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This article studies the estimation of the causal effect of a time-varying
treatment on time-to-an-event or on some other continuously distributed
outcome. The paper applies to the situation where treatment is repeatedly
adapted to time-dependent patient characteristics. The treatment effect can-
not be estimated by simply conditioning on these time-dependent patient
characteristics, as they may themselves be indications of the treatment ef-
fect. This time-dependent confounding is common in observational studies.
Robins [(1992) Biometrika 79 321-334, (1998b) Encyclopedia of Biostatis-
tics 6 4372-4389] has proposed the so-called structural nested models to es-
timate treatment effects in the presence of time-dependent confounding. In
this article we provide a conceptual framework and formalization for struc-
tural nested models in continuous time. We show that the resulting estimators
are consistent and asymptotically normal. Moreover, as conjectured in Robins
[(1998b) Encyclopedia of Biostatistics 6 4372-4389], a test for whether treat-
ment affects the outcome of interest can be performed without specifying a
model for treatment effect. We illustrate the ideas in this article with an ex-
ample.

1. Introduction. Causality is a topic which nowadays receives much at-
tention. Statisticians, epidemiologists, biostatisticians, social scientists, computer
scientists [especially those in artificial intelligence, see, e.g., Pearl (2000)], econo-
metricians and philosophers are investigating questions like “what would have hap-
pened if” and “what would happen if.” This article discusses estimating the effect
of a time-varying treatment. As a recurring example, this article focuses on the
effect of a medical treatment which is adapted to a patient’s state during the course
of time.

Large observational studies have become widely used in medical research when
data from randomized experiments are not available. Randomized clinical trials
are often expensive, impractical, and sometimes unfeasible for ethical reasons be-
cause treatment is withheld from some patients regardless of medical considera-
tions. Also, in some instances, exploratory investigations using nonexperimental
data are used before conducting a randomized trial. In observational studies there
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is no pre-specified treatment protocol. Data are collected on patient characteristics
and treatments in the course of the normal interaction between patients and doc-
tors. Obviously, it is considerably more difficult to draw correct causal conclusions
from observational data than from a randomized experiment. The main reason is
the so-called confounding by indication or selection bias. For example, doctors
may prescribe more medication to patients who are relatively unhealthy. Thus, as-
sociation between medication dose and health outcomes may arise not only from
the treatment effect but also from the way the treatment was assigned.

If this confounding by indication only takes place at the start of the treatment,
one can condition on initial patient characteristics or covariates, such as blood pres-
sure or number of white blood cells, in order to remove the effect of the confound-
ing, and get meaningful estimates of the treatment effect. Linear regression, logis-
tic regression or Cox regression can be used for this purpose. However, estimating
treatment effects is more difficult if treatment decisions after the start of the treat-
ment are adapted to the state of the patients in subsequent periods. Treatment might
be influenced by a patient’s state in the past, which was influenced by treatment
decisions before; thus, simply conditioning on a patient’s state in the past means
disregarding information on the effect of past treatment. In such a case, even the
well-known time-dependent Cox model does not answer the question of whether,
or how, treatment affects the outcome of interest. The time-dependent Cox model
studies the rate at which some event of interest happens (e.g., the patient dying),
given past treatment- and covariate history. However, under time-dependent con-
founding, past covariate values may have been influenced by previous treatment.
The net effect of treatment can thus not be derived from just this rate; see, for
example, Robins (1998b), Keiding (1999) or Lok (2001).

Structural nested models, proposed in Robins (1989), Lok, Gill, van der Vaart
and Robins (2004) and Robins (1992, 1998b) to solve practical problems in epi-
demiology and biostatistics, effectively overcome these difficulties and estimate
the effect of time-varying treatments. The main assumption underlying these mod-
els is that all information the doctors used to make treatment decisions, and which
is predictive of the patient’s prognosis with respect to the final outcome, is avail-
able for analysis. This assumption of “no unmeasured confounding” makes it pos-
sible to distinguish between treatment effect and selection bias. What data have to
be collected to satisfy this assumption of no unmeasured confounding is for subject
matter experts to decide. All of the past treatment- and covariate information which
both (i) influences a doctor’s treatment decisions and (ii) is relevant for a patient’s
prognosis with respect to the outcome of interest, has to be recorded. In Section 5
of Robins (1998b) and in Section 8.1 of Robins, Rotnitzky and Scharfstein (2000),
a sensitivity analysis methodology for estimation of structural nested models is
developed that does not assume no unmeasured confounders. Beyond treatment
and covariates, the data requirements also include the measure of an outcome of
interest; for example, survival time, time to clinical AIDS or CD4 count after the
treatment period.
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Lok et al. (2004) study structural nested models in discrete time. These models
assume that changes in the values of the covariates and treatment decisions take
place at finitely many deterministic times, which are the same for all patients and
known in advance. Lok et al. (2004) also assume that covariates and treatment
take values in a discrete space. They indicate why it is reasonable to expect consis-
tency and asymptotic normality in discrete time, and they refer to Lok (2001) for
the proofs. Gill and Robins (2001) generalize Lok et al. (2004) to covariates and
treatment taking values in R¥.

In this article we consider structural nested models in continuous time, proposed
in Robins (1992, 1998b). Structural nested models in continuous time allow for
both changes in the values of the covariates and treatment decisions to take place
at arbitrary times for different patients. As noted in Robins (1998a), structural
nested models in continuous time assume that a short duration of treatment has
only a small effect on the distribution of the outcome of interest. The effect of the
treatment on an individual patient may be large, but then the probability of such
effect has to be small for any particular short duration of treatment (see page 7,
bottom).

This article provides a conceptual framework and mathematical formalization
of these practical methods, solving important outstanding problems and contribut-
ing to the causality discussion, especially for the time ordered and continuous time
case. In particular, this article proves the conjectures in Robins (1998b) that struc-
tural nested models in continuous time lead to estimators which are both consistent
and asymptotically normal. The proof simplifies considerably for structural nested
models in discrete time (see our Discussion, Section 12). This article also proves
that a test related to the score test can be used to investigate whether treatment
affects the outcome of interest without specifying a model for the treatment effect.

2. Setting and notation. The setting to which structural nested models in
continuous time apply is as follows. The outcome of interest, from now on called
Y, is a continuous real variable. For example, the survival time of a patient, time
to clinical AIDS, or CD4 count after the treatment period. We wish to estimate the
effect of treatment on the outcome Y. There is some fixed time interval [0, ], with
T a finite time, during which treatment and patient characteristics are observed for
each patient. We suppose that after time t treatment is stopped or switched to some
kind of baseline treatment. In this article we assume that there is no censoring, and
that the outcome Y is observed for every patient in the study. See, for example,
Robins (1998b), Hernan et al. (2005) and Lok (2007) for ideas about dealing with
censoring.

We denote the probability space by (2, £, P). The covariate process describes
the course of the patient characteristics, for example, the course of the blood pres-
sure and the white blood cell count. We assume that a realization of this covariate
process is a function from [0, 7] to R?, and that such a sample path is continu-
ous from the right with limits from the left (cadlag). The covariates which must
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be included are those which both (i) influence a doctor’s treatment decisions and
(ii) possibly predict a patient’s prognosis with respect to the outcome of interest.
If such covariates would not be observed, the assumption of no unmeasured con-
founding, mentioned in the introduction, will not hold.

For the moment consider one single patient. We write Z (¢) for the covariate- and
treatment values at time . We assume that Z(¢) takes values in R, and that Z(¢) :
Q2 — R™ is measurable for each ¢ € [0, T]. Moreover, we assume that Z, seen as a
function on [0, 7], is cadlag. We write Z; = (Z(s):0 <s < t) for the covariate- and
treatment history until time ¢, and Z, for the space of cadlag functions from [0, ¢]
to R™ in which Z; takes it values. Similarly, we write Z for the whole covariate-
and treatment history of the patient on the interval [0, T], and Z for the space in
which Z takes its values. In this article we choose the projection o -algebra as the
o-algebra on Z; and Z; measurability of Z(s) for each s < ¢ is then equivalent
with measurability of the random variable Z,. For technical reasons, we include in
Z a counter of the number of jump times of the measured treatment- and covariate
process. We suppose that observations on different patients are independent.

3. Counterfactual outcomes. Structural nested models are models for rela-
tions between so-called counterfactuals. Consider for a moment just one patient. In
reality this patient received a certain treatment and had final outcome Y. If his or
her actual treatment had been stopped at time t, the patient’s final outcome would
possibly have been different. The outcome he or she would have had in that case
we call Y, Of course, Y*) is generally not observed, because the patient’s actual
treatment after ¢ is usually different from no treatment; it is a counterfactual out-
come. Instead of stopping treatment, one can also consider switching to some kind
of baseline treatment, for example, standard treatment. Figure 1 illustrates the na-
ture of counterfactual outcomes. We suppose that all counterfactual outcomes ¥ @,
for ¢ € [0, ] and for all patients, are random variables on the probability space
(2,F,P).

4. No unmeasured confounding. To formalize the assumption of no unmea-
sured confounding, consider the history of a particular patient. Decisions of the
doctors at time ¢+ may be based, in part, on recorded information on the state of
the patient and treatment before ¢, that is, on Z,_ = (Z(s) : 0 < s < t), but not
on other features predicting the outcome of the patient. In particular, given Z,_,
changes of treatment at time ¢ should be independent of YO the outcome of the
patient in case he or she would not have been treated after time ¢, given Z;_.

Note that Y¥) is an indication of the prognosis of the patient which does not de-
pend on treatment decisions at or after time ¢, since it is the counterfactual outcome
which we would have observed if treatment would have been stopped at time ¢.
Only if treatment would have no effect, the observed outcome Y could play this
role. This is why Robins’ assumption of no unmeasured confounding demands the
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FIG. 1. Observed and counterfactual outcomes.

independence, given Z,_, of treatment decisions at time ¢ and Y. Similar condi-
tions, though without time-dependence, can be found in, for example, Rosenbaum
and Rubin (1983).

The statement “changes of treatment at ¢ should be independent of Y, the
outcome of the patient in case he or she would not have been treated after time ¢,
given Z;_" is not a formal statement: it includes conditioning of null events (since
the probability that treatment changes at ¢ may be O for every fixed ¢) on null events
(Zi-).

To overcome this difficulty, we assume that the treatment process can be repre-
sented by or generates a (possibly multivariate) counting process N. For instance,
N (t) registers the number of treatment changes until time ¢ and/or the number
of times treatment reached a certain level until time 7. A counting process con-
structed this way may serve as N in the following. More about counting processes
can be found in, for example, Andersen et al. (1993). We assume that the treatment
process N has an intensity process. Formally, such an intensity process A(¢) is a
predictable process such that N (¢) — f(; A(s)ds is a martingale. The intensity A(?)
with respect to o (Z;) can be interpreted as the rate at which the counting process
N jumps given the past treatment- and covariate history Z,_.

ASSUMPTION 4.1 (Bounded intensity process). N has an intensity process
A(?) on [0, T] with respect to the filtration o (Z;). This intensity process satisfies
the following regularity conditions:
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(a) A is bounded by a constant which does not depend on w,
(b) A(t) is continuous from the left.

According to this assumption,
t
(1) M(t):N(t)—/ A(s)ds
0

is a martingale on [0, t] with respect to the filtration o(Z,). Since most count-
ing process martingale theory deals with filtrations #; which satisfy the usual
conditions (¥( contains all null sets and ¥ = (),.; F5), we mention that, un-
der Assumption 4.1, M () is also a martingale with respect to o(Z;)%, the usual
augmentation of o (Z;). This follows from Lemma 67.10 in Rogers and Williams
(1994), since M is cadlag.

Often, N will be chosen to count the number of events of a certain type concern-
ing the treatment process (e.g., the number of times treatment changed). At 7, the
time the study ends, treatment is stopped or switched to baseline treatment, so a
natural choice of N will often jump at T with positive probability. However, jumps
of N at t are not useful for estimation, and we wish to avoid modeling jumps of N
at 7. Therefore, we assume that, with probability 1, N does not jump at 7, and if a
natural choice of N does jump at T with positive probability, then we just adapt it,
only at 7, so that it does not jump there.

We also make the following assumption.

ASSUMPTION 4.2 (Y® cadlag). Y is a cadlag process.

