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Estimating the eigenvalues of a population covariance matrix from a
sample covariance matrix is a problem of fundamental importance in mul-
tivariate statistics; the eigenvalues of covariance matrices play a key role in
many widely used techniques, in particular in principal component analysis
(PCA). In many modern data analysis problems, statisticians are faced with
large datasets where the sample size, n, is of the same order of magnitude as
the number of variables p. Random matrix theory predicts that in this con-
text, the eigenvalues of the sample covariance matrix are not good estimators
of the eigenvalues of the population covariance.

We propose to use a fundamental result in random matrix theory, the
Marcenko—Pastur equation, to better estimate the eigenvalues of large di-
mensional covariance matrices. The Maréenko—Pastur equation holds in very
wide generality and under weak assumptions. The estimator we obtain can be
thought of as “shrinking” in a nonlinear fashion the eigenvalues of the sample
covariance matrix to estimate the population eigenvalues. Inspired by ideas of
random matrix theory, we also suggest a change of point of view when think-
ing about estimation of high-dimensional vectors: we do not try to estimate
directly the vectors but rather a probability measure that describes them. We
think this is a theoretically more fruitful way to think about these problems.

Our estimator gives fast and good or very good results in extended simu-
lations. Our algorithmic approach is based on convex optimization. We also
show that the proposed estimator is consistent.

1. Introduction. With data acquisition and storage now easy, today’s statis-
ticians often encounter datasets for which the sample size, n and the number of
variables, p, are both large: in the order of hundreds, thousands, millions, or even
billions in situations such as web search problems.

The analysis of these datasets using classical methods of multivariate statistical
analysis requires some care. While the ideas are still relevant, the intuition for the
estimators that are used and the interpretation of the results are often—implicitly—
justified by assuming an asymptotic framework of p fixed and n growing infinitely
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large. This assumption was consistent with the practice of statistics when these
ideas were developed, since investigation of datasets with a large number of vari-
ables was very difficult. A better theoretical framework for modern—that is, large
p—datasets, however, is the assumption of the so-called “large n, large p” asymp-
totics. In other words, one should consider that both n and p go to infinity, perhaps
with the restriction that their ratio goes to a finite limit ¢, and draw practical in-
sights from the theoretical results obtained in this setting.

We will turn our attention to an object of central interest in multivariate statis-
tics: the eigenvalues of covariance matrices. A key application is principal com-
ponent analysis (PCA), where one searches for a good low-dimensional approx-
imation to the data by projecting the data on the “best” possible k-dimensional
subspace; here “best” means that the projected data explain as much variance in
the original data as possible. This amount of variance explained is measured by the
eigenvalues of the population covariance matrix, X ,, and hence we need to find a
way to estimate those eigenvalues. We will discuss in the course of the paper other
problems where the eigenvalues of X, play a key role.

We take a moment here to give a few examples that illustrate the differences that
occur under the different asymptotic settings. To pose the problem more formally,
let us say that we observe i.i.d. random vectors X1, ..., X,, in R”, and that the
covariance of X; is ¥,,. We call X the data matrix whose rows are the X;’s. In the
classical context, where p is fixed and n goes to oo, a fundamental result of [2]
says that the eigenvalues of the sample covariance matrix S, = (X — X) (X —
X)/(n —1) are good estimators of the population eigenvalues (i.e., the eigenvalues
of X ,). More precisely, calling /; the ordered eigenvalues of S, (/1 > 1>---) and A;
the ordered eigenvalues of ¥, (A; > A3 - - ), it was shown in [2] that

i =) = N(©0,22D),

when the X; are normally distributed and all the A;’s are distinct. This result pro-
vided rigorous grounds for estimating the eigenvalues of the population covariance
matrix, ¥ ,, with the eigenvalues of the sample covariance matrix, S,, when p is
small compared to n. (For more details on Anderson’s theorem, we refer the reader
to [3], Theorem 13.5.1.)

Shifting assumptions to “large n, large p” asymptotics induces fundamental
differences in the behavior of multivariate statistics, some of which we will high-
light in the course of the paper. As a first example, let us consider the case where
¥, =1d,, so all the population eigenvalues are equal to 1. A result first shown
in [18] under some moment growth assumptions, and later refined in [39], states
that if the entries of the X;’s are i.i.d. and have a fourth moment, and if p/n — y,
then

IL— (1+7)  as
In particular, /1 is not a consistent estimator of Aj. Note that by picking n = p,
[ tends to 4 whereas A; = 1. (For more general X, see [17], Section 4.3 for
numerically explicit results about the limit of /;.)
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As the case of X, =1Id, illustrated, when n and p are both large, the largest
sample eigenvalue is biased, sometimes dramatically so. Hence, we should correct
this bias in the largest sample eigenvalue(s) if we want to use them in data analysis.
Theoretical results predict that the behavior of extreme sample eigenvalues can be
quite subtle; in particular, depending on how far an isolated population eigenvalue
is from the bulk of the population spectrum, the corresponding sample eigenvalue
can either be isolated, and far away from the bulk of the sample eigenvalues, or
be absorbed by the bulk of the sample eigenvalues (see [5, 6, 17, 33]). One thing
is, however, clear from the most recent theoretical results: if we wish to de-bias
extreme sample eigenvalues, we need an accurate estimate of the so-called popu-
lation spectral distribution, a probability measure that characterizes the population
eigenvalues (see [17]). This is what our algorithm will deliver.

We have so far mostly discussed extreme sample eigenvalues. However, much
is also known about the behavior of the whole vector of sample eigenvalues
(l1,12,...,1p) and its asymptotic behavior. In particular, theory predicts that in
the “large n, large p” case, the scree plot (i.e., the plot of the sample eigenvalues
vs. their rank; see [31]) becomes uninformative and deceptive. What we propose
in this paper is to use random matrix theory to develop practically useful tools to
remedy the flaws appearing in some widely used tools in multivariate statistics.

Before we discuss how we will go about it, let us briefly discuss some issues
that arise when estimating vectors of large dimension, since working in an asymp-
totic setting where p — oo is not without additional difficulties. Since we will try
to estimate vectors of increasingly larger and larger size, an appropriate notion of
convergence is needed if we want to quantify the quality of our estimators. Stan-
dard norms in high dimensions are not necessarily a very good choice; for instance,
if we are in R!%0 and make an error of size 1/100 in all coordinates, the result-
ing ¢, error is 1, even though, at least intuitively, it would seem like we are doing
well. Also, if we made a large error (say size 1) in one direction, the /5 norm would
be large (larger than 1 at least), even though we may have gotten the structural in-
formation about this vector (and almost all its coordinates) “right.” Inspired by
ideas of random matrix theory, we propose to associate to high-dimensional vec-
tors probability measures that describe them. We will explain this in more detail
in Section 2.1. After this change of point of view, our focus becomes trying to es-
timate these measures. Why choose to estimate measures? The reasons are many.
Chief among them is that this approach will allow us to look into the structure of
the population eigenvalues. For instance, we would like to be able to say whether
all population eigenvalues are equal, or whether they are clustered around, say, two
values, or if they are uniformly spread out on an interval. Because the ratio p/n
can make the scree plot appear smooth (and hence in some sense uninformative)
regardless of the true population eigenvalue structure, this structural information is
not well estimated by currently existing methods. We discuss other practical ben-
efits (like scalability with p) of the measure estimation approach in Section 3.3.7.
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In the context of PCA, where usually the concern is not to estimate each popula-
tion eigenvalue with very high precision, but rather to have an idea of the structure
of the population spectrum to guide the choice of lower-dimensional subspaces on
which to project the data, this measure approach is particularly appealing. Exam-
ples to come later in the paper will illustrate this point.

Random matrix theory plays a key role in our approach to this measure estima-
tion problem. A main ingredient of our method is a fundamental result, which we
call the Marcenko—Pastur equation (see Theorem 1), which relates the asymptotic
behavior of the sample eigenvalues to the population eigenvalues. The assump-
tions under which the theorem holds are very weak (a fourth moment condition)
and hence it is very widely applicable. Until now, this theorem has not been used
to do inference on population eigenvalues. Partly this is because in its general
form it has not received much attention in statistics, and partly because the inverse
problem that needs to be considered is very hard to solve if it is not posed the right
way. We propose an original way to approach inverting the Marcenko—Pastur equa-
tion. In particular, we will be able to estimate given the eigenvalues of the sample
covariance matrix S, the probability measure, H), that describes the population
eigenvalues. We use the standard names empirical spectral distribution for F), and
population spectral distribution for H,. It is important to state clearly what as-
ymptotic framework we place ourselves in. We will consider that when p and n
go to infinity, H), stays fixed. In particular, it has a limit, denoted Hy,. We call
this framework “asymptotics at fixed spectral distribution.” Of course, fixing H),
does not imply that we fix p. For instance, sometimes we will have H), = §;, for
all p [here and in what follows, &, denotes a point mass (of mass 1) at x]. Since
the parameter of interest in our problems is really the measure H), the fixed spec-
tral distribution asymptotics corresponds to classical assumptions for parameter
estimation in statistics, where the parameter does not change with the number of
variables observed. We refer the reader to Section 3.3.6 for a more detailed discus-
sion.

