈Xi − E(X), ζr〉〈Xi − E(X), ζs〉
)

(3.8)

≤ C7

n
E

(〈X − E(X), ζr〉2)
E

(〈X − E(X), ζs〉2)
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holds for all n and all r, s = 1,2, . . . . Moreover, ‖X − E(X))‖2 = OP (n−1).
Relation (3.8) establishes a moment condition. It is necessarily fulfilled

if X1, . . . ,Xn are i.i.d. Gaussian random functions. Then 〈Xi − E(X), ζr〉 ∼
N(0,E(〈Xi −E(X), ζr〉2)), and 〈Xi −E(X), ζr〉 is independent of 〈Xi −E(X), ζs〉
if r �= s. Relation (3.8) then is an immediate consequence.

However, the validity of (3.8) does not require independence of the functions
Xi . For example, in the Gaussian case, (3.8) may also be verified if Cov(〈Xi −
E(X), ζr〉〈Xi − E(X), ζs〉, 〈Xj − E(X), ζr〉〈Xj − E(X), ζs〉) ≤ C7E(〈Xi − E(X),

ζr〉2)E(〈Xi − E(X), ζs〉2) · q |i−j | for some 0 < q < 1, C7 < ∞ and i �= j . This is
of importance in our application to ozone pollution forecasting which deals with a
time series of functions X1, . . . ,Xn.

THEOREM 3. Under the conditions of Theorem 2 together with assump-
tion (A.4) we have

‖α̂ − α‖2
� = OP

(
ρ + (

nρ1/(2m+2q+1))−1 + n−(2q+1)/2)
.(3.9)

Furthermore, (1.5) holds for any random function Xn+1 possessing the same dis-
tribution as X and independent of X1, . . . ,Xn.

Theorem 3 shows that if 2q ≥ 1 and ρ ∼ n−(2m+2q+1)/(2m+2q+2), then the pre-
diction error can be bounded by

E
(
(α̂0 + 〈α̂,Xn+1〉 − α0 − 〈α,Xn+1〉)2|α̂0, α̂

) = OP

(
n−(2m+2q+1)/(2m+2q+2)).

3.2. Optimality of the rates of convergence. For simplicity we will rely
on the special case of (1.2) with α0 = 0. In this case E((〈α,Xn+1〉 − α̂0 −
〈α̂,Xn+1〉)2|α̂0, α̂) ≥ ‖α̂ − α‖2

� if X possesses a centered distribution with
E(X) = 0. In Proposition 1 below we then show that for suitable Sobolev
spaces of functions α and a large class of possible distributions of Xi , the rate
n−(2m+2q+1)/(2m+2q+2) is a lower bound for the rate of convergence of the predic-
tion error over all estimators of α to be computed from corresponding observations
(Xi, Yi), i = 1, . . . , n. Consequently, the rate attained by our smoothing spline es-
timator α̂ must be interpreted as a minimax rate over these classes.

We first have to introduce some additional notation. For simplicity, we will as-
sume that the functions Xi(t) are known for all t so that the number p of observa-
tion points may be chosen arbitrarily large. We will use Cm,D to denote the space
of all m-times continuously differentiable functions α with

∫ 1
0 α(j)(t)2 dt ≤ D

for all j = 0,1, . . . ,m. Furthermore, let Pq,C denote the space of all centered
probability distributions on L2([0,1]) with the properties that (a) the sequence
of eigenvalues of the corresponding covariance operator satisfies

∑∞
j=k+1 λj ≤

Ck−2q for all sufficiently large k, and that (b) the smoothing spline estima-
tor α̂ satisfies ‖α̂ − α‖2

� = OP (n−(2m+2q+1)/(2m+2q+2)) for α ∈ Cm,D and ρ ∼
n−(2m+2q+1)/(2m+2q+2) (whenever p is chosen sufficiently large compared to n).
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Finally, for given α ∈ Cm,D , probability distribution P ∈ Pq,C and i.i.d. random
functions X1, . . . ,Xn, Xi ∼ P , let â(α,P ) denote an arbitrary estimator of α based
on corresponding data (Xi, Yi), i = 1, . . . , n, generated by (1.2) (with α0 = 0).

PROPOSITION 1. Let cn denote an arbitrary sequence of positive numbers
with cn → 0 as n → ∞, and let 2q = 1,3,5, . . . . Under the above assumptions,
we have

lim
n→∞ sup

P∈Pq,C

sup
α∈Cm,D

inf
â(α,P )

P
(‖α − â(α,P )‖2

� ≥ cn · n−(2m+2q+1)/(2m+2q+2)) = 1.

It is of interest to compare our results with those of Cai and Hall [4] who ana-
lyze the error 〈α − α̂, x〉2 for a fixed curve x. Similarly to our results, the rate of
decrease of the eigenvalues λr of � plays an important role. Note that, as shown
in the proof of Theorem 3, assumption (A.3) yields

∑∞
r=k+1 λr = O(k−2q). Since

λ1 ≥ λ2 ≥ · · · this in turn implies that λr = O(r−2q−1), and one may reasonably
assume that B−1r−2q−1 ≤ λr ≤ Br−2q−1 for some 0 < B < ∞. However, Cai
and Hall [4] measure “smoothness” of α in terms of a spectral decomposition
α(t) = ∑

r αrζr(t) and not with respect to usual smoothness classes. Their quan-
tity of interest is the rate β > 1 of decrease |αr | = O(r−β) as r → ∞. But recall
that the error in expanding an m-times continuously differentiable function with
respect to k suitable basis functions (as, e.g., orthogonal polynomials or Fourier
functions) is of an order of at most k−2m. For the sake of comparison, assume
that ζ1, ζ2, . . . define an appropriate basis for approximating smooth functions and
that inff ∈span{ζ1,...,ζk} ‖α − f ‖2 = ∑∞

r=k+1 α2
r = O(k−2m). This will require that

α2
r = O(r−2m−1) and, hence, 2β = 2m + 1.

Results as derived by Cai and Hall [4] additionally depend on the spectral de-
composition x(t) = ∑

r xrζr(t) of a function x of interest. The essential condition
on the structure of the coefficients xr may be re-expressed in the following form:

There exist some ν ∈ R and 0 < D0 < ∞ such that D−1
0 rν ≤ x2

r
λr

≤ D0r
ν for all

r = 1,2, . . . . Rates of convergence then follow from the magnitude of ν, and it is
shown that parametric rates n−1 (or n−1 logn) are achieved if ν ≤ −1.

Now consider a random function Xn+1 and assume that the underlying distri-
bution is Gaussian. It is then well known that Xn+1(t) = ∑

r xn+1,r ζr (t) for in-

dependent N(0, λr)-distributed coefficients xn+1,r . Consequently,
x2
n+1,r

λr
are i.i.d.

χ2
1 -distributed variables for all r = 1,2, . . . , and if ν ≤ 0 we obtain P(D−1

0 rν ≤
x2
n+1,r

λr
≤ D0r

ν for all r = 1,2, . . .) = 0 for all 0 < D0 < ∞. This already shows

that parametric rates n−1 cannot be achieved for the error 〈α − α̂,Xn+1〉2. On

the other hand, for arbitrary ν > 0 and 0 < δ < 1 we have P(D−1
0 rν ≤ x2

n+1,r

λr
≤

D0r
ν for all r = 1,2, . . .) ≥ δ, whenever D0 is sufficiently large. If B−1r−2q−1 ≤
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λr ≤ Br−2q−1 and α2
r = OP (r−2m+1), then for a function x with D−1

0 rν ≤
x2
n+1,r

λr
≤ D0r

ν , ν > 0, the convergence rates of Cai and Hall [4] translate into

〈α̂ − α,x〉2 = OP

(
n−(2m+2q+1−2ν)/(2m+2q+2)),

which provides an additional motivation for the fact that the rates derived in our
paper constitute a lower bound. For non-Gaussian distributions a comparison is
more difficult, since under assumption (A.4) only the Chebyshev inequality may

be used to bound the probabilities D−1
0 rν ≤ x2

n+1,r

λr
≤ D0r

ν .
Another statistically very different problem consists in an optimal estima-

tion of α by α̂ with respect to the usual L2-norm. In a recent work, Hall and
Horowitz [18] derive optimal rates of convergence of ‖α̂ − α‖2. These rates again
depend on the rate of decrease |αr | = O(r−β). Recall that our assumptions do
not provide any link between α and Xi ; part of the structure of α may not even
be identifiable. Indeed, under assumptions (A.1)–(A.4) there is no way to guaran-
tee that the bias ‖α − Eε(α̂)‖2 converges to zero and it can only be shown that
‖α̂ − α‖2 = OP (1) (see the proof of Theorem 2 below). This already highlights
the theoretical difference between optimal estimation with respect to ‖α̂ − α‖2