Within this framework, the assumption of no unmeasured confounding could be
operationalized as follows. The rate at which the counting process N jumps given
past treatment- and covariate history is also the rate at which N jumps given past

treatment- and covariate history and Y = (Y®) :5 <1). That is, the following:

ASSUMPTION 4.3 (No unmeasured c(Elfounding—formalization). The inten-
sity process A(¢) of N with respect to o (Z;) is also an intensity process of N with

respect to o (Z;, 7).

This can be interpreted as conditional independence (given Z;_) of treatment
decisions at time # and (Y :s < ). This assumption is stronger than just con-
ditional independence of treatment decisions at # and ¥ ®) as assumed in Robins
(1992, 1998b). However, also Y®) for s < 7 is an indication of the patient’s prog-
nosis upon which treatment decisions at time ¢ (> s) should not depend. As-
sumption 4.3 allows us to use the usual counting processes framework. Under
Assumption 4.3, M(t) = N(t) — f[o,t] A(s)ds is a martingale also with respect

to 0(Z;, ¥") and its usual augmentation o (Z;, Y,
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This formalization of the assumption of no unmeasured confounding in terms

of compensators with respect to the filtration o (Z;, 7([)) is a novel feature of this
paper relative to the previous literature on structural nested models. Robins et al.
(1992), Robins (1998b) and Keiding (1999) use a Cox model for initiation and/or
changes in treatment. However, none of them formalized the assumption of no un-

measured confounders in terms of compensators with respect to o (Z;, 7(”). As
a consequence, they could not use the extensive theory on counting process mar-
tingales to show the asymptotics of their estimators, which then remained without
proof.

5. The model for treatment effect. Structural nested models in continuous
time model distributional relations between Y@ and Y“t" for 4 > 0 small,
through a so-called infinitesimal shift-function D. Write F for the cumulative dis-
tribution function and F~1: (0, 1) — R for its generalized inverse

F~(p) =inf{x: F(x) > p}.

Then the infinitesimal shift-function D is defined as
_ 0 _
) DGy, 1 Z) = h_O(lewz o Fynz,) (),

the (right-hand) derivative of the quantile—quantile transform which moves quan-
tiles of the distribution of ¥ to quantiles of the distribution of ¥ +" (h > 0),
given the covariate- and treatment history until time ¢, Z,;. Notice that for differen-
tiability of F' Y_(,l |z, with respect to 47 we need that a short duration of treatment
has only a small effect on the distribution of the outcome of interest (see page 3,
second paragraph), since limy, o F- Y+ |z, Must be equal to F Y0|Z,-

EXAMPLE 5.1 (Survival of AIDS patients). Robins, Blevins, Ritter and Wulf-
sohn (1992) describe an AIDS clinical trial to study the effect of AZT treatment
on survival in HIV-infected subjects. Embedded within this trial was an essentially
uncontrolled observational study of the effect of prophylaxis therapy for PCP on
survival. PCP, pneumocystis carinii pneumonia, is an opportunistic infection that
afflicts AIDS patients. The aim of Robins et al. (1992) was to study the effect of
this prophylaxis therapy on survival. Thus, the outcome of interest Y is the survival
time, and the treatment under study is prophylaxis for PCP. Once treatment with
prophylaxis for PCP started, it was never stopped.

Suppose that

3) D(y,t; Z1) = (1 — V) jureated at 1)-

Then (see Section 6 for details), for ¢t < Y, withholding treatment from ¢ onward
leads to (with ~ meaning “is distributed as”)

Y
Y(t) —t~ / ewl(treated at s} dS
t

4) _
=eY -DUR(t,Y)+1-(Y —t —DUR(t,Y))  given Z,,
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with DUR(t, u) the duration of treatment in the interval (¢, u). Thus, treated resid-
ual survival time (¢ until Y) is multiplied by e¥ by withholding treatment; compare
this with accelerated failure time models, see, for example, Cox and Oakes (1984).
This multiplication factor e¥ should be interpreted in a distributional way. One of
the models studied in Robins et al. (1992) assumes that (4) is true even with ~
replaced by = (though only for ¢ = 0). Notice that supposing (4) to be true with ~
replaced by = would be much stronger.

EXAMPLE 5.2 (Survival of AIDS patients). Consider the situation from Ex-
ample 5.1 again. In another model mentioned in Robins, Blevins, Ritter and Wulf-
sohn (1992) the factor with which treated residual survival time is multiplied when
treatment is withheld can depend on the AZT treatment the patient received and
whether or not the patient had a history of PCP prior to start of PCP prophylaxis.
Since this was a clinical trial for AZT treatment, the AZT treatment was described
by a single variable /57t indicating the treatment arm the patient was randomized
to (Iazr is 0 or 1). Whether or not the patient had a PCP history prior to start of
prophylaxis is described by an indicator variable P(¢). P(¢) equals 1 if the patient
had PCP before or at ¢ and before prophylaxis treatment started; otherwise P(¢)
equals 0. If

Dl//1,1ﬂ2,1//3 . 1; 71) = (l - eI/flerzP(t)erS[AZT)1{treated at t}>

then (see Section 6 for details) withholding prophylaxis treatment from ¢ onward
leads to

Y
) YO _f~ / elweacdas) N+ POHIAZD g given Z,,
t
fort <Y.

EXAMPLE 5.3 (Incorporating a-priori biological knowledge). Following
Robins (1998b), again consider survival as the outcome of interest. Suppose that
it is known that treatment received at time ¢ only affects survival for patients des-
tined to die by time ¢ + 5 if they would receive no further treatment. An example
would be a setting in which failure is death from an infectious disease, the treat-
ment is a preventive antibiotic treatment which is of no benefit unless the subject
is already infected and, if death occurs, it always does within five weeks from the
time of initial unrecorded subclinical infection. In that case, as remarked in Robins
(1998b), the natural restriction on D is that

D(y,t;Z)=0 ify—t>35.
More biostatistical examples of models for D can be found in, for example,

Mark and Robins (1993), Witteman et al. (1998), Robins (1998b) and Keiding et
al. (1999).
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FI1G. 2. Illustration of the infinitesimal shift-function D.

D(y,t; Z;) can be interpreted as the infinitesimal effect on the outcome Y of
the treatment actually given in the time-interval [¢, t 4+ h) (relative to baseline treat-
ment). To be more precise, from the definition of D we have

h-D(y.1:Z) = (Fpian 7 © Fyojz,) ) =y +o(h).

In Figure 2 this is sketched. y in the picture is the 0.83th quantile of the distribution
of Y¥) given Z;. For h > 0, the 0.83th quantile of the distribution of ¥ “*" given
Z,isy+h-D(y,t; Z;) +o(h). Thus, to shift from quantiles of the distribution of
Y® to the distribution of ¥ Y*") given Z; (h > 0) is approximately the same as to
justadd - D(y, t; Z;) to those quantiles. For example, if F y(+ |z, lies to the right
of Fyz, for h > 0, then treatment between 7 and ¢ + h increases the outcome (in

distribution), and D(-, t; Z,) is greater than 0.

Consider again this interpretation of D as the infinitesimal effect of treatment
given in [¢, t 4+ h). If the outcome of interest is survival, then D(y, ¢; Z;) should be
zero if Z; indicates the patient is dead at time ¢. Indeed, in that case F. Yt (Z, and
Fy )z, should be almost surely the same for every & > 0, since withholding treat-

ment after death does not change the survival time. Thus, F’ Y_(,l |z, © F Y0|Z, (v)is

constant in & for 2 > 0 and, therefore, D(y, t; Z;) = 0. However, this reasoning is
not precise because of the complication of null sets. We will therefore just formally
define D(y, t; Z;) to be zero if the outcome of interest is survival and Z; indicates
the patient is dead at time ¢.

It can be shown that D = 0 if treatment does not affect the outcome of interest,
as was conjectured in Robins (1998b). To be more precise, Lok (2001) shows that,
for example, D = 0 if and only if, for every # > 0 and ¢, Y“*" has the same
distribution as Y*) given Z;. That is, D = 0 if and only if “at any time , whatever
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patient characteristics are selected at that time (Z,), stopping ‘treatment as given’
at some fixed time after + would not change the distribution of the outcome in
patients with these patient characteristics.”

In the rest of this article Dy, will always indicate a correctly specified parametric
model for D, with D =0 if ¢ = 0.

6. Mimicking counterfactual outcomes. Define X (¢) as the continuous so-
lution to the differential equation
(6) X'(1)=D(X(t),1; Z;)

with final condition X (t) =Y, the observed outcome (see Figure 3). Then X (¢)
mimics Y in the sense that it has the same distribution as ¥ given Z;. This
rather surprising result was conjectured in Robins (1998b) and proved in Lok
(2001, 2004). To prove this result, we need the following consistency assumption.

ASSUMPTION 6.1 (Consistency). Y has the same distribution as Y given Z.

Notice that since by assumption no treatment was given after time t and since
treatment is right-continuous, there is no difference in treatment between Y (¥

y
e

0 jump time Y Tt
of Z

FIG. 3. Anexample of a solution X (t) to the differential equation X' (t) = D(X (t), t; Z;) with final
condition X (t) =Y in case the outcome is survival time.
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and Y. We suppose that this assumption holds, and we also suppose that a short du-
ration of treatment has only a small effect on the distribution of the outcome of in-
terest (limy, o Fy ¢+n) Z, ) — Fyo Z, (»)). Under these assumptions and regularity
conditions only, Lok (2001, 2004) proved that indeed equation (6) has a unique so-
lution for every w € €2, and that this solution X (#) mimics Y in the sense that
X () has the same distribution as ¥ ) given Z; (see Appendix B). Throughout this
article we will assume that this result holds true.

EXAMPLE 6.2. Survival of AIDS patients (continuation of Example 5.1).
Suppose that

D(y,t; Z) = (1 — e¥) 1 jureated at 1)-
Then

Y
X(l) =t +/ ewl{lreated at s} ds
t
if Y >t,and X(t) =Y fort > Y.

Suppose now that one has a correctly specified parametric model for the infini-
tesimal shift-function D, Dy . Then one can calculate “Xy, (¢),” the solution to

(7N Xy (1) = Dy (Xy (1), 15 Zy)

with final condition Xy (7) = Y. For the true v, X (¢) has the same distribution as
Y@, the outcome with treatment stopped at 7, even given all patient-information at
time 7, Z,. So instead of the unobservable Y (t)’s we have the observable Xy (7)’s
which for the true 1 mimic the ¥*)’s. Although we do not know the true v, this
result turns out to be very useful, both for estimating v (Sections 8 and 10) and for
testing [Section 11; notice that when testing whether treatment affects the outcome
(i.e., whether D = 0), X can simply be calculated from the data (X = Y') under the
null hypothesis of no treatment effect].

7. Local rank preservation. Previous applications of structural nested mod-
els [see, e.g., Robins et al. (1992), Mark and Robins (1993), Witteman et al. (1998)
and Keiding et al. (1999)] have assumed the so-called local rank preservation con-
dition. Local rank preservation states that Y ) is a local solution to (6). However,
if YO s locally a solution to (6), it is usually also globally a solution to (6); see,
for example, Theorem A.1 in the Appendix. Hence, if one knew the parameter 1,
every Y would be a deterministic function of the observed data. Deterministic
dependence of counterfactuals on the observed data is a very strong condition,
which, though untestable, is generally considered implausible. The previous lit-
erature [see, e.g., Robins (1998b), Robins et al. (1992), Mark and Robins (1993)
and Keiding et al. (1999)] acknowledged this problem, and conjectured that the
assumption of local rank preservation could be relaxed in continuous time [since
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it is known that the assumption of local rank preservation can be relaxed for struc-
tural nested models in discrete time; this was pointed out by Robins and Wasser-
man (1997), and Lok et al. (2004) provided a proof]. See Robins (1998b) for a
more elaborate discussion. The following example describes a setting where the
assumption of local rank preservation is implausible.

EXAMPLE 7.1 (Survival of AIDS patients and local rank preservation). In the
situation of Example 5.1, consider the following thought experiment. Suppose that
two patients had the same covariate history until time ¢, and both received the same
constant treatment to prevent PCP until time ¢ (equal Z;). Suppose, furthermore,
that both patients received no treatment after time ¢, that they did not have PCP
before time ¢ and both died at the same time u > ¢ (for both, ¥ = u). Possibly,
the first patient would have had PCP at some time s < ¢ and would have died from
it before u in case he or she would not have been treated. Possibly, the other patient
would not have had PCP in case he or she would not have been treated, and would
have died at the same time u > ¢ as without treatment. Thus, it is easy to imagine
that these patients would have had different outcomes under no treatment (different
Y @) However, the assumption of local rank preservation excludes this possibility.