To solve the inverse problem posed by the Marcenko—Pastur equation, we pro-
pose to discretize the Maréenko—Pastur equation and then use convex optimization
methods to solve the discretized version of the problem. In doing so, we obtain a
fast and provably accurate algorithm to estimate the population parameter of in-
terest, H),, from the sample eigenvalues. The approach is nonparametric since no
assumptions are made a priori on the structure of the population eigenvalues. One
outcome of the algorithm is an efficient graphical method to look at the structure
of the population eigenvalues. Another outcome is that since we have an estimate
of the measure that describes the population eigenvalues, standard statistical ideas
then allow us to get estimates of the individual population eigenvalues ;. Some
subtle problems may arise when doing so and we address them in Section 3.3.6.
The final result of the algorithm can be thought of as performing nonlinear shrink-
age of the sample eigenvalues to estimate the population eigenvalues.
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We want to highlight two contributions of our paper. First, we propose to esti-
mate measures associated with high-dimensional vectors rather than estimating the
vectors. This gives rise to natural notions of consistency and accuracy of our esti-
mates which are reasonable theoretical requirements for any estimator to achieve.
And second, we make use, for the first time, of a fundamental result of random
matrix theory to solve an important practical problem in multivariate statistics.

The rest of the paper is divided into four parts. In Section 2, we give some back-
ground on results in random matrix theory that will be needed. We do not assume
that the reader has any familiarity with the topic. In Section 3, we present our algo-
rithm to estimate H,, the population spectral distribution, and also the population
eigenvalues. In Section 4, we present the results of some simulations. We give in
Section 5 a proof of consistency of our algorithm. The Appendix contains some
details on implementation of the algorithm.

A note on notation is needed before we start: in the rest of the paper, p will
always be a function of n, with the property that p(n)/n — y and y € (0, 00). To
avoid cumbersome notation, we will usually write p and not p(n).

2. Background: random matrix theory of sample covariance matrices.
There is a large body of work concerned with the limiting behavior of the eigen-
values of a sample covariance matrix when p and n both go to co; it constitutes an
important subset of what is commonly known as random matrix theory, to which
we now turn. This is a wide area of research, of which we will only give a very
quick and self-contained overview. Our eventual aim in this section is to introduce
a fundamental result, the MarCenko—Pastur equation, that relates the asymptotic
behavior of the eigenvalues of the sample covariance matrix to that of the popula-
tion covariance in the “large n, large p” asymptotic setting. The formulation of the
result requires that we introduce some concepts and notation.

2.1. Changing points of view: from vectors to measures. One of the first prob-
lems to tackle is to find a mathematically efficient way to express the limit of
a vector whose size grows to co. (Recall that there are p eigenvalues to estimate
in our problem and p goes to 0o.) A fairly natural way to do so is to associate
to any vector a probability measure. More explicitly, suppose we have a vector

(Y1, ..., yp) in R?. We can associate to it the following measure:
1 p
dGp(x) = ” > 8y ().
i=1

G is thus a measure with p point masses of equal weight, one at each of the
coordinates of the vector.

In the rest of the paper, we will denote by H), the spectral distribution of the
population covariance matrix X, that is, the measure associated with the vector



2762 N. EL KAROUI

of eigenvalues of X,. We will refer to H), as the population spectral distribution.
We can write this measure as

p
Y 8, (),

1
dH,(x) = —
g

where 8, is a point mass, of mass 1, at A;. We also call §;, a “dirac” at A;. The
simplest example of population spectral distribution is found when X, =1d,. In
this case, for all i, A; = 1, and d H, = §1. So the population spectral distribution is
a point mass at 1 when X, =1d,.

Similarly, we will denote by F), the measure associated with the eigenvalues of
the sample covariance matrix S,. We refer to F), as the empirical spectral distrib-
ution. Equivalently, we define

p
> 8, (x).

1
dFp(x) = —
g

The change of focus from vector to measure implies a change of focus in the
notion of convergence we will consider adequate. In particular, for consistency
issues, the notion of convergence we will use is weak convergence of probability
measures. While this is the natural way to pose the problem mathematically, we
may ask if it will allow us to gather the statistical information we are looking
for. An example of the difficulties that arise is the following. Suppose dH, =
(1—1/p)81+1/ps>. In other words, the population covariance has one eigenvalue
that is equal to 2 and (p — 1) that are equal to 1. Clearly, when p — oo, H), weakly
converges to Hy,, with d Hy, = §1. So all information about the large and isolated
eigenvalue 2, which is present in H), for all p and is naturally of great interest
in PCA, seems lost in the limit. This is not the case when one does asymptotic at
fixed spectral distribution and consider that we are following a sequence of models
which are going to infinity with H, = H),, = H, where p is the p which is
given by the dataset. Fixed distribution asymptotics is more akin to what is done
in classical statistics and we place ourselves in this framework. We refer the reader
to Section 3.3.6 for a more detailed justification of our point.

In other respects, associating a measure to a vector in the way we described is
meaningful mostly when one wants to have information about the whole set of
values taken by the coordinates of the vector, and not about each coordinate. In
particular, when going from vector to measure as described above we are losing
all coordinate information: permuting the coordinates would drastically change the
vector but yield the same measure. However, in the case of vectors of eigenvalues,
since there is a canonical way to represent the vector (the i th largest eigenvalue oc-
cupying the ith coordinate), the information contained in the measure is sufficient.
This measure approach is especially good when we are not focused on getting all
the fine details of the vectors right, but rather when we are looking for structural
information concerning the values taken by the coordinates.
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An important area of random matrix theory for sample covariance matrices is
concerned with understanding the properties of F), as p (and n) go to co. A key
theorem, which we review later (see Theorem 1), states that for a wide class of
sample covariance matrices, Fo, the limit of F), is asymptotically nonrandom.
Furthermore, the theorem connects Foo to Hyo, the limit of H),: given Hyo, We can
theoretically compute F, by solving a complicated equation. In data analysis,
we observe the empirical spectral distribution, F,. Our goal, of course, as far as
eigenvalues are concerned, is to estimate the population spectral distribution, H),.
Our method will “invert” the relation between Fo, and Ho, so that we can go
from F), to H p» an estimate of H),. The method does not work directly with F, but
with a tool that is similar in flavor to the characteristic function of a distribution:
the Stieltjes transform of a measure. We introduce this tool in the next subsection.
As we will see later, it will also play a key role in our algorithm.

2.2. The Stieltjes transform of measures. A large number of results concerning
the asymptotic properties of the eigenvalues of large dimensional random matri-
ces are formulated in terms of limiting behavior of the Stieltjes transform of their
empirical spectral distributions. The Stieltjes transform is a convenient and very
powerful tool in the study of the convergence of spectral distribution of matrices
(or operators), just as the characteristic function of a probability distribution is a
powerful tool for central limit theorems. Most importantly, there is a simple con-
nection between the Stieltjes transform of the spectral distribution of a matrix and
its eigenvalues.

By definition, the Stieltjes transform of a measure G on R is defined as

mg(z) :f aG(x) forzeC™,

where CT £ C N {z:Im(z) > 0} is the set of complex numbers with strictly pos-
itive imaginary part. The Stieltjes transform appears to be known under several
names in different areas of mathematics. It is sometimes referred to as Cauchy or
Abel-Stieltjes transform. Good references about Stieltjes transforms include [1],
Sections 3.1-3.2, [28], Chapter 32, [24], Chapter 3, and [19].

For the purpose of this paper, where we will consider only compactly supported
measures, the following results will be needed:

FACT. Important properties of Stieltjes transforms of measures on R:

1. If G is a probability measure, mg(z) € C* if z € CT and limy_, o —iy X
mg(iy) = 1.

2. If F and G are two measures, and if mp(z) = mg(z), for all z € C, then
G=F,a.e.

3. [19], Theorem 1: If G, is a sequence of probability measures and mg, (z) has a
(pointwise) limit m(z) for all z € C™, then there exists a probability measure G
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with Stieltjes transform mg = m if and only if limy_, o —iym(iy) = 1. If it is
the case, G, converges weakly to G.

4. [19], Theorem 2: The same is true if the convergence happens only for an infinite
sequence {z;}?2 | in C* with a limit point in C*.