�

and ‖α̂ − α‖2. Based on additional assumptions as indicated above, although sen-
sible bounds for the bias may be derived, it must be emphasized that an estimator
minimizing ‖α̂ −α‖2 will have to rely on ρ � n−(2m+2q+1)/(2m+2q+2), which cor-
responds to an oversmoothing with respect to ‖α̂ − α‖2

� . This effect has already
been noted by Cai and Hall [4]. In our context, without additional assumptions
linking the eigenvalues of � and of the spline matrix Am, the only general bound
for the L2-variability of the estimator is ‖α̂ − Eε(α̂)‖2 = OP ( 1

nρ
) (this result may

be derived by arguments similar to those used in the proofs of our theorems). With
ρ = n−(2m+2q+1)/(2m+2q+2) this leads to ‖α̂ − Eε(α̂)‖2 = OP (n−1/(2m+2q+2)),
and better rates may only be achieved with ρ � n−(2m+2q+1)/(2m+2q+2). A more
detailed study of this problem is not in the scope of the present paper.

3.3. Choice of smoothing parameters. The above result of Section 3.1 implies
that the choice of the smoothing parameter ρ is of crucial importance. A natural
way to determine ρ is to minimize a leave-one-out cross-validation criterion. We
preferably adapt the simplified Generalized Cross-Validation (GCV) introduced
by Wahba [31] in the context of smoothing splines. For fixed m, in our application
the GCV criterion takes the form

GCVm(ρ) := (1/n)‖Y − HρY‖2

(1 − n−1 Tr(Hρ))2 ,(3.10)

where Hρ := (np)−1X( 1
np2 Xτ X + ρ

p
Am)−1Xτ .

Proposition 2 below provides a justification for the use of the GCV crite-
rion. Recall that the estimators α̂ ≡ α̂ρ;m depend on ρ as well as on the spline
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order m. Obviously, 1
p

Xα̂ρ;m = HρY is an estimator of the conditional mean

(〈X1 − X,α〉, . . . , 〈Xn − X,α〉)τ of Y given X1, . . . ,Xn. Let

ASEm(ρ) := 1

n

∑
i

[
〈Xi − X,α〉 − 1

p

∑
j

(
Xi(tj ) − X(tj )

)
α̂ρ;m(tj )

]2

denote the average squared error of this estimator. The only difference between
ASEm(ρ) and ‖α̂ρ − α‖2

�n,p
is the discretization error encountered when approx-

imating 〈Xi,α〉 by 1
p

∑
j Xi(tj )α(tj ), and hence ASEm(ρ) = ‖α̂ρ − α‖2

�n,p
+

OP (p−2κ).
If ρ̂ denotes the minimizer of GCV for fixed m, we can conclude from rela-

tion (3.11) of Proposition 2 that the error ASEm(ρ̂) is asymptotically first-order
equivalent to the error ASEm(ρopt) to be obtained from an optimal choice of the
smoothing parameter. Furthermore, (3.12) shows that an analogous result holds
if GCV is additionally used to select the order m of the smoothing spline, which
means that the optimal rate can be reached adaptively.

PROPOSITION 2. In addition to assumptions (A.1)–(A.3) as well as np−2κ =
O(1), suppose that E(exp(βε2

i )) < ∞ for some β > 0. If for fixed m, ρ̂ denotes
the minimizer of GCV(ρ) over ρ ∈ [n−2m+δ,∞) for some δ > 0, then

|ASEm(ρ̂) − ASEm(ρopt)| = OP

(
n−1/2ASEm(ρopt)

1/2)
,(3.11)

where ρopt minimizes MSEm(ρ) := Eε(ASEm(ρ)) over all ρ > 0.
Furthermore, if m̂, ρ̂ denotes the minimizers of (3.10) over ρ ∈ [n−2m+δ,∞),

δ > 0, and m = 1, . . . ,Mn, Mn ≤ n/2, then

|ASEm̂(ρ̂) − ASEmopt(ρopt)| = OP (n−1/2ASEmopt(ρopt)
1/2 logMn),(3.12)

where ρopt,mopt minimize MSEm(ρ) := Eε(ASEm(ρ)) over all ρ > 0 and m =
1, . . . ,Mn.

4. Case of a noisy covariate. In a number of important applications measure-
ments of the explanatory curves Xi may be contaminated by noise. There then ad-
ditionally exists an errors-in-variable problem complicating further analysis. Our
setup is inspired by other works dealing with noisy observations of functional data
(e.g., Cardot [3] or Chiou, Müller and Wang [9]): At each point tj the correspond-
ing functional value Xi(tj ) is corrupted by some random error δij so that actual
observations Wi(tj ) are given by

Wi(tj ) = Xi(tj ) + δij , i = 1, . . . , n, j = 1, . . . , p,(4.1)

where (δij )i=1,...,n,j=1,...,p is a sequence of independent real random variables
such that for all i = 1, . . . , n and all j = 1, . . . , p

Eε(δij ) = 0, Eε(δ
2
ij ) = σ 2

δ and Eε(δ
4
ij ) ≤ C8(4.2)
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for some constant C8 > 0 (independent of n and p). We furthermore assume
that δij is independent of εi and of the Xi ’s.

In this situation, an analogue of our estimator α̂ of Section 2 can still be com-
puted by replacing in (2.6) the (unknown) matrix X by the n × p matrix W with
general terms Wi(tj ) − W , i = 1, . . . , n, j = 1, . . . , p. However, performance of
the resulting estimator will suffer from the additional noise in the observations.
If the error variance σ 2

δ is large, there may exist a substantial difference between
Xτ X and Wτ W. Indeed, Wτ W is a biased estimator of Xτ X:

1

np2 Wτ W = 1

np2 Xτ X + σ 2
δ

p2 Ip + R,(4.3)

where R is a p × p matrix such that its largest singular value is of order
OP ( 1

n1/2p
), (see the proof of Theorem 4 below). This result suggests that we use

1
np2 Wτ W − σ 2

δ

p2 Ip as an approximation of 1
np2 Xτ X. A prerequisite is, of course,

the availability of an estimator σ̂ 2
δ of the unknown variance σ 2

δ . Following Gasser,
Sroka and Jennen-Steinmetz [16], we will rely on

σ̂ 2
δ := 1

n

n∑
i=1

1

6(p − 2)

p−1∑
j=2

[Wi(tj−1) − Wi(tj ) + Wi(tj+1) − Wi(tj )]2.(4.4)

These arguments now lead to the following modified estimator α̂W of α in the case
of noisy observations:

α̂W := 1

np

(
1

np2 Wτ W + ρ

p
Am − σ̂ 2

δ

p2 Ip

)−1

Wτ Y.(4.5)

An estimator of the function α is given by α̂W = sα̂W , where sα̂W is again the
natural spline interpolant of order 2m as defined in Section 2.

We want to note that α̂W is closely related to an estimator proposed by Cardot
et al. [5]. The latter is motivated by the Total Least Squares (TLS) method (see,
e.g., Golub and Van Loan [17], Fuller [15], or Van Huffel and Vandewalle [29])
and the only difference from (4.5) consists in the use of a correction term slightly

different from − σ̂ 2
δ

p2 Ip .
Of course there are many alternative strategies for dealing with the errors-

in-variable problem induced by (4.1). A straightforward approach, which is
frequently used in functional data analysis, is to apply nonparametric smoothing
procedures in order to obtain estimates X̂i(tj ) from the data (Wi(tj ), tj ). When re-
placing X by X̂ in (2.6), one can then define a “smoothed” estimator α̂S . Of course
this estimator may be as efficient as (4.5), but it is computationally more involved
and appropriate smoothing parameters have to be selected for nonparametric esti-
mation of each curve Xi .