Local rank preservation is a very strong condition, for which structural nested
models have previously been attacked. In fact, this article shows that the assump-
tion of local rank preservation is not needed for structural nested models. However,
proofs would be much easier under rank preservation; for details, see the remarks
before the proofs of Theorems 8.5 and 9.2. See also Robins (1998b) for a more
informal reasoning.

8. Estimation of treatment effect. To estimate the infinitesimal shift-
function D, Robins (1998b) proposes to use a (semi-)parametric model to pre-
dict future treatment (N in our case) on the basis of past treatment- and covariate
history Z;_. This may seem odd, since prediction of treatment is not what we
are interested in. However, we will show that such a model to predict treatment
changes can indeed be a tool to get unbiased estimating equations for the parameter
Y in the model for D. Moreover, often doctors may have a better understanding,
at least qualitatively, about how decisions about treatment were made than about
the effect of the treatment. In what follows we will assume that Ay is a correctly
specified parametric model for the intensity A of N.

Recall from Section 4 that, under no unmeasured confounding (Assump-
tion 4.3), Y¥) does not contain information about treatment changes given past
treatment- and covariate history Z,_. Since X (¢) has the same distribution as y®
given Z,, one could expect that also X (¢) does not contain information about treat-
ment changes given Z,_. Unfortunately, this reasoning is not precise: we have to
somehow deal with null sets since the probability that treatment changes at ¢ given
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past covariate- and treatment history is often equal to O for each ¢. In Section 9 we
will show how this can be dealt with.

In the current section we present a class of unbiased estimating equations for 6
and . These will be used for the proof in the next section, but they are also of
interest in their own. In Section 9 we will see that these estimating equations are
in fact martingales, for the true parameters 6y and V.

Recall from Section 4 that, under no unmeasured confounding, we have the
martingale M (¢t) = N(t) — f[o,t] A(s)ds with respect to the filtration o (Z;, Y(t))
and its usual augmentation. From this martingale we can construct a whole family
of martingales. If i, (Y™, Z,_)isao (Z,, y® )¢-predictable process, then, under
regularity conditions,

t t _
/hdM:/ hy(YS), Zo ) dM(s)
0 0

is a martingale with respect to o (Z,, 7(0)“. For a more formal statement, we first
make sure that i, (Y™, Z,_) is predictable. We put the following restriction on
the functions /&, we consider here:

RESTRICTION 8.1. When in this section we consider functions /; from R x
Z,_, we assume that they are measurable and satisfy the following:

(a) hy is bounded by a constant which does not de_pend ont and Z, B
(b) for all 7y € [0, 7], yo € R and w € @, h(y, Z;—(@)) —> hsy(yo, Z1y— (@)
when y — yg and ¢ 1 1g.

For such h;, h, (YY), Z,_)isa o (Z;, Y(t))“—predictable process:

LEMMA 8.2. Suppose that Y is cadlag (Assumption 4.2). Then h, (Y7,
Z,)isao(Z,, A )¢-predictable process for any h; satisfying Restriction 8.1.

PROOF. h, (YY) Z, ) is adapted. It is also left-continuous: because Y © s
cadlag, limy4,, Y7 = Y0 exists. O

Thus, we come to the following lemma:

LEMMA 8.3. Under Assumptions 4.1 (bounded intensity process), 4.2 (Y
cadlag) and 4.3 (no unmeasured confounding),

/Ot hs(YE™), Zo ) (dN(s) — A(s)ds)

is a martingale on [0, T] with respect to o (Z;, 7(0 )4

tion 8.1.

for all h; satisfying Restric-
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PROOF. M) = N(t) — fé A(s)ds is a martingale on [0, t] with respect to
0(Z, Y'Y, because of Assumption 4.3. It is of integrable variation
[E [51dM(s)| < E [{dN(s) + r(s)ds = 2E [ A(s)ds, and A is bounded (As-
sumption 4.1)]. Because of Lemma 8.2, h(r) = h, (YY), Z,_) is a 0 (Z,, Y(Z))“—
predictable process. It is also bounded [Restriction 8.1(a)]. Hence, fot h(s)dM(s) =
fé hy(Y$™) Zi )YdN(s) — A(s)ds) is an integral of a bounded predictable
process with respect to a martingale of integrable variation, and, therefore,
ao(Z,, Y(Z))“—martingale. U

To construct unbiased estimating equations for (6, 19), we need to assume that
the probability that N (-) and ¥ ©) jump at the same time is zero. This assumption is
a formalization of the assumption of no instantaneous treatment effect as proposed

in Robins (1998b), which can be seen as follows. Given Z;_ and 70_), N jumps
at ¢t with rate A(¢) (Assumption 4.3, no unmeasured confounding). Y ) isa cadlag
process (Assumption 4.2), which thus for every o € Q2 jumps at most countably
many times on the finite time interval [0, t]. Therefore, if ¥ and N would jump
at the same time with positive probability, this would imply a dependence of these
jumps; the obvious interpretation of this dependence would be that a change of
treatment instantaneously affects the outcome of interest.

ASSUMPTION 8.4 (No instantaneous treatment effect). The probability that
there exists a 7 such that N (-) and Y ©) both jump at time ¢ is 0.

Notice that this excludes estimation of the effect of point exposures. For exam-
ple, if treatment is surgery or another point exposure given at some time ¢, the out-
come under “treatment stopped at time ¢ will typically jump at time ¢ if treatment
affects the outcome of interest, at the same time as the treatment itself. However,
this assumption does not exclude the possibility that the outcome differs depend-
ing on whether a patient is treated or not at a certain point in time. For example,
Y and Y~ may be different when a virus is contacted at time . The model
in this article can accommodate differences between ¥ “*) and Y7, as long as
the probability that the observed treatment changes is 0 at that precise time. Or, in
more generality, as long as the probability that N jumps at the same time is 0. This
was previously noticed in Robins (1998a), Section 8. The estimating procedures
in this article do not deal with instantaneous treatment effects.

Suppose that the above conditions hold and that (X (z), Z;) ~ (¥ 0 Z,) for
t € [0, T] (see Section 6). Then if Dy and Ay are correctly specified (paramet-
ric) models for D and A, respectively, each choice of &; satisfying Restriction 8.1
leads to an unbiased estimating equation for both the parameter of interest v and
the (nuisance) parameter 6:
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THEOREM 8.5. Suppose that Assumptions 4.1 (bounded intensity process),
4.2 (Y(') cadlag), 4.3 (no unmeasured confounding) and 8.4 (no instantaneous
treatment effect) are satisfied. Suppose also that, for every t € [0, ], X (t) has the
same distribution as Y given Z,. Then

E /OT he(X(t), Z;—)(dN () — A(t)dt) =0

for each h, satisfying Restriction 8.1. Thus, if Dy, and Ay are correctly specified
parametric models for D and A, respectively,

Py /0 he( Xy (t), Z—)(dN(t) — rg(t) dt) =0,

with P, the empirical measure P, X = 1/n)_"_, X;, is an unbiased estimating
equation for (6o, Vo), for each h; satisfying Restriction 8.1. h; here is allowed to
depend on r and 0, as long as it satisfies Restriction 8.1 for (6o, ¥o).

As before, Xy (¢) here is the continuous solution of (7), X {/, (1) =Dy (Xy (1), t;
Z,) with boundary condition X v (1) =Y. Moreover, as before, we assume that for
all Dy we have existence and uniqueness of such solutions; Theorem A.1 in the
appendix provides sufficient conditions for that.

Under local rank preservation (see Section 7), X(t) =Y @ for each 7. In that
case Theorem 8.5 follows immediately from Lemma 8.3. However, as argued in
Section 7, local rank preservation is generally considered implausible.

PROOF OF THEOREM 8.5. We have to show that
T —_—
/0 he(X(t), Z,~)(dN(t) — 1(r) dr)

has expectation zero for all &, satisfying Restriction 8.1. To do that, we prove that
it has the same expectation as

/OT h(YP,Z,2)(dN () — A(r) dt),

which has expectation zero because of Lemma 8.3. We will first show that the
terms with d N have the same expectation, that is,

(8) E( > MX(:),Z)):E( > h,(Y“—),Z)).

t<t,AN(t)=1 t<t,AN(1)=1

After that we show that the terms with A(#) dt have the same expectation, that is,

) E(/OT he(X (1), Z)A(t)a’t) = E</OT (YU, Z)k(t)dt).
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As we will see below, (8) and (9) have to be proved separately, since we do not
have or expect that (X (s), Z)~ (YW Z,) fors <t; we only have this for s > .
Therefore, the approximations below have to be chosen carefully.

At first we prove (8), by approximating these sums and showing that the ap-
proximations have the same expectation. Next we show that the approximations
converge and that (8) follows with Lebesgue’s dominated convergence theorem.

Define T1 = inf{t: N(¢t) = 1}, T, = inf{r: N(t) = 2}, etc., the jump times of
the counting process N in the interval [0, t]. They are measurable [e.g., because
of Rogers and Williams (1994), Lemma 74.4]. Note that the number of jumps in
[0, ] is almost surely finite because N is integrable (it has a bounded intensity
process). In the following read /7, YT, 7Tj_) = 0 if there is no jth jump of N
in the interval [0, t].

Next split up the interval [0, ] in intervals of equal length: for K € N fixed,
put 7x = kt/K, k=0,..., K. Fix K for the moment. The right-hand side of
equation (8) is harder to approximate than the left-hand side, both because ¥ ®
does not need to be continuous in ¢ while X (¢#) does and because knowing y®
and Z, does not imply knowing Y for s < and we do not have or expect
(X (s5), Z;) ~ (Y9, Z,) for s < t. The approximations we choose are

Yo .z, ZhT (Y5 Zg, )

AN(t)=1,t<t
(10)
— — J—
Z Z (fk,fk+1](Tj)h‘[k (Y(Tk+l)7 Z‘L’k—)
and
R— m _
S (X0, Zio) = Y hr(X(T)). Z1,-)
AN(t)=1,t<t j=1
(11)

||M8

Z Vot 1 (T o (X (Tes1)s Z )

To show that these approximations have the same expectation, we use that
(X(tk41), Zyyyy) ™~ (Y (1) | Z+,..,)- Therefore, also

Lgere ) T (X (T 1)s Zge ) ~ Vi) (T (Y D Z )

[notice that 1(¢, ¢,,,1(T}) is a function of 7,k .1 1. Hence, the expectation of each of
the terms on the right-hand side of (10) is equal to the expectation of the cor-
responding term on the right-hand side of (11). Since A, is bounded [Restric-
tion 8.1(a)] and the expected number of jump times 7 is finite (N is integrable),
this implies that the expectation of the right hand-side of equation (10) is equal to
the expectation of the right-hand side of equation (11).
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Equation (8) follows if the expectation of the approximations in (10) and (11)
converges to the right-hand side and left-hand side of equation (8), respectively
This convergence is harder to show for (10) than for (11), since Y may Jump

[while X (-) does not, by constructlon] Fix j for a moment Define rk and rk 11

as the grid points such that T; € (rk , rk+1]. As K — o0, rk+] | T}, so that since

YO is cadlag, ¥ @+ — YT Moreover, as K — oo, t{ 1 T}, so that because of

Restriction 8.1 on £, hrj(Y(th"'l), er ) — hrj(Y(Tf), ?Tj_). Combining this for
k k—

all j leads to

oo K—1 . 0 _
33 a1 Thg (Y*D . Zo ) =Y b, (YT, Zg, )
j=1k=0 j=1

as K — oo for every w for which the number of jumps of N is finite, so for almost
every w € Q. h; is bounded [Restriction 8.1(a)] and the left-hand side is bounded
by the number of jumps of N times this bound. The expectation of that is finite
because N is integrable. Thus, Lebesgue’s dominated convergence theorem can be
applied, and

oo K—1 oo
(12) E(Z Z L i1 (T (Y(TkH)’?fk—)) g E(Z th (Y(Tj)’iTj_))

j=1 k=0 j=1

as K — oo. Because with probability one ¥ ) and N do not jump at the same time
(Assumption 8.4 of no instantaneous treatment effect),

o0 . o0 .
Zhrj(Y(Tj),ZTj_)zZth(Y(Tj_),ZTJ._) a.s.,
j=1 j=I1

so that we can replace Y7 by Y7i™) on the right-hand side of (12). Therefore,
indeed, the expectation of the approximation in (10) converges to the expectation
of the left-hand side of (10). The same reasoning shows this for (11). Here less
caution is necessary since X (¢) is continuous in ¢. That concludes the proof of
equation (8).