5. Ift is a continuity point of the cdf of G, dG(t)/dt = lim._,¢ % Im(mg(t+ic)).

For proofs, we refer the reader to [19].
Note that the Stieltjes transform of the spectral distribution I, of a p x p ma-
trix A, is just

_1 -1
mr,(2) = ” trace((Ap, —zId,) ™).

Finally, it is clear that points 3 and 4 above can be used to show convergence of
probability measures if one can control the corresponding Stieltjes transforms.

2.3. A fundamental result: the Marcenko—Pastur equation. In the study of co-
variance matrices, a remarkable result exists that describes the limiting behavior
of the empirical spectral distribution, F, in terms of the limiting behavior of the
population spectral distribution, Hs,. The connection between these two measures
is made through an equation that links the Stieltjes transform of the empirical spec-
tral distribution to an integral against the population spectral distribution. We call
this equation the Marcenko—Pastur equation because it first appeared in the land-
mark paper of [30]. The result was independently rediscovered in [37] and then
refined in [35, 36, 38]. In particular, [35] is the only paper where the case of a
nondiagonal population covariance is tackled.

In what follows, we will be working with an n x p data matrix X. We call ), =
X*X/n and denote mp, the Stieltjes transform of the spectral distribution, Fp,
of Sp. We will call v, the function defined by vr, (z) = (1 — p/n)_?1 + %me (2).
vF, is the Stieltjes transform of the spectral distribution of X X*/n.

Currently, the most general version of the result is found in [35]. We note that
Silverstein’s result calls for only two moments, but we state it with four because
we need four moments later. The result is the following:

THEOREM 1. Suppose the data matrix X can be written X =YX },/ 2,
where %, is a p X p positive definite matrix and Y is an n X p matrix whose entries
are i.i.d. (real or complex), with E(Y; ;) =0, E(IYi,jlz) =1 and E(|Yl~,j|4) < 0.

Call H), the population spectral distribution, that is, the distribution that puts
mass 1/ p at each of the eigenvalues of the population covariance matrix, X,. As-
sume that H,, converges weakly to a limit denoted Huo. (We write this convergence
H),, = Hy,.) Then, when p,n — oo, and p/n — y,y € (0, 00):

1. vF,(2) = voo(2), a.s., where v (2) is a deterministic function.
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2. Vs0(2) satisfies the equation

1 AdHxo (A
- =z—vy dHoo (%) VzeCT.
Voo (2) I+ Aveo(2)
3. The previous equation has one and only one solution which is the Stieltjes trans-
form of a measure.

M-P)

In plain English, under the assumptions put forth in Theorem 1, the spectral
distribution of the sample covariance matrix is asymptotically nonrandom. Fur-
thermore, it is fully characterized by the true population spectral distribution,
through (M-P).

A particular case of (M-P) is often of interest: the situation when all the popu-
lation eigenvalues are equal to 1. Then of course, H, = Hy = §;. A little bit of
elementary work leads to the well-known fact in random matrix theory that the
empirical spectral distribution, F,, converges (a.s.) to the MarCenko—Pastur law,
whose density is given by, if y <1,

@ =Vb-—n&-a)/Crxy) witha=1-y'?? b=(1+y"»

We refer the reader to [4, 25, 30] for more details and explanations concerning the
case y > 1. One point of statistical interest is that even though the true population
eigenvalues are all equal to 1, the empirical ones are now spread on the interval
[(1— yl/z)z, 1+ )/1/2)2]. Plotting the density also shows that its shape varies
with y in a nontrivial way. These two remarks illustrate some of the difficulties
that need to be overcome when working under “large n, large p” asymptotics.

3. Algorithm and statistical considerations.

3.1. Formulation of the estimation problem. A remarkable feature of (M-P) is
that the knowledge of the limiting distribution of the eigenvalues in the popula-
tion given by Hy, fully characterizes the limiting behavior of the eigenvalues of
the sample covariance matrix. However, the relationship between the two is hard
to disentangle. As is common in statistics, the question is how to invert this rela-
tionship to estimate H),. The question thus becomes, given [y, ...,[,, the eigen-
values of a sample covariance matrix, can we estimate the population eigenvalues,
Al ..., Ap, using (M-P)? Or in terms of spectral distribution, can we estimate H),
from F,?

Our strategy is the following: (1) The first aim is to estimate the measure Hy,
appearing in the Marcenko—Pastur equation. (2) Given an estimator, Hoo, of this
measure, we will estimate X; as the ith quantile of our estimated distribution. It
is common in statistical practice to get these estimates by using the i/(p + 1)
percentile and this is what we do. (We come back to possible difficulties getting
from H p 1o ):i in Section 3.3.6.) (3) An important point is that since we are consid-
ering fixed distribution asymptotics, our estimate of Ho, will serve as our estimate
of Hp, so ﬁp = ﬁm.
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The main question, then, is how to approach step 1: estimating Ho, based only
on F,. Of course, since we can compute the eigenvalues of S, we can compute

VF, (z) for any z we choose. By evaluating v, at a grid of values {z; }jj.”= 1» We have
a set of values {v F, (z j)}JJ.": | for which (M-P) should (approximately) hold. We

want to find ﬁoo that will “best” satisfy (M-P) across the set of values of v F,(2j).
In other words, we will pick

~ . . 1 p AdHO)
szHoozargmlnL< T —— | /= )
H vF,(2)) nJ 14+ivr,(zj))j=1

where the optimization is over probability measures H, and L is a loss function to
be chosen later. In this way we are “inverting” (M-P), going from F),, an estimate
of Fyo, to an estimate of Hy

We will solve this inverse problem in two steps: discretization and convex opti-
mization. We give a high-level overview of our method and postpone implementa-
tion details to the Appendix.

To summarize, we face the following interpolation problem: given J an integer
and (z;, vF, (2 j))J-:1 we want to find an estimate of Hy, that approximately sat-
isfies (M-P). In Section 5, we show that doing so for L, loss function leads to a
consistent estimator of H.,, under the reasonable assumption that all spectra are
bounded.

3.2. The algorithm. In order to alleviate the notation, we will replace the no-
tation Hy, by H when it does not cause any confusion.

3.2.1. Discretization. Naturally, d H can be simply approximated by a weight-
ed sum of point masses:

K
dH(x) >~ Z Wi Sy (X),
k=1

where {tk}f:1 is a grid of points, chosen by us, and wy’s are weights. The fact that
we are looking for a probability measure imposes the constraints

K
Y wg=1 and wy>0.
k=1

This approximation turns the optimization over measures problem into search-
ing for a vector of weights in Rf . After discretization, the integral in (M-P) can
be approximated by

hdH() i
1—|—)»v =1 1+tkv'
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Hence finding a measure that approximately satisfies (M-P) is equivalent to finding
a set of weights {wy} ,f: 1» for which we have

1

T 9T Zl 1+tkvoo<z]>

Vj.

Naturally, we do not get to observe v, and so we make a further approximation
and replace voo by vF,. Our problem is thus to find {wk}f:1 such that

1 p Ik .
—_ 1~z — = ——————————— Vj.
vr,(z)) T n }; 1+ tvE, ()
One good thing about this approach is that the problem we now face is linear
in the weights, which are the only unknowns here. We will demonstrate that this
allows us to cast the problem as a relatively simple convex optimization problem.

3.2.2. Convex optimization formulation. To show that we can formulate our
inverse problem as a convex problem, let us call the approximation errors we make

1 K

+ZJ'—£Zwk <

ej=—— T .
/ vF,(zj) ni— l+vr )i

As explained above, there are two sources of error in e;; one comes from the
discretization of the integral involving Hs.. The other one comes from the substi-
tution of veo, a nonrandom and asymptotic quantity, by vr,, a (random) quantity
computable from the data. e; is of course a complex number in general.

We can now state several convex problems as approximation of the inversion
of the Mar¢enko—Pastur equation problem. We show in Section 5 consistency of
the solution of the “L,” version of the problem described below. Here are a few
examples of convex formulations for our inverse problem. In all these problems,
the wy’s are constrained to sum to 1 and to be nonnegative:

1. “Ls” version: Find wy’s to

Minimize nllaxj max({|Re(e;)l, [Im(e;)l}.
j=1...,J

2. “L,” version: Find wy’s to

Jn
Minimize ) |e;l.
j=1

3. “Ls-squared” version: Find wy’s to

Jn
Minimize Z lej |2
j=1
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The advantages of formulating our problem as a convex optimization problem are
many. We will come back to the more statistical issues later. From a purely numer-
ical point of view, we are guaranteed that an optimum exists, and fast algorithms
are available. In practice, we used the optimization package MOSEK (see [32]),
within Matlab, for solving our problems.