Our aim is now to study the asymptotic behavior of α̂W. Theorem 4 below pro-
vides bounds (with respect to the semi-norm �n,p) for the difference between α̂W
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and the “ideal” estimator α̂ defined for the true curves X1, . . . ,Xn. We will impose
the following additional condition on the function α:

(A.5) For every δ > 0 there exists a constant Cα < ∞ such that

1

p1/2

∥∥∥∥ 1

np
Xτ Xα

∥∥∥∥ > Cα,

holds with probability larger or equal to 1 − δ.

THEOREM 4. Assume (A.1), (A.2), (A.5) as well as np−2κ = O(1), ρ → 0,
1/(nρ) → 0 as n,p → ∞. Then

‖α̂W − α̂‖2
�n,p

= OP

(
1

npρ
+ 1

n

)
.(4.6)

Together with assumption (A.3) we can therefore conclude from Theorems 1
and 4 that

‖α̂W − α‖2
�n,p

= OP

(
ρ + (

nρ1/(2m+2q+1))−1 + 1

npρ

)
.

We have already seen in Section 3 that the optimal order of the two first
terms is reached for a choice of ρ ∼ n−(2m+2q+1)/(2m+2q+2). From an asymp-
totic point of view, the use of α̂W results in the addition of the extra term
1/(npρ) in the rate of convergence. For ρ ∼ n−(2m+2q+1)/(2m+2q+2) we have
1/(npρ) ∼ n−1/(2m+2q+2)/p. This term is of order n−(2m+2q+1)/(2m+2q+2) for
p ∼ n(2m+2q−1)/(2m+2q+2). This means that the α̂W reaches the same rate of con-
vergence as α̂ provided that p is sufficiently large compared to n. More precisely, it
is required that p ≥ Cp max(n1/2κ , n(2m+2q−1)/(2m+2q+2)) for some positive con-
stant Cp .

As shown in Theorem 5 below, these qualitative results generalize when con-
sidering the semi-norms �n or �.

THEOREM 5. Assume (A.1)–(A.3), (A.5) as well as np−2κ = O(1), ρ → 0,
1/(nρ) → 0 as n,p → ∞. Then

‖α̂W − α̂‖2
�n

= OP

(
1

npρ
+ 1

n

)
,(4.7)

and if assumption (A.4) is additionally satisfied,

‖α̂W − α̂‖2
� = OP

(
1

npρ
+ 1

n
+ n−(2q+1)/2

)
.(4.8)
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5. Application to ozone pollution forecasting. In this section, our method-
ology is applied to the problem of predicting the level of ozone pollution. For our
analysis, we use a data set collected by ORAMIP (Observatoire Régional de l’Air
en Midi-Pyrénées), an air observatory located in the city of Toulouse (France).
The concentration of specific pollutants as well as meteorological variables are
measured each hour. Some previous studies using the same data are described in
Cardot, Crambes and Sarda [6] and Aneiros-Perez et al. [1].

The response variable Yi of interest is the maximum of ozone for a day. Re-
peated measurements of ozone concentration obtained for the preceding day are
used as a functional explicative variable Xi . More precisely, each Xi is observed at
p = 24 equidistant points corresponding to hourly measurements. The sample size
is n = 474. It is assumed that the relation between Yi and Xi can be modeled by
the functional linear regression model (1.2). We note at this point that X1,X2, . . .

constitute a time series of functions, and that it is therefore reasonable to suppose
some correlation between the Xi ’s. The results of an earlier, unpublished study
indicate that there only exists some “short memory” dependence.

Now, for a curve Xn+1 outside the sample, we want to predict Yn+1, the
maximum of ozone the day after. Assuming that (Xn+1, Yn+1) follows the same
model (1.2) and using our estimators α̂ of α and α̂0 of α0 described in Section 2,
a predictor Ŷn+1 is given by the formula

Ŷn+1 := α̂0 +
∫
I
α̂(t)Xn+1(t) dt.(5.1)

It cannot be excluded that actual observations of Xi may be contaminated with
noise. We will thus additionally consider the modified estimator α̂W developed
in Section 4 and the corresponding predictor ŶW,n+1. For simplicity, the integral
in (5.1) is approximated by 1

p

∑p
j=1 α̂(tj )Xn+1(tj ). With additional assumptions

on the εi ’s we can also build asymptotic intervals of prediction for Yn+1. Indeed, let
us assume that ε1, . . . , εn+1 are i.i.d. random variables having a normal distribution
N (0, σ 2

ε ). The first point is to estimate the residual variance σ 2
ε . A straightforward

estimator is given by the empirical variance

σ̂ε
2 := 1

n

n∑
i=1

(
Yi − Y − 1

p

p∑
j=1

α̂(tj )
(
Xi(tj ) − X(tj )

))2

.(5.2)

Our theoretical results imply that σ̂ε is a consistent estimator of σ 2
ε . Furthermore,

we can then infer from Theorem 3 that Yn+1−Ŷn+1
σ̂ε

asymptotically follows a standard
normal distribution. Given τ ∈]0,1[, an asymptotic (1 − τ)-prediction interval
for Yn+1 can be derived as

[Ŷn+1 − z1−τ/2σ̂ε, Ŷn+1 + z1−τ/2σ̂ε],(5.3)

where z1−τ/2 is the quantile of order 1−τ/2 of the N (0,1) distribution. Of course,
the same developments are valid when one replaces Ŷn+1 by ŶW,n+1.
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In order to study performance of our estimators we split the initial sample into
two sub-samples:

• A learning sample, (Xi, Yi)i=1,...,nl
, nl = 300, was used to determine the esti-

mators α̂ and α̂W.
• A test sample, (Xi, Yi)i=nl+1,...,nl+nt , nt = 174, was used to evaluate the quality

of the estimation.

Construction of estimators was based on m = 2 (cubic smoothing splines), and
the smoothing parameters ρ were selected by minimizing GCV(ρ) as defined
in (3.10). Note that GCV for α̂W requires that the matrix 1

np2 Xτ X in the definition

of Hρ has to be replaced by 1
np2 Wτ W− σ̂ 2

δ

p2 Ip . Figure 1 presents the daily predicted

values Ŷ and ŶW of the maximum of ozone versus the measured Y -values of the
test sample. Both graphics are close, which is confirmed by the computation of the
prediction error given by

EQM(α̂) := 1

nt

nl+nt∑
i=nl+1

(Yi − Ŷi)
2,

with a similar definition for α̂W. We have, respectively, EQM(α̂) = 281.97 and
EQM(α̂W) = 270.13, which shows a very minor advantage of the estimator α̂W.
In any case, in Figure 1 the points seem to be reasonably spread around the diag-

FIG. 1. Daily predicted values Ŷ (left) and ŶW (right) of the maximum of ozone versus the mea-
sured values.
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FIG. 2. Measured values of the maximum of ozone (solid line), predicted values (dashed line) and
95% prediction band (dotted lines).

onal Ŷ = Y , and the plots do not indicate any major problem with our estimators.
Corresponding prediction intervals are given in Figure 2.

6. Proof of the results.

6.1. Proof of Theorem 1. First consider relation (3.1), and note that

Eε(α̂) = 1

np2

(
1

np2 Xτ X + ρ

p
Am

)−1

Xτ Xα + 1

np

(
1

np2 Xτ X + ρ

p
Am

)−1

Xτ d,

where d = (d1 − d, . . . , dn − d)τ .
It follows that Eε(α̂) is a solution of the minimization problem

min
a∈Rp

{
1

n

∥∥∥∥ 1

p
Xα + d − 1

p
Xa

∥∥∥∥2

+ ρ

p
aτ Ama

}
.

This implies

1

n

∥∥∥∥ 1

p
Xα + d − 1

p
XEε(α̂)

∥∥∥∥2

+ ρ

p
Eε(α̂)τ AmEε(α̂) ≤ ρ

p
ατ Amα + 1

n
‖d‖2.

