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THE DISTRIBUTION OF MAXIMA OF APPROXIMATELY
GAUSSIAN RANDOM FIELDS

BY YUVAL NARDI,1 DAVID O. SIEGMUND2,3 AND BENJAMIN YAKIR3

Carnegie Mellon University, Stanford University and Hebrew University

Motivated by the problem of testing for the existence of a signal of known
parametric structure and unknown “location” (as explained below) against a
noisy background, we obtain for the maximum of a centered, smooth random
field an approximation for the tail of the distribution. For the motivating class
of problems this gives approximately the significance level of the maximum
score test. The method is based on an application of a likelihood-ratio-identity
followed by approximations of local fields. Numerical examples illustrate the
accuracy of the approximations.

1. Introduction and summary. There are two central themes in this paper.
One is the development of a method for the derivation of analytic approximations
for the tail of the distribution of the maximum of a smooth random field. Such
random fields and the distribution of their maxima emerge naturally in a variety of
statistical applications, for example, brain mapping or searching for hot spots of
disease in space and/or time. See, for example, [10–16, 19].

The other theme involves the detailed investigation of a specific case, which is
asymptotically Gaussian but where direct application of results for Gaussian fields
does not seem adequate. This field arises in the context of testing for the presence
of a signal of a given parametric structure within a noisy image. The image is
composed of an array of pixels. The effect of a signal at a given pixel depends on
the distance between the signal and the pixel. A score statistic is constructed for
each candidate signal and an overall test statistic for the presence of some signal is
obtained by maximizing the score over the collection of all candidate “locations.”
We will consider second order approximations for the tail of the distribution of the
test statistic under the null hypothesis of the absence of a signal—the significance
level of the test. Similar methods can be applied to obtain an approximation for
the power. In Section 5 we indicate how the method may also be adapted to other
models, including (under different technical conditions) the frequently discussed
case of smooth Gaussian fields, and how it can be used to obtain higher order
approximations.
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We begin by describing the random field of interest. Assume that there is a
process {Wu :u ∈ An} over some space. These |An| = n observations are mutually
independent with distributions Fu. The collection An indicates the locations of
pixels, which may or may not be regularly spaced, and the index u denotes the lo-
cation of a particular pixel. The process of interest is Xt = ∑

u∈An
θu(t)Wu, t ∈ T .

We assume that θ :An × T → R
+ is a known real-valued function and that T is

a nice subset of the d-dimensional Euclidean space. In typical applications t is a
parameterization of a putative signal and θu(t) represents the effect of Wu on that
signal. The case where T is a rectangle with sides parallel to the coordinate axes,
t indexes sub-rectangles, also with sides parallel to the coordinate axes but having
varying location and dimensions, and θu(t) is the indicator that u belongs to t was
discussed by Siegmund and Yakir [14]. In this paper we consider the case where
θu is a smooth function of t ∈ T for each u. In an example that we consider later,
t is a line segment joining the left and right sides of the unit square and θu(t) is
a decreasing function of the distance from the point u to the line t . In this exam-
ple, large values of Wu for u close to t lead to large values of Xt and indicate the
presence of the signal t , while values of Wu for u far from t have less effect on Xt .

We embed the distributions of Xt, t ∈ T in an exponential family with a natural
parameter ξ by assuming that the Wu’s obey an exponential distribution laws of
the form:

dFt,ξ (wu) = exp{ξθu(t)wu − ψu(ξθu(t))}dFu(wu), ξ ∈ R, t ∈ T .(1.1)

Throughout the paper we use the convention that derivatives with respect to ξ

are denoted by apostrophes, while derivatives with respect to t by dots. We assume
that the distributions have been standardized so that

ψu(0) = 0, ψ ′
u(0) = 0, ψ ′′

u (0) = 1.(1.2)

We can formulate the null hypothesis of no signal as H0 : ξ = 0 for all t , while
under the alternative ξ = ξt > 0 for some value of t . In terms of the exponential
embedding, the log-likelihood for fixed t is given by

ln(t, ξ) = ∑
u∈An

{ξθu(t)Wu − ψu(ξθu(t))}.(1.3)

Differentiating the log-likelihood (1.3) twice with respect to ξ and substituting
ξ = 0, we obtain the standardized score statistic at a fixed t ∈ T , which by virtue
of (1.2) is given by

Zn(t) = l′n(t,0)√
In(t)

= ∑
u∈An

βu,n(t)Wu,(1.4)

where In(t) = ∑
u∈An

θ2
u(t) is the Fisher information and βu,n(t) = θu(t)/

[In(t)]1/2. A (one-sided) test statistic is obtained by maximizing Zn(t) over T .



MAXIMA OF RANDOM FIELDS 1377

Since the value of t giving rise to the signal is unknown, we consider as a test
statistic maxt Zn(t). The associated p-value is given by the probability:

P

(
sup
t∈T

Zn(t) ≥ x

)
(1.5)

computed under the assumption that ξ = 0.
Consider the random field {Zn(t), t ∈ T }. For each fixed t , when ξ = 0 the

random variable Zn(t) is asymptotically standard normal. The sample points of
this field are real valued functions on T , which are smooth functions of t , since
the {θu(t)} are. The main result that we would like to establish is that when x =
o(n1/4), the probability (1.5) can be approximated, up to a term inside the braces
that is o(1/x) by

xd−1(2π)−d/2φ(x)

×
{∫

T
e−δn(t)|	n(t)|1/2(

1 − r2
n(t)/2σ 2

n (t)
)
dt

(1.6)

+ 1

x

(
π

2

)1/2

×
∫
∂T

e−δn(t)(|	n(t)| · 〈ġ(t),	−1
n (t)ġ(t)〉)1/2

/‖ġ(t)‖dV∂T (t)

}
.