Because the rest of the article focuses particularly on the “L,” version of the
problem described above, we want to give a few more details about it. The “trans-
lation” of the problem into a convex optimization problem is

MmNy, wg,u) U
A\ —u <Re(ej) <u

A\ —u <Im(ej) <u

K

subject to Z wr =1
i=1

and w, >0 Vk.

This is a linear program (LP) with unknowns (wy, ..., wg) and u (see [10] for
standard manipulations to make it a standard form LP).

The simulations we present in Section 4 were made using this version of this
algorithm. The proof in Section 5 applies to this version of the algorithm.

3.3. Statistical considerations. The formulation we proposed is quite flexible
and has several important qualities. For instance, regularization constraints can be
easily handled through our proposal. We also can view the algorithm as a form of
“basis pursuit” in measure space, from which we can draw some practical conclu-
sions.

3.3.1. Regularization and constraints. Methods to invert the Marcenko—
Pastur equation should be flexible enough to accommodate reasonable constraints
that could provide additional improvement to our estimate of H),. The fact that we
essentially just optimize over the weights wy’s means that we can easily regular-
ize and add constraints. For instance, we might want to regularize our estimator
and make it smoother by adding a “total variation” penalty (on the wy’s) to our
objective function. In terms of constraints, we might want to specify that the first
moment of our estimate H, match the trace of S, /p, since we know that the trace
of §,/p is a good estimate of the trace of X,/p (see, e.g., [26]), and that the
trace of X, /p is equal to the first moment of H),. (It is also possible to estimate
higher moments of H), using, for instance, convex optimization and asymptotics
of Nevanlinna functions. In practice we managed to estimate around 10 moments
reasonably well.) Note that constraints on the moments of our estimator are lin-
ear in the wy’s and so such constraints would still lead to a convex problem. The
framework we provide can very easily incorporate these two examples of penalty
and constraints, as well as many others.



SPECTRUM ESTIMATION FOR LARGE COVARIANCE MATRICES 2769

3.3.2. A “basis pursuit” point of view. A semantic point is needed before we
start our discussion. We use the term “basis pursuit” in a loose sense: we are not re-
ferring to the algorithm proposed in [14] but rather use this expression as a generic
term for describing techniques that aim to optimize the representations of func-
tional objects in overcomplete dictionaries. We refer the reader to [23], Chapter 5,
for some of the core statistical ideas of these so-called basis expansion methods.

The algorithm we propose can be viewed as a relaxation of a measure estimation
problem. We want to estimate a measure Hy, and instead of searching among all
possible probability measures, we restrict our search space to mixtures of certain
classes of probability measures. In Section 3.2.1, for instance, we restricted the
choice to mixture of point masses. In that sense, we can view it as a type of “basis
pursuit” in probability measure space. We first choose a “dictionary” of probability
measures on the real line, and we then decompose our estimator on this dictionary,
searching for the best coefficients. Hence our problem can be formulated as

N
find the best possible weights {wq, ..., wy} with d H = Z w; dM;,
i=1
where the M;’s are the measures in our dictionary.
In the preceding discussion on discretization, we restricted ourselves to M;’s be-
ing point masses at chosen “grid points.” Of course, we can enlarge our dictionary
to include, for instance:

1. Probability measures that are uniform on an interval: in this case, d M;(x) =
Liela; bi1dx/(Di — a;).

2. Probability measures that have a linearly increasing (or decreasing) density
on an interval [a;, b;] and density O elsewhere. So, for the increasing case,
dM;(x) =114, p2(x — a;)/(b; — a,‘)2 dx, and density O elsewhere.

If we decide to include a probability measure M in our dictionary, the only
requirement is that we be able to compute the integral

AdM(())
14+ Av

for any v in CT,

Choosing a larger dictionary increases the size of the convex optimization prob-
lems we try to solve, and hence is at first glance computationally harder. However,
statistically, enlarging the dictionary may lead to sparser representations of the
measure we are estimating, and hence, at least intuitively, lead to better estimates
of Hy,. The most favorable case is of course when Hy, is a mixture of a small
number of measures present in our dictionary. For instance, if Hy, has a density
whose graph is a triangle, having measures as described in point 2 above would
most likely lead to sparser and maybe more accurate estimates. In the presence of
a priori information on Hy., the choice of dictionary should be adapted so that Hy,
has a sparse representation in the dictionary.
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3.3.3. Useful properties of the algorithm. One important advantage of choos-
ing to estimate measures instead of choosing to estimate a high-dimensional vector
is that the algorithm’s complexity does not increase with the size of the answer re-
quired by the user. Hence given a p-dimensional vector of eigenvalues, once the
values v, (z;) are computed, the computational cost of the algorithm is the same
irrespective of p. This means that for large- p problems, only one difficult compu-
tation is required: that of the eigenvalues of the empirical covariance matrix. Our
algorithm is hence, in some sense, “dimension-free,” that is, except for the com-
putation of the eigenvalues, it is insensitive to the dimensionality of our original
problem. This scaling property is important for high-dimensional problems.

Another good property of our method is that it is independent of the basis in
which the data are represented. Because our method requires only as input the
eigenvalues of the sample covariance matrix—quantities obviously independent
of the original basis of the data—our method is basis-independent.

In other respects, Theorem 1 holds for random variables that have a fourth mo-
ment; we are not limited to Gaussian random variables. Complex random variables
are also possible. Hence, the theorem is well suited for wide applicability. Elemen-
tary properties of Gaussian random variables show that Theorem 1 covers all pos-
sible Gaussian problems. This will not be true for all distributions, but the scope of
the theorem is still very wide. Note also that (M-P) holds in greater generality than
mentioned in Theorem 1. We refer the reader to the original paper [30] for further
examples, in particular when the data are distributed on spheres or ellipsoids. (The
original formulation of the theorem allows for dependence between the entries of
the matrix Y, but the convergence is not shown to be almost sure.)

Finally, we note that our convex optimization view can be adapted to handle
a large class of similar problems arising in random matrix theory. For instance,
it can be easily adapted to perform a similar estimation procedure in the context
investigated in [15].

3.3.4. The case p > n and how large is large? Another advantage of the pro-
posed method is that it is insensitive to whether p is larger than n or n is larger
than p. The only requirement is that they both be quite large. We had reason-
able to good results in simulation as soon as p > 30 or so. As a matter of fact,
it is quite clear that to have reasonably accurate estimates of the eigenvalues, we
need to “populate” the interval [A ), A1] with enough points, for otherwise quantile
methods may be somewhat inaccurate.

3.3.5. On covariance estimation, linear and nonlinear shrinkage of eigenval-
ues. There is some classical and more recent statistical work on shrinkage of
eigenvalues to improve covariance estimation. We refer the reader to Section 4.1
in [29] for some examples due to Charles Stein and Leonard Haff, unfortunately
in unpublished manuscripts. More recently, in the interesting paper [29], what was
proposed is to linearly shrink the eigenvalues of S, toward the identity; that is, /;’s
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become /; = (1 — p)li + p’s, for some p, independent of i, chosen using the data
and the Marcenko—Pastur law. Then the authors of [29] proposed to estimate X,
by (1 — p)S, + pld,. Since this latter matrix and S, have the same eigenvectors,
their method of covariance estimation can be viewed as linearly shrinking the sam-
ple eigenvalues and keeping the eigenvectors of S, as estimates of the eigenvectors
of X,.

Our method of estimation of the population eigenvalues can be viewed as doing
a nonlinear shrinkage of the sample eigenvalues. While we could propose to just
keep the eigenvectors of S, as estimates of the eigenvectors of ¥, and hence get
an estimate of the population covariance matrix, we think one should be able to
do better by using the eigenvalue information to drive the eigenvector estimation.
It is known that in “large n, large p” asymptotics, the eigenvectors of the sam-
ple covariance matrix are not consistent estimators of the population eigenvectors
(see [33]), even in the most favorable cases. However, having a good idea of the
structure of the population eigenvalues should help us estimate the eigenvectors
of the population covariance matrix, or at least formulate the right questions for
the problem at hand. For instance, the inferred structure of the covariance matrix
could help us decide how many subspaces we need to identify: if, for example, it
turned out that the population eigenvalues were clustered around two values, we
would have to identify two subspaces, the dimensions of these subspaces being the
number of eigenvalues clustered around each value. Also, having estimates of the
eigenvalues tells us how much variance our “eigenvectors” will have to explain.
In other words, our hope is that taking advantage of the crucial eigenvalue infor-
mation we are now able to gather will lead to better estimation of X, by doing a
“reasoned” spectral decomposition. Work in this direction is in progress.