But definition of Am and (2.3) lead to

1

p
ατ Amα = 1

p
ατ Pmα +

∫ 1

0
s(m)
α (t)2 dt ≤ 1

p
ατ Pmα +

∫ 1

0
α(m)(t)2 dt
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and (3.1) is an immediate consequence. Let us now consider relation (3.2). There
exists a complete orthonormal system of eigenvectors u1, u2, . . . , up of 1

np
Xτ X

such that 1
np

Xτ X = ∑p
j=1 λx,juju

τ
j . Let k := [ρ−1/(2m+2q+1)]. By our assump-

tions we obtain

Eε

(‖α̂ − Eε(α̂)‖2
�n,p

)
= 1

p
Eε

(
1

n2p2 ετ X
(

1

np2 Xτ X + ρ

p
Am

)−1

× 1

np
Xτ X

(
1

np2 Xτ X + ρ

p
Am

)−1

Xτε

)

≤ σ 2
ε

n
Tr

[(
1

np
Xτ X + ρAm

)−1 1

np
Xτ X

]
(6.1)

= σ 2
ε

n
Tr

[(
(ρAm)−1/2

(
1

np
Xτ X

)
(ρAm)−1/2 + Ip

)−1

× (ρAm)−1/2
(

1

np
Xτ X

)
(ρAm)−1/2

]

≤ σ 2
ε

n
Tr(D1,ρ + D2,ρ),

where

D1,ρ :=
(
(ρAm)−1/2

(
k∑

j=1

λx,juju
τ
j

)
(ρAm)−1/2 + Ip

)−1

× (ρAm)−1/2

(
k∑

j=1

λx,juju
τ
j

)
(ρAm)−1/2

and

D2,ρ :=
(
(ρAm)−1/2

( p∑
j=k+1

λx,juju
τ
j

)
(ρAm)−1/2 + Ip

)−1

× (ρAm)−1/2

( p∑
j=k+1

λx,juju
τ
j

)
(ρAm)−1/2

which are symmetric p × p matrices with

sup
‖v‖=1

vτ D1,ρv < 1 and sup
‖v‖=1

vτ D2,ρv < 1.(6.2)
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Furthermore, D1,ρ is of rank k and therefore only possesses k nonzero eigenvalues.
Hence

Tr(D1,ρ) ≤ k.(6.3)

Let a1,p, . . . ,am,p,am+1,p, . . . ,ap,p denote a complete, orthonormal system of
eigenvectors of Am corresponding to the eigenvalues μ1,p = · · · = μm,p = 1 and
μm+1,p ≤ · · · ≤ μp,p . By (6.1), (6.2) and (6.3) as well as (2.7), we thus obtain

Eε

(‖α̂ − Eε(α̂)‖2
�n,p

)
≤ σ 2

ε

n

(
k +

p∑
j=1

aτ
j,pD2,ρaj,p

)

≤ σ 2
ε

n

(
k + m + k +

p∑
l=m+k+1

aτ
l,p(ρAm)−1/2

×
( p∑

j=k+1

λx,juju
τ
j

)
(ρAm)−1/2al,p

)
(6.4)

≤ σ 2
ε

n

(
m + 2k + 1

μm+k+1 · ρ
p∑

j=k+1

λx,j

)

≤ σ 2
ε

n
(m + 2k + CkC0)

= σ 2
ε

n

(
m + [

ρ−1/(2m+2q+1)])(2 + CC0).

This proves Relation (3.2) and completes the proof of Theorem 1.

6.2. Proof of Theorem 2. With d̂i = ∫
I α̂(t)Xi(t) dt − 1

p

∑p
j=1 α̂(tj )Xi(tj ) we

have

‖α̂ − α‖2
�n

≤ 2

n

n∑
i=1

[
〈(Xi − X), α̂ − α〉

− 1

p

p∑
j=1

(
Xi(tj ) − X(tj )

)(
α̂(tj ) − α(tj )

)]2

(6.5)

+ 2

n

n∑
i=1

[
1

p

p∑
j=1

(Xi − X)(tj )
(
α̂(tj ) − α(tj )

)]2

≤ 4

n

n∑
i=1

(d̂i − d̂)2 + 4

n

n∑
i=1

(di − d)2 + 2‖α̂ − α‖2
�n,p

.
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By assumptions (A.1)–(A.3), it follows from Theorem 1, (3.3) and (3.4) that the
assertion of Theorem 2 holds, provided that

1

n

n∑
i=1

(d̂i − d̂)2 = OP (p−2κ).(6.6)

The proof of (6.6) consists of several steps. We will start by giving a stochastic
bound for 1

p
α̂τ α̂ and then study the stochastic behavior of

∫ 1
0 α̂(m)(t)2 dt . The use

of a suitable Taylor expansion will then lead to the desired result.
By definition of α̂ we have

1

p
α̂τ α̂ ≤ 3

p
ατ 1

np
Xτ X

(
1

np
Xτ X + ρAm

)−2 1

np
Xτ Xα

+ 3
1

n2p
dτ X

(
1

np
Xτ X + ρAm

)−2

Xτ d(6.7)

+ 3
1

n2p
ετ X

(
1

np
Xτ X + ρAm

)−2

Xτε.

Since all eigenvalues of the matrix 1
np

Xτ X( 1
np

Xτ X + ρAm)−2 1
np

Xτ X are less
than or equal to 1, the first term on the right-hand side of (6.7) is less than or
equal to 3

p
ατα = O(1). It is easily seen that the smallest eigenvalue of the matrix

1
np

X( 1
np

Xτ X +ρAm)−2Xτ is proportional to 1/ρ, and thus the second term can be

bounded by a term of order p−2κ/ρ. By (2.7) the expected value of the third term
is bounded by

σ 2
ε

n
Tr

[
1

np
X

(
1

np
Xτ X + ρAm

)−2

Xτ

]
≤ σ 2

ε

n
Tr[(ρAm)−1] = O

(
1/(nρ)

)
.

We therefore arrive at
1

p
α̂τ α̂ = OP

(
1 + p−2κ

ρ
+ 1

nρ

)
.(6.8)

As a next step we will study the asymptotic behavior of
∫ 1

0 α̂(m)(t)2 dt . Since α̂ is
solution of the minimization problem (2.5), we can write

1

n

∥∥∥∥Y − 1

p
Xα̂

∥∥∥∥2

+ ρ

p
α̂τ Pmα̂ + ρ

∫ 1

0
α̂(m)(t)2 dt

≤ 1

n

∥∥∥∥Y − 1

p
Xα

∥∥∥∥2

+ ρ

p
ατ Pmα + ρ

∫ 1

0
α(m)(t)2 dt,

and therefore

ρ

∫ 1

0
α̂(m)(t)2 dt ≤ ‖α̂ − α‖2

�n,p
+ 2

n

〈
Y − 1

p
Xα,

1

p
Xα̂ − 1

p
Xα

〉
(6.9)

+ ρ

∫ 1

0
α(m)(t)2 dt − ρ

p
α̂τ Pmα̂ + ρ

p
ατ Pmα.
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We have to focus on the term

2

n

〈
Y − 1

p
Xα,

1

p
Xα̂ − 1

p
Xα

〉
= 2

n

〈
d + ε,

1

p
Xα̂ − 1

p
Xα

〉
.

The Cauchy–Schwarz inequality together with the definition of ‖ · ‖2
�n,p

yield

1

n
dτ

(
1

p
Xα̂ − 1

p
Xα

)
= OP (p−κ‖α̂ − α‖�n,p ).(6.10)

Note that
2

n

〈
ε,

1

p
Xα̂ − 1

p
Xα

〉

= 2

n
ετ

(
1

p
XEε(α̂) − 1

p
Xα

)
+ 2

n
ετ

(
1

p
Xα̂ − 1

p
XEε(α̂)

)
.

Obviously, 1
n
ετ ( 1

p
XEε(α̂) − 1

p
Xα) is a zero mean random variable with variance

bounded by σ 2
ε

n
‖Eε(α̂) − α‖2

�n,p
. By definition of α̂, (3.3), (6.1) and (6.4) we have

Eε

(
1

n
ετ

(
1

p
Xα̂ − 1

p
XEε(α̂)

))
≤ σ 2

ε

n
Tr

[(
1

np
Xτ X + ρAm

)−1 1

np
Xτ X

]

= OP

(
1

nρ1/(2m+2q+1)

)
.