Next we prove (9), also by approximation. Here, too, we show that the approxi-
mations have the same expectation and that (9) follows with Lebesgue’s dominated
convergence theorem.

Divide the interval [0, ] as above. The approximations we choose here are

(13) /Oh(Y(’ ) Z )A(@) dt ~ Zh,k Y, Z o () (Tt — )

and
K—1

(14) f h(X (1), Zi M@ dt %) b (X (1), Zg )M (0) (Thp 1 — Th).-
k=0



CAUSAL EFFECTS IN CONTINUOUS TIME 1481

Because (X (1), 7”) ~ (Y () 7,,() and A(ty) are a measurable function of 7rk
(Assumption 4.1, bounded intensity process), the expectation of each of the terms
in (13) is equal to the expectation of the corresponding term in (14). Thus, the
expectations of these approximations are equal.

Equation (9) follows if the expectation of the approximations in (13) and (14)
converge to the right-hand side and left-hand side of equation (9), respectively.
This convergence is also harder to show for (13) than for (14) because of possible
discontinuities of ¥ ). First notice that as K — 00, for ¢ fixed,

K-1

3 N 1 Ohg (V™ Zo ) a(m) = hy (Y97, Z,2)00)
k=0

for every w € Q fixed and for every t < t: ¥ has limits from the left (Assump-
tion 4.2), so that as 1z 1 ¢, Restriction 8.1(b) on 4 can be used, and A is continuous
from the left [Assumption 4.1(b)]. Taking integrals and applying Lebesgue’s dom-
inated convergence theorem [/4; and A are bounded because of Restriction 8.1(a)
and Assumption 4.1(a), resp.] leads to

K-1

— T .
Y b (Y™, Zy M) (trg1 — ) —>/0 h (YYD, Z)a(t) dt
k=0

for every w € 2. As both 4 and A are bounded, Lebesgue’s dominated conver-
gence theorem guarantees that indeed the expectation of the approximation in (13)
converges to the expectation of the left-hand side of (13). The same reasoning
shows this for (14), which concludes the proof of equation (9) and Theorem 8.5.

0

Lok (2001) shows that if the rest of the conditions in this section are satisfied,
Assumption 8.4 (treatment does not instantaneously affect the outcome of interest)
is a necessary condition for Theorem 8.5.

EXAMPLE 8.6 (Survival of AIDS patients and the Weibull proportional hazards
model). Consider the setting of Examples 5.1 and 5.2 and define N(¢) =1 if
prophylaxis treatment started at or before time ¢ and O otherwise. Suppose that ini-
tiation of prophylaxis treatment can be correctly modeled with the time-dependent
Weibull proportional hazards model

)VS,)/,Q(I) = 1{at risk at ¢} fyty_legllAZT_l—gzIPCP(I),

where Ipcp(f) equals 1 if the patient had PCP before time ¢ and O otherwise, and
& and y are greater than zero [for more about the Weibull proportional hazards
model and its applications see, e.g., Collett (1994)]. If the patient died before ¢
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or prophylaxis treatment already started before, the patient is not “at risk” for ini-
tiation of treatment and, thus, A equals 0. Then the (partial) score equations for
estimation of (£, y, 0) are

Tl T
Pn/O <§ ;+10gt IazT IPCP(l)> (dN(1) = Agp0(1)dt) =0.

Such estimating equations can also be written down for the model including o Xy,

At 60,0, (1) = Lat risk at 1) 5)/1}/_1691 Inzrt62lpcp () +aXy @)

Robins (1998b) proposes to estimate the parameters in a model like this by choos-
ing those parameters (£, y, 6, ¥) which maximize the likelihood when X, is con-
sidered fixed and known, and for which & (v) = O: for the true ¥, Xy (t) = X (t) ~
Y ® does not contribute to the model for treatment changes (under no unmeasured
confounding). To make the connection with the estimators in the current article,
notice that this leads to the same estimators as the ones that solve the estimating
equations arising from the likelihood when Xy is considered fixed and known,
with « put to zero. More precise, since we know that the true « is equal to 0, we
put o equal to 0 and get the estimating equations

T /1 1 T
P, /O (5 C ozt L Tece0) Xw)) (AN() — he.p (D) dr) =0

for the parameter i (and thus also for D) and the (nuisance) parameters (£, y, 0).
These estimating equations are of the form of Theorem 8.5,

P, /OT he( Xy (1), Z;—)(dN (1) — Agy.0(t)dt) =0,

but the function 4, here is not bounded and A need not be bounded (if y < 1),
so unbiasedness does not follow immediately from Theorem 8.5. However, we
could restrict the interval [0, ] to [g, t] for € > O (to assure that A is bounded)
and logt can be approximated by the bounded functions logz v C (C — —00)
(to make &, bounded), which all lead to unbiased estimating equations because
of Theorem 8.5. The above estimating equations are then also unbiased because of
Lebesgue’s dominated convergence theorem [the dominating function is integrable
since

T T
E/O |logt|(dN(t)+Ag,y,9(t)dt)=2E/O |logt|re,y 0(t)dt
T
§2$ye|91|+|92|/ |logr|t” ' dt,
0

which is finite since y > 0].
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Under the model for D of Example 5.1,
Dy (v 1: Z) = (1 = ) L {ueated at 1)
Y
X]/f (t) =1 _|_ / ewl(treated at s} ds’
t

if the patient did not die before time ¢. In that case these are five unbiased esti-
mating equations for five unknown parameters. If the parameter 1 is of dimension
greater than 1, more unbiased estimating equations can be constructed by adding
more terms of the form o f (X (7), Z:_).

9. X (t) does not predict treatment changes: a martingale result. We show
that, under no unmeasured confounding, just as ¥, X (¢) does not predict treat-
ment changes, given past treatment- and covariate history Z,_. We could hope for
that since X (t) ~ Y® given Z, (see Section 6). The formal statement is (com-
pare with Assumption 4.3, no unmeasured confounding) the following: the inten-
sity process A(t) of N with respect to o (Z;) is also the intensity process of N
with respect to o (Z;, X(t))*. Then M(t) = N(t) — f(; A(s)ds is also a martin-
gale with respect to o (Z;, X (¢))*. That will be useful later when we study the
behavior of estimators 6 and 1& which are constructed with estimating equations
of the form of Theorem 8.5, P, fot he(Xy (1), Z;)(dN(t) — rg(t)dt) = 0. For ex-
ample, we can use the fact that usually f[o’,] H(s)dM(s) is a martingale if M is
a martingale and H a predictable process; a sufficient condition for this is that
E [|H(s)||[dM(s)| < oo [see, e.g., Andersen et al. (1993)]. Hence, all estimat-
ing equations of the above form which we saw before are in fact martingales for
0, %) = (6o, Vo). .

Before going on, we first clarify why o (Z;, X(¢)) is indeed a filtration. For
s < t, X(s) is a deterministic (though unknown) function of (Z;_, X (¢)) (i.e., if so-
lutions to the differential equation with D are unique; see, e.g., Theorem A.1 in the
Appendix). Similarly, for s < ¢, X (¢) is a deterministic function of (Z,_, X (s)). In
the rest of this article we will assume that these functions are measurable functions
on Z,_ x R (sufficient conditions for that are that the infinitesimal shift-function
D satisfies regularity Assumption 9.1 below and that for each w € 2, Z only jumps
finitely many times; see Appendix C, Lemma C.1). Thus,

(15) o (Z, X)) =0(Z;, (X(s):5 <t)) =0(Z:, X(0)).

We will use the filtration o (Z;, X (¢)) below, keeping in mind that it is indeed a
filtration and satisfies equation (15).

In the rest of this section we assume that the infinitesimal shift-function D sat-
isfies the following regularity condition:

ASSUMPTION 9.1 (Regularity of the infinitesimal shift-function D).
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(a) (Continuity between the jump times of Z). If Z does not jump in (¢, t2),
then D(y, t; Z,) is continuous in (y, ¢) on [, t2) and can be continuously extended
to [t1, 1r].

(b) (Boundedness). For each w € €2, there exists a constant C(w) such that
|D(y,t; Z;)| < C(w) forall t € [0, 7] and all y.

(c) (Lipschitz continuity). For each w € €2, there exist constants L(w) and
Ly (w) with

|D(y,t;Z;) — D(z,1; Z)| < Li(w)]y — 2
for all t € [0, T] and all y, z and
|D(y,t; Z;) — D(y,s; Zy)| < La(w)|t — s

if s <t and Z does not jump in (s, t].

Most regularity conditions on D here are satisfied for the D’s from Appendix B
[see also Lok (2001, 2004)]. Only the second Lipschitz condition is extra. The
Lipschitz conditions are satisfied, for example, if, in between the jump times of Z,
D is continuously differentiable with respect to y and ¢ with derivatives which are
bounded for every fixed w € 2.

The next theorem states that M is indeed also a martingale with respect to
o(Z;, X (1))

THEOREM 9.2. Suppose that the conditions of Theorem 8.5 hold: Assump-
tions 4.1 (bounded intensity process), 4.2 Y® cadlag), 4.3 (no unmeasured con-
founding), 8.4 (no instantaneous treatment effect) and for every t € [0, ], X ()
has the same distribution as Y given Z,. Suppose, furthermore, that for each
w € 2, Z jumps at most finitely many times, and that D satisfies regularity Con-
dition 9.1. Then the intensity process A(t) of N with respect to o (Z;) is also the
intensity process of N with respect to the filtration o (Z;, X (1))“.

Recall that in Section 6 we already mentioned that, under regularity conditions,
X () mimics Y@ in the sense that it has the same distribution as ¥ ) given Z;.

Under local rank preservation (see Section 7), X(¢) =Y @ for each 7. In that
case Theorem 9.2 would be the same as the Assumption of no unmeasured con-
founding 4.3. However, as argued in Section 7, local rank preservation is generally
considered implausible.

PROOF OF THEOREM 9.2. Because of Assumption 4.1, A(t) = fot A(s)ds is
predictable with respect to o (Z;), so then it is also predictable with respect to the
larger filtration o (Z;, X (t))*. We still need to prove that M is a martingale with
respect to o (Z;, X (¢))“. Since a cadlag martingale with respect to some filtration is
also a martingale with respect to its usual augmentation [see Rogers and Williams
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(1994), Lemma 67.10], it suffices to prove that M is a martingale with respect to
o (Z;, X(t)). Thus we need to prove that, for f, > 11,

E[M(t2) = M(11)|Zy,, X (11)] =0.

This is not immediate, since we do not have or expect that (X (tl),ftz) ~
(Y(Zl), Zy)ift) <.
By the definition of conditional expectation, the above is the same as

(16) fB(M(rz) — M(11))dP =0

for all B € U(ZI, X (t1)). Because of Theorem 34.1 in Billingsley (1986), it is
sufficient to consider B’s forming a 7-system generating o (Z;,, X (11)). With o}
the o-algebra on Z,,,

{weQ:7,1 € Aand X(t1) € (x1,x2): A€oy and x; < xp € R}

is such a m-system: it is closed under the formation of finite intersections and

generates J(Z] , X(#1)). Therefore, we only consider B’s of this form. We prove
(16) for any B = {Z;, € A}N{X(11) € (x1.x2)}. Let 10t

of 1(x,,x,) Which is continuous for every fixed n, with IEZ? 1)) = 1(xy xp) (x) for

(n)

(x1,x2)

be any approximation

every x asn — oo and |1 | <1 for all x and n. Then

/B(M(tz) ~ M(1))dP
=E(1p- (M(1y) — M(11)))

=E(1A<Zl>1<xl,xz)<xm>> dM(t))

11,12]

—E / L) (0 LA (Z) Ly oy (X (11)) dM(0)

=E f L) (0 1a(Zey) Tim 1) (X (1)) dM (1)

00 (X1,x2

= E Jim [ 1,00 1a @)1 XD AN @) = (0)di)

= lim E / L) (D 1aZ)1E) (X (1)) dM(0).