3.3.6. Asymptotics at fixed spectral distribution and isolated eigenvalues. Our
algorithm actually uses asymptotics assuming a fixed spectral distribution: we are
essentially fixing H, = Hy when solving our optimization problem. Naturally,
this does not mean that p is fixed. Note that this is what is classically done in sta-
tistics: for the simple problem of estimating the mean of a population from a sam-
ple Zy, ..., Zg, it is common to assume that the Z;’s have the same mean u, and
that © does not depend on K. However, when studying the asymptotic properties
of this simple estimator, we could require to actually have ©(K), with u(K) — .
(All we would have to do is have a triangular array of data, and get to observe just
one row of this array at a time.) Hence our fixed spectral distribution “assumption”
is very natural and similar to classical assumptions made in estimation problems.

Let us go back now to the problem of isolated eigenvalues. Suppose we get to
see data in R”0 for some pg. Then, any isolated eigenvalue that may be present is
numerically treated as if the mass that is attached to it is held fixed at 1/pg when
p — 00. So a point mass at the corresponding population eigenvalue would appear
in H p- This has been verified numerically. If the estimator were perfect, this mass
should be equal to 1/pg. However, because of variability it may not be exactly
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of mass 1/pg. Then, estimating the population eigenvalues by the quantiles of the
estimated population spectral distribution, we may “miss” this isolated eigenvalue.
In the case of the largest eigenvalue, that would happen if the mass found numer-
ically at this isolated eigenvalue is less than 1/(pp + 1). So isolated eigenvalues

will require special care and caution, particularly in going from H p to ;. While
the method focuses on identifying the structure of the population eigenvalues and
hence may have problems when it comes to estimating isolated eigenvalues, we
have found in practice that it still provided a good tool for this task but that some
care was required.

3.3.7. Existing related work. As far as we know, there has been no work
on nonparametric estimation of H, or Hy using the MarCenko—Pastur equation.
However, some work exists in the physics literature [11, 12], that takes advantage
of the Mar¢enko—Pastur law to estimate some moments of Hs,. Hoo is then as-
sumed to be a mixture of a finite and prespecified number of point masses (see [11],
page 303) and the moments are then matched with possible point masses and
weights. While these methods might be of some use sometimes, we think they
require too many assumptions to be practically acceptable for a broad class of
problems. It might be tempting to try to develop a nonparametric estimator from
moments, but we think that without the strong assumptions made in [11], those
estimators will suffer drastically from certain issues: (1) The number of moments
needed a priori may be large, and large moments are very unreliable estimators.
(2) Moments estimated indirectly may not constitute a genuine family of moments:
certain Hankel matrices need to be positive semidefinite and will not necessarily
be so. Semidefinite programming type corrections will then be necessary, but hard
to implement. (3) Even if one has a genuine moment sequence, there are usually
many distributions with the same moments. Choosing between them is clearly go-
ing to be a difficult task. We note that after this paper was first submitted (and
posted on arxiv), another interesting proposal emerged in [34]. The main differ-
ence with our approach is that the method of these authors seems to limit them to
finite and prespecified sum of atoms.

4. Simulations. We now present some simulations to illustrate the practical
capabilities of the method. The objectives of eigenvalues estimation are manifolds
and depend on the area of applications. We review some of those that inspired our
work.

In settings like PCA, one basically wishes to discover some form of structure
in the covariance matrix by looking at the eigenvalues of the sample covariance
matrix. In particular, a situation where the population eigenvalues are different
from each other indicates that projecting the data in some directions will be more
“informative” than projecting them in other directions; while in the case where
all the population eigenvalues are equal, all projections are equally informative or
uninformative. As our brief discussion of the Marcenko—Pastur law illustrated, in
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the “large n, large p” setting, it is difficult to know from the sample eigenvalues
whether all population eigenvalues are equal to each other or not, or even if there
is any kind of structure in them. When p and n are both large, standard graphical
methods like the scree plot tend to look similar whether or not there is structure in
the data. We will see that our approach is able to differentiate between the situa-
tions. Among other things, our method can thus be thought of as a alternative to
the scree plot for high-dimensional problems.

In other applications, one focuses more on trying to estimate the value of the
largest or smallest eigenvalues. In PCA, the largest population eigenvalues mea-
sure how much variance we can explain through a low-dimensional projection and
are hence important. In financial applications, like the Markovitz portfolio opti-
mization problem, the small population eigenvalues are important. They essen-
tially measure what is the minimum risk one can take by investing in a portfolio of
certain stocks (see [27] and [13], Chapter 5). However, as explained in the Appen-
dix, the largest eigenvalue of the sample covariance matrix tends to overestimate
the largest eigenvalue of the population covariance. And similarly, the smallest
eigenvalue of the sample covariance matrix tends to underestimate its population
counterpart. What that means is that using these measures of “information” and
“risk,” we will tend to overestimate the amount of information there is in our data
and tend to underestimate the amount of risk there is in our portfolios. So it is
important to have tools to correct this bias. Our estimator provides a way to do so.

4.1. Details of the simulations. We illustrate the performance of our method
on three cases, each with very different covariance structure. We will give more
details on each individual case in the following subsections.

We now describe more precisely these examples. The first case is that of
¥, =1Id,; in other words, there is no “information” in the data. However, stan-
dard graphical statistical methods like the “scree plot” will tend to show a pattern
in the eigenvalues. We will show that our method is generally able to inform us
that all the eigenvalues are equal.

The second case is one where X, has 50% of its eigenvalues equal to 1 and
50% equal to 2. While it should be easy to discern that there are two very distinct
clusters of eigenvalues in the population, in high dimension the sample eigenvalues
will often blur the clusters together. We show that our method generally recovers
these two clusters well.

Finally, the third example is one where X, is a Toeplitz matrix. More details on
Toeplitz matrices are given in Section 4.1.3. This situation poses a harder estima-
tion problem. While the asymptotic behavior of the eigenvalues of such matrices is
well understood, there are generally no easy and explicit formulas to represent the
limit. We present the results to show that even in this difficult setting, our method
performs quite well.

To measure the performance of our estimators, we compare the Lévy distances
between our estimator, H),, and the true distribution of the population eigenval-
ues, H), to that of the empirical spectral distribution, F),, to H,. Our choice is



2774 N. EL KAROUI

motivated by the fact that the Lévy distance can be used as a metric for weak
convergence of distributions on R. Recall (see, e.g., [16]) that the Lévy distance
between two distributions F' and G on the real line is defined as

di(F,G)=infle >0: F(x —e) —e<Gx)<F(x+¢)+e Vx}.

In the plots we will depict the cumulative distribution function (cdf) of our es-
timated measures. Recall that the estimates of the population eigenvalues X;’s are
obtained by taking appropriate percentiles of these measures.

4.1.1. The case ¥, =1d,. In this situation, the Mar¢enko—Pastur law predicts
that instead of being concentrated at 1 like the population eigenvalues, the sample
eigenvalues will be spread on the interval [(1 — «/p/n)?, (1 + /p/n)?]. This is
problematic, since by looking at the scree plot of just the sample eigenvalues,
one might think that some population eigenvalues are (much) larger than others
and hence some projections of the data are more informative than others. This is
vividly illustrated in Figure 1(a). However, as we see in Figure 1(c), the method
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FIG. 1. Case Xp =1dp. The three figures above compare the performance of our estimator to
the one derived from the sample covariance matrix on one realization of the data. The data matrix
X is 500 x 100. All its entries are i.i.d. N (0, 1). The population covariance is X = Idjog, so the
distribution of the eigenvalues is a point mass at 1. This is what our estimator (c) recovers. Av-
erage computation time (over 1000 repetitions) was 13.33 seconds, according to Matlab tic and
toc functions. Implementation details are in the Appendix. (a) Eigenvalues (scree plot) of the sam-
ple covariance matrix. (b) CDF eigenvalu/e\s, sample covariance matrix (Fp). (c) CDF eigenvalues,
estimated population covariance matrix (Hp).
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FIG. 2. Case Xp =1dp. Ratios dL(ﬁp, Hp)/d (Fp, Hp) over 1000 repetitions. Dictionary con-
sisted of only point masses. Large values indicate better performance of our algorithm. All ratios
were found to be larger than 1.

we propose finds that the population spectral distribution is very close to a point
mass at 1, and all eigenvalues are thus close to 1. Statistically, this of course means
that there is no preferred direction to project the data. All directions are equally
informative, or uninformative.

The figures presented in Figure 1 were chosen at random among 1000 Monte
Carlo simulations and are very encouraging. To further our empirical investigation
of the performance of our method, we repeated the estimation process 1000 times.
Another advantage is that on further investigation (manually checking the graphs
of many of the estimators we obtained) we saw that the estimator consistently gets
the structure “right,” namely a huge spike in the vicinity of 1. This is of course very
important for applications such as PCA, where the structure of the spectrum of the
covariance matrix is of fundamental importance. For each repetition, we estimated
the distribution of the eigenvalues in the population, and computed the Lévy dis-
tance of our estimator, H,, to the true distribution, H,, in this case a point mass
at 1. We did the same for the empirical spectral distribution F),. Figure 2 shows
the ratio d; (H)p, Hy)/d (Fp, H)) for these simulations. Our estimator clearly out-
performs the one derived from the sample covariance matrix, often by a dramatic
factor.