We can conclude that

2

n

〈
ε,

1

p
Xα̂ − 1

p
Xα

〉
= OP

(
1√
n
‖Eε(α̂ − α)‖�n,p + 1

nρ1/(2m+2q+1)

)
.(6.11)

When combining (6.8), (6.9), (6.10) and (6.11) with the results of Theorem 1 we
thus obtain∫ 1

0
α̂(m)(t)2 dt = OP

(
1 + p−2κ

ρ
+ 1

nρ(2m+2q+2)/(2m+2q+1)

)
.(6.12)

Let us now expand α̂ into a Taylor series: α̂(t) = P(t)+R(t) for all t ∈ [0,1] with

P(t) =
m−1∑
l=0

t l

l! α̂
(l)(0), R(t) =

∫ t

0
r(s) ds

and

r(t) =
∫ t

0

(t − u)m−1

(m − 1)! α̂(m)(u) du.

It follows from (6.8) as well as (6.12) that |α̂(l)(0)| = OP (1 + (
p−2κ

ρ
)1/2 +

( 1
nρ(2m+2q+2)/(2m+2q+1) )

1/2) for l = 0, . . . ,m − 1, and some straightforward calcu-
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lations yield∣∣∣∣‖α̂‖2 − 1

p
α̂τ α̂

∣∣∣∣ =
∣∣∣∣∫ 1

0

(
P(t) + R(t)

)2
dt − 1

p

p∑
j=1

(
P(tj ) + R(tj )

)2
∣∣∣∣

≤
( p∑

j=1

[∫ tj+1/(2p)

tj−1/(2p)

(
P(t) + R(t) + P(tj ) + R(tj )

)2
dt

]2
)1/2

×
( p∑

j=1

1

p

[∫ tj+1/(2p)

tj−1/(2p)
|P ′(s)| + |r(s)|ds

]2
)1/2

,

which leads to∣∣∣∣‖α̂‖2 − 1

p
α̂τ α̂

∣∣∣∣
(6.13)

= OP

(
p−1 ·

(
1 + p−2κ

ρ
+ [

nρ(2m+2q+2)/(2m+2q+1)]−1
))

.

Using again (6.8) and our assumptions on ρ,p,n, this implies

‖α̂‖2 = OP (1).(6.14)

At the same time, (6.8) and (6.12) together with assumptions (A.1) and (A.2) imply
that with X̃i = Xi − X

1

n

n∑
i=1

(d̂i − d̂)2 = 1

n

n∑
i=1

( p∑
j=1

∫ tj+1/(2p)

tj−1/(2p)

(
α̂(t) − α̂(tj )

)
X̃i(t)

+ α̂(tj )
(
X̃i(t) − X̃i(tj )

)
dt

)2

≤ 2x2
max

( p∑
j=1

1

p

[∫ tj+1/(2p)

tj−1/(2p)
|P ′(t)| + |r(t)|dt

]2
)

+ 2

(
1

p

p∑
j=1

α̂(tj )
2

)
1

n

n∑
i=1

p∑
j=1

∫ tj+1/(2p)

tj−1/(2p)

(
X̃i(t) − X̃(tj )

)2
dt

and thus

1

n

n∑
i=1

(d̂i − d̂)2 = OP

(
p−2

(
1 + p−2κ

ρ
+ 1

nρ(2m+2q+2)/(2m+2q+1)

)
(6.15)

+ p−2κ

(
1 + p−2κ

ρ
+ 1

nρ

))
.

By our assumptions on ρ,p,n, relation (6.6) is an immediate consequence. This
completes the proof of Theorem 2.
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6.3. Proof of Theorem 3. In terms of eigenvalues and eigenfunctions of � we
obviously obtain

〈�u,u〉 = ∑
r

λr〈ζr , u〉2.

Let τri = 〈Xi − E(X), ζr〉 for r = 1,2, . . . and i = 1, . . . , n. Some well-known
results of stochastic process theory now can be summarized as follows:

(i) E(τri) = 0, E(τ 2
ri) = λr , and E(τriτsi) = 0 for all r, s, s �= r and i =

1, . . . , n.
(ii) For any k = 1,2, . . . , the eigenfunctions ζ1, . . . , ζk corresponding to λ1 ≥

· · · ≥ λk provide a best basis for approximating Xi by a k-dimensional linear space:

∞∑
r=q+1

λr = E

(∥∥∥∥∥X − E(X) −
q∑

s=1

〈X − E(X), ζs〉ζs

∥∥∥∥∥
2)

(6.16)

≤ E

(
inf

f ∈Lk

‖X − E(X) − f ‖2
)
,

for any other k-dimensional linear subspace Lk of L2([0,1]).
By (A.3) we can conclude that

∞∑
r=k+1

λr = O(k−2q) as k → ∞.(6.17)

At first we have

‖α̂ − α‖2
�n

≤ 2

n

n∑
i=1

〈α̂ − α,Xi − E(X)〉2 + 2

n

n∑
i=1

〈α̂ − α,E(X) − X〉2,

and by (6.14) and with assumption (A.4) the last term is of order OP (n−1). The
relevant semi-norms can now be rewritten in the form

‖α̂ − α‖2
� =

∞∑
r=1

λr〈ζr , α̂ − α〉2 =:
∞∑

r=1

λrα̃
2
r(6.18)

and

‖α̂ − α‖2
�n

= ‖α̂ − α‖2
� +

∞∑
r=1

∞∑
s=1

α̃r α̃s

(
1

n

n∑
i=1

τriτsi − λrI (r = s)

)
(6.19)

+ OP (n−1),

where I (r = s) = 1 if r = s, and I (r = s) = 0 if r �= s. Define

τ̃rr = 1

λr

√
n

n∑
i=1

(τ 2
ri − λr) and τ̃rs = 1√

λrλsn

n∑
i=1

τriτsi, r �= s
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(with τ̃rs := 0 if min{λr, λs} = 0). The properties of τri given in (i) imply that
E(τ̃rs) = 0 for all r, s, and we can infer from assumption (A.4) that for some C10 <

∞
E(τ̃ 2

rs) ≤ C10,(6.20)

holds for all r, s = 1,2, . . . and all sufficiently large n. Using the Cauchy–Schwarz
inequality we therefore obtain for all k = 0,1, . . .∣∣∣∣∣

∞∑
r=1

∞∑
s=1

α̃r α̃s

(
1

n

n∑
i=1

τriτsi − λrI (r = s)

)∣∣∣∣∣
=

∣∣∣∣∣ 1√
n

∞∑
r=1

∞∑
s=1

α̃r α̃s(λrλs)
1/2τ̃rs

∣∣∣∣∣
(6.21)

≤ 2√
n

(
k∑

r=1

∞∑
s=r

λr α̃
2
r α̃

2
s

)1/2(
k∑

r=1

∞∑
s=r

λs τ̃
2
rs

)1/2

+ 2√
n

( ∞∑
r=k+1

∞∑
s=r

α̃2
r α̃

2
s

)1/2( ∞∑
r=k+1

∞∑
s=r

λrλs τ̃
2
rs

)1/2

.

Relation (6.14) leads to ‖α̂−α‖2 ≥ ∑∞
r=1 α̃2

r = OP (1), which together with (6.18)
implies that for arbitrary k(

k∑
r=1

∞∑
s=r

λr α̃
2
r α̃

2
s

)1/2

≤
(( ∞∑

r=1

λr α̃
2
r

)( ∞∑
s=1

α̃2
s

))1/2

= OP (‖α̂ − α‖�).

Choose k proportional to n1/2. Relation (6.17) then yields
∑∞

r=k+1
∑∞

s=r λrλs ≤
(
∑∞

r=k+1 λr)
2 = O(n−2q) and

∑k
r=1

∑∞
s=r λs = O(max{logn,n(1−2q)/2}). Since

by (6.20) the moments of τ̃rs are uniformly bounded for all r, s, it follows that(
k∑

r=1

∞∑
s=r

λs τ̃
2
rs

)1/2

= OP

(
max

{
logn,n(1−2q)/4})

,

( ∞∑
r=k+1

∞∑
s=r

λrλs τ̃
2
rs

)1/2

= OP (n−q).

When combining these results we can conclude that∣∣∣∣∣
∞∑

r=1

∞∑
s=1

α̃r α̃s

(
1

n

n∑
i=1

τriτsi − λrI (r = s)

)∣∣∣∣∣
= OP

(
max

{
n−1/2 logn · ‖α̂ − α‖�,n−(2q+1)/4 · ‖α̂ − α‖�,n−(2q+1)/2})

.
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Together with (6.19) assertion (3.9) now follows from the rates of convergence of
‖α̂ − α‖2

�n
derived in Theorem 2.

