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RESIDUAL EMPIRICAL PROCESSES FOR LONG AND SHORT
MEMORY TIME SERIES1
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This paper studies the residual empirical process of long- and short-
memory time series regression models and establishes its uniform expansion
under a general framework. The results are applied to the stochastic regres-
sion models and unstable autoregressive models. For the long-memory noise,
it is shown that the limit distribution of the Kolmogorov–Smirnov test sta-
tistic studied in Ho and Hsing [Ann. Statist. 24 (1996) 992–1024] does not
hold when the stochastic regression model includes an unknown intercept or
when the characteristic polynomial of the unstable autoregressive model has
a unit root. To this end, two new statistics are proposed to test for the distribu-
tion of the long-memory noises of stochastic regression models and unstable
autoregressive models.

1. Introduction. Let the time series {yt } be generated by the model

yt = β ′Xt + εt and εt =
∞∑
i=0

aiet−i ,(1.1)

where Xt ’s are a sequence of p-dimensional time series which are measurable with
respect to Ft−1 = σ {εt−1, εt−2, . . .} or independent of {εt }. The coefficients ai sat-
isfy

∑∞
i=1 a2

i < ∞; a0 = 1 and ak = kH−3/2L0(k) for some slowly varying func-
tion L0 [see Feller (1971)] with H < 1; and {et } is a sequence of i.i.d. mean zero
random variables with σ 2

e = Ee2
t < ∞. The process {εt } exhibits a long-memory

(short-memory) phenomenon when H ∈ (1/2,1) (H < 1/2), which has been con-
siderably studied in the literature; see, for example, Robinson (1995a, 1995b) and
the references therein. When model (1.1) is used to construct forecasting inter-
vals or value-at-risk (VaR), knowledge on the distribution function F(x) of εt is
of crucial importance. This motivates the study on testing of F(x) and on related
empirical processes of {εt }.

Received June 2006; revised August 2007.
1Supported in part by CERG from the Hong Kong Research Grants Council Grant Numbers:

CUHK400305, CUHK400306, HKUST6022/05P, HKUST6428/06H and HKUST6016/07.
AMS 2000 subject classifications. Primary 62G30; secondary 62M10.
Key words and phrases. Empirical process, long-memory time series, residuals, unit root, weak

convergence.

2453

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/07-AOS543
http://www.imstat.org
http://www.ams.org/msc/


2454 N. H. CHAN AND S. LING

When H ∈ (1/2,1), Ho and Hsing (1996) established a strong expansion for
the empirical process of {εt } in (1.1). Specifically, let

Kn(x) = 1

σn

n∑
t=1

[I (εt ≤ x) − F(x)],(1.2)

where I (·) is the indicator function and σ 2
n = var(

∑n
t=1 εt ). They proved that

sup
x

∣∣∣∣∣Kn(x) + 1

σn

F ′(x)

n∑
t=1

εt

∣∣∣∣∣ = o(1) a.s.,(1.3)

σ 2
n ∼ κ(H)n2HL2

0(n) and σ−1
n

n∑
t=1

εt
L→ N(0,1);(1.4)

see also Taqqu (1975) and Hosking (1996). Herein, supx = supx∈R , κ(H) =∫ ∞
0 (x + x2)H−3/2 dx, an ∼ bn means that an/bn → 1 as n → ∞ and

L→ denotes
convergence in distribution as n → ∞. By (1.3),[

sup
x

F ′(x)

]−1

sup
x

|Kn(x)| L→ |N(0,1)|,(1.5)

if supx |F ′(x)| < ∞. This is the Kolmogorov–Smirnov test statistic of Ho and Hs-
ing (1996) for testing the distribution F(x). Contrary to the standard weak conver-
gence of the empirical process in the short-memory case, the result (1.5) is some-
what striking as supx |Kn(x)| does not converge to the maximum of a Brownian
bridge as in the traditional case. Weak convergence of {Kn(x)} was established in
Dehling and Taqqu (1989) when {εt } is a long-range dependent Gaussian process.
Koul and Surgailis (1997) obtained some related results when H ∈ (1/2,1). Wu
(2003) showed that (1.3) holds in probability under a weaker condition and a gen-
eral setup and characterized the limit behavior of Kn(x) when H ≤ 1/2; see also
Ho and Hsing (1997).

Note that since {εt } is unobservable in model (1.1), the Kolmogorov–Smirnov
test has to be evaluated based on the residual process of {εt }. In this situation,
a key issue of interest is to determine the validity of (1.5) for the Kolmogorov–
Smirnov statistic when {εt } is replaced by its corresponding residual process. Fur-
thermore, when (1.5) becomes invalid, how can one test for the distribution of {εt }?
These two issues have been studied extensively when {εt } is i.i.d.; see Bai (1994,
1996, 2003), Ling (1998), Lee and Wei (1999), Koul (2002), Lee and Taniguchi
(2005) and Koul and Ling (2006) for further discussions. But for model (1.1) and
for the Kolmogorov–Smirnov statistic studied in Ho and Hsing (1996), these two
important issues still remain unresolved. When β ′Xt is a constant and εt is an
ARFIMA(p, d, q) model, the distribution of {εt } can be determined by {et } once
the parameters of the ARFIMA model are estimated. In this case, it would be suffi-
cient to test for the distribution of {et }, for which standard procedures for residuals
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from a model with i.i.d. noises, such as those given in Bai (1994) and Lee and Wei
(1999), can be adopted. To study the general residual process of {εt }, however,
substantially different arguments need to be employed which rely heavily on the
results of Ho and Hsing (1996, 1997) and Wu (2003).