4.1.2. The case H, =0.561 +0.58. In this case the eigenvalues of the pop-
ulation covariance matrix are split into two clusters of equal size. For the specific
example we investigate, 50% of the eigenvalues are equal to 1 and 50% are equal
to 2. See Figure 3.

While it should be easy to discern that there are two very distinct clusters of
population eigenvalues, when p is sufficiently close to n the two clusters merge
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FIG. 3. Case Hp =0.581 + 0.58;. The three figures above compare the performance of our es-
timator on one realization of the data. The data matrix Y is 500 x 100. All its entries are i.i.d.
N (0, 1). The covariance is diagonal and has spectral distribution Hp, = 0.561 + 0.58;. In other
words, 50 eigenvalues are equal to 1 and 50 eigenvalues are equal to 2. This is essentially what
our estimator (c) recovers. Average computation time (over 1000 repetitions) was 15.71 seconds, ac-
cording to Matlab tic and toc functions. (a) Scree plot of eigenvalues, sample covariance matrix: no
clear separation around the 50th eigenvalue. (b) CDF eigenvalues, sgmple covariance matrix (Fp).
(c) Estimated CDF of eigenvalues of population covariance matrix (Hp).

together and the scree plot of the sample eigenvalues does not show a clear sep-
aration between the two regions. The Marcenko—Pastur law predicts (in the case
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FIG. 4. Case Hp = 0.581 + 0.585. Ratios dL(ﬁp, Hp)/dp (Fp, Hp) over 1000 repetitions. Dic-
tionary consisted of only point masses. Large values indicate better performance of our algorithm.
All ratios were found to be larger than 1.

of identity covariance) that the sample eigenvalues spread over larger and larger
intervals as p gets closer to n. Therefore, it is intuitively not surprising that when
we have two not too distant clusters of population eigenvalues, the corresponding
sample eigenvalues would start to overlap if p is close enough to 7.

We did a Monte Carlo analysis (similar to the one done in the case of Id,, covari-
ance) of our estimator and did comparisons to the empirical spectral distribution.
As in the case of Id,, we present a figure showing the ratio of the Lévy distance
of the two estimates to the true distribution. Figure 4 shows that once again our
estimator clearly outperforms the one derived from the sample covariance matrix,
by a large factor. Again, upon further investigation, the estimator generally gets
the correct structure of the distribution of the population eigenvalues: in this case
two spikes at 1 and 2.

4.1.3. The case of a Toeplitz covariance matrix. Finally, we performed the
same type of analysis on a Toeplitz matrix, to show that the method we propose
works quite well on more complicated types of covariance structures. Note that
generally this is inherently a quite difficult problem, if we do not assume a priori
that we know that the matrix is Toeplitz.

We recall that a Toeplitz matrix 7' is a matrix whose entries satisfy 7; ; =1(i —
J), for a certain function ¢. Since covariance matrices are symmetric, the Toeplitz
matrices at hand will satisfy 7; ; =7(|i — j|). The limiting spectral distribution of
these objects is very well understood; see [9, 21] or [22].

Approaches exist that take advantage of the particular structure of a Toeplitz
matrix. See, for instance, the interesting papers [7] and for even more generality—
beyond Toeplitz matrices—[8]. However, these approaches are very basis depen-
dent; they assume that the variables are measured in the appropriate basis. In data
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analysis, this may sometimes be justified and sometimes not. In particular, if the
order of the variables is permuted, the resulting estimators might change. Since we
want to be able to avoid this type of behavior, we feel that a “basis-independent”
method is needed and should be available. Finding such a method was one of the
original motivations of our investigations.

Once again, the results displayed in Figure 5 are quite encouraging. Note that
this time, the population spectral distribution could only be approximated by a
large number of elements of our dictionary. So there was no sparse representation
of Hs in our chosen dictionary of measures. However, computation time was
not severely affected and the results are still quite good. To give a more detailed
comparison, we present in Figure 6 a histogram of ratios dp, (ﬁp, Hy,)/dp(Fp, Hp).

5. Consistency. In this section, we prove that the algorithm we propose leads
to a consistent (in the sense of weak convergence of probability measures) estima-
tor of the spectral distribution of the covariance matrices of interest.

More precisely, we focus on the “L,” version of the algorithm proposed in Sec-
tion 3.2.2. In short, the theoretical results we prove state that as our computational
resources grow (in terms of both size of available data and grid points on which
to evaluate functions), the estimator H » converges to Hy. The meaning of Theo-
rem 2, which follows, is the following. We first choose a family of points {z;} in the
upper-half of the complex plane, with a limit point in the upper-half of the complex
plane. We assume that the population spectral distribution H,, has a limit, in the
sense of weak convergence of distributions, when p — oo. We call this limit Hs.
This assumption of weak convergence allows us to vary H), as p grows, and to
not be limited to H), = H, for the theory; this provides maximal generality. We
then solve the “L.,” version of our optimization problem, by including more and
more of the z;’s in the optimization problem as n — oco. We assume in Theorem 2
that we can solve this problem by optimizing over all probability measures. Then
Theorem 2 shows that the solution of the optimization problem, H p» converges in
distribution to the limiting population spectral distribution, Hs.. In Corollary 1, we
show that the same conclusion holds if the optimization is now made over proba-
bility measures that are a mixture of point masses, whose locations are on a grid
whose step size goes to 0 with p and n. Actually, the requirement is that the dic-
tionary of measures we use contain these diracs. It can of course be larger. Hence,
Corollary 1 proves consistency of the estimators specifically obtained through our
algorithm. Beside the assumptions of Theorem 1, we assume that all the spectra of
the population covariances are (uniformly) bounded. That translates into the mild
requirement that the support of all H),’s be contained in a same compact set. Note
that in the context of asymptotics at fixed spectral distribution, this is automatically
satisfied.

We now turn to a more formal statement of the theorem. The notation B(z, r)
denotes the closed ball of center zg and radius r. Our main theorem is the follow-

ing.
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FIG. 5. Case X Toeplitz with entries 0.3/i=J1. The three figures above show the performance
of our estimator on one realization of the data. The data matrix Y is 500 x 100. All its entries
are i.i.d. N(0,1). The covariance is Toeplitz, with t(|i — j|) = 0311, In (c), we superimpose
our estimator (blue curve) and the true distribution of eigenvalues (red curve). Average computation
time (over 1000 repetitions) was 16.61 seconds, according to Matlab tic and toc functions. (a) Scree
plot, eigenvalues sample covariance matrix. (b) CDF eigenvalues, sgmple covariance matrix (Fp).
(¢) Estimated CDF of eigenvalues of population covariance matrix (Hp).

THEOREM 2. Suppose we are under the setup of Theorem 1, H, = Ho and
p/n — y, with 0 <y < oo. Assume that the spectra of the X,,’s are uniformly
bounded. Let Jy, Ja, ... be a sequence of integers tending to co. Let 7o € CT and
r € RT be such that B(zo,r) C CT. Let z1, 22, ... be a sequence of complex vari-
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FIG. 6. Case X Toeplitz with entries (0.3°=71). Ratios dy (H,, Hp)/dy (Fp, Hp) over 1000
repetitions. Dictionary consisted of only point masses. Large values indicate better performance of
our algorithm. All ratios were found to be larger than 1.

ables with a limit point, all contained in B(zg,1). Let ﬁ be the solution of

~ 1 AdH())
(D H), = arg min max - —/
H J<Jn UF (Zj) 1 +)VUFP(ZJ)

where H is a probability measure. Then we have

ﬁp = Hy a.s.

Before we turn to proving the theorem, we need a few intermediate results. An
important step in the proof is the following analytic lemma.