The indicated approximation involves powers of the threshold x and the standard
normal density φ. It also involves integration of functions of t denoted by 	n(t),
δn(t), rn(t), σ 2

n (t) and ġ(t), which are defined below. Angular brackets “〈·, ·〉”
correspond to the inner product of vectors and “‖ · ‖” to the Euclidean norm.

The region T is defined with the aid of constraint functions:

T = {t ∈ R
d :gi(t) ≤ 0,1 ≤ i ≤ m}.(1.7)

These functions are generically denoted g(t), with gradient vector ġ(t). The
boundary of the region, ∂T , corresponds to values of the parameters, in general
a manifold, where g(t) = 0. The differential dV∂T denotes the volume element of
the (d − 1 dimensional part of the) boundary of T .

The other functions in (1.6) are functionals of Zn(t), the value of the field at t ,
and of Żn(t), the random gradient of the field at that point. These functionals
are computed under the alternative distribution for Wu given by (1.1) with the
amplitude

ξt = ξt,n,x = xI−1/2
n (t).(1.8)

Specifically, 	n(t) is a positive-definite matrix defined by

	n(t) =
∑

u∈An
[θ̇u(t) ⊗ θ̇u(t)]
In(t)

− [İn(t) ⊗ İn(t)]
4I 2

n (t)
,(1.9)
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where “⊗” is the outer (Kronecker) product. The matrix 	n(t) is (asymptot-
ically) the covariance matrix of Żn(t). It is related to the expected value of
the Hessian of Zn(t) under the tilted measure by

∑
u∈An

β̈u,n(t)ψ
′(ξt θu(t)) =

−x	n(t) + O(x2n−1/2).
The term δn(t) is the difference between the actual log-likelihood and the log-

likelihood of the approximating normal distributions:

δn(t) = ln(t, ξt ) − [xZn(t) − x2/2] = x2/2 − ∑
u∈An

ψu(ξt θu(t)).(1.10)

This quantity is deterministic and is of the order of magnitude O(x3n−1/2). An-
other measure of discrepancy from the normal limit is rn(t), which is the difference
between the (tilted) expectation of Zn(t) and the threshold x:

rn(t) = ∑
u∈An

βu,n(t)ψ
′
u(ξt θu(t)) − x.(1.11)

This term is of the order of magnitude of O(x2n−1/2). Finally, the term σ 2
n (t) is

given in terms of the d × d covariance matrix of the gradient:

�n(t) = ∑
u∈An

[β̇u,n(t) ⊗ β̇u,n(t)]ψ ′′
u (ξt θu(t))

and the correlation between Zn(t) and Żn(t):

ρn(t) = ∑
u∈An

[βu,n(t)β̇u,n(t)]ψ ′′
u (ξt θu(t))

by

σ 2
n (t) = 1 − 〈ρn(t),�

−1
n (t)ρn(t)〉.(1.12)

Observe that in the Gaussian limit Z(t) and Ż(t) become independent, and hence
σn(t) converges to one.

Sufficient regularity conditions for (1.6) are stated in Theorem 4.9 below. In
Section 2 we outline the principles of the method for producing expansions of
the probability (1.5) in smooth random fields. Section 3 presents some numeri-
cal examples. In Section 4 we provide details regarding the approximation of the
significance level, with some proofs deferred to an Appendix. Section 5 discusses
some extensions.

REMARKS. (i) There is a large related literature in the case of Gaussian fields,
for example, [3, 4, 7, 13, 16, 17]. See [1] for a review up to 2000 and additional
references, and [18] for an outstanding recent contribution. To our knowledge the
non-Gaussian case is relatively unexplored, and even then the published results
are for relatively simple concrete problems, and are derived heuristically. See, for
example, [11] and [10].
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(ii) In the first integral in (1.6), the differential |	n(t)|1/2 dt is easily recognized
as the volume element for a manifold with metric tensor 	n, exactly as one knows
it must be from the familiar case of a Gaussian random field. Similarly, one knows
from the Gaussian case that the appropriate differential in the second integral (i.e.,
the product of all factors in the integrand except the factor e−δn(t)) must equal the
volume element for the boundary of the manifold with metric tensor 	n. It seems
easy to prove this result in special cases, although difficult in general. [E.g., one
can show the equivalence when the boundary of T is given (locally) by sets like the
set where g(t) = td − f (t1, . . . , td−1) equals 0, for a suitable smooth function f .]
However, since application of equation (1.6) does not rely on this interpretation,
we do not pursue the argument here.

(iii) In exponential change of measure arguments, one often chooses the para-
meter, here ξ , so that under the new distribution the process of interest has ex-
pectation exactly equal to the threshold x. Since this would result in a nonlinear
equation for ξ , we find it simplifies some Taylor series expansions to use a slightly
different value, which has an explicit form, and would be the conventional value if
the process were exactly Gaussian.

2. Outlining the method. Our method for expanding probabilities of the
form (1.5) is based on a application of a likelihood ratio identity, followed by lo-
cal expansions. It is very similar to the approach that has been applied in previous
work, which was, however, related to fields of Brownian-motion type. See [14, 15],
and [20]. However, in the current work some steps have been modified in order to
exploit the smoothness of the random paths. The application of the methodology
is split into six building blocks, which are described below. Details are given in
Section 4.

Measure transformation: The first step involves a likelihood ratio identity.
This transformation allows us to recenter the analysis in a setting where the prob-
ability of crossing the threshold is substantially larger and where the central limit
theorem is more likely to be applicable.

Localization: The likelihood ratio identity produces a functional of the random
field. Conditioning on the signal, that is, the parameter point selected by the al-
ternative distribution, it is argued that the value of the functional is determined
mainly by the local behavior of the field about that point in the parameter space,
so the original field can be replaced by a finite order Taylor polynomial and the
computation of the functional restricted to a smaller subset of the parameter space.