It remains to prove (1.5). Note that by our assumptions on εi and assump-
tion (A.4) we have |E(Y ) − Y |2 ≤ 2ε2 + 2〈α,E(X) − X〉2 = OP (n−1). Together
with (6.14) and assumption (A.4) this implies∣∣E(

(α̂0 + 〈α̂,Xn+1〉 − α0 − 〈α,Xn+1〉)2|α̂0, α̂
) − ‖α̂ − α‖2

�

∣∣
≤ 2|E(Y ) − Y |2 + 2〈α̂,E(X) − X〉2 = OP (n−1),

which completes the proof of the theorem.

6.4. Proof of Proposition 1. In dependence of q we first construct special
probability distributions of Xi . For 2q = 1, τ ∈ [0,1] and r := 0 set X̃τ ;0(t) := 1
for t ∈ [0, τ ] and X̃τ,0(t) := 0 for t ∈ (τ,1]. For 2q ≥ 3, τ ∈ [0,1], and r := q−0.5
let X̃τ ;r (t) := 1

r! t
r for t ∈ [0, τ ] and X̃τ ;r (t) := ∑r−1

j=0
1

(r−j)!τ
r−j (t − τ)j for

t ∈ (τ,1].
For k = 1,2, . . . let L(r+1)k denote the (r + 1) · k dimensional linear space

of all functions gβ of the form gβ(t) := ∑k−1
j=0(

∑r
l=0 βl,j t

l) · I (t ∈ [ j
k
,

j+1
k

]). It

is then easily verified that supt∈[j/k,(j+1)/k] minβ |gβ(t) − X̃τ ;r (t)| = 0 if τ /∈
[ j
k
,

j+1
k

], while supt∈[j/k,(j+1)/k] minβ |gβ(t) − X̃τ ;r (t)| ≤ k−r if τ ∈ [ j
k
,

j+1
k

]. It
follows that there exist constants Br ≤ 1 such that the functions BrX̃τ ;r (t) sat-
isfy infgβ∈L(r+1)k

∫ 1
0 (BrX̃τ ;r (t) − gβ(t))2 dt ≤ C(r + 2)−(2r+1)k−(2r+1) = C(r +

2)−2qk−2q for all k = 1,2, . . . .

Now let τ1, . . . , τn denote i.i.d. real random variables which are uniformly dis-
tributed on [0,1] and let Xτi;r = BrX̃τi ;r (t) − E(BrX̃τi;r (t)). Obviously, τi →
X

(j)
τi ,r (t) is a continuous mapping from [0,1] on L2([0,1]), and the probability

distribution of τi induces a corresponding centered probability distribution Pr on
L2([0,1]). Since the eigenfunctions of the corresponding covariance operator pro-
vide a best basis for approximating Xi by a k-dimensional linear space, we obtain
from what is done above

∞∑
j=k+1

λj ≤ E

(
inf

g∗
β∈L∗

(r+1)[k/(r+1)]
‖Xτi;r − g∗

β‖2
)

≤ Ck−2q,

for all sufficiently large k and L∗
(r+1)k := {gβ − E(BrX̃τi ;r )|gβ ∈ L(r+1)k}.

In order to verify that Pr ∈ Pq,C , it remains to check the behavior of ‖α̂−α‖� =∫ 1
0 〈Xτ ;r , α̂ − α〉2 dτ . First note that although assumption (A.2) does not hold for

2q = 1, even in this case, with κ = 1/2, relation (3.4) holds and arguments in the
proof of Theorems 1 and 2 imply that for sufficiently large p, 1

n

∑n
i=1〈Xτi ;r , α̂ −
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α〉2 = OP (n−(2m+2q+1)/(2m+2q+2)). For some 1 > δ >
2m+2q+1
2m+2q+2 define a par-

tition of [0,1] into nδ disjoint intervals I1, . . . , Inδ of equal length n−δ . For
j = 1, . . . , nδ , let sj denote the midpoint of the interval Ij , and use nj denote
the (random) number of τ1, . . . , τn falling into Ij . By using the Cauchy–Schwarz
inequality as well as a definition of Xτ ;r it is easily verified that there exists a con-
stant Lr < ∞ such that |〈Xτ ;r , α̂ − α〉 − 〈Xτ∗;r , α̂ − α〉| ≤ Lr |τ − τ ∗|1/2‖α̂ − α‖
for τ, τ ∗ ∈ [0,1] (|τ − τ ∗|1/2 may be replaced by |τ − τ ∗| if 2q > 1). Then

|〈Xτ ;r , α̂ − α〉2 − 〈Xτ∗;r , α̂ − α〉2|
≤ 2Lr |τ − τ ∗|1/2‖α̂ − α‖min{|〈Xτ ;r , α̂ − α〉|, |〈Xτ∗;r , α̂ − α〉|}

+ L2
r |τ − τ ∗|‖α̂ − α‖2.

By (6.14) another application of the Cauchy–Schwarz inequality leads to
1
n

∑n
i=1〈Xτi ;r , α̂−α〉2 = 1

n

∑nδ

j=1 nj 〈Xsj ;r , α̂−α〉2 +oP (n−(2m+2q+1)/(2m+2q+2)).

Since supj=1,...,nδ
|nj−E(nj )|

nj
= OP (1) with E(nj ) = n · n−δ , we can conclude that

1
n

∑nδ

j=1 E(nj )〈Xsj ;r , α̂ − α〉2 = OP (n−(2m+2q+1)/(2m+2q+2)). Finally,

∣∣∣∣∣
∫ 1

0
〈Xτ ;r , α̂ − α〉2 dτ − 1

n

nδ∑
j=1

E(nj )〈Xsj ;r , α̂ − α〉2

∣∣∣∣∣
≤ 1

nδ

nδ∑
j=1

sup
τ∈Ij

|〈Xτ ;r , α̂ − α〉2 − 〈Xsj ;r , α̂ − α〉2|

= oP

(
n−(2m+2q+1)/(2m+2q+2)),

and the desired result ‖α̂ − α‖� = OP (n−(2m+2q+1)/(2m+2q+2)) is an immediate
consequence. Therefore, Pr ∈ Pq,C .

We now have to consider the functionals 〈Xτi ;r , α〉 more closely. Let C∗(m +
r + 1,D) denote the space of all m + r + 1-times continuously differentiable
functions α̃ satisfying

∫ 1
0 α̃(t) dt = 0 as well as

∫ 1
0 α̃(j)(t)2 dt ≤ D for all j =

0,1, . . . ,m + r + 1 as well as α̃(j)(0) = α̃(j)(1) = 0 for all j = 0, . . . , r + 1,
and set C∗(m, r,D) = {α|α = α̃(r+1), α̃ ∈ C∗(m + r + 1,D)}. Then, for any
α ∈ C∗(m,0,D) there is a α̃ ∈ C∗(m + 1,D) such that

〈Xτi ;0, α〉 = B0

∫ τi

0
α(t) dt − 〈E(B0X̃τi;0), α〉

= B0α̃(τi) − B0

∫ 1

0
α̃(t) dt = B0α̃(τi)

while for any α ∈ C∗(m, r,D), r ≥ 1 and α̃ ∈ C∗(m + r + 1,D), α = α̃(r+1),
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partial integration leads to

〈Xτi ;r , α〉 = (−1)r−1〈
X

(r−1)
τi;r , α̃(2)〉

= (
X

(r−1)
τi;r (τi)α̃

(2)(τi) − X
(r−1)
τi;r (0)α̃(2)(0)

)
+ Br(−1)r

∫ τi

0
α̃(1)(t) dt − Br(−1)rE

(∫ τi

0
α̃(1)(t) dt

)
+ (

X
(r−1)
τi;r (1)α̃(2)(1) − X

(r−1)
τi ;r (τi)α̃

(2)(τi)
)

= Br(−1)r α̃(τi) − E(Br(−1)r α̃(τi)) = Br(−1)r α̃(τi).

Obviously, α̃∗ = Br(−1)r α̃ ∈ C∗(m + r + 1,BrD). By construction, with
fa(τi) := 〈Xτi,r , a〉 we generally obtain

‖α − â(α,Pβ)‖2
� =

∫ 1

0

(
fα(τ ) − fâ(α,Pr )(τ )

)2
dτ.