This paper first establishes a uniform expansion of the residual empirical
process of {εt } under a general framework. The result is used to study the stochas-
tic regression model of Robinson and Hidalgo (1997) and the unstable AR model
of Chan and Terrin (1995), Truong-Van and Larramendy (1996) and Wu (2006).
It is shown that the test statistic (1.5) of Ho and Hsing (1996) is no longer valid
when the stochastic regression model includes an unknown intercept or when the
characteristic polynomial of the unstable AR model has a unit root. Our results not
only encompass the long-memory {εt }, but also the short-memory {εt }. Further-
more, two new statistics are constructed to test the distribution of the long-memory
noises in the stochastic regression model and the unstable AR model.

This paper is organized as follows. A general result is given in Section 2. The
residual processes of stochastic regression and unstable time series are presented
in Sections 3 and 4, respectively.

2. A general result. Let β̂n be an estimator of β in (1.1). Let ε̂t = yt − β̂ ′
nXt

be the residual of model (1.1). Further, define the empirical process based on resid-
uals {ε̂t } by

K̂δ
n(x) = 1

σn

n∑
t=1

[I (ε̂t ≤ x) − F(x)].

For H ∈ (1/2,1), σn is given in (1.4). For
∑∞

j=0 |aj | < ∞, which implies

H ≤ 1/2, Ho and Hsing (1997) show that σ 2 ≡ limn→∞ σ 2
n /n exists and is fi-

nite; see also Wu (2003). Let G0 be the common distribution of {et }. Write
εt = et + ξt−1 and let At(x) = G′

0(x − ξt−1) − E[G′
0(x − ξt−1)], where ξt−1 =∑∞

i=1 aiet−i . Denote ‖ · ‖ = tr(M ′M) for some matrix or vector M . We need the
following two assumptions.

ASSUMPTION 2.1. (a) H < 1/2 and σ > 0, or H = 1/2, σ > 0 and∑∞
j=0 |aj | < ∞, or 1/2 < H < 1, and (b) G0 is three times differentiable with

bounded, continuous and integrable derivatives such that
∫

x4 dG0(x) < ∞.

ASSUMPTION 2.2. Let δn be a p × p constant matrix depending on n such
that the following statements hold:

(a) δ−1
n (β̂n − β) = Op(1),

(b) σ−1
n

∑n
t=1 E‖δ′

nXt‖ = O(1),
(c) σ−1

n

∑n
t=1 E‖δ′

nXt‖2 = o(1),
(d) σ−1

n supx ‖∑n
t=1 At(x)δ′

nXt‖ = op(1).
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Assumption 2.1(b) can be replaced by a general condition in Wu (2003). δn is
the rate of convergence of β̂n. Assumptions 2.2(b) and (c) automatically hold if
δ−1
n = √

nIp and Xt is strictly stationary with E‖Xt‖2 < ∞, where Ip is the p × p

identity matrix. As will be seen in Sections 3 and 4, δ−1
n may not always be equal

to
√

nIp . Assumptions 2.2(b)–(d) are sufficient for the remainder term in the fol-
lowing expansion to be negligible, although they may not be the weakest ones. We
state a general result as follows.

THEOREM 2.1. Assume that Assumption 2.1 and Assumption 2.2 hold. Then

sup
x

|K̂n(x) − Kn(x) − RnF
′(x)| = op(1),

where Rn = σ−1
n (β̂n − β)′ ∑n

t=1 Xt = Op(1).

REMARK 2.1. According to this theorem, if Rn = op(1), then supx |K̂n(x) −
Kn(x)| = op(1) and, hence, supx |K̂n(x)| and supx |Kn(x)| have the same limit
distribution. If Rn �= op(1), then the limit distribution of supx |K̂n(x)| may be
different from that of supx |Kn(x)|, as seen in Theorems 3.1 and 4.1. When
H ∈ (1/2,1), Kn(x) can be replaced by −F ′(x)

∑n
t=1 εt/σn. When H < 1/2 with

EXt = 0 or when H ∈ (1/2,1), δ−1
n = √

nIp and {Xt } is strictly stationary, then
Rn = op(1).

REMARK 2.2. We require {ak} to have the form kH−3/2L0(k) because we
have to use the tightness condition of empirical processes of {εt } of Ho and Hs-
ing (1996) and Wu (2003) for H ∈ (1/2,1); and Theorem 3 and Corollary 2
of Wu (2003) for H ≤ 1/2. Without this condition, Theorem 2.1 is still valid if∑∞

i=0 |ai | < ∞ as long as the empirical process of {εt } is tight on R.

PROOF OF THEOREM 2.1. Let ûn = δ−1
n (β̂n −β). Then ε̂t = εt − û′

nδ
′
nXt and

K̂n(x) − Kn(x) − 1

σn

n∑
t=1

F ′(x)û′
nδ

′
nXt

= 1

σn

n∑
t=1

[I (εt ≤ x + û′
nδ

′
nXt) − I (εt ≤ x) − F ′(x)û′

nδ
′
nXt ].

To study the process K̂n(x), consider the process

An(x,u) = 1

σn

n∑
t=1

[I (εt ≤ x + u′δ′
nXt) − I (εt ≤ x) − u′F ′(x)δ′

nXt ]

for all u ∈ Rp and x ∈ R. By Assumption 2.2(a), if we can show that

sup
u∈[−�,�]p

sup
x

|An(x,u)| = op(1) for every � ∈ (0,∞),(2.1)
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then Theorem 2.1 is proved. Denote

Zn(x,u) = 1

σn

n∑
t=1

[I (εt ≤ x + u′δ′
nXt) − F(x + u′δ′

nXt) − I (εt ≤ x) + F(x)].