Application of a central limit theorem: The local term that emerges from the
previous step is a functional of the value of the process at the signal location and
of derivatives of the field at that point. The functional is approximated by a similar
functional applied to an appropriate multinormal distribution.

Elimination of the indicator: The functional has an exponential component,
a component in the form of an indicator and components that are essentially poly-
nomial in the derivatives of the random field. By conditioning on these derivatives
and using a Mill’s ratio type of approximation, one can eliminate the indicator.
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Evaluation of the functional: In theory this step, which involves approxima-
tion of the functional of the derivatives by polynomials and the evaluation of the
expectation of the resulting Gaussian polynomials, is straightforward. In practice,
it is tedious to apply if higher order approximations are sought. It is at this stage
that boundary effects become significant.

Integration over the parameter space: The analysis in the last four steps is
carried out at the signal location. A final integration of the functionals over the
parameter space must be carried out to produce an approximation to the probability
of interest.

3. Simulation studies. In this section we examine via simulations the accu-
racy of (1.6) for one example of an approximately Gaussian random field. The
simulations were programmed using the C++ language. Probabilities were approx-
imated using 5,000 iterations of the simulations, which corresponds to results ac-
curate up to the second digit after the decimal point.

Consider a background field of independent Bernoulli random variables cover-
ing the standard unit square on a fixed dyadic grid An = {(i/2m, j/2m),0 ≤ i, j ≤
2m}, so n = (2m + 1)2. A signal is composed of a straight line that passes between
a point on the intersection of the unit square with the vertical line x = 0 and a
point on its intersection with the vertical line x = 1. This figure can be imagined
to be a very primitive “edge” in a two dimensional image. More interesting ex-
amples along these lines would involve, say, broken lines with some maximum
number of breaks at unspecified positions. The parameter space T is again the
unit square, with each parameter point representing the vertical levels of the left-
most and the rightmost points of intersection, respectively. For the function θu(t),
which measures the closeness of a point u ∈ An to the signal t ∈ T , we use θu(t) =
exp[−D · d(u, t)2/2], where d(u, t) = min0≤p≤1 ‖u − [p(0, t1) + (1 − p)(1, t2)]‖
and D is a positive scale parameter. The random variables Wu were taken to be
Bernoulli with probability of success p0 = 0.1. When a signal is present, this prob-
ability is shifted to p1 = p0/[p0 + (1 − p0)e

−ξθu(t)].
Table 1 compares, with m = 5 (n = 1,089), the simulated tail probability (p̂)

with the analytic approximation (pE) in (1.6), and a parallel approximation based
on treating the field as Gaussian (pG), for which (1.6) is used, but with δn = 0 = rn.
Three values, D = 10,20,50 and a range of thresholds x corresponding to p-va-
lues that vary between 0.05 and 0.01 were examined. Overall, when the values
of the scale parameter are not too large (D = 10,20) the approximations given
by (1.6) produce good results and are more accurate than an approximation based
on the Gaussian limit. When D = 50, only a small fraction of the background
observations contribute to the score statistic, so the marginal distribution of Z(t)

is poorly approximated by a normal distribution. The Gaussian approximation is
anticonservative, while (1.6) overcompensates and is very conservative. It would
be interesting to know whether the large deviation like approximation suggested
in [10] can be adapted to deal with this case.
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TABLE 1
Comparison between a Gaussian approximation (pG) and the approximation (pE) based on (1.6).

Empirical significance level (p̂) was estimated from 5,000 iterations (SD ∈ [0.0015,0.003])

D = 10 D = 20 D = 50

x p̂ pE pG x p̂ pE pG x p̂ pE pG

2.5 0.046 0.036 0.026 2.8 0.044 0.043 0.023 3.1 0.042 0.088 0.024
2.6 0.036 0.029 0.020 2.9 0.034 0.035 0.018 3.2 0.036 0.075 0.018
2.7 0.029 0.024 0.016 3.0 0.030 0.029 0.014 3.3 0.034 0.064 0.013
2.8 0.021 0.020 0.012 3.1 0.021 0.024 0.010 3.4 0.024 0.054 0.010
2.9 0.015 0.016 0.009 3.2 0.015 0.019 0.008 3.5 0.020 0.046 0.007
3.0 0.013 0.013 0.007 3.3 0.014 0.016 0.006 3.6 0.013 0.040 0.005
3.1 0.009 0.010 0.005 3.4 0.012 0.013 0.004 3.7 0.010 0.034 0.004

In Table 2 we compare the approximated p-values for m = 5 (n = 1,089) ver-
sus m = 6 (n = 4,225) when D = 17. Since the accuracy of the approximations
is comparable in both cases one is tempted to conclude that (1.6) is stable with
respect to the sample size in the range where the approximation is valid.

4. Detailed proofs. In this section we add the details to the outline that was
presented in Section 2. Throughout, we will try to keep the discussion as general
as possible in order to lay the foundation for the extension of the method to other
models and to higher order approximations.

4.1. Measure transformation. We begin by transforming the null probability
measure under which the field is centered and the probability in (1.5) is relatively
small to an alternative probability.

TABLE 2
Comparison of the approximation (pE) between m = 5 and m = 6 when D = 17. Empirical

significance level (p̂) was estimated from 5,000 iterations (SD ∈ [0.0015,0.003])

m = 5 m = 6

x p̂ pE p̂ pE

2.6 0.049 0.054 0.045 0.043
2.7 0.040 0.044 0.037 0.034
2.8 0.032 0.036 0.031 0.027
2.9 0.029 0.030 0.020 0.022
3.0 0.020 0.024 0.019 0.017
3.1 0.019 0.020 0.015 0.013
3.2 0.013 0.016 0.009 0.010
3.3 0.009 0.013 0.006 0.008
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Put a uniform prior over the parameter space T . Let Pt ≡ Pt,ξt correspond to
the probability measure for which, given t , the random variables {Wu} are (condi-
tionally) independent and are distributed according to (1.1) with parameter ξt θu(t),
where ξt = xI

−1/2
n (t) was defined in (1.8). Let Px be the unconditional distribution

of {Wu}, so

Px(·) = 1

λ(T )

∫
T

Pt (·) dt,(4.1)

for λ(T ) the Lebesgue measure of T .
The log-likelihood ratio of Pt relative to P is given by (1.3) with ξt in place of ξ .