The last two equalities follow from Lebesgue’s dominated convergence theorem
[the prior to last equality since, for w € Q2 fixed, the integral is bounded since N
is finite and A is bounded; the last equality since the integrals are all bounded by
N(z) + [y A(t)dt, whose expectation is bounded by 2t times the upper bound
of A]. Equation (16) and the result of the theorem would follow from Theorem 8.5
if

L) (D 1aZ)1E (X (1) =™ (X (1), Z,-)
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for some 4™ from R x Z,_ — R satisfying Restriction 8.1 for each fixed n. In
principle, this seems possible, since X (¢1) is a function of X (¢) and Z,_ for every
t>1.

Indeed, under the conditions above on D and Z, it is possible to find such an
h,("), as follows. Write x (-; tg, xo) for the solution of the differential equation

x'(t)=D(x(t),t; Zy)

with (final or initial, depending on ¢) condition x(#p) = x¢. Existence and unique-
ness of x(-; fy, xg) on [0, ] for every fixed w € Q follows from Theorem A.1 in
Appendix A. In this notation,

Lt 1a(Z)1E) (X (1))
= L) 1LAZ)10) (e, X)) = (X (1), Z;-)
with
17 Ky, Z_) =1 14(Z;)1™ ;
(17) 0 Z) = 10O 1aZ1 i y)).

We have to show that (17) satisfies Restriction 8.1. First we show that, for ¢
fixed, ' : R x Z,_ — R is measurable. From (17) we see that this is the
case if x(¢1;¢,-):R x Z,_ — R is measurable, which follows immediately from
Lemma C.1. Restriction 8.1(a) is immediate, since h,(”) is bounded by 1. For
Restriction 8.1(b), we have to prove that, for all w € Q, h,(")(y,Z,(a))) —
h,(g )(yo, 7,0_(60)) when y — yp and ¢ 1 9. Fix w € Q. We consider three dif-
ferent kinds of 7g. If tg < #; and ¢ © 19, hﬁn) O0=0= h,(gl ) (+), so that the convergence

follows immediately. If 7o > #; and ¢ 1 19, eventually h,(")(-) =0= hg: )(-), so that
the convergence also follows immediately. If #y € (#1, ], convergence of the first
two factors is immediate. For the last factor, we need differential equation theory.
1%:2,;52) is continuous. Thus, to prove that the last factor in equation (17) converges,
it suffices to show that x(¢1; ¢, y) — x(¢1; to, yo) as t 1 to and y — yyp.

Fix w € Q. For ¢ close enough to 79, we compare the solution of the differential
equation with final condition y at ¢ with the solution of the differential equation
with final condition yg at #p; we look at the value of the solution at the time point
11 before both ¢ and fy. First, notice that because of existence and uniqueness of
solutions (Theorem A.1), the solution of the differential equation with final con-
dition y at ¢ takes a unique value y = x(#p; ¢, y) at fy. Since x is differentiable
with respect to its first argument with derivative D and D is bounded by C(w)
[Assumption 9.1(b)], y is not far from y if 7 is not far from #:

(18) Iy —yl=Ix(to; t,y) — y| < C(w)|t — 19].

Next, notice that, again because of existence and uniqueness of solutions, the value
at 71 of the solution of the differential equation with final condition y at ¢ is the
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same as the value at ¢ of the solution of the differential equation with final condi-
tion ¥ = x(fp; t, y) at fp. This observation implies that

lx(t15t, y) — x(t1; to, yo) | = |x(t1: 10, ) — x(t15 0, Yo)|
< eLl(w)|fl—t()||§ — yol
(19) L 5
< M1 @In=0l(15 — y[ + Iy = yob)

< L1 @In=0l(C(w) |t — 19| + |y — yol).

For the first inequality, we use Corollary A.3 and Assumption 9.1 [notice that
possible jumps of D at the jump times of Z do not matter here since one can split
up the interval, so if, e.g., there is just one jump at 7 € (1, f9], one gets a factor

eLi@ln—i|  Li(w)li-to] _ eL1@ln—tol

etc. (a formal proof can be given with induction since, with w € Q still fixed, there
are only finitely many jumps of Z)]. For the last inequality, we use equation (18).
If y — yo and t 1 9, the bound in equation (19) converges to O for every fixed
w € Q. Thus, indeed, if y — yg and ¢ 1 1y, x(¢1; ¢, y) converges to x(t1; fo, ¥0)-
This finishes the proof. [

10. Consistency and asymptotic normality. The estimating equations for
(0, ¥) from Section 8 were all of the form P, gy 4 (Y, Z) = 0. In the current sec-
tion we choose the dimension of g the same as the dimension of (6, /). Estimating
equations of this form are well known. Theorem 10.2 below is an example of as-
ymptotic theory in the setting of this article, with conditions in terms of 4 and the
intensity process A. Notice, however, that these conditions are in fact stronger than
necessary. For more theory about these types of estimating equations and less re-
strictive conditions, see Van der Vaart (1998), Chapter 5. In particular, conditions
could be weakened by considering the estimating equations as a whole instead of
looking at 4 and A separately (see, e.g., Example 10.5).

We only consider smooth h,e’w:

RESTRICTION 10.1. The functions hf’w :R x Z; — R™ are measurable and:

(a) Every component of 1% satisfies Restriction 8.1.

(b) hf’w(y, Z,_) is bounded by a constant C; not depending on 6, v/, ¢, y and
w € Q2.

(c) Foreacht € [0, r]and w € 2, (0, Y, y) — h?’w(y, Z,_) is continuous.

(d) There exists a neighborhood of (6y, ¥) such that, for each ¢ € [0, t] and
w e Q, hf’w (y, Z;_)is continuously differentiable with respect to 6, ¥ and y, and
these derivatives are all bounded by a constant C, not depending on 9, ¥, ¢, y and
w € Q2.
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(e) Every component of a(%ml(g,l/,):(go,%)h?’w(y,Z_) satisfies Restric-
tion 8.1.

THEOREM 10.2 (Consistency and asymptotic normality). Suppose that As-
sumptions 4.1 (bounded intensity process), 4.2 [Y") cadlag), 4.3 (no unmeasured
confounding) and 8.4 (no instantaneous treatment effect) are satisfied. Suppose
also that, for every t € [0, t], X(¢) has the same distribution as y® given Z;.
From Theorem 8.5 we know that, for h satisfying Restriction 10.1(a), (6y, ¥o) is a
zero of

E /OT WY (Xy (1), Z,_)(dN (1) — Ao (1) dt).

Suppose now that (0o, Vo) is the only zero. Suppose, furthermore, that we know
that (6y, Vo) € (O, V) with (0, V) compact, that 0 — Ly(t) is continuous for
each t and bounded by a constant C3 which does not depend on (w, t, 0), and that
Y — Xy (1) is continuous for each t. Then any sequence of (almost) zeros (é, 1})

of
W, 6, %) =P, /0 WY (X (1), Zi)(dN (1) — ho (1) di),

that is, any sequence of estimators 6, V) such that W, (0, V) converges in proba-
bility to zero, is a consistent estimator for (6y, Vo) for each h; satisfying Restric-
tion 10.1(a)—(c).

Suppose, moreover, that 0 — Ag(t) is differentiable with the respect to 6 with
derivative bounded by a constant Cy4 in a neighborhood of 0y, and ¥ — X (1)
is differentiable with respect to  with the derivative bounded by a constant Cs
in a neighborhood of V. Then for each h satisfying Restriction 10.1 there is a
neighborhood of (6y, V¥o) such that Efor h,e’w(Xll, (1), Z,_)(dN (1) — rg(t)dt) is
continuously differentiable with respect to (8, ). Suppose, moreover, that the ma-
trix

5 0y B >
Yo=E WY (X (1), Zi)(dN () — hg(0)d
' (3(94”) (9,w)=<eo,w0>/0 1 Xy (0, Zi)(dN @) = Ap (1) d1)

is nonsingular. Then there exists a sequence of (almost) zeros (é, 1&) to W, (0, ).
Furthermore, any such sequence is asymptotically normal:

(20) (6 )T =8 Yo) ")~ N,V  Wo(VeHT)

with Vo the matrix above and, with a®> =aa',

LA . ®2
W0=E<(/O hto’wo(X%(t),Z,_)(dN(t)—Ago(t))) )
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PROOF. Consistency follows from Theorem 5.9 of Van der Vaart (1998). Re-
peatedly applying Lebesgue’s dominated convergence theorem shows that our con-
ditions imply the conditions of the first and second paragraph after this Theo-
rem 5.9.

The existence of (almost) zeros follows from Van der Vaart and Wellner (1996),
Section 3.9, Problem 9, whose solution is practically given by the hint below it.
This Problem 9 states that if f:® x ¥ — R? is a homeomorphism of a neigh-
borhood of (6o, o) € R onto a neighborhood of 0 € R¢, then every continuous
f:OXWV — R4 for which SUP (9, y)e@x W | f(O,¢%)—g(8, )] is sufficiently small

has at least one zero. In our case g(0, ¥) = E [ h?’w (Xy (1), Z;)(dN(t)—2rg(1))
is continuously differentiable in a neighborhood of (6y, ¥/9) by Restriction 10.1(d)
and the assumptions on A9 and Xy (7), under which differentiation and integra-
tion can be exchanged (twice). The derivative of this g(8, ¥) at (6p, ¥o) is non-
singular by assumption, and hence, g is a homeomorphism of a neighborhood of
(6o, Yo) € R4 onto a neighborhood of 0 € RY. W, (0, Yr) is continuous in (8, )
and close enough to g(6, ¥) for large n with probability approaching 1 because
of the second paragraph below Theorem 5.9 in Van der Vaart (1998). Hence,
W, (8, ¥) has a zero with probability approaching 1.

Asymptotic normality follows from Theorem 5.21 of Van der Vaart (1998), as
follows. Define gy (Y. Z;) = [T heV (X (1), Z,_)(dN(t) — ho(t) dt), which is
continuously differentiable with respect to (6, ¥) in a neighborhood U of (6y, 1)
under our conditions. Making U smaller so that all boundedness conditions hold
on U, we define (Y, Z;) = supgg y)ey | B(GL,w)ngW(Y’ Z,)|l, which is bounded by
(C2+ C2Cs+ C2)(N(t) 4+ C31) + C1C41, a constant plus a constant times N (7).
This g(Y, Z,) is square integrable since N (7) is square integrable: it is well known
that counting processes with bounded intensity processes are square integrable
[it follows from, e.g., Proposition 11.4.1 of Andersen et al. (1993)]. For the same
reason, Egg,y (Y, 7t)||2 < 00. The remaining conditions of Theorem 5.21 from
Van der Vaart (1998) were checked before, so, indeed, (é , 1/A/) is asymptotically
normal with asymptotic covariance matrix (20). [

The asymptotic variance (20) is often estimated by replacing (6p, ¥¢) by their
estimates and E by P,. Thus, confidence intervals for {/¢ can be constructed. Also,
tests for whether vy has a specific value can be constructed that way. For more
about testing, see Section 11.

One can often simplify the expression for the asymptotic variance in equa-
tion (20) using Corollary 10.4 below. We use the following lemma:

LEMMA 10.3. Suppose that the conditions of Theorem 9.2 hold: Assump-
tions 4.1 (bounded intensity process), 4.2 [Y cadlag], 4.3 (no unmeasured con-
founding), 8.4 (no instantaneous treatment effect), for every t € [0, ], X (¢) has the
same distribution as YV given Z; (see Section 6), for each w € Q, Z jumps at most
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finitely many times, and D satisfies regularity Condition 9.1. Write a ® b = ab’
and a®* = aa . Then for h;:R x Z, — R™ every component of which satisfies
Restriction 8.1,

T ®2 T
E((/ hf(”%(X(r),Z)dM(t)) >=E [ o,z ar.
0 0

If, furthermore, \g is a correctly specified model for A such that %Ag exists and
Dy, is a correctly specified model for D such that, for each t, Xy (t) is differen-

tiable with respect to ' at W = g, then, for he’w satisfying Restriction 10.1,

0,90 .
Eae ” 90/ (X)), Z, - AN () — ro(r)dr)

P P
——E| i*Vxm,Z) —
/0 i (X (1) t)ae

lo(t)dt
0=0p

if the left- or right-hand side exists and
d
E L
oY
T — 0
:E/ h(X(t),Z;)@—' Xy@®)dM (1)
0 IV ly=yo
if the left- or right-hand side exists, where h(y, Z;_) = %hfo’% v, Z;-).