By the triangular inequality, |An(x,u)| ≤ |Zn(x,u)| + |Hn(x,u)|, where

Hn(x,u) = 1

σn

n∑
t=1

[F(x + u′δ′
nXt) − F(x) − u′δ′

nXtF
′(x)].

Since supx |G′′
0(x)| < ∞, we have supx |F ′′(x)| < ∞. Using this fact, Assump-

tion 2.2(c) and the Taylor expansion, supu∈[−�,�]p supx |Hn(x,u)| = op(1). To
prove (2.1), it is sufficient to show that the following equation holds:

sup
u∈[−�,�]p

sup
x

|Zn(x,u)| = op(1),(2.2)

for every � > 0. For each u ∈ Rp and λ ∈ R, let

Z̃n(x,u,λ) = 1

σn

n∑
t=1

[
I
(
εt ≤ x + gt (u,λ)

)
(2.3)

− F
(
x + gt (u,λ)

) − I (εt ≤ x) + F(x)
]
,

where gt (u,λ) = u′δ′
nXt + λ‖δ′

nXt‖. For every δ > 0, partition the rectangle
[−�,�]p into m balls {C1, . . . ,Cm} each with radius δ. Take one point in each
Cr and denote it by ur . For any u ∈ Cr , we have

|gt (u,λ) − gt (ur , λ)| ≤ ‖u − ur‖‖δ′
nXt‖ ≤ δ‖δ′

nXt‖.(2.4)

Thus, gt (ur , λ − δ) ≤ gt (u,λ) ≤ gt (ur, λ + δ). Note that Zn(x,u) = Z̃n(x, u,0).
By the monotonicity of the indicator function, we obtain that

Zn(x,u) ≤ Z̃n(x, ur, δ) + 1

σn

n∑
t=1

[
F

(
x + gt (ur, δ)

) − F
(
x + gt (u,0)

)]
(2.5)

and a reverse inequality holds when δ is replaced by −δ. Since supx |G′
0(x)| < ∞,

we have supx |F ′(x)| < ∞. By the mean value theorem, when u ∈ Cr ,∣∣∣∣∣ 1

σn

n∑
t=1

[
F

(
x + gt (ur,±δ)

) − F
(
x + gt (u,0)

)]∣∣∣∣∣
≤ supx |F ′(x)|

σn

n∑
t=1

|gt (ur,±δ) − gt (u,0)|(2.6)

≤ O(1)δ

σn

n∑
t=1

‖δ′
nXt‖ = Op(δ),
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where the last equality follows from Assumption 2.2(b) and the Op(1) holds uni-
formly for all x ∈ R̃, all u ∈ Cr and all r = 1, . . . ,m.

Given any ε > 0 and η > 0, by (2.6), there exists a δ1ε > 0 such that

P

{
1

σn

max
r

max
u∈Cr

sup
x

∣∣∣∣∣
n∑

t=1

[
F

(
x + gt (ur,±δ)

) − F
(
x + gt (u,0)

)]∣∣∣∣∣ ≥ ε

3

}
≤ η

6
,

when δ ≤ δ1ε and n → ∞. By Lemma A.3, there exists a δ2ε > 0 such that

P

{
max

r
sup
x

|Z̃n(x, ur,±δ)| ≥ ε

3

}
≤ P

{
max

r
J3n(ur,±δ) ≥ ε

6

}
+ P

{
δJ4n ≥ ε

6

}

≤ mmax
r

P

{
J3n(ur,±δ) ≥ ε

6

}
+ η

6
≤ η

3
,

when δ ≤ δ2ε and n → ∞ because m is an integer depending on δ but not depend-
ing on n. By the preceding two inequalities, when δ ≤ min{δ1ε, δ1ε},
P

{
sup

u∈[−�,�]p
sup
x

|Zn(x,u)| ≥ ε

}

≤ P

{
max

r
sup
x

|Z̃n(x, ur, δ)| ≥ ε

3

}
+ P

{
max

r
sup
x

|Z̃n(x, ur,−δ)| ≥ ε

3

}

+ P

{
1

σn

max
r

max
u∈Cr

sup
x

∣∣∣∣∣
n∑

t=1

[
F

(
x + gt (ur ,±δ)

) − F
(
x + gt (u,0)

)]∣∣∣∣∣ ≥ ε

3

}

≤ η, when n → ∞, proving (2.2). �

3. Residual empirical process of stochastic regression models. In this sec-
tion we apply the results in Section 2 to the stochastic regression model of Robin-
son and Hidalgo (1997):

yt = α0 + α′xt + εt ,(3.1)

where εt is defined in model (1.1), xt is a q-dimension vector time series inde-
pendent of {εt }, and β = (α0, α

′)′ is a p = q + 1 dimensional unknown parameter
vector. The least squares estimator (LSE) or generalized LSE of α is not asymptot-
ically normal when both xt and εt exhibit long-range dependence; see Robinson
(1994). Robinson and Hidalgo (1997) proposed a class of weighted LSE which is√

n-consistent and asymptotically normal.
Let f (λ) be the spectral density of εt and φ(λ) be a real-valued, even and inte-

grable periodic function with period 2π such that ψ(λ) = φ2(λ)f (λ) is continu-
ous. Denote φj = (2π)−2 ∫ π

−π φ(λ) cos jλdλ. Robinson–Hidalgo’s weighted LSE
of α is defined as

α̂n =
[

n∑
t=1

n∑
s=1

(xt − x̄)(xs − x̄)′φt−s

]−1[
n∑

t=1

n∑
s=1

(xt − x̄)(ys − ȳ)φt−s

]
,
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where x̄ = ∑n
t=1 xt/n and ȳ = ∑n

t=1 yt/n. Let γj = E(εtεt+j ) and κabcd(s, u, v,

w) be the fourth cumulant of xas , xbu, xcv and xdw , where xas is the ath element
of xs . Recall the assumptions of Robinson and Hidalgo (1997) as follows.