Hence, the likelihood ratio of Px relative to P can be written as

dPx

dP
= 1

λ(T )

∫
T

eln(s,ξs) ds.(4.2)

Applying a likelihood ratio identity, one obtains

P

(
sup
t∈T

Zn(t) ≥ x

)
=

∫
T

Et

[
1∫

T eln(s,ξs) ds
; sup
s∈T

Zn(s) ≥ x

]
dt.

Simple algebraic manipulations lead to the representation in the form

= xde−x2/2
∫
T

e−δn(t)
Et

[
e−x(Zn(t)−x)

S
;x(Zn(t) − x) + logM ≥ 0

]
dt,(4.3)

where for each t , M and S are defined in terms of the random field Xt(s) =
Xt,x,n(s) = x(Zn(s)−Zn(t)), s ∈ T , by the equations M = sups∈T exp[Xt(s)] and
S = ∫

s∈T xd exp[Xt(s) + δn(s) − δn(t)]ds, with δn(·) as defined in (1.10).

4.2. Localization and a Taylor approximation. In this section we concentrate
on the integrand in representation (4.3). The term M produced by maximization
and the term S produced by integration will be replaced by similar, but more
tractable, expressions. The replacement is two-fold. First, a subset of the para-
meter space is used instead of the complete parameter space. This subset, which
we denote by Vt , is a neighborhood of t with radius depending on the thresh-
old x and on the sample size n. The resulting local random field is denoted by
Xt = {Xt(s), s ∈ Vt }. Second, this local field is replaced by its Taylor approxima-
tion about t (to a certain order). Denote X̂t = {X̂t (s), s ∈ Vt } to be the random
field generated by these two approximations. The main subject in this subsection
is to show that by taking the radius of Vt to be of an appropriate order and by
taking enough terms in the Taylor expansion of the field, one may control the error
involved up to a pre-prescribed level of accuracy.

For r > 0, let B(r) be the d-ball of radius r , as defined by the Euclidean met-
ric. Denote the elements of any d-dimensional vector by subscripts, for example,
s = (s1, . . . , sd). For every k-tuple i1, . . . , ik from {1, . . . , d}, and a d-dimensional
vector x let xi1,...,ik = ∏k

j=1 xij . For every function on T and on T × T we denote
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partial derivatives using superscripts. For example, β
ij
u,n(t) is the second order par-

tial derivative of βu,n(s) with respect to si, sj , evaluated at s = t . Throughout, we
use the Einstein summation convention (cf. [5], pages 136–137).

We will consider the case where the information regarding ξ at t , In(t) =∑
u∈An

θ2
u(t), is of the order of magnitude of the sample size n. This assump-

tion clearly holds for a functions θ which are uniformly bounded and bounded
away from zero over An × T . We assume henceforth that uniform boundedness
holds both for θ and for its derivatives, up to an appropriate order. We also assume
boundedness of ψ and its derivatives.

By (1.4) we can decompose Zn(s) as

Zn(s) = Un(s) + ∑
u∈An

βu,n(s)ψ
′
u(ξt θu(t)),(4.4)

where Un(s) = ∑
u∈An

βu,n(s)(Wu − ψ ′
u(ξt θu(t))). Observe that Un(s) is a cen-

tered variable under the probability measure Pt . The second component is de-
terministic. The investigation of the localized field Xt(s) = x(Zn(s) − Zn(t))

amounts to expanding βu,n(s) in a neighborhood of t . One needs to evaluate the
derivatives of βu,n(t) explicitly in order to proceed with the analysis. The deriva-
tives are incorporated separately with respect to the random part and the determin-
istic part.

Consider in detail the first two derivatives in conjunction with the deterministic
part. Other derivatives (random and deterministic) will have, by the choice of the
neighborhood, less of an effect on the overall value of Xt(s). Direct computation
gives

β̇u,n(s) = θ̇u(s)

I
1/2
n (s)

− Jn(s)

I
3/2
n (s)

θu(s),

β̈u,n(s) = θ̈u(s)

I
1/2
n (s)

− 2
θ̇u(s) ⊗ Jn(s)

I
3/2
n (s)

− θu(s)J̇n(s)

I
3/2
n (s)

+ 3
θu(s)Jn(s) ⊗ Jn(s)

I
5/2
n (s)

,

where Jn(s) = ∑
u∈An

θu(s)θ̇u(s) [so that İn(s) = 2Jn(s)].
In the following we let �(y) denote a function that is bounded above and below

by expressions of the form const × y.
By assumption, the first derivative term

∑
u∈An

β̇u,n(t)ψ
′(ξt θu(t)) is of the or-

der of magnitude of O(x2n−1/2), and is denoted by r1. The second derivative
term,

∑
u∈An

β̈u,n(t)ψ
′(ξt θu(t)), can be written as −x	n(t) + r2, where r2 is an

O(x2n−1/2) term, and 	n(t) is a �(1), nonnegative definite matrix, given in (1.9).
Let α ≥ 0 and set

Vt = t ⊕ 	−1/2
n (t)B(logx/x).(4.5)
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Each element of the approximating field {X̂t (s), s ∈ Vt } is defined via a finite ex-
pansion:

X̂t (s) = x〈s − t, U̇n(t)〉 − x2

2
〈s − t,	n(t)(s − t)〉 + r1 + r2

+
α+1∑
k=2

1

k!x(s − t)i1,...,ikU
i1,...,ik
n (t)(4.6)

+
α+2∑
k=3

1

k!x
2(s − t)i1,...,ik

∑
u∈An

βi1,...,ik
u,n (t)ψ ′

u(ξt θu(t))/x.