LEMMA 1.  Suppose we have a family {z;}32, of complex numbers in C*, with
a limit point in CT. Suppose there exist a sequence {Ji}2, of integers tending to
00, a sequence {&;};2 | of positive reals tending to 0, a sequence {p(n)};° | of in-
tegers, with p(n)/n — y € R*, and a sequence of probability measures {H 10 =l
such that

. 1 AdH _AdH,(M)
2 Vj<Jn < é&n.
UFp(Zj) 1+)\UFP(ZJ)
Assume that v, satisfies
1 AdHxo (X))
(3) - ==V | T
Voo (Z) I+ Aveo(z)

Jor some probability measure Hoo. Assume that vr,(zj) — Voo(zj), and both are

analytic in C* and from C* to C*. Further, assume that |v(z;)| < C for some
C e R, and |Im(vF,(z;))| > 3, as well as | Im(veo(z))| > 8, for some § > 0. Then

H, = He.
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PROOF. Since v satisfies

)/f 1)\dHoQ()»)

voo(zj) + Ao (2)
(2) reads
1 1 p AdHx (L)
vr,(2)  veo(2)) (V - _) 1+ Avoo(2))
E( MdHoo() [ hdH,() )‘ .
1 + Mveo(z)) 1+ 2vr,(z))

Note that since |Im(vp,)| > 6 and [Im(veo)| > 6, and given that

R 1‘< [VF, — Vool
~ [ Im(vp,) | Im(veo) |

UFP Voo

we have [1/vp, — 1/voo| = 0.
Also, because p/n — y, the previous equation implies that

AdHs () AdH,(L)

1 4 Ao (z;) 1+ 2vp,(z))

Now because vp, (z;) = voo(z;), We have

V AdH,() B AdH,()
1

‘ / 22 (voo(2)) — vF, (2)) dHp(X)
+ Avr, (z)) 1+ Aveo(z))

(1 4+ Avso(z;)) (1 + AvE, (z)))
[vr,(z;) — voo(z)]
~ [Im(vp, (z))] 1 ITm(veo (z))]

— 0.

So we have
AdH, (L) [ *dHo()
1+ Avso(z) 1+ Aveo(z)
We remark that for m € C*, and G a probability measure on R, whose Stieltjes
transform is denoted by Sg,
rdG() 11 rdGR) 1 l dG(») 1 1 g ( 1)

l+xm m m 1—|—km m 1/m+ A “m om2C

Hence, when the assumptions of the lemma are satisfied, we have

S (_ Uool(Zj)) S (_ vool(z,-))'

Now since voo(z;) satisfies (3), we see that if voo(2;) = Voo(2k), then z; = zx.
Hence, {—1/v00(z J)} -1 1s an infinite sequence of complex numbers in C*. More-

m

over, because vy, is analytic in C™, it is continuous, and so {—1/vs0(z I =1 has
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a limit point. Further, because |voo(z;)| < 00 and Im(veo(z;)) > 6, this accumula-
tion point is in C*.

So under the assumptions of the lemma, we have shown that there exists an
infinite sequence {y;}92, of complex numbers in C™, with a limit point in C™,
such that

Si,(vj) = SHy () Vj.
According to [19], Theorem 2, this implies that

H, = He. O

In the context of spectrum estimation, the intuitive meaning of the previous
lemma is that if for a sequence of complex numbers {z j}j?"zl with a limit point
in CT, we can find a sequence of H »’s approximately satisfying the MarCenko—
Pastur equation at more and more of the z;’s when n grows, then this sequence of
measures will converge to Hyg.

We now state and prove a few results that will be needed in the proof of Theo-
rem 2. The first one is a remark concerning Stieltjes transforms.

PROPOSITION 1. The Stieltjes transform, Sy, of any probability measure H
on R, is Lipschitz l/urznin on Ct N {Im(2) > tmin)}-

Hence, if Sy, (z) = Su,, (z) pointwise, where all the measures considered are
probability measures, the convergence is uniform on compact subsets of CT N

{Im(z) > umin}-

PROOF. We first show the Lipschitz character of Sg. We have

B 1 o dH ()
SH(Zl)_SH(ZZ)_/(A—zl A—zz)dH(k)_(Zl ZZ)/()»—ZI)()»—ZZ).

Now |A —z1] > | Im(A — 21)| > Umin. SO

21—z
|SH(z1) — SH(z2)| < |1272|

min
So we have shown that Sg is uniformly Lipschitz 1/ urznin on CT*N{Im(z) > umin}-.
Now, it is an elementary and standard fact of analysis that if a sequence of
K -Lipschitz functions converges pointwise to a K-Lipschitz function, then the
convergence is uniform on compact sets. This shows the uniform convergence part
of our statement. [

In the proof of the theorem, we will need the result of the following proposition.
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PROPOSITION 2. Assume the assumptions underlying Theorem 1 are satis-
fied. Recall that vr, is the Stieltjes transform of F,, the spectral distribution of
XX*/n=YX,Y*/n. Assume that the population spectral distribution H, has a
limit Hy, and that all the spectra are uniformly bounded. Let 7 € B(zp, 1), with
B(zo,r) C C*. Then, almost surely,

aN n>N = inf )Im(vpp(z)) =6>0.

n,zeB(zo,r

PROOF. Since we assume that all spectra are bounded, we can assume that

the population eigenvalues are all uniformly bounded by K. Because the spectral

. . 1/2
normis amatrix normand X =YX p/ , we have

)\max(X*X/n) =< )\max(zp))\max(Y*Y/n)-

Now it is a standard result in random matrix theory that Apa.x(Y*Y/n) — (1 +
ﬁ)z, a.s., so for n large enough,

A (Y*Y/m) <2(1+ /7)) as.

Calling z =u + iv, we have

B vdF,(0) vdF,(%)
Im(va(Z)) —/ (O —u)2 + 02 = 2(A2 4+ u?) 40?2’

because v > 0. Now, the remark we made concerning the eigenvalues of X*X/n
implies that almost surely, for n large enough, F), puts all its mass within [0, C],
for some C. Therefore,

v
meon )= e
and hence Im(v F,(2)) is a.s. bounded away from O, for n large enough. [

To show that we can find “good” probability measures when solving our opti-
mization problem, we will need to exhibit a sequence of measures that approxi-
mately satisfy the Maréenko—Pastur equation. The next proposition is a step in this
direction.

PROPOSITION 3. Letr € R" and zo € C* be given and satisfying B(zo,r) C
C*. Suppose p/n — y when n — oo, and Ye AN :n > N = Vz € B(z0,7),
|vpp (2) — Voo (2)| < €, Where v satisfies (3). Suppose further that | Im(veo(2))] >
Umin on B(zo,r). Then, if &€ < umin/2,

AN’ €N, Vz € B(zo,r), Vn> N’
1 p AdHx (M) 142y
tz—— | V| <2—F—.
vr,(2) nJ 1+2ivp,(z) u

min
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PROOF. Using (3) we find that

1 p [ AdHx(2)
+z2—— ——

v, (2) nJ 14+ivr,(2)

An(2) =

S +p/< G )dH )
T up,@ Y@ S \1+te@  T+ivp,))
p A
+(r=0) T

A Al AW
_A”(Z)+(” n>/1+xvoo(z)

Because y — p/n — 0,and |A/(1+Aveo(2)] < 1/]Im(veo(2))] < 1/Umin, We have

dHxo(X).

14 A .
- = — dHy (A 0 forml B(zp, 7).
(y n)/ [ (@ o(A) = uniformly on B(zg, r)

Now, of course,
Voo (2) — VF,(2)
A,I1 () = JooM Thp

VF, (2) Voo (2)

2
P / A
— — (v Z — Z dH )\. .
g (U (D)~ vo(2) (14 Avp, (2))(1 + Avoo(2)) o)
We remark that [vp, ()| > |Im(vE,(2))| > umin — € > umin/2. Hence, if n is large
enough,

|UOO(Z);UFP(Z)| 4 Elva(Z)Z_UOO(ZH <¢ 22 (1 +2y)

min min

Al(z) <2 -

min n u

We now turn to proving Theorem 2.

PROOF OF THEOREM 2. According to Propositions 1 and 2, the assumptions
put forth in Proposition 3 are a.s. satisfied for v F, and v is the Stieltjes trans-
form as in Theorem 1; here the uniformity obtained in Proposition 1 is naturally
key. Note also that Theorem 1 states that a.s., v F,(2) = Voo (2), and that all these
functions are analytic in C*. In other words, they have the properties needed for
Lemma 1 to apply—the only nonobvious part being maybe why (2) is satisfied.
Let us now turn to this important point.

Proposition 3 (applied to vp, as in Theorem 1) shows that if {z;} is a fam-
ily of complex numbers included in B(zg, r), (2) will be satisfied almost surely,
with a family {g,} of positive real numbers that converge to 0, when one picks for
measure H p in (2) the measure Hy. Once again, what is key here is that the con-
vergence is uniform in z, so the particular sequence of z;’s does not really matter
from a theoretical point of view.
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Now note that because H p» the solution of the optimization problem in (1),
minimizes the error made in (1), and for H, this error is—as we just saw—Iess
than ¢,, we see that the error corresponding to H p» has to be less than &,.

According to Lemma 1, this implies that

ﬁp = Hx almost surely. g

As a corollary of Theorem 2, we are now ready to prove consistency of our
algorithm.