ASSUMPTION 3.1. (a)
∑∞

j=0 φ̃j < ∞ and (
∑n

j=0 |γj |+nγ̃n)[(∑n
j=0 φ̃

1/2
j )2 +

n�n] = O(n) as n → ∞, where γ̃a = maxj≥a |γj |, φ̃a = maxj≥a |φj | and �a =∑
|j |>a |φj |.
(b) {xt } is fourth-order stationary, �u = E[(x1 −Ex1)(x1+|u| −Ex1)

′] → 0 and
max|v|,|w|<∞ |κabcd(0, u, v,w)| → 0 as |u| → ∞, 1 ≤ a, b, c, d ≤ q .

(c) �ψ is finite and �φ and �ψ are nonsingular, where �χ = ∫ π
−π χ(λ)dH(λ)/

(2π) and H(λ) is the Hermitian matrix such that �j = ∫ π
−π eijλ dH(λ).

Discussions on this assumption, the choice of φ and its computational pro-
cedures can be found in Robinson and Hidalgo (1997). Under Assumption 3.1,
Robinson and Hidalgo (1997) showed that

√
n(α̂n − α)

L→ N(0,�−1
φ �ψ�−1

φ ).(3.2)

The intercept term α0 is estimated by

α̂0n = ȳ − α̂′
nx̃ = α0 + ε̄ − (α̂n − α)′x̄,

where ε̄ = ∑n
t=1 εt/n. When H ∈ (1/2,1) or H ≤ 1/2 with Ext = 0, we see that

nσ−1
n (α̂n − α)′x̄ = op(1) and hence, in these cases, we have

nσ−1
n (α̂0n − α0)

L→ N(0,1).(3.3)

The results of Robinson and Hidalgo (1997) hold not only for long-memory {εt }
but also for short-memory {εt }. The following result entails the residual empirical
process for both long- and short-memory cases.

THEOREM 3.1. If Assumptions 2.1 and 3.1 hold, then the results of Theo-
rem 2.1 hold with β̂n = (α̂0n, α̂

′
n)

′, δn = diag(σnn
−1, n−1/2Iq) and Xt = (1, x′

t )
′.

PROOF. It is readily seen that Assumptions 2.2(a)–(c) hold. Note that

1

σn

sup
x

∥∥∥∥∥
n∑

t=1

At(x)δ′
nXt

∥∥∥∥∥ ≤ sup
x

∥∥∥∥∥1

n

n∑
t=1

At(x)

∥∥∥∥∥ + 1√
nσn

sup
x

∥∥∥∥∥
n∑

t=1

At(x)xt

∥∥∥∥∥.
To check Assumption 2.2(d), we only need to show that

sup
x

1√
nσn

sup
x

∥∥∥∥∥
n∑

t=1

At(x)xt

∥∥∥∥∥ = op(1).(3.4)

Similarly, it can be proved that supx |∑n
t=1 At(x)|/n = op(1). Since

supx |G′′
0(x)| < ∞ implies lim|x|→∞ G′

0(x) = 0 [see Lee and Wei (1999)], we
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see that E sup|x|>M{G′
0(x − ξt−1)‖xt‖} → 0 as M → ∞. Since

√
n/σn = O(1),

for any given ε > 0, there exists a constant M > 0 such that

P

(
sup

|x|>M

∥∥∥∥∥ 1√
nσn

n∑
t=1

At(x)xt

∥∥∥∥ > η

)

(3.5)

≤ 2
√

n

σnη
E sup

|x|>M

{G′
0(x − ξt−1)‖xt‖} < ε,

uniformly in n. Partition [−M,M] into m = [4Mδ−1] subintervals such that
−M = c0 ≤ c1 ≤ · · · ≤ cm = M with cr+1 − cr < δ for any given constant δ > 0.
Let Unr = (

√
nσn)

−1 ∑n
t=1 At(cr)xt . When H ∈ (1/2,1), ‖Unr‖ ≤ 2n−1/2−H ×∑n

t=1 ‖xt‖ = op(1). When H ≤ 1/2, since At(cr) and xt are independent for
each cr , we can show that Unr = op(1). Thus, we have

sup
|x|≤M

∥∥∥∥∥ 1√
nσn

n∑
t=1

At(x)xt

∥∥∥∥∥
≤ max

r
sup

x∈[cr ,cr+1]

∥∥∥∥∥ 1√
nσn

n∑
t=1

[At(x) − At(cr)]xt

∥∥∥∥∥ + max
r

‖Unr‖
(3.6)

≤ 2δ sup
x

|G′′
0(x)|Op(1) + op(1)

= Op(δ) + op(1).

Using (3.5)–(3.6), (3.4) is established. �

We see that Rn = Op(1) and Kn(x) = Op(1). When Ext = 0, we have Rn(x) =
nσ−1

n (α̂0n −α0) �= op(1) by virtue of (3.3). In this case, the estimated mean affects
the limit distribution of Kn(x) by Theorem 3.1. By (1.3) and (3.3), we have the
following result.