L o
. [ 8 .z ama
=vo

PROOF. For the first statement, we use counting process theory from Andersen
et al. (1993), Chapter 2. If M; is a martingale, (M) (if it exists) is defined as a
predictable process such that M 12 — (M) is a (local) martingale. If M is another
martingale, (M1, M»>) (if it exists) is defined as a predictable process such that
MM, — (M>, M>) is a (local) martingale. (M) is called the predictable variation
process of M and (M1, M>) is called the predictable covariation process of M
and M». For vector-valued My, (M) is defined as a predictable process such that
M ?2 — (M) is a (local) martingale. Hence, it is a matrix with (My;, M) at the
ith row, jth column.

As shown in Theorem 9.2, M(¢t) = N(¢t) — fot A(s)ds is a martingale with re-
spect to the filtration o(Z;, X (1))~ Counting process martingales like this have
compensators: (M (1)) = fé A(s)ds [see, e.g., Proposition 11.4.1 in Andersen et al.
(1993)]. Moreover, if H; and H, are (locally) bounded o (Z;, X (t))%-predictable
processes with values in R, then (fé Hi(s)dM(s), fé Hy(s)dM (s)) exists and

</Ot Hi(s) dM(s), /O’ Hz(s)dM(s)> - fot H () Ha(s)A(s) ds

[Proposition II.4.1 or (2.4.9) in Andersen et al. (1993)]. Because h; satisfies Re-
striction 8.1, h,(X (t), Z;_) is a bounded o (Z;, X (¢))?-predictable process (proof
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just as in Lemma 8.2). Therefore, the theory above leads to

£(([f h?‘)"”"(X(r),Z_>dM<r>)®2) —£(( [ W Zoyamnw))

- E(/OT ROV (X (1), Z,2)®2 (1) dt).

For the second statement, notice that, under the conditions of the lemma,
0
26

(/0 WYX (1), Z)(dN (1) — Ag(t)dt))

=09

T — 0
- h?O’%(X(t),zt_)@—' Ao(1) di
0 36 lg=0,

i i 9;1#0) - _
+/o<80‘9:90h’ (X(1). Zi)(dN (1) = Mo ).

and the expectation of the second term here is equal to zero because of Theo-
rem 8.5.
For the third statement, notice that, under the conditions of the lemma,

i t 6o, — 3
Wf’w:m(/o hi” " (Xy (1), Z;—)(dN (1) X@(t)dt))

T/~ — d
= [[(hxo.Zoe | xew)@no - o)
0 OV Ly =y

! i 0o,V —= B
+/0 (81#‘11,:%}” >(X(t)vzt—)(dN(l‘) A () dt)

because of the chain rule, and the expectation of the second term is equal to zero
because of Theorem 8.5. [

This lemma simplifies the asymptotic variance formula of the estimators in
equation (20):

COROLLARY 10.4 (Asymptotic variance). Suppose that the conditions of
Theorem 9.2 hold: Assumptions 4.1 (bounded intensity process), 42 [Y) cad-
lag], 4.3 (no unmeasured confounding), 8.4 (no instantaneous treatment effect), for
every t € [0, t], X (t) has the same distribution as y® given Z; (see Section 6),
for each w € Q, Z jumps at most finitely many times, and D satisfies regularity
Condition 9.1. Suppose also that Ag is a correctly specified model for ) such that
8%)‘9 exists and that Dy, is a correctly specified model for D such that, for each t,
Xy (t) is differentiable with respect to ¥ at Y = ro. Then if

2= [ ROV (X0, Z ) dN (1) — e (1) di)
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and h?’w satisfies Restriction 10.1, the asymptotic variance (20) is equal to
_ T
Vo ' WoVg ! with

t —
Wo = E( / ROV (X (1), Zi2) B2 () dt)
0
and Vy = (Voo Voy) with

T — 0
Voo = —E( [ (h?“%(X(z), 7, )®
0 00

Ao (t)) dt)
6=06

and, with h(y, Z,_) = %hfo,d/o(y’ Z:),

T )
Vol/,:E(/ (h(X(t) Z )®w vy Xw(t))(dN(t)—A(t)dt)).
0

We conclude this section with an example to see the machinery work in practice.
Notice that the boundedness conditions of Theorem 10.2 are somewhat too restric-
tive for this example, but that the results hold true under these weaker restrictions,
too.

LEMMA 10.5 (Survival of AIDS patients and the Weibull proportional hazards
model).  Consider the setting of Example 8.6, and suppose that the assumptions
of Section 9 are satisfied. In Example 8.6,

Aey.0(t) = Lja risk at yEy 17 ! 1 Inzr02leee @)

where at risk means at risk for initiation of prophylaxis treatment. Xy (t) is the so-
lution to the differential equation X' (t) =Dy (Xy@),1; Z,) with final condition

Xl/f(T) =Y and Dl/f(y’ t; Zt) =(- ew)l{treatedatt}s N

Y
Xw(t) =1 +f e'pl{treated at s} g,
t

In Example 8.6 we already saw that (&g, Yo, 60, Vo) is a zero of

E(/;(é %—l—logt Iazr  Ipcp(t) Xw(t))T(dN(t)—Ag,y,g(t)dt))

Suppose now that (&g, Yo, 60, Vo) is the only zero. Suppose, furthermore, that the
survival time Y takes values in a compact space [0, yg] C R and that we know that
(&0, ¥0,00, Y0) € EXI' x® x ¥, with E C (0,00),I" C (0,00), ® and ¥ all four
compact (note that this implies that § and y are bounded away from 0). Then any
sequence of (almost) zeros (S 7, 9 1//) of

(. 7,0, 9)
]
@1 = [ (— ~logt Iz T Xy(0) )

X (dN(t) — Ag,y0()dr),
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that is, any sequence of estimators (é Y, 6, 1}) such that W, (é‘ Y, 6, 1&) converges
in probability to zero, is a consistent estimator for (&g, Yo, 6o, ¥o). Moreover, Vo =
(Voo Voy ) as in Corollary 10.4 exists, and

Tl 1 T
Voo = —E/ (— — +logr  Iazr Ipcp(?) X(f)>
o \é% »

1 1

X (— — +logr  Iazr IPCP(I)> A(r)dt
& W

and Vyy is a five-dimensional vector with zeros in the first four positions and

T/ 0
E/O (w‘w:woxw(t))(dmt) — A(t)dt)
in the fifth, with

0 Y
w ‘I//:%XIII () = /t/\Y e% 1{treated at s} ds.

If this Vo is a nonsingular matrix, then there exists a sequence of (almost) zeros
(&,7,0,v) of (21). Furthermore, any such sequence is asymptotically normal:

Va(E 9 6 ) = v o o) )~ N,V Wo(VeHT),
with V the matrix above and
T/l T
W():Ef <— — +logt Iazr Ipcp(?) X(I)) A(t)de.
0 \é Yo

Moreover, 6 and 1} are asymptotically independent.

The asymptotic independence here turns out to be no coincidence; see Lok
(2001, 2007).

PROOF OF LEMMA 10.5. The findings here are similar to the findings in The-
orem 10.2, but the boundedness conditions fail to hold here. Consistency follows
from Van der Vaart (1998), Theorem 5.9. Existence of a sequence of (almost)
zeros follows from Van der Vaart and Wellner (1996), Section 3.9, Problem 9,
whose solution is practically given by the hint below it. Asymptotic normality fol-
lows from Van der Vaart (1998), Theorem 5.21. The asymptotic variance equals
V(;1 WO(VO*l)—r because of Corollary 10.4 (A and & are not bounded here, but we
can restrict the interval to [e, 7] for ¢ > 0 and let ¢ | 0). We leave checking the
conditions of these theorems to the reader [or see Lok (2001), Section 7.7].

Asymptotic independence of 6 and 1@ follows by direct calculation, after notic-
ing that

(=B 0 1 -B~! 0
VO_(_C A¢0>:>VO _(—AJ(}CB_I Alz(i)’
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with
T/ 0
Ay, = Ef (—‘ Xw(t))(dN(t) — A1) dt),
0 \9y Y=o
p 1 1 T®2
B=E/ (— — +logt Iazr Ipcp(l‘)) A(t)dt
o \é% »
and
T 1 1
C=E/ X(t)‘(— — +logt Iazr Ipcp(t)>)\(t)dl‘.
0 )
Define

D=E /t X (1)’A (1) dt.
0

This concludes the proof:

_ _ —B~! 0 B CT
i = (_test a) (e 5)
_A.')[/.OCB Awo C D
—17 AT AT 41T
y (—B -B~1 CTA, )

0 A7l
)

(O e ieouy)
U 0 Ay @BTICT+D)AaHT )
0

11. Test for treatment effect without specifying a model for D. We show
that one can often test whether treatment affects the outcome of interest without
specifying a model Dy, for D. This was conjectured, but not proved, in Robins
(1998b). If one does not have to specify a model for D in order to test whether
treatment affects the outcome, false conclusions caused by misspecification of the
model for D can be avoided.

Under the null hypothesis of the no treatment effect, D =0 and X (¢) =Y (see
Section 5). If there is no unmeasured confounding, X (#) does not predict N (¢)
given Z,_ (see Theorem 9.2). Hence, if there is no unmeasured confounding and
no treatment effect, adding the observed outcome Y to the prediction model for
treatment effect should not help the prediction. This idea, presented in Robins
(1998b) for the case of local rank preservation (see Section 7), can be proven to be
correct as follows.

Technically, the tests in this section are similar to the score test [for more about
the score test see, e.g., Cox and Hinkley (1974)]. Suppose that the conditions of
Section 9 are satisfied, and that we have a correctly specified parametric model 1y
for A. Define

w.2)= [ ROV Z ) (AN () — rg() di),



CAUSAL EFFECTS IN CONTINUOUS TIME 1495

with hfo satisfying the regularity condition Restriction 8.1. The key idea of this
procedure is that if treatment does not affect the outcome, D =0, so X (t) =Y, and
26,(Y, Z) has expectation zero because of Theorem 8.5. Since 6 is unknown, we
base the test on the limiting behavior under D = 0 of \/n P, g;(Y, Z), where 6 is an
estimator of the nuisance parameter 6y. We will show thatif D =0, \/n P, g; (Y, Z)
converges to a normal random variable with expectation zero, which leads to a test
for whether D = 0 in the usual way.

The nuisance parameter 6y will be estimated using some set of estimating equa-
tions

P.go(Z)=0

with E gg, (Z) =0, Egy(Z) differentiable in 6 and E ggo (Z) < oo. A natural choice
would be a maximum (partial) likelihood estimator for 6y. We suppose throughout
this section that the resulting estimator 6 is consistent and asymptotically normal
with

A 9 oo\ ! o
@ i@—t0=—(5|  EW@) ik @ +or)
=00
as will usually follow from, for example, Van der Vaart (1998), Theorem 5.21.

If A and hY are sufficiently smooth,
0 — /nPugo(Y,Z)

is differentiable with respect to 6, and a Taylor expansion around 6y leads to
VnPugs (Y, Z) = nPugey (Y, Z) + Pugg(Y, Z)v/n(6 — 6p),

with g¢ the derivative of gg with respect to 6 and 6 between 6y and 6. Since 6 con-
verges in probability to 6y, so does 6. Therefore, usually, P, 7108 Z) LE g6, (Y,
Z). Sufficient conditions under which this holds are given in Appendix D,

Lemma D.1. Because of (22) and the central limit theorem, /1 (é — 6p) converges
in distribution. Therefore, an application of Slutzky’s lemma leads to

VN Pugs(Y, Z) = /1 Pugey(Y, Z) + Egey(Y, Z)/n(@ — ) + op(1)
= VnPuge,(Y,Z) — Egg,(Y, Z)Vy ' /1 Page,(Z) + 0p(1)

P8, (Z)
JiPoga (Y, 7)) +op(l),

with Vo = % lo—g, Ego(Z). If D=0, X(t) =Y, so that Theorem 8.5 implies that
also the expectation of gg, is equal to zero. Therefore, the central limit theorem can
be applied on the vector with /s on the right-hand side; it converges to a normal
random variable with expectation zero. Because of the Continuous Mapping The-
orem [see, e.g., Van der Vaart (1998), Chapter 18], \/n P, g (Y, Z) then converges
to a normal random variable with expectation zero, too.