By definition, fα(τ ) = α̃∗(τ ) = E(Yi |τi = τ) is the regression function in the re-
gression model Yi = α̃∗(τi) + εi , and we will use the notation Sn(α̃

∗) to denote an
estimator of α̃∗ from the data (Yi, τi), . . . , (Yn, τn). Note that knowledge of (Yi, τi)

is equivalent to knowledge of (Yi,Xτi;r ), and an estimator fâ(α,Pr ) of α̃∗ can thus
be seen as a particular estimator Sn(α̃

∗) based on (Yi, τi), . . . , (Yn, τn). We can
conclude that as n → ∞,

sup
P∈Pq,C

sup
α∈Cm,D

inf
â(α,P )

P
(‖α − â(α,P )‖2

�

≥ cn · n−(2m+2q+1)/(2m+2q+2))
≥ sup

α̃∗∈C∗(m+r+1,BrD)

inf
Sn(α̃∗)

P

(∫ 1

0

(
α̃∗(τ ) − Sn(α̃

∗)(τ )
)2

dτ

≥ cn · n−(2m+2q+1)/(2m+2q+2)

)
→ 1.

Convergence of the last probability to 1 follows from well-known results on opti-
mal rates of convergence in nonparametric regression (cf. Stone [27]).

6.5. Proof of Proposition 2. We first consider (3.11). The set {Hρ}ρ>0 consti-
tutes an ordered linear smoother according to the definition in Kneip [20]. Theo-
rem 1 of Kneip [20] then implies that |MSEm(ρ̂∗) − MSEm(ρopt)| = OP (n−1/2 ×
MSEm(ρopt)

1/2), where ρ̂∗ is determined by minimizing Mallow’s CL, CL(ρ) :=
1
n
‖Y − HρY‖2 + 2σ 2

ε

n
Tr(Hρ). Note that although we consider centered values Yi −

Y instead of Yi all arguments in Kneip [20] apply, since (Y , . . . , Y )τ X = 0. The
arguments used in the proof of Theorem 1 of Kneip ([20], relations (A.17)–(A.22))
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imply that for all ρ the difference CL(ρ) − CL(ρopt) − (MSEm(ρ) − MSEm(ρopt))

can be bounded by exponential inequalities given in Lemma 3 of Kneip [20] [the
squared norm qμ(Hρ,Hρopt)

2 appearing in these inequalities can be bounded by
2MSEm(ρ)]. These results lead to

CL(ρ) − CL(ρopt) = MSEm(ρ) − MSEm(ρopt)
(6.22)

+ η
[1]
ρ;mn−1/2MSEm(ρ)1/2,

ASEm(ρ) − ASEm(ρopt) = MSEm(ρ) − MSEm(ρopt)
(6.23)

+ η
[2]
ρ;mn−1/2MSEm(ρ)1/2,

1

n
‖Y − HρY‖2 = σ 2

ε + MSEm(ρopt) + η
[3]
ρ;mn−1/2,(6.24)

where η
[s]
ρ;m are random variables satisfying supρ>0 |η[s]

ρ;m| = OP (1), s = 1,2,3.
By our assumptions and the arguments used in the proof of Theorem 1 we can infer
that n−1 Tr(Hρ) = OP ([nρ1/(2m+2q+1)]−1) = oP (1) for all ρ ∈ [n−2m+δ,∞) as
n → ∞. Furthermore, there exists a constant D < ∞ such that n−1 Tr(Hρ) ≤ D ·
MSEm(ρ) = OP (ρ +[nρ1/(2m+2q+1)]−1). Together with (6.24) a Taylor expansion
of GCVm(ρ) with respect to n−1 Tr(Hρ) then yields

GCVm(ρ) = 1

n
‖Y − HρY‖2 + 2

1

n
‖Y − HρY‖2 Tr(Hρ)

n

+ η
[4]
ρ;m

(
Tr(Hρ)

n

)2

(6.25)

= CL(ρ) + η
[5]
ρ;m

(
n−12 + MSEm(ρ)

)Tr(Hρ)

n
,

where again η
[s]
ρ;m are random variables with supρ>n−2m+δ |η[s]

ρ;m| = OP (1), s =
4,5. Together with MSEm(ρopt) = OP (n−2m+2q+1/(2m+2q+2)), Relation (3.11)
now is an immediate consequence of (6.22)–(6.25).

Since Lemma 3 of Kneip [20] provides exponential inequalities, it is easily ver-
ified that uniform bounds similar to (6.22)–(6.25) hold for all ρ ∈ [n−2m+δ,∞)

and all m = 1, . . . ,Mn, if η
[s]
ρ;m are replaced by η̃

[s]
ρ;m · logMn, s = 1, . . . ,5. Then

supρ>n−2m+δ,m=1,...,Mn
|η̃[s]

ρ;m| = OP (1), s = 1, . . . ,5. The proof of (3.12) then fol-
lows the arguments used above.

6.6. Proof of Theorem 4. Consider the following decomposition:

α̂W − α̂ =
(

1

np2 Xτ X + ρ

p
Am

)−1 1

np
δτ Y + S

[
1

np
Wτ Y

]
,
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where

S :=
(

1

np2 Xτ X + ρ

p
Am + T

)−1

−
(

1

np2 Xτ X + ρ

p
Am

)−1

,

T := R − σ̂ 2
δ − σ 2

δ

p2 Ip

and where δ is the n × p matrix with generic element δij − δj , i = 1, . . . , n, j =
1, . . . , p and the matrix R is defined in (4.3). Thus one obtains

‖α̂W − α̂‖�n,p ≤
∥∥∥∥(

1

np2 Xτ X + ρ

p
Am

)−1 1

np
δτ Y

∥∥∥∥
�n,p

(6.26)

+
∥∥∥∥S

(
1

np
Wτ Y

)∥∥∥∥
�n,p

.

Note that Eε((
1

np2 Xτ X + ρ
p

Am)−1 1
np

δτ Y) = 0 , whereas with assumptions
(A.1) and (A.2)

Eε

(∥∥∥∥(
1

np2 Xτ X + ρ

p
Am

)−1 1

np
δτ Y

∥∥∥∥2

�n,p

)

= Eε

(
1

n2p
Yτ δ

(
1

np
Xτ X + ρAm

)−1 1

np
Xτ X

(
1

np
Xτ X + ρAm

)−1

δτ Y
)

= OP

(
σ 2

δ

np
Tr

((
1

np
Xτ X + ρAm

)−1))
.

This leads with the properties of the eigenvalues of ( 1
np

Xτ X + ρAm)−1 to∥∥∥∥(
1

np2 Xτ X + ρ

p
Am

)−1 1

np
δτ Y

∥∥∥∥
�n,p

= OP

(
1

(npρ)1/2

)
.(6.27)

The next step consists in studying the behavior of the matrix R defined in (4.3). Its
generic term is Rr,s = 1

np2

∑n
i=1(Xi(tr )−X(tr))(δis −δs)+ (Xi(ts)−X(ts))(δir −

δr) + (δir − δr)(δis − δs) − σ 2
δ I [r = s], for r, s = 1, . . . , p, so that for any u ∈ R

p

such that ‖u‖ = 1 one has ‖Eε(Ru)‖ = OP ( 1
np2 ) whereas it is easy to see that with

assumptions (A.1) and (A.2) and (4.2), Eε(‖Ru‖2) = OP ( 1
np2 ) and then ‖R‖ =

OP ( 1
n1/2p

). Now to derive an upper bound for the norm of the matrix T, we use
the convergence result given in Gasser, Sroka and Jennen-Steinmetz [16] which in
our framework implies that σ̂ 2

δ = σ 2
δ + OP ( 1

n1/2p
). Together with the order of ‖R‖

this yields

‖T‖ = OP

(
1

n1/2p

)
.(6.28)
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For the second term in (6.26) we consider at first its Frobenius norm. We have∥∥∥∥S
(

1

np
Wτ Y

)∥∥∥∥
F

≤ 1

p1/2

∥∥∥∥[(
1

np2 Xτ X + ρ

p
Am + T

)−1

−
(

1

np2 Xτ X + ρ

p
Am

)−1]

×
(

1

n2p2 Wτ YYτ W
)1/2∥∥∥∥

F

≤ 1

p1/2

∥∥∥∥(
1

np2 Xτ X + ρ

p
Am

)−1 1

np
Wτ Y

∥∥∥∥2

‖T‖
∥∥∥∥ 1

np
Wτ Y

∥∥∥∥−1

,

where the second inequality comes from the first inequality in Demmel [11]. Note
that with assumptions (A.2) and (A.5), for every δ > 0, there is a positive constant
such that p1/2‖Eε(

1
np

Wτ Y)‖ is greater than this constant with a probability larger

than or equal to 1 − δ. We also have Eε(‖ 1
np

Wτ Y − Eε(
1
np

Wτ Y)‖2), which is of

order 1
np

. This gives finally when combining (6.8), (6.28) and the condition on p

and ρ as well as assumption (A.2)

∥∥∥∥S
1

np
Wτ Y

∥∥∥∥2

�n,p

= OP

(∥∥∥∥S
(

1

np
Wτ Y

)∥∥∥∥
F

)
= OP

(
1

n

)
,(6.29)

which concludes Theorem 4 with (6.26) and (6.27).