COROLLARY 3.1. If Assumptions 2.1 and 3.1 hold and H ∈ (1/2,1), then[
sup
x

F ′(x)

]−1

sup
x

|K̂n(x)| L→ |N(0,4)|.

REMARK 3.1. This corollary gives a statistic for testing the distribution of the
long-memory noises in model (3.1) when α0 is unknown. The asymptotic variance
of this test statistic is four times bigger than that in (1.5), which reflects the effects
of the slower convergence rate of the estimated parameter α̂0n. When α0 is known,
the test statistic (1.5) is still valid, however. As pointed out by the reviewer, when
F = F(x, θ) involves an unknown parameter θ , one should consider K̂n with F(x)

being replaced by F(x, θ̂n). Under such circumstances, the limit distribution of
the statistic is usually different from that of Corollary 3.1. This fact serves as a
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reminiscence of the classical Kolmogorov–Smirnov statistics problem when the
underlying parameters are estimated; see Durbin (1976). When H ≤ 1/2, it can be
shown that the limit distribution of the statistic exists by means of the result of Wu
(2003). The closed form of such a limit distribution is rather complicated and does
not possess a simple expression, however, and is not presented here.

4. Residual empirical process of unstable AR(p) models. This section con-
siders the unstable AR(p) model with starting value {y0, y−1, . . . , y−p+1} inde-
pendent of {εs : s < 0} such that

yt = β ′Xt + εt ,(4.1)

where Xt = (yt−1, . . . , yt−p)′, β = (φ1, . . . , φp)′, and the characteristic polyno-
mial φ(z) = 1 − φ1z − · · · − φpzp has the decomposition,

φ(z) = (1 − z)a(1 + z)b
l∏

k=1

[(1 − zeiθk )(1 + zeiθk )]dk ,(4.2)

a, b, l, dk, k = 1, . . . , l, are nonnegative integers, p = a +b+2(d1 +· · ·+dl), and
{εt } is defined in model (1.1). Here, a denotes the multiplicity of the root z = 1 for
φ(z) = 0. Same interpretations are given to b and l. We estimate β by the LSE:

β̂n =
(

n∑
t=1

XtX
′
t

)−1 n∑
t=1

Xtyt .

For the special case with φ(z) = 1 − z, Wu (2006) obtained the limiting distri-
bution of β̂n under Assumption 2.1(a); see also Sowell (1990) and Wang, Lin and
Gulati (2003). For the general case, the limit distribution of β̂n was obtained by
Chan and Terrin (1995) and Truong-Van and Larramendy (1996) under the follow-
ing Assumption 4.1(a) and (b), respectively. It can be seen that Assumption 2.1(a)
is much weaker than Assumption 4.1.

ASSUMPTION 4.1. (a) L0(j) ∼ c, c is a constant, H ∈ (1/2,1) and et ∼
N(0, σ 2

e ), or (b)
∑∞

j=0 j |aj | < ∞ and σ > 0.

Let δn = G′J−1
n , where G is the constant matrix given in Chan and Wei

(1988) and Jn = diag(N1,N2, . . . ,Nl+2) with N1 = diag(n,n2, . . . , na), N2 =
diag(n,n2, . . . , nb) and Nk+2 = diag(nI2, . . . , n

dk I2), k = 1, . . . , l. Define
ξH (τ) = [f0(τ ), . . . , fa−1(τ )]′, f0(τ ) = BH(τ) and fj (τ ) = ∫ τ

0 fj−1(s) ds, j =
1, . . . , a, where BH(τ) is a fractional Brownian motion with covariances

E[BH(τ)BH (s)] = 1
2{s2H + τ 2H − |s − τ |2H } for 0 ≤ s, τ ≤ 1.

We now state the results for model (4.1).
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THEOREM 4.1. For model (4.1), if Assumption 2.1 holds with φ(z) = 1 − z,
or if Assumption 4.1(a) holds, or if Assumptions 2.1(b) and 4.1(b) hold, then the
result of Theorem 2.1 holds with Rn = op(1) for a = 0 and

Rn
L−→

⎧⎪⎪⎨
⎪⎪⎩

(� + ζ1/2)
′�−1

1/2

∫ 1

0
ξ1/2(τ ) dτ, if H ≤ 1/2,

ζ ′
H�−1

H

∫ 1

0
ξH (τ) dτ, if H ∈ (1/2,1),

for a ≥ 1, where � = (γ,0, . . . ,0)′a×1, γ = 1/2(1 − Eε2
t /σ

2), ζH =∫ 1
0 ξH (τ) dBH (τ), �H = (ωij )a×a and ωij = ∫ 1

0 fi(τ )fj (τ ) dτ .

Let D[0,1] be the Skorokhod space and Dp = D × D × · · · × D denote the
p-Cartesian product space of D = D[0,1]. To prove Theorem 4.1, we need the
following lemma. Using the results in Chan and Wei (1988), Truong and Larra-
mendy (1996) and Wu (2006), its proof is similar to that of Lemma 2.1 in Ling
(1998) and the details are omitted.