In the case α = 0, only the first line of (4.6) is used. For α = 1, which is relevant
for the results presented in Section 1, one term from the second line and one term
from the third line of (4.6) are also required.

Denote the remainder of the Taylor expansion by

rt (s) = rt,x,n(s) = Xt(s) − X̂t (s).(4.7)

Define

S0 =
∫
s∈Vt

xdeXt (s)+δn(s)−δn(t) ds, M0 = sup
s∈Vt

eXt (s),

Ŝ0 =
∫
s∈Vt

xdeX̂t (s)+δn(s)−δn(t) ds, M̂0 = sup
s∈Vt

eX̂t (s).

We also set X = x(Zn(t) − x). The main result of this subsection is:

THEOREM 4.1. Assume that T is compact. Suppose further that θu(·) belongs
to C

α+3, and that all derivatives up to this order are bounded from above in Vt .
Assume also that ψu(·) is three times differentiable with bounded derivatives over
an open interval that contains the origin. Finally, assume that In(t) is �(n), the
smallest eigenvalue of 	n(t) is bounded away from zero, and the largest eigenvalue
is finite. Take ε = �(x−α). Then

Et

[
e−X

S
;X + logM ≥ 0

]
≤ eε

Et

[
e−X

Ŝ0
;X + log M̂0 ≥ −ε

]
+ o(x−α),

Et

[
e−X

S
;X + logM ≥ 0

]
≥ e−ε

1 + ε
Et

[
e−X

Ŝ0
;X + log M̂0 ≥ ε

]
+ o(x−α).

REMARKS. In the proofs given in this subsection we do not mention the con-
tribution of δn(t) explicitly. In many interesting cases, which include for example
the classical medium deviation of a normalized sum of i.i.d. variables, one consid-
ers threshold levels x that satisfy x = o(n1/6). For such x, δn(s) is a remainder term
which tends to zero as x and n tend to infinity. Therefore, ignoring it throughout
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the various lemmas below will present no loss of generality. In other applications,
where x may tend to infinity slightly faster, for example, x = o(n1/4), an appro-
priate choice of the constant C in Lemma 4.2 and the bound over M0/S0, given
in (4.17) below allow one to dominate δn(s) and proceed with the proof. We rein-
troduce δn(s)−δn(t) in Section 4.5, where its exact contribution becomes relevant.

PROOF OF THEOREM 4.1. Roughly speaking, the theorem states that the error
committed by switching between S,M and Ŝ0, M̂0, respectively, is sufficiently
small for our subsequent calculations. Therefore, one must make sure that (i) the
remainder is small, and (ii) the contribution of quantities outside Vt are negligible.
To this end, the region T \ Vt is covered with K balls of radius 1/x2. Let Vi , for
1 ≤ i ≤ K , denote a generic ball centered at τi ∈ T \ Vt . Let Si and Mi denote the
analogues of S0 and M0 for such a ball. Note that M = max{M0,M1, . . . ,MK}
and S ≥ max{S0, S1, . . . , SK}. Since M0 ≥ 1, we see that Mi ≥ 1 on {M = Mi}.
The remainder of the proof consists of obtaining suitable upper and lower bounds.

The upper bound is obtained by a localization argument and a Taylor approxi-
mation (in that order):

Et

[
e−X

S
;X + logM ≥ 0

]

≤ Et

[
e−X

S
;X + logM ≥ 0,M = M0

]

+
K∑

i=1

Et

[
e−X

S
;X + logM ≥ 0,M = Mi

]

≤ Et

[
e−X

S0
;X + logM0 ≥ 0

]
+

K∑
i=1

Et

[
Mi

Si

;Mi ≥ 1
]

= Et

[
e−X

S0
;X + logM0 ≥ 0, sup

s∈Vt

|rt (s)| ≤ ε

]

+ Et

[
e−X

S0
;X + logM0 ≥ 0, sup

s∈Vt

|rt (s)| > ε

]
+

K∑
i=1

E

[
Mi

Si

;Mi ≥ 1
]

≤ eε
Et

[
e−X

Ŝ0
;X + log M̂0 ≥ −ε

]
+ Et

[
M0

S0
; sup
s∈Vt

|rt (s)| > ε

]

+
K∑

i=1

Et

[
Mi

Si

;Mi ≥ 1
]
.
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The lower bound is obtained by going the other way:

Et

[
e−X

Ŝ0
;X + log M̂0 ≥ ε

]

= Et

[
e−X

Ŝ0
;X + log M̂0 ≥ ε ≥ sup

s∈Vt

|rt (s)|
]

+ Et

[
e−X

Ŝ0
;X + log M̂0 ≥ ε, sup

s∈Vt

|rt (s)| > ε

]

≤ eε
Et

[
e−X

S0
;X + log M̂0 ≥ ε, sup

s∈Vt

|rt (s)| ≤ ε

]

+ e−ε
Et

[
M̂0

Ŝ0
; sup
s∈Vt

|rt (s)| > ε

]

≤ eε
Et

[
e−X

S0
;X + logM0 ≥ 0

]
+ e−ε

Et

[
M̂0

Ŝ0
; sup
s∈Vt

|rt (s)| > ε

]

= eε

(
Et

[
e−X

S0
;X + logM0 ≥ 0, S ≤ (1 + ε)S0

]

+ Et

[
M0

S0
;S > (1 + ε)S0

])

+ e−ε
Et

[
M̂0

Ŝ0
; sup
s∈Vt

|rt (s)| > ε

]

≤ eε(1 + ε)Et

[
e−X

S
;X + logM ≥ 0

]
+ eε

Et

[
M0

S0
;S > (1 + ε)S0

]

+ e−ε
Et

[
M̂0

Ŝ0
; sup
s∈Vt

|rt (s)| > ε

]
.