6.7. Proof of Theorem 5. We first prove (4.7). Obviously,

‖α̂W − α̂‖2
�n

≤ 2

n

n∑
i=1

(d̂i,W − d̂W)2 + 2‖α̂W − α̂‖2
�n,p

,

where

d̂i,W =
∫
I

(
α̂W(t) − α̂(t)

)
Xi(t) dt − 1

p

p∑
j=1

(
α̂W(tj ) − α̂(tj )

)
Xi(tj ).

Then, assertion (4.6) implies that (4.7) is a consequence of

1

n

n∑
i=1

(d̂i,W − d̂W)2 = OP

(
1

npρ
+ 1

n

)
.(6.30)

The proof of (6.30) follows the same structure as the proof of (6.6). Indeed, we
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have

1

n

n∑
i=1

(d̂i,W − d̂W)2

≤ 2x2
max

( p∑
j=1

1

p

[∫ tj+1/(2p)

tj−1/(2p)
|P ′(t)| + |P ′

W| + |r(t)| + |rW|dt

]2
)

(6.31)

+ 2
1

p
‖α̂W − α̂‖2

× 1

n

n∑
i=1

p∑
j=1

∫ tj+1/(2p)

tj−1/(2p)

((
Xi(t) − X(t)

) − (
Xi(tj ) − X(tj )

))2
dt,

where PW(t) = ∑m−1
l=0

t l

l! α̂W(0), rW(t) = ∫ t
0

(t−u)m−1

(m−1)! α̂W(u) du and P(t) and r(t)

are similarly defined for α̂ (see the proof of Theorem 2).
Replacing the semi-norm �n,p by the euclidean norm in (4.6) following the

same lines as the proof of Theorem 4, one can show that

1

p
‖α̂W − α̂‖2 = 1

p
(α̂W − α̂)τ (α̂W − α̂) = OP

(
1

npρ2 + 1

n

)
,(6.32)

which together with assumption (A.2) implies that the second term on the right-

hand side of (6.31) can be bounded by OP (
p−2κ

npρ2 + p−2κ

n
).

Now the remainder of the proof consists in studying
∫ 1

0 α̂
(m)
W (t)2 dt . Recalling

the definition of α̂W, we have

1

n

∥∥∥∥Y − 1

p
Wα̂W

∥∥∥∥2

+ ρ

p
α̂τ

WPmα̂W + ρ

∫
I
α̂

(m)
W (t)2 dt − σ̂δ

p2 α̂τ
Wα̂W

≤ 1

n

∥∥∥∥Y − 1

p
Wα̂

∥∥∥∥2

+ ρ

p
α̂τ Pmα̂ + ρ

∫
I
α̂(m)(t)2 dt − σ̂δ

p2 α̂τ α̂

and then

ρ

∫
I
α̂

(m)
W (t)2 dt

≤ 1

n

∥∥∥∥ 1

p
W(α̂W − α̂)

∥∥∥∥2

+ 2

n

〈
Y − 1

p
Wα̂,

1

p
Wα̂ − 1

p
Wα̂W

〉
(6.33)

− ρ

p
α̂τ

WPmα̂W + ρ

p
α̂τ Pmα̂

+ σ̂δ

p2 α̂τ
Wα̂W − σ̂δ

p2 α̂τ α̂ + ρ

∫
I
α̂(m)(t)2 dt.
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First consider the term 1
n
‖ 1

p
W(α̂W − α̂)‖2. By (4.6) and (6.32) we obtain

1

n

∥∥∥∥ 1

p
W(α̂W − α̂)

∥∥∥∥2

= OP

(
1

npρ
+ 1

n

)
.(6.34)

We focus now on the second term in the right-hand side of (6.33), for which we
have the following decomposition:

1

n

〈
Y − 1

p
Wα̂,

1

p
Wα̂ − 1

p
Wα̂W

〉

= 1

n

〈
1

p
Xα − 1

p
Wα̂,

1

p
Wα̂ − 1

p
Wα̂W

〉

+ 1

n

〈
d,

1

p
Wα̂ − 1

p
Wα̂W

〉
+ 1

n

〈
ε,

1

p
Wα̂ − 1

p
Wα̂W

〉
.

We have

1

n1/2

∥∥∥∥ 1

p
Xα − 1

p
Wα̂

∥∥∥∥
≤ 1

n1/2

∥∥∥∥ 1

p
Xα − 1

p
Wα̂ − Eε

(
1

p
Xα − 1

p
Wα̂

)∥∥∥∥
+ 1

n1/2

∥∥∥∥Eε

(
1

p
Xα − 1

p
Wα̂

)∥∥∥∥.
Some straightforward calculations and previous results lead to 1

n1/2 ‖ 1
p

Xα −
1
p

Wα̂ − Eε(
1
p

Xα − 1
p

Wα̂)‖ = OP ((1/nρ1/(2m+2q+1))1/2 + 1/p1/2) whereas

‖Eε(
1
p

Xα − 1
p

Wα̂)‖ = OP (ρ1/2 + p−κ). This finally leads with the Cauchy–
Schwarz inequality to

1

n

〈
1

p
Xα − 1

p
Wα̂,

1

p
Wα̂ − 1

p
Wα̂W

〉

= OP

(((
1

nρ1/2m+2q+1

)1/2

+ 1

p1/2 + ρ1/2 + p−κ

)
(6.35)

×
(

1

(npρ)1/2 + 1

n1/2

))
.

Using again the Cauchy–Schwarz inequality and (6.34) we have

1

n

〈
d,

1

p
Wα̂ − 1

p
Wα̂W

〉
= OP

(
p−κ

(npρ)1/2 + p−κ

n1/2

)
.(6.36)
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The last term is such that

1

n
ετ

(
1

p
W(α̂ − α̂W)

)

= 1

n
ετ

(
1

p
W

(
1

np2 Xτ X + ρ

p
Am

)−1

δτ Y
)

+ 1

n
ετ

(
1

p
WS

(
1

np
Wτ Y

))
.

Using the same developments as above and using assumptions (A.1) and (A.2) we
obtain that 1

n
ετ ( 1

p
W( 1

np2 Xτ X+ ρ
p

Am)−1δτ Y) = OP ( 1
np1/2ρ1/2 ) while 1

n
ετ ( 1

p
WS×

( 1
np

Wτ Y)) = OP ( 1
n
). This finally leads to

1

n
ετ

(
1

p
W(α̂ − α̂W)

)
= OP

(
1

np1/2ρ1/2 + 1

n

)
.(6.37)

Finally using the same arguments as in the proof of Theorem 2, assertion (6.30) is
a consequence of (6.31), (6.8) and (6.12) as well as the bounds obtained in (6.32)–
(6.37) and the conditions on n, p and ρ.

It remains to show (4.8). The proof follows the same lines as the proof of The-
orem 3. We have the following relation:

‖α̂W − α̂‖2
�n

= ‖α̂W − α̂‖2
� +

∞∑
r=1

∞∑
s=1

α̃W,r α̃W,s

(
1

n

n∑
i=1

τriτsi − λrI (r = s)

)
+ OP (n−1),

with α̃W,r = 〈ζr , α̂W − α̂〉. Using the Cauchy–Schwarz inequality as in (6.21),
the remainder of the proof consists in showing that ‖α̂W − α̂‖ = OP (1). This is
obtained by using the bounds obtained in the proof of (4.7) and following the same
lines of argument as for showing (6.8).
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