LEMMA 4.1. Let ξ̃ = ξH if H ∈ (1/2,1) and ξ̃ = ξ1/2 if H ≤ 1/2. If the
assumptions of Theorem 4.1 hold, then:

(a)
1

σn

[nτ ]∑
t=1

δ′
nXt

L−→
(∫ τ

0
ξ̃ ′(s) ds,0

)′
in Dp, if a ≥ 1,

(b)
1

σn

[nτ ]∑
t=1

δ′
nXt = op(1) uniformly for all τ ∈ [0,1] if a = 0,

(c)
1

σn

n∑
t=1

E‖δ′
nXt‖ = O(1),

(d)
n

σ 2
n

n∑
t=1

E‖δ′
nXt‖2 = O(1).

PROOF. For simplicity, we only prove Theorem 4.1 for φ(z) = (1 − z), that
is, model (4.1) only has one unit root. The general case can similarly be proved
by Lemma 4.1. When φ(z) = (1 − z), δn = n−1 and Xt = yt−1 = ∑t−1

i=1 εi . By
Theorem 6.1 of Chan and Terrin (1995) and Theorem 3.1 of Truong-Van and Lar-
ramendy (1996) or Theorems 3 and 4 of Wu (2006), Assumption 2.2(a) holds. By
Lemma 4.1(c) and (d), we see that Assumption 2.2(b) and (c) holds.

We now consider Assumption 2.2(d). First, note that E sup|x|>M A2
t (x) → 0 as

M → ∞ and max1≤t≤n σ−2
n EX2

t = O(1). Thus, for any given ε > 0 and η > 0,
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there exists a constant M > 0 such that

P

(
sup

|x|>M

∣∣∣∣∣ 1

nσn

n∑
t=1

At(x)Xt

∣∣∣∣∣ > η

)

(4.3)

≤
√

E sup|x|>M |At(x)|2
ηnσn

n∑
t=1

√
E|Xt |2 < ε,

uniformly in n. Partition [−M,M] into m = [4Mδ−1] subintervals such that
−M = x0 ≤ x1 ≤ · · · ≤ xm = M with xr+1 − xr < δ for any given δ > 0. Thus,

sup
|x|≤M

∣∣∣∣∣ 1

nσn

n∑
t=1

At(x)Xt

∣∣∣∣∣
≤ max

r
sup

xr−1≤x≤xr

∣∣∣∣∣ 1

nσn

n∑
t=1

At(x)Xt

∣∣∣∣∣
(4.4)

≤ max
r

sup
xr−1≤x≤xr

∣∣∣∣∣ 1

nσn

n∑
t=1

[At(x) − At(xr)]Xt

∣∣∣∣∣
+ max

r

∣∣∣∣∣ 1

nσn

n∑
t=1

At(xr)Xt

∣∣∣∣∣ = J1n + J2n, say.

Since supx |A′
t (x)| < ∞, by Lemma 4.1(c) and the Taylor expansion, we have

J1n ≤ O(δ)

[
1

nσn

n∑
t=1

|Xt |
]

= Op(δ).(4.5)

For J2n, we need the following decomposition:

1

nσn

n∑
t=1

At(x)Xt = 1

nσn

n∑
i=1

[
n∑

t=i+1

At(x)

]
εi

= 1

nσn

(
n∑

i=1

εi

)[
n∑

t=1

At(x)

]
− 1

nσn

n∑
i=1

[
i∑

t=1

At(x)

]
εi

= U1n(x) − U2n(x), say.

By the ergodic theorem,
∑n

t=1 At(x)/n = op(1) for each x. Furthermore, since∑n
i=1 εi/σn = Op(1), we have maxr |U1n(xr)| = op(1) for a given δ > 0.
We next consider U2n(x). When H ≤ 1/2, by Theorem 2 of Wu (2006), we

know that
∑[nτ ]

t=1 At(x)/σn
L→ S(τ) in D for each x and

∑[nτ ]
t=1 εt/

√
n

L→ ξ(τ ) in D,
where S(τ) and ξ(τ ) are standard Brownian motions. By Theorem 3.1 of Ling and
Li (1998), U2n(x) = op(1) for each x and, hence, maxr |U2n(xr)| = op(1) for any
given δ > 0. Thus, Assumption 2.2(d) holds when H ≤ 1/2.
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When H ∈ (1/2,1), we decompose U2n(x) as follows:

1

nσn

n∑
i=1

[
i∑

t=1

Rt(x)

]
εi + G′′

0(x)

nσn

n∑
i=1

(
i∑

t=1

ξt−1

)
εi = U3n(x) + U4n(x),(4.6)

say, where Rt(x) = At(x) − G′′
0(x)ξt−1. For each x and any ζ > 0, by Corollary 1

of Wu (2006) [see also Theorem 3.1 in Ho and Hsing (1997)], we have

E

[
i∑

t=1

Rt(x)

]2

= O
(
imax{1,4(H−1/2)+2ζ }).(4.7)

By (4.7), for any η > 0 and δ > 0, we have

P

(
max

r
|U3n(xr)| > η

)
≤ 1

η

m∑
r=1

E|U3n(xr)|

≤ 1

ηnσn

m∑
r=1

n∑
i=1

{
E

[
i∑

t=1

Rt(x)

]2

Eε2
i

}1/2

(4.8)

= O(n−γ L−1
0 (n)) → 0,

when n → ∞, where γ = min{H − 1/2,1 − H − ζ } > 0. Note that

U4n(x) = −G′′
0(x)

nσn

n∑
i=1

(
i∑

t=1

εt

)
εi + G′′

0(x)

nσn

n∑
i=1

(
i∑

t=1

et

)
εi.