COROLLARY 1 (Consistency of proposed algorithm). Assume the same as-
sumptions as in Theorem 2. Call H p the solution of (1), where the optimization is
now over measures which are sums of atoms, the locations of which are restricted
to belong to a grid (depending on n) whose step size is going to 0 as n — 0o. Then

ﬁp = Hy a.s.

PROOF. All that is needed is to show that a discretized version of Ho fur-
nishes a good sequence of measures in the sense that Proposition 3 holds for this
sequence of discretized version of Hyo.

We call Hyy, adiscretization of Hy, on a regular discrete grid of size 1/M,,. For
instance, we can choose Hyy, (x) to be a step function, with Hyy, (x) = Hoo(x) is
x=1[1/M,,l €N, and Hy, is constanton [[/M,,, (I +1)/M,). Recall also that Hy,
is compactly supported.

In light of the proof of Proposition 3, for the corollary to hold, it is sufficient to
show that uniformly in z € B(zp, 1),

dHy, (V) dHoo ()| — 0.

[ [
1+ Avp,(2) 1+ Avp,(2)
Now calling dw (Hpu,, Hx) the Wasserstein distance between Hy, and Hoo, wWe
have

o0
dw(Hpy,, Hso) :/ |Hpp, (x) — Hoo(x)|dx — 0 asn — o0o.
0

(Hu, and Hx put mass only on R, so the previous integral is restricted to R™. We
refer the reader to the survey [20] for properties of different metrics on probability
measures.)

In other respects, it is easy to see that under the assumptions of Proposition 3,
there exists N such that sup,,. y .cp(,.r) [VF,(2)| < K, for some K < oco. Recall
also that under the same assumptions, inf,~ y ;eB(z,,r) Im(v F,(2)) =4, for some
6 >0.

For two probability measures G and H, we also have

dW(G,H):sl;p”/fdG—/de

; f al-Lipschitz function}.
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Hence, because H, and Hyy, are supported on a compact set that is independent
of n, to have the result we want, it will be enough to show that

A

vy (W) = —————
Tor, @) =150

is uniformly Lipschitz (as a function of A) when z € B(zg,r) andn > N.
Now note that
For, @O = fop, ((2) = e
vE, (2) M vE, ()\A2) = a1+ klva(Z))(l n )»2UF[, @) .

If 2 < 1/(2K), then [AvF,(2)| < 1/2,50 |1+ Avp,(2)| = 1/2. If 2 > 1/(2K), then
11+ Avp,(2)] = 2 Im(vr,(2)) > 8/(2K). So [1 +Avp,(z)| = min(1/2,8/(2K)) =
C. Hence f, £y () is 1/C?-Lipschitz, and C is uniform in n and z, as needed.

Having thus extended Proposition 3 to discretized versions of Hy, the proof of
the corollary is the same as that of Theorem 2. [

The proof of the corollary makes clear that when solving the optimization prob-
lem over any dictionary of probability measures containing point masses (but also
possibly other measures) at grid points on a grid whose step size goes to 0, the
algorithm will lead to a consistent estimator.

Finally, as explained in the Appendix, the algorithm we implemented starts with
vF,(z;) sequences, as opposed to simply z; sequences. It can be straightforwardly
adapted to handle the z;’s as a starting point, too, but we got slightly better numer-
ical results when starting with vr,(z;). The proof we just gave could be adapted
to handle the situation where the VF, (zj)’s are used as starting point. However,
a few other technical issues would have to be addressed that we felt would make
the important ideas of the proof less clear. Hence we decided to show consistency
in the setting of Corollary 1.

6. Conclusion. In this paper we have presented an original method to estimate
the spectrum of large dimensional covariance matrices. We place ourselves in a
“large n, large p” asymptotic framework, where both the number of observations
and the number of variables is going to infinity, while their ratio goes to a finite,
nonzero limit. Approaching problems in this framework is increasingly relevant as
datasets of larger and larger size become more common.

Instead of estimating individually each eigenvalue, we propose to associate to
each vector of eigenvalues a probability distribution and estimate this distribution.
We then estimate the population eigenvalues as the appropriate quantiles of the
estimated distribution. We use a fundamental result of random matrix theory, the
Marcenko—Pastur equation, to formulate our estimation problem. We propose a
practical method to solve this estimation problem, using tools from convex opti-
mization.
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The estimator has good practical properties: it is fast to compute on modern
computers (we use the software [32] to solve our optimization problem) and scales
well with the number of parameters to estimate. We show that our estimator of the
distribution of interest is consistent, where the appropriate notion of convergence
is weak convergence of distributions.

The estimator performs a nonlinear shrinkage of the sample eigenvalues. It is
basis-independent and we hope will help in improving the estimation of eigenvec-
tors of large dimensional covariance matrices. To the best of our knowledge, our
method is the first that harnesses deep results of random matrix theory to prac-
tically solve estimation problems. We have seen in simulations that the improve-
ments it leads to are often dramatic. In particular, it enables us to find structure in
the data when it exists and to conclude to its absence where there is none, even
when classical methods would point to different conclusions.

APPENDIX

A.1. Implementation details. We plan to release the software we used to cre-
ate the figures appearing in the simulation and data analysis section in the near
future. However, we want to mention here the choices of parameters we made to
implement our algorithm. The justifications for them are based on intuitions com-
ing from studying (M-P).

Scaling of the eigenvalues. 1If all the entries of the data matrix are multiplied
by a constant a, then the eigenvalues of X, are multiplied by a?, and so are the
eigenvalues of S,,. Hence, if the eigenvalues of S, are divided by a factor a, (M-P)
remains valid if we change Hy (x) into Hso(ax). In practice, we scale the empiri-
cal eigenvalues by /; the largest eigenvalue of §,,. We solve our convex optimiza-
tion problem with the scaled eigenvalues to obtain Hx(/1x), from which we get
Hy, (x) through easy manipulations. The subsequent details describe how we solve
our convex optimization problem, after rescaling of the eigenvalues.

Choice of (zj,v(zj)). We have found that using 100 pairs (z;, v(z;)) was gen-
erally sufficient to obtain good and quick (10 s—60 s) results in simulations. More
points are of course better. With 200 points, solving the problem took more time,
but was still doable (40 s—3 min). In the simulations and data analysis presented
afterward, we first chose the v(z;) and numerically found the corresponding z;
using Matlab’s optimization toolbox. We took v(z;) to have a real part equally
spaced (every 0.02) on [0, 1], and imaginary part of 102 or 1073, In other words,
our v(z;)’s consisted of two (discretized) segments in C™, the second one being
obtained from the first one by a vertical translation of 9 % 1073,
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Choice of interval to focus on. The largest (resp., smallest) eigenvalue of a
p X p symmetric matrix S is a convex (resp., concave) function of the entries of the
matrix. This is because /1 (S) = SUP)|jy[l,=1 u’Su, where u is a vector in R?P. Hence
[1(S) is the supremum of linear functionals of the entries of the matrix. Similarly,
1,(S) = infy,|,=1 u'Su, so 1,(S) is a concave function of the entries of S. Note
that the sample covariance matrix S, is an unbiased estimator of X,. By Jensen’s
inequality, we therefore have E(I1(S,)) > [1(E(Sp)) = A1(X)). In other words,
[1(Sp) is a biased estimator of A;(X,), and tends to overestimate it. Similarly,
[,(Sp) is a biased estimator of A ,(% ) and tends to underestimate it. More detailed
studies of /; and [, indicate that they do not fluctuate too much around their mean.
Practically, as n — oo, we will have with large probability, [, < A, and [} > Ay.
(In certain cases, concentration bounds can make the previous statement rigorous.)
Hence, after rescaling of the eigenvalues, it will be enough to focus on probability
measures supported on the interval [/,,/ /1, 1] when decomposing Huo (/1x).

Choice of dictionary. In the “smallest” implementation, we limit ourselves to a
dictionary consisting of point masses on the interval [,/ 1, 1], with equal spacing
of 0.005. We call ¢, the length of this interval. In larger implementations, we split
the interval [/, /11, 1] into dyadic intervals, getting at scale k, 2k intervals: [! p/l+
j2_k§p, Ipy/ L+ + 1)2"‘{,,], for j =0,..., 2k _ 1. We store the end points of all
the intervals at all the scales from k = 2 to k = 8 for the coarsest implementation
and up to 10 for the finest. We implemented dictionaries containing:

1. Point masses every 0.005 on [/,/l;, 1], and probability measures supported
on the dyadic intervals described above that have constant density on these
intervals.

2. Point masses every 0.005 on [/,/l;, 1], and probability measures supported
on the dyadic intervals described above that have constant density on these
intervals, as well as probability measures on those dyadic intervals that have
linearly increasing and linearly decreasing densities.

The simulations presented above were made with this latter choice of dictionary
using scales up to 8.
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