— (—Egoy (V. 2)V;" Wiimgy) (
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Calculation of its limiting covariance matrix is standard [see, e.g., Van der Vaart
(1998), Chapter 18]. To save space, we omit that calculation here. If desirable, one
can use Theorem 8.5 and Lemma 10.3 to simplify the expression.

Notice that a test for whether D = Dy for any specific Dy can be constructed in
exactly the same way. If we have a correctly specified model Dy, for D, this thus
also leads to a confidence region for ¢ in the usual way, using the duality between
testing and confidence regions: include those i for which the null hypothesis D =
Dy is not rejected.

12. Discussion and extensions. The proof of consistency and asymptotic nor-
mality of the estimators presented in this article applies to continuous-time struc-
tural nested models. A similar proof applies to structural nested models in discrete
time (when covariates are only measured at finitely many fixed times 0 = 7y <
T < -+ < Tg < Tg4+1 = T, Which are the same for all patients and known in ad-
vance). Lok, Gill, van der Vaart and Robins (2004) argue without proof that con-
sistency and asymptotic normality should hold for discrete time structural nested
models under reasonable assumptions; the proof is completed with the current ar-
ticle, as follows. It is easy to see that in discrete time, } , -, P(AN (1) = 1 |7Tk,)
is the compensator of N with respect to o (Z,) [see, e.g., Lok (2001), Section 7.4].
The assumption of no unmeasured confounding can be formalized as

P(AN(tg) =1|Zy—, Y ™) = P(AN (vs) = 1|Z4,—).
Since X (t) ~ Y™ given Zrk, this implies that also
P(AN(tx) = | Zy—, X () = P(AN (t) = 1|Z 1, ).

The discrete-time counterparts of Theorem 8.5 and Theorem 9.2 follow immedi-
ately [see Lok (2001)]. Consistency and asymptotic normality follow in the same
way as for continuous time models.

The tests for treatment effect in this article can be carried out without specifying
a model for treatment effect; that is, no model for D is needed. This is an impor-
tant feature of the tests because it allows one to avoid false conclusions caused by
misspecification of the model for D. In practice, it may be hard to specify a cor-
rect parametric model for the infinitesimal shift-function, D. Thus, it is good that
specification of a model for D is not needed to test for treatment effect.

The estimators in this article require the correct specification of a model for
treatment effect and of a model for prediction of treatment changes. For the
discrete-time setting, Robins (2000) has recently proposed estimators which are
doubly robust. Doubly robust estimators are consistent and asymptotically normal
if (i) the model for prediction of treatment changes (A in the current article) is cor-
rectly specified or if (ii) a regression model of a blipped down outcome [ X (¢) in
the current article] on past treatment- and covariate history Z,_ is correctly spec-
ified. In any case, the model for treatment effect (Dy, in the current article) has to
be well specified.
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In this article estimation started with the specification of a model for the in-
finitesimal shift-function, D. Interpretation of results may be easier when one
starts with a model like (4), Y© — ¢ ~ [¥ ¢V lweacs asids = ¢¥ . DUR(t, Y) +
1-(Y —t —DUR(t,Y)), given Z;. Here, DUR(t, u) is the duration of treatment
in the interval (¢, u#). The main results in the current article apply also to this
model. The proofs for Theorems 8.5 and 10.2 do not depend on X being the
solution to X'(t) = D(X(t),t; Z;). The proof of Theorem 9.2 does depend on
X'(t) = D(X (1), t; Z;), but it simplifies considerably if (4) or (5) is used as a start-
ing point. Let us show this for (4). Define )E'(t) =t+ ftY eV Htreated at s) g Using the
first part of the proof of Theorem 9.2, for #; < ¢,

L) O1aZ)1E (X (1))

= 10,1 (O 1AZ)1) ) (X (@) + DUR(, 1)(—1 + e¥))

(x1,x2)

=n"(X(), Z,_).

where DUR(t1, t) is the duration of treatment in the interval (#1, t). hﬁ") is measur-
able if the duration of treatment until ¢ is in included in Z(¢). Moreover, if ¢ 1 g
and y — yo, then h,(”) (y,t) = h§") (yo, t0)- Hence, it follows immediately that h;")
satisfies Restriction 8.1, which concludes the proof. Depending on the specific ap-
plication, it will be more appropriate to start with Y — ¢ ~ f,Y eV Hweated at 5) g
given Z, or with a model for D; see, for example, Example 5.3.

In the previous literature [see, e.g., Robins et al. (1992), Mark and Robins
(1993), Witteman et al. (1998), Keiding et al. (1999) and Hernan et al. (2005)] ap-
plications have been carried out under the assumption of local rank preservation,
where X (1) = Y® for each 1. As pointed out in these papers, and as discussed in
Section 7, the assumption of local rank preservation is generally considered im-
plausible. This article relaxes the assumption of local rank preservation in struc-
tural nested models. The estimators and tests applied in the previous literature are
specific cases of the estimators and tests studied in this article, with the only dif-
ference that some of the estimators in the previous literature allow for censoring
of Y. Aside from the issue of censoring, this article provides a mathematical foun-
dation behind previous estimators, relaxes the specification of the counterfactual
outcomes as deterministic variables, and allows for a distributional interpretation
of the estimators.

Robins (1998b) conjectures that one can often use standard software to test
whether treatment affects the outcome of interest (without specifying a model Dy
for D), and to estimate 1. Lok (2001, 2007) shows that both testing and estimation
can also be considered from a partial likelihood point of view. As shown in Lok
(2001, 2007), this approach leads to a subclass of the estimators and tests studied in
this article which can indeed be calculated with standard software. Example 8.6 is a
specific case of that. The possibility to use standard software may be a good reason
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to choose these estimators in practice. See Robins (1998b) and Lok (2001, 2007)
for a more elaborate discussion.

The approach adopted in the current article leads to a large class of estimators
and tests. When treatment and covariates change at finitely many fixed times only,
Robins (1993, 1997) proposes, without proof, an optimal procedure for survival
and nonsurvival outcomes, respectively. The optimal choice of estimators or tests
under the framework of this article is another intriguing topic for future research.

The current article assumes a parametric model Ay for the prediction of treat-
ment changes. In practice, applications have often used a semi-parametric Cox
model for Ay. Lok (2001) shows that specifying Ay using a semiparametric Cox
model leads to unbiased estimating equations, which just as in this article are mar-
tingales for the true parameters. Consistency and asymptotic normality of the re-
sulting estimators for D still remain to be shown and constitute interesting topics
for future research.

In many applications, observations are censored. Robins (1998b) and Hernan
et al. (2005) have proposed methods to deal with censoring that could potentially
be adapted to the results in this paper. For D of the form of Example 5.1, Lok
(2007) includes proofs with censoring due to the fact that the study ends, so-called
administrative censoring, using ideas from these previous papers.

The estimators in this paper depend on solving a differential equation for each
observation. In the examples, these equations are simple enough to be solved an-
alytically. If that is not possible, these equations should be solved numerically.
It might be worth investigating how a small contamination of the solution to the
differential equation X (¢) affects the estimates of treatment effect.

I conclude with a discussion of the assumptions used in this article. The most
important assumption in this article is the assumption of no unmeasured confound-
ing (Assumption 4.3). As discussed before, this assumption is valid if all informa-
tion has been recorded which both (i) predicts treatment decisions and (ii) is an
independent risk factor for the outcome of interest. The validity of the assump-
tion of no unmeasured confounding cannot be tested statistically, and depends on
the quality of the recorded information. Therefore, it is for subject matter experts
to decide about the plausibility of the assumption of no unmeasured confound-
ing. Second, we only estimate the effect of treatment for which a short duration
of treatment has only a small effect on the distribution of the outcome of interest.
The effect of the treatment on an individual patient may be large, as long as the
probability of such an effect is small for any small duration of treatment. Third, the
assumption of no instantaneous treatment effect (Assumption 8.4) is also restric-
tive: it excludes the estimation of the effect of treatments that have instantaneous
effects, such as surgery or other point exposures. The remaining assumptions in
this article are mostly benign. The assumption that the covariate- and treatment
process can be represented by a cadlag process is generally accepted for most
medical situations [see, e.g., Andersen et al. (1993)]. The functions 4, and Dy,
can be chosen such that the regularity conditions on these functions are satisfied.
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Even if h; is not bounded, it can often be approximated by bounded functions, and
results may follow by a simple application of Lebesgue’s dominated convergence
theorem [see, e.g., Example 8.6]. The same is true for the boundedness condition
(Assumption 4.1) of the intensity process A. Assumption 4.2 that the counterfactual
process Y@ is cadlag is impossible to verify, but it is a plausible and convenient
regularity condition.

APPENDIX A: SOME THEORY ABOUT DIFFERENTIAL EQUATIONS
THEOREM A.1. Suppose that a function D(y, t; Z,) satisfies the following:

(a) (continuity between the jump times of Z).If Z does not jump in (t1, 1), then
D(y,t; Z;) is continuous in (y,t) on [t1, t2) and can be continuously extended to
(11, 2]

(b) (Lipschitz continuity). For each w € 2, there exists a constant L(w) such
that

|D(y,1; Zy) — D(z, t; Z,)| < L(w)|y — 2|
forallt €[0,t]andall y, z.
Suppose, furthermore, that, for each w € 2, there are no more than finitely many

Jjump times of Z. Then, for each tg € [0, T] and yo € R, there is a unique continuous
solution x (t; ty, yo) to

x'(1) = D(x(1),1; Zy)

with boundary condition x (ty) = yo and this solution is defined on the whole inter-
val [0, t].

This theorem follows from well-known results about differential equations; see,
for example, Duistermaat and Eckhaus (1995), Chapter 2.

For the next theorem, we also refer to Duistermaat and Eckhaus (1995), Chap-
ter 2. It is a consequence of Gronwall’s lemma.

THEOREM A.2. Suppose that I is an open or closed interval in R, f:1 X
R" — R" is continuous and C : I — [0, 00) is continuous, and suppose that

(23) If(x,y) = fx, DI = CIly =zl

forall x e I and v,z € R". Then, for every xo € I and yy € R, there is a unique
solution y(x) of y'(x) = f(x, y(x)) with y(xo) = yo, and this solution is defined
forall x e I.If g:1 x R* — R" is continuous and z:1 — R" is a solution of
Z'(x) = g(x, z(x)), then

ly(x) = z(x)l

X C@E)d
< el O y(x0) — 2(x0) |

+ / " elECodny e 2E)) — g(. 2(8)) dE
X0
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forall x, xg € I with xog < x.

In Duistermaat and Eckhaus (1995) the interval is always an open interval, but
as is generally known, this can be overcome by extending both f and g outside
the closed interval / by taking the values at the boundary of /. This preserves the
Lipschitz- and continuity conditions. Existence and uniqueness on all of finitely
many intervals implies global existence and uniqueness.

We have a differential equation with end condition at 7, so we are interested in
x, xo with x < xq:

COROLLARY A.3. Suppose that the conditions of Theorem A.2 are satisfied.
Then, for every xo € I and yy € R", there is a unique solution y(x) of y'(x) =
f(x, y(x)) with y(xo) = yo, and this solution is defined for all x € 1. If g: 1 x
R" — R" is continuous and z: I — R" is a solution of 7' (x) = g(x, z(x)), then

[y(x) = z(x)l

X0
< el €Oy (x0) — 2(x0) |

X0 "
+/ elx CONAN|| £ (5. 2(5)) — g(s, z(s)) | ds
for all x, xo with x < xg.