By Theorems 3.2 and 3.3 of Chan and Terrin (1995) or Theorem 3 of Wu (2006),

n∑
i=1

(
1

σn

i∑
t=1

εt

)
εi

σn

L−→
∫ 1

0
BH(s) dBH(s).

Thus, the first term in U4n(x) is op(1) uniformly in x ∈ R. Note that
∑n

t=1 |εt |/n =
Op(1) by the ergodic theorem and max1≤i≤n |∑i

t=1 et |/√n
L→

max0≤τ≤1 |B1/2(τ )|. Since
√

n/σn = O(n−H+1/2/L0(n)) = o(1), the second term
in U4n(x) is op(1) uniformly in x ∈ R. Thus, we have maxx |U4n(x)| = op(1).
Furthermore, by (4.6) and (4.8), maxr |U2n(xr)| = op(1) for any given δ when
H ∈ (1/2,1). Thus, Assumption 2.2(d) holds when H ∈ (1/2,1). �

REMARK 4.1. From this theorem, we see that the empirical process of {εt }
is not affected if {εt } is replaced by {ε̂t } when φ(z) does not have a root equaling
one. It has a profound effect when φ(z) has a unit root, however. In particular,
using Theorem 3 of Wu (2006), we have the following corollary.
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COROLLARY 4.1. If φ(z) = (1 − z) and Assumption 2.1 holds with H ∈
(1/2,1), then it follows that[

sup
x

F ′(x)

]−1

sup
x

|K̂n(x)|

L−→
∣∣∣∣BH(1) +

[∫ 1

0
BH(τ) dBH (τ)

][∫ 1

0
BH(τ) dτ

][∫ 1

0
B2

H(τ) dτ

]−1∣∣∣∣.
REMARK 4.2. Corollary 4.1 gives the limit distribution of the Kolmogorov–

Smirnov statistic. It can be used to test for the distribution of the long-memory
noises in model (4.1). For instance, using ε̂t as a proxy for εt , H may be esti-
mated by Robinson’s (1995a) semiparametric method. Although the asymptotic
validity of such a procedure still needs to be examined, for a given H ∈ (1/2,1),
the percentiles of the limit distribution can be tabulated by means of simulations.
Corollary 4.1 thus provides a means to apply the Kolmogorov–Smirnov statistics
to model (4.1).

APPENDIX: TECHNICAL LEMMAS

Let xr = rεσ−1
n for any r ∈ Z and some ε > 0 and decompose the real line R

as R = ⋃
r∈Z[xr, xr+1]. Let gt (u,λ) be defined in (2.3) and

ant (x) = I
(
εt ≤ x + gt (u,λ)

) − Ft−1(x) − I (εt ≤ x) + G0(x − ξt−1),

where Ft−1(x) = E[I (et ≤ x − ξt−1 + gt (u,λ))|Ft−1] = G0[x − ξt−1 + gt (u,λ)],
u ∈ [−�,�]p with � > 0 and λ ∈ [−1,1]. We have the following lemma.

LEMMA A.1. Let Z̃1n(x,u,λ) = ∑n
t=1 ant (x)/σn. For every u and λ, if As-

sumption 2.1 and Assumptions 2.2(b) and (c) hold, then:

(a) max
r

max
x∈[xr ,xr+1]

1

σn

n∑
t=1

∣∣F (
xr+1 + gt (u,λ)

) − F
(
x + gt (u,λ)

)∣∣ = Op(ε),

(b) sup
r

|Z̃1n(xr , u,λ)| = op(1) for any given ε > 0.

PROOF. By Assumption 2.1(b), F ′(x) exists and is bounded; see Ho and Hs-
ing (1996). Since n/σ 2

n = O(1), by the Taylor expansion, part (a) holds.
For part (b), since

∑n
t=1 ant (x) is a martingale array with respect to Fn =

σ {(et ,Xt), t ≤ n}, by the Rosenthal inequality [see page 23 of Hall and Heyde
(1980)],

E

[
n∑

t=1

ant (x)

]4

≤ cE

{
n∑

t=1

E[a2
nt (x)|Ft−1]

}2

+ c

n∑
t=1

E[a4
nt (x)]

(A.1)

≤ cn

n∑
t=1

E{E[a2
nt (x)|Ft−1]}2 + 2c

n∑
t=1

E[a2
nt (x)]
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for some constant c, where we use a4
nt (x) ≤ 2a2

nt (x). Denote gt (u,λ) by gt and let
H±

t (x) = G0(x − ξt−1 ± |gt |). Since E[I (et ≤ x − ξt−1)|Ft−1] = G0(x − ξt−1)

and G0(x) is nondecreasing, we have

E[a2
nt (x)|Ft−1] ≤ |Ft−1(x) − G0(x − ξt−1)| ≤ H+

t (x) − H−
t (x).

Again, since G0(x) is nondecreasing, for any positive integer M , we have

M∑
r=−M

E[H+
t (xr) − H−

t (xr)]

≤ σn

ε

M∑
r=−M

E

[∫ xr+1

xr

H+
t (x) dx −

∫ xr

xr−1

H−
t (x) dx

]

= σn

ε
E

{∫ xM+1

xM

H+
t (x) dx +

∫ x−M

x−M−1

H−
t (x) dx

+
∫ xM

x−M

[H+
t (x) − H−

t (x)]dx

}
(A.2)

≤ 2 + σn

ε
E

{∫ xM

x−M

∫ |gt |
−|gt |

G′
0(x − ξt−1 + y)dy dx

}

≤ 2 + σn

ε
E

{∫ |gt |
−|gt |

∫ ∞
−∞

G′
0(x − ξt−1 + y)dx dy

}

= 2 + 2σn

ε
E|gt |.