Therefore,

Et

[
e−X

S
;X + logM ≥ 0

]

≥ e−ε

1 + ε
Et

[
e−X

Ŝ0
;X + log M̂0 ≥ ε

]

− 1

1 + ε
Et

[
M0

S0
;S > (1 + ε)S0

]
− e−2ε

1 + ε
Et

[
M̂0

Ŝ0
; sup
s∈Vt

|rt (s)| > ε

]
.

The proof proceeds through a sequence of lemmas, which show that the various
error terms are small. Many statements along the way will hold true only up to a
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constant factor. We use D,D1,D2, and so on, to denote such (positive) constants.
Occasionally the same symbol denotes different constants. �

We start the sequence of lemmas by putting on record the elementary fact that
the expectation of a nonnegative random variable over an event can be controlled
by the tail of its distribution:

LEMMA 4.2. For any nonnegative random variable Y , any measurable set A,
and any positive and finite C,

E[Y ;A] ≤ CP[A] + CP[Y > C] +
∫ ∞
C

P[Y > y]dy.(4.8)

PROOF. The proof is elementary and is omitted. �

The second general lemma relates the maxima of a given (deterministic) func-
tion to the integral of the same function.

LEMMA 4.3. Let h :B(r) → R be a continuously differentiable real-valued
function over a closed ball of radius r . Let H = maxz∈B(r) ‖ḣ(z)‖. Then, for some
positive constant D,∫

B(r)
exp

{
h(y) − max

z∈B(r)
h(z)

}
dy ≥ (H + D/r)−d .(4.9)

PROOF. The proof is given in the Appendix. �

The next lemma takes us back to the specific terms analyzed in Theorem 4.1:

LEMMA 4.4. Assume the conditions of Theorem 4.1. Then

Et

[
M0

S0
; sup
s∈Vt

|rt (s)| > ε

]
= o(x−α),(4.10)

and the same holds for M̂0/Ŝ0.

PROOF. The proof is based on Lemma 4.2. Set A = {sups∈Vt
|rt (s)| > ε}, and

C = nD logn, for some positive constant D. We begin by showing that

nD logn
Pt

[
sup
s∈Vt

|rt (s)| > ε

]
= o(x−α).(4.11)

Recall that U
i1,...,ik
n (s) = ∑

u∈An
β

i1,...,ik
u,n (s)(Wu − ψ ′

u(ξt θu(t))). We write

briefly β
(k)
u,n(·) and U

(k)
n (·), or even βu,n(·), Un(·) when no confusion is likely.



1388 Y. NARDI, D. O. SIEGMUND AND B. YAKIR

The remainder is absolutely and uniformly bounded in Vt by

D1(logx)α+2x−(α+1) max
1≤i1,...,iα+2≤d

sup
s∈Vt

∣∣U(α+2)
n (s)

∣∣
(4.12)

+ D2(logx)α+3x−(α+1),

since θu(·) and its derivatives are uniformly bounded by assumption.
The bound (4.12) on the remainder leads directly to:

Pt

[
sup
s∈Vt

|rt (s)| > ε

]
≤ ∑

Pt

[
sup
s∈Vt

∣∣U(α+2)
n (s)

∣∣> Dx(logx)−(α+2)

]
,(4.13)

where the sum expands over {1, . . . , d}(α+2). Note that the inequality is valid for
any x which is greater than D(logx)(α+3). The probability on the right hand side
of (4.13) is at most the sum of similar tail probabilities of the random field Un(s)

and its negation. These probabilities differ only by a constant. We bound the tail
of a bounded field by the expectation of an exponentiated field. Such expectations
are investigated next.

Write Ft(·) for the probability distribution function, under the alternative prob-
ability Pt , of the collection {Wu,u ∈ An}. The expectation Et [sups∈Vt

exp{Un(s)}]
is given, upon dividing and multiplying by

∫
Vt

exp{Un(s)}ds and using Fubini’s
theorem, by ∫

Vt

∫ [sups∈Vt
eUn(s)∫

Vt
eUn(s) ds

]
× eUn(r) dFt (w)dr,(4.14)

where the innermost integral (or a sum for discrete models) is with respect to the
sample space. Using a suitable exponential tilting, obtained by considering the
cumulant generating function of {Wu} under Pt , we have that (4.14)

=
∫
Vt

e
∑

u∈An
An(r,t) × Er

[sups∈Vt
eUn(s)∫

Vt
eUn(s) ds

]
dr,(4.15)

for An(r, t) = ψu(ξtθu(t)+β
(α+2)
u,n (r))−ψ(ξtθu(t))−β

(α+2)
u,n (r)ψ ′

u(ξt θu(t)). Note
that the probability distribution Pr , or equivalently its distribution function, be-
longs as does the probability Pt to an exponential family. The exact form of the
family may be written explicitly but is not essential for the proof.