PROOF. Put y(¢) = y(xg —t). Then
F(t)=—y'(xo—1) =—f(xo —t, y(xo — 1)) = f(t, 5(1)),

where f(t, y) =—f(xo—1,y). Thus, y(t) = y(xo — ¢) is a solution of the dif-
ferential equation y'(z) = f (¢, y(¢)) with boundary condition 7(0) = y(xg) = yo.
Define also 7(¢) = z(xo — t). Applying Theorem A.2 on y concludes the proof, as
follows:

ly(x) =zl = |y(xo — (xo — x)) — z(x0 — (x0 — x)) |
= [[y(xo — x) —2(xo — 1)
=y@®) =z
with t = xg — x > 0. Notice that, because of equation (23),

1f @ y) = 7@, 2l < Clxo—Dlly =zl = C@O)lly —zll,
with C (t) = C(xg — t). Hence, Theorem A.2 implies that

1y (x) — z(0)|| < 6 €O 5(0) — 2(0) |
ro s -
+ /0 eJe Cdny Fe Z(8)) — g(£,7(8)) dE
= elo CHo=E)E |y (o — 0) — 7(x9 — 0)

t 1 -
+ fo ele Coommadn e z(£)) — 3(€,2(8)) || dE.
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For the first term, we do a change of variables; £ from O to ¢, put s = xg — &;
dé = —ds.0<& <t;s fromxg —0toxg—t=x9— (xg — x) = x. We conclude
that the first term is equal to

o o Cs)ds C(s)ds

Iy (x0) — 2(xo)l| = e €995 y(xg) — z(x0) -

For the second term, similar changes of variables can be done, resulting in Corol-
larty A3. O

APPENDIX B: MIMICKING COUNTERFACTUAL OUTCOMES

In this appendix we present conditions under which X (f) mimics Y in the
sense that it has the same distribution as ¥ ) given Z;. This result is used heavily
in this article. For the proofs, which are lengthy and use discretization, we refer
to Lok (2001, 2004). Section B.2 deals with survival outcomes, Section B.1 with
other outcomes. Survival outcomes require a different set of assumptions, as will
become clear below. The conditions here are somewhat more restrictive than the
ones in Lok (2001, 2004), but they are simpler.

B.1. Mimicking counterfactual nonsurvival outcomes. This section con-
tains a sufficient set of regularity conditions to have existence and uniqueness
of a solution X (¢) to (6), X'(t) = D(X (t), t; Z,) with final condition X () =Y,
the observed outcome (see Figure 3). Furthermore, together with Assumption 6.1
(consistency), they imply that X (¢) has the same distribution as ¥ ) given Z;.

The regularity conditions below should be read as the following: there exist
conditional distribution functions FY(’””IZ such that all these assumptions are
satisfied. They can be relaxed to £ in a neighborhood of 0, if this neighborhood
does not depend on Z. We only consider /& > 0, so the derivative with respect to
at h = 0 is always the right-hand derivative.

ASSUMPTION B.1 (Regularity condition).
e (Support).

(a) There exist finite numbers y; and y; such that all Fywinz, have the same
bounded support [y1, y2].

(b) All Fyuinz,(y) have a continuous nonzero density fyq+nz (y) ony €
[y1, y21.

(¢c) There exists an € > 0 such that fY(”IZ (y)>eforall y € [y, 2], w e Q
and 7 € [0, T].

e (Smoothness). For every w € 2,

(a) (y,t,h) > Fyaimz, (y) is differentiable with respect to ¢, y and & with
continuous derivatives on [y1, y2] X [t1, #2) x R if Z does not jump in (¢1, t2),
with a continuous extension to [y, y2] X [f1, 2] x [0, 00).
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(b) The derivatives of F Y +h|Z, (y) with respect to y and & are bounded by
constants C1 and Cy, respectively.

(c) %FY(”IZ (y) and %| h=0FY<f+")IZ (y) have derivatives with respect to y
which are bounded by constants L and L, respectively.

The support conditions may be restrictive for certain applications. Nevertheless,
most real-life situations can be approximated this way, since y; and y, are unre-
stricted and & > 0 is unrestricted, too. Although the support conditions may well be
stronger than necessary, they simplify the analysis considerably and, for that rea-
son, they are adopted here. The smoothness conditions allow for nonsmoothness
where the covariate- and treatment process Z jumps. This is important, since if the
covariate- and treatment process Z jumps, this can lead to a different prognosis for
the patient and thus to nonsmoothness of the functions concerned.

THEOREM B.2 (Mimicking counterfactual outcomes). Suppose that regular-
ity Condition B.1 is satisfied. Then D(y,t; Z;) exists. Furthermore, for every
w € Q, there exists exactly one continuous solution X (t) to X'(t) = D(X (1), t; Z,)
with final condition X (t) =Y. If also Assumption 6.1 (consistency) is satisfied
and there are no more than finitely many times t for which the probability that the
covariate- and treatment process jumps at t is greater than 0, then this X (t) has
the same distribution as Y® given Z; forall t €0, T].

For a proof we refer to Lok (2001, 2004).

B.2. Mimicking counterfactual survival outcomes. This section contains a
sufficient set of regularity conditions to have existence and uniqueness of a solu-
tion X (¢) to equation (6), X'(t) = D(X(t),t; Z,) with final condition X (1) =Y,
the observed outcome (see Figure 3). Furthermore, together with Assumption 6.1
(consistency) and Assumptions B.3 and B.4 below, they imply that X (¢) has the
same distribution as Y ® given Z;. The conditions here are natural conditions if
the outcome of interest Y is a survival time.

As compared to Section B.1, we make two extra assumptions. The first is a
consistency assumption, stating that stopping treatment after death does not change
the survival time. The second assumption states that there is no instantaneous effect
of treatment at the time the patient died [notice that the difference between Y1),
the outcome with treatment stopped at the survival time Y, and Y is in treatment
atY].

ASSUMPTION B.3 (Consistency). Y =Y on{w:Y <t}U{w:Y® <1).

ASSUMPTION B.4 (No instantaneous effect of treatment at the time the patient
died). YO =Yon{w:Y =t}U{w:Y? =¢}.
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Under these assumptions, treatment in the future does not cause or prevent death
at present or before:

LEMMA B.5. Under Assumptions B.3 and B.4:

@) Forallh>0: Y™ =Y on{w:Y <t} UUp=olo: YO <1},
(b) Forall (y,t,h)withy <t+handh>0:{w: yuth < vi={w:Y <y}.

For a proof we refer to Lok (2001).
If the outcome is survival, the support condition in Assumption B.1, saying that
all Fy(z+h)|7t have the same bounded support [y1, y2], will not hold. The reason

for this is as follows. Z; includes the covariate-measurements and treatment until
time ¢. If covariates and treatment were measured at time 7, it cannot be avoided
to include in Z; whether or not a patient was alive at time ¢. Given that a patient
is dead at time ¢ and given his or her survival time, the distribution of this survival
time cannot have the fixed support [y1, y2], which is independent of ¢. Also, given
that a patient is alive at time ¢, this is hardly ever the case; one often expects that
t is the left limit of the support. Thus, in case the outcome is survival, the support
condition for Theorem B.2 has to be slightly changed.

ASSUMPTION B.6 (Support). There exists a finite number y, > 7 such that:

(a) For every w € Q and ¢ with Y > ¢, all FY(t+h)|7[ for & > 0 have support
[z, y21.

(b) Forevery w € Q and ¢t with Y > ¢, all F vz, () for & > 0 have a contin-
uous nonzero density fy -z, (y) ony €[t +h, y2].

(c) There exists a number & > 0 such that, for all w € Q and ¢ with Y > ¢,

fywz,(y) > ¢ fory e[t y2].

Next we look at the differentiability conditions in Assumption B.1. It does not
seem reasonable to assume that FY(’*”)IZ (y) is continuously differentiable with
respect to 4 and y on (h, y) € [0, 00) X [t, y2] since, for y <t + h, FY(’*”)IZ (y) =
Fyz (y) [Lemma B.5(b)]. Therefore, the derivative of Fywmz, () with respect
to & is likely not to exist at y = ¢ + h (and is equal to zero for y < ¢t + h). Also, the
derivative of F y+h)(Z, (y) with respect to y may not exist at y = ¢ + h, because of
the different treatment before and after ¢ 4 4. For survival outcomes, we replace
the smoothness conditions of Assumption B.1 by the following:

ASSUMPTION B.7 (Smoothness). For every o € Q:

(a) If Z does not jump in (¢1,#;) and Y > 11, the restriction of (y,t,h) —
Fyanz,(9) 0 {(y,1,h) € [11, y2] x [11,22) X Reg:y = 1 +h}is Cin (y, 1, h).

(b) The derivatives of FY(’*”)IZ (y) with respect to y and & are bounded by
constants Cp and Cy, respectively, for y € [t + h, y2].
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(c) %FYMZ (y) and aa_h|h=0FY(’+h>\Z (y) have derivatives with respect to y
which are bounded by constants L and L, respectively, for y € [t + h, y»].

The smoothness condition above concentrates on y >t + h. For y € [t,t + h)
we can choose FY(’*”)IZ (y) = FYIZ (y) because of Lemma B.5(b). Because of
Assumption 6.1 (consistency), Fy 7z, has the same support as Fy )z, s0 Fy 7,
has support [¢, y2] if Y > t [Assumption B.6(a)]. Assume the following

ASSUMPTION B.8 (Smoothness). Forall w € Q and t with Y > ¢, Fyz, (y) is
continuous and strictly increasing on its support [, y;].

THEOREM B.9 (Mimicking counterfactual survival outcomes). Suppose that
regularity Conditions B.6, B.7 and B.8 are satisfied. Then D(y, t; Z;) exists. Fur-
thermore, for every w € 2, there exists exactly one continuous solution X (t) to
X'(t) = D(X(t), t; Z;) with final condition X (t) =Y. If also Assumptions 6.1,
B.3 and B.4 (consistency and no instantaneous treatment effect at time of death)
are satisfied, then this X (t) has the same distribution as Y\ given Z; for all
tel0, ]

For a proof we refer to Lok (2001, 2004).

APPENDIX C: MEASURABILITY ISSUES

In most of this article we assume that the function which maps (X (¢), Z;_) to
X (t9), with 7o < 1, is a measurable function on R x Z,_, with the projection o -
algebra on Z;_ (see Section 2). Moreover, we sometimes assume that the function
which maps (X (to), Z;—) to X (t), with #y < ¢, is a measurable function on R x
Z,_. In this appendix we give sufficient conditions for this. If these two functions
are measurable, o (Z;, X (¢)) is a filtration, and, moreover, o (Z;, X (¢)) is the same
as o (Z;, X(0)) [see equation (15) in Section 9].

LEMMA C.1. Suppose that D satisfies regularity Assumption 9.1 and that, for
each w € Q, Z jumps at most finitely many times. Then the function which maps
(X(1), Z;~) to X(to), with to < t, is a measurable function from R x Z,_ to R.
Also, the function which maps (X (t9), Z;_) to X (t), with ty < t, is a measurable
function from R x Z,_ to R.

For the proof of this result, which is quite technical since many results on dif-
ferential equations are nonconstructive, we refer to Lok (2001). The proof uses the
idea behind Euler’s forward method to approximate the solution to the differential
equation.
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APPENDIX D: A CONVERGENCE RESULT

The following lemma is a worked-out case of theory from Van der Vaart (1998),
Chapter 19.

LEMMA D.1. Let Xy, Xy, ... bei.i.d. random variables with values in a mea-
surable space X. Let { fp :0 € ©®} be a collection of measurable functions from X
to R¥ indexed by a subset ©® C R¢ which contains an open neighborhood © of 8.
Suppose that 0 — fg(x) is continuous on ®q for every x € X. Suppose also that
there exists a measurable function F on X such that || fo|| < F for every 6 € ©q
and such that E F (X1) exists. Then if 6 converges in probability to 0y,

P
Pnfé_) Ef@()(Xl)»

where P, indicates the empirical distribution of X1, X2, ..., Xn.

PROOF. Notice that
| Pnfy — Efoe (XD = | Pufyg — Efg(XDN + I1Ef3(X1) — Efgy (XD

We show that both terms converge to zero in probability. Choose ®1 C ®g compact
and such that it contains an open neighborhood of 6. Example 19.8 from Van der
Vaart (1998) implies that, under the conditions above,

sup |Pofo — Efe(XD] — 0 a.s.
0e®

Since § 5 6p and ©; contain an open neighborhood of 8y, this implies that the
first term converges in probability to zero. For the second term, notice that, on ®y,
6 — fp(x) is continuous in € and that each of the components of f is bounded
by the integrable function F', so that Lebesgue’s dominated convergence theorem

. . . . . A P
implies that E fg (X 1) is continuous in 8 on ®q. Thus, since & — 6y, also the second
term converges in probability to zero. [
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