Similarly, we have

M∑
r=−M

E[H+
t (xr ) − H−

t (xr)]2 ≤ c

M∑
r=−M

E{|gt |[H+
t (xr ) − H−

t (xr)]}
(A.3)

= 2cE|gt | + 2cσn

ε
Eg2

t ,

where c = 2 supx G′
0(x). Using (A.2)–(A.3) and Assumptions 2.2(b)–(c),

1

σ 4
n

∑
r

n∑
t=1

E[a2
nt (xr)] ≤ 1

σ 4
n

lim
M→∞

M∑
r=−M

n∑
t=1

E[H+
t (xr) − H−

t (xr )]
(A.4)

≤ 2n

σ 4
n

+ 2

εσ 3
n

n∑
t=1

E|gt | = o(1),

n

σ 4
n

∑
r

n∑
t=1

E{E[a2
nt (xr)|Ft−1]}2 ≤ 2n

σ 4
n

n∑
t=1

E|gt | + 2

εσ 3
n

n∑
t=1

Eg2
t = o(1),(A.5)
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as n/σ 2
n = O(1). By the Markov inequality, (A.1), (A.4) and (A.5),

P

(
sup

r
|Z̃1n(xr , u,λ)| ≥ η

)
≤ ∑

r

P
(|Z̃1n(xr , u,λ)| ≥ η

)

≤ 1

η4σ 4
n

∑
r

E

[
n∑

t=1

ant (xr)

]4

= o(1),

as n → ∞, for any given ε > 0. Thus, part (b) is proved. �

LEMMA A.2. Let Z̃2n(x,u,λ) = ∑n
t=1[Ft−1(x) − G0(x − ξt−1) − F(x +

gt (u,λ)) + F(x)]/σn. If Assumptions 2.1 and 2.2(b)–(d) hold, then
Z̃2n(x,u,λ) = λJ1n(x) + J2n(x,u,λ) such that supx |J1n(x)| = Op(1) and
supx supu supλ |J2n(u, x,λ)| = op(1).

PROOF. By Assumption 2.1(b) and Lemma 6.2 of Ho and Hsing (1996),
F ′′(x) exists and is bounded. By the Taylor expansion and Assumption 2.2(c),

Z̃2n(x,u,λ) = 1

σn

n∑
t=1

{
At(x)gt (u,λ) + 1

2
g2

t (u, λ)[G′′
0(ξ

∗
t−1) − F ′′(ξ̃∗

t−1)]
}

= 1

σn

n∑
t=1

At(x)gt (u,λ) + op(1)

= λ

σn

n∑
t=1

At(x)‖δ′
nXt‖ +

[
u

σn

n∑
t=1

At(x)δ′
nXt + op(1)

]

= λJ1n(x) + J2n(x,u,λ), say,

where we use F ′(x) = EG′
0(x − ξt−1), ξ∗

t−1 = x − ξt−1 + θgt (u,λ) and ξ̃∗
t−1 =

x + θ̃gt (u, λ) with θ, θ̃ ∈ (0,1) and op(1) being held uniformly in x,u,λ.
Since supx |At(x)| ≤ 2, by Assumption 2.2(b), supx |J1n(x)| = Op(1). Since u ∈
[−�,�]p , by Assumption 2.2(d), supx supu supλ |J2n(x,u,λ)| = op(1). The de-
sired conclusion follows. �

LEMMA A.3. If Assumptions 2.1 and 2.2(b)–(d) hold, then it follows that

sup
x

|Z̃n(x,u,λ)| ≤ J3n(u,λ) + |λ|J4n,

where Z̃n(x,u,λ) is defined in (2.3), 0 < J3n(u,λ) = op(1) for each u and λ, and
0 < J4n = Op(1) is independent of u.
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PROOF. Since I (εt ≤ x) and F(x) are nondecreasing, for any x ∈ [xr, xr+1],

Z̃n(x,u,λ) ≤ Z̃n(xr+1, u, λ) + 1

σn

n∑
t=1

[F(xr+1 + gt ) − F(x + gt )]

+ 1

σn

n∑
t=1

[I (εt ≤ xr+1) − F(xr+1) − I (εt ≤ x) + F(x)],

where gt denotes gt (u,λ) and a reverse inequality holds when xr+1 is replaced by
xr . Since |Z̃n(xr+1, u, λ)| ≤ |Z̃1n(xr+1, u, λ)| + |Z̃2n(xr+1, u, λ)|, we have

sup
x

|Z̃n(x,u,λ)| ≤ max
r

|Z̃2n(xr , u,λ)| + Rn(u,λ),

where

Rn(u,λ) = max
r

|Z̃1n(xr , u,λ)|

+ max
r

max
x∈[xr ,xr+1]

1

σn

n∑
t=1

|F(xr+1 + gt ) − F(x + gt )|
(A.6)

+ sup
|x1−x2|≤εσ−1

n

1

σn

∣∣∣∣∣
n∑

t=1

[I (εt ≤ x1)

− F(x1) − I (εt ≤ x2) + F(x2)]
∣∣∣∣∣.

For any ε, η > 0, by Lemma 4.1(a), we can take ε small enough such that the
second term of (A.6) is less than η happens with probability being at least 1 − ε/4.
For this ε, the first term of (A.6) is op(1) by Lemmas A.1(b), and the last term
of (A.6) is op(1) by the tightness of the empirical process of {εt } of Ho and Hsing
(1996) and Wu (2003). Thus, Rn(u,λ) = op(1) for each u and λ. By virtue of
Lemma A.2, the conclusion holds. �
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