Taking one additional term in the Taylor expansion for ψu(ξtθu(t)+β
(α+2)
u,n (r))

we can write An(r, t) = 1
2(β

(α+2)
u,n (r))2ψ ′′

u (ϑ), for some point ϑ close to ξt θu(t).
Then, since ψ ′′

u are uniformly bounded, we get an upper bound on (4.15):

eD
∫
Vt

Er

[sups∈Vt
eUn(s)∫

Vt
eUn(s) ds

]
dr.(4.16)

Define h(y) = Un(t + 1
x
	

−1/2
n (t)y) and B = B(logx). The expectation in (4.16)

is, by Lemma 4.3, smaller than or equal to the expectation under Pr of (H +
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D/ logx)d , for H = maxz∈B ‖ 1
x
	

−1/2
n (t)U̇n(t + 1

x
	

−1/2
n (t)z)‖. It is sufficient to

consider Er (H
d), or even Er (

∑
u∈An

|Wu −ψ ′
u(ξt θu(t))|)d . By independence, and

since Wd
u are integrable with respect to Pr , the expectation exhibits a growth which

is at most polynomial. Assertion (4.11) now follows from Chebyshev’s inequality.
Consider next the tail of M0/S0. In the application of Lemma 4.3 we may iden-

tify B by B(logx) and h(y) by xZn(t + 1
x
	

−1/2
n (t)y). Then S0/M0 is in the re-

quired form: |	n(t)|−1/2 ∫
B exp{h(y) − maxz∈B h(z)}dy. It follows that

M0

S0
≤ D(H + D/ logx)d,(4.17)

where H ≤ D maxs∈Vt ‖Żn(s)‖ ≤ Dn−1/2 ∑
u∈An

|Wu|. By Chebyshev’s inequal-
ity, ∫ ∞

nD logn
Pt

[
M2

0

S2
0

≥ y2
]
dy

(4.18)

≤ Dn−D logn
Et

(
Dn−1/2

∑
u∈An

|Wu| + D/ logx

)2d

.

Clearly, both CPt [M0/S0 > C], and
∫ ∞
C Pt [M0/S0 > y]dy are o(x−α) as re-

quested.
The tail behavior of M̂0/Ŝ0 can be managed almost identically. Let � denote the

bound (4.12) on the remainder. Hence, M̂0/Ŝ0 ≤ e2�M0/S0, and the problem may
be reduced to the evaluation of

∫ ∞
nD logn Pt (e

2� ≥ y1/2) dy, and
∫ ∞
nD logn Pt (M0/S0 ≥

y1/2) dy. The latter is clearly in the appropriate order of magnitude [raise each
side of inequality (4.17) to the power of 4]. The former can be managed by raising
each side to the power of 8, say, and using the method taken in the evaluation of
the expectation of the exponentiated field. �

LEMMA 4.5. Under the conditions of Theorem 4.1,

Et

[
M0

S0
;S > (1 + ε)S0

]
= o(x−α).(4.19)

PROOF. The proof’s structure is patterned after Lemma 4.2. This time, we set
A = {S > (1 + ε)S0} and take as before C = nD logn. Since the radius of a generic
ball Vi is x−2 we obtain that the total number of balls that are needed in order
to cover T \ Vt is proportional to x2d . However, since the elementary inclusion
{∑n

i=1 Yi > y} ⊂ ⋃n
i=1{Yi > ypi} holds for any sequence of nonnegative numbers

p1, . . . , pn that add up to 1 and any sequence Y1, . . . , Yn of nonnegative random

variables, it is sufficient to evaluate the probability of
⋃Dx2d

i=1 {Si > εpiS0}. We take
pi = x−2d/D.
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A lower bound on S0 may take the form:

S0 ≥ D exp
{
−D(logx)2x−1 max

s∈Vt

‖Ün(s)‖
}
.

As for Si , we decompose Xt(s), given the central point τi , as:

Xt(s) = x
(
Zn(s) − Zn(τi)

) + x
(
Zn(τi) − Zn(t)

)
.

The first component is bounded by (logx)x−1 maxs∈Vi
‖U̇n(s)‖ + O(1). The sec-

ond component may be decomposed further to produce

x
(
Un(τi) − Un(t)

) + x
∑

u∈An

(
βu,n(τi) − βu,n(t)

)
ψ ′

u(ξt θu(t)).(4.20)

The sum in (4.20) is equal to x(
∑

u∈An
βu,n(τi)βu,n(t) − 1), up to an O(x2n−1/2)

term. But,
∑

u∈An
βu,n(τi)βu,n(t) is (asymptotically) the correlation, under the

transformed measure Pt , between Un(τi) and Un(t), and as such, it is absolutely
bounded by unity. It turns out that the second component in (4.20) is a negative
multiple of x2.

Gathering the various random and deterministic terms, one sees that to com-
plete the proof it is sufficient to bound the terms Pt (maxs∈Vi

‖U̇n(s)‖ ≥ x3/ logx),
Pt (maxs∈Vt ‖Ün(s)‖ ≥ x3/ log2 x), and Pt (Un(τi) − Un(t) ≥ Dx). The probabili-
ties involving the maxima over Vi and Vt can be handled by the methods used in
Lemma 4.4. Notice that the thresholds in this case are even larger than the ones we
were using before. The probability associated with Un(τi) − Un(t) decays expo-
nentially. This can be verified, for example, by Chebyshev’s inequality since the
exact form of the cumulant function of Wu is known. �

LEMMA 4.6. Under the same conditions as before,

K∑
i=1

Et

[
Mi

Si

;Mi > 1
]

= o(x−α).(4.21)

PROOF. The handling of Pt (Mi > 1) may be carried out similarly to
Lemma 4.5 by using the decomposition of Xt(s) considered there. The quotient
Mi/Si can be analyzed using Lemma 4.3. �

LEMMA 4.7. Under the same conditions as before,

Et

[
e−x(Zn(t)−x)

Ŝ0
;x(

Zn(t) − x
) + log M̂0 ≥ 0

]
< ∞.(4.22)

PROOF. The investigation of the tail behavior of M̂0/Ŝ0 shows that it is inte-
grable with respect to Pt . This is sufficient in order to prove (4.22). �
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4.3. Normal approximation. Let U̇n = U̇n(t) = (U
(1)
n (t), . . . ,U

(α+1)
n (t))t de-

note the vector of partial derivatives of Un(t), and set Un = Un(t) = (Un(t),

U̇n(t))
t. We treat U

(k)
n , the kth order partial derivatives, as a

(k+d−1
k

)
-dimensional

vector and Un is a large column vector. The expectations we would like to eval-
uate as a result of Theorem 4.1 are of the form Et [G(Un)], for an appropriate
function G.

The target at this stage is to show that

EtG(Un) = EtG(U)P (U) + o(x−α),(4.23)

for U ≡ U(t) = (U(t), U̇(t))t, a normally distributed (under Pt ) random vector
with zero mean and variance–covariance matrix denoted by Cn (see below) and
for P an appropriate polynomial. Equation (4.23) corresponds to an application
of a central limit theorem to a sum of independent vectors that are not identically
distributed. If Un possesses a density then one may use Theorem 19.3 of [6] in
order to expand the density to the required accuracy and get the result. If Un is
discrete, as is the case in the numerical example we presented, different tools are
required.

We give below an argument corresponding to α = 1 and general distributions
with a finite forth moment. We shall assume that (a) the functions θu(·), and ψu(·)
and their derivatives are bounded (see Section 4.2), and that (b) the smallest eigen-
value of the covariance matrix Cn is bounded away from zero. Note that for α = 1
we have that P ≡ 1.

Let dn = D logn. The basic strategy we apply in this subsection involves three
steps. In the first step, the expectation is evaluated separately on two complemen-
tary events, {‖Un‖ ≤ dn} and {‖Un‖ > dn}, with the latter shown to be negligible.
The second step utilizes bounds for errors of normal approximation in order to
establish (4.23) for expectations restricted to the first event. As a result, Un is re-
placed by U. The third step reverses step one, but in the normal setting. The first
step uses techniques similar to those applied in the proof of Lemma 4.4. In [9]
one can find a discussion of the expansion of the distribution of the maximum for
Gaussian random fields, which involves some modification of the tools that are
used in empirical random fields. As a corollary of that discussion, it will be pos-
sible to produce a parallel of Lemma 4.4 and to prove the third step. Details for
the first and the third steps are omitted. Henceforth, we concentrate on the second
step.

We shall need the following notation. Let bu,n(t) = (βu,n(t), β̇u,n(t), β̈u,n(t))
t ,

where β̈u,n(t) is considered as a vector, and thus Un(t) = ∑
u bu,n(t)[Wu − ψ ′

u],
for ψ ′

u = ψ ′
u(ξt θu(t)). Define Cn = ∑

u Cov(bu,n(t)[Wu − ψ ′
u]), and let

Xu = Xu,n(t) = n1/2C−1/2
n bu,n(t)[Wu − ψ ′

u].
Let Vn(t) = ∑

u Xu = n1/2C
−1/2
n Un(t) be the sum of the independent vectors and

let Qn be the distribution of Wn(t) = n−1/2Vn(t) = C
−1/2
n Un(t).
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With those notations in mind, write

Et [G(Un); ‖Un‖ ≤ dn] − Et [G(U); ‖U‖ ≤ dn]
(4.24)

=
∫

f (w)d
(
Qn(w) − �(w)

)
,

where � is the Gaussian measure, and f (w) = G(C
1/2
n w)I{‖C1/2

n w‖≤dn}.
The term in (4.24) may be bounded with the aid of Theorem 13.3 of [6], which

states that ∣∣∣∣
∫

f d(Qn − �)

∣∣∣∣ ≤ ωf (Rk)a3(k)ρ4n
−1/2

(4.25)
+ 4

3ω∗
f (27/2π−1/3k4/3ρ3n

−1/2;�),

where a3(k) is a constant that depends only on k, the dimension of Un and, for
ρi = n−1 ∑

u E‖Xu‖i , i = 3,4. The term ωf (A) = sup{|f (x)−f (y)| :x, y ∈ A} is
the modulus of oscillation of the function f over A and, for ε > 0 and a measure μ,

ω∗
f (ε;μ) = sup

y∈Rk

∫
ωf

(
B(ε) + x − y

)
μ(dx).

The fourth moment is bounded by n‖C−1/2
n ‖4 ∑

u ‖bu,n(t)‖4
Et [Wu −ψ ′

u]4. Un-
der the assumption regarding the boundedness of θu(·), ψu(·), and their deriva-
tives, we have that n

∑
u ‖bu,n(t)‖4

Et [Wu − ψ ′
u]4 = �(1). Moreover, ‖C−1/2

n ‖4 =
(λmin(Cn))

−2, where λmin(Cn) is the smallest eigenvalue of Cn, which is bounded
away from zero. Thus, the (averaged) fourth moment is finite.

In the assessment of ωf and ω∗
f it is enough to consider f (u) for u = C

−1/2
n w,

since Cn is an �(1) matrix. For such u,

f (u) ≤ eε M̂0

Ŝ0
I{‖u‖≤dn}.

We regard here Un as fixed at the value u = (u, u̇, ü). Direct maximization, and the
use of elementary inequalities [such as Fχ2(d,θ2)(y

2) ≥ e−θ2/2Fχ2(d)(y
2), which

features a relationship between the c.d.f. of a noncentral chi-squared distribution
and a central one] lead to

M̂0

Ŝ0
I{‖u‖≤dn} ≤ Deu̇′	−1

n (t)u̇/2I{‖u‖≤dn} ≤ Dn1/4I{‖u‖≤dn}.(4.26)

Therefore, f is bounded, and the first term in the right-hand side of (4.25) is of the
order of magnitude of O(n−1/4).

Consider next w∗
f . Let A be any subset of R

k . The modulus of oscillation of the
indicator function, IA, over the ball B(ε) + x, is

w∗
IA

(ε;�) = sup
y∈Rk

∫
I(∂A)ε (x − y)�(dx) = sup

y∈Rk

�
((

∂(A + y)
)ε)

,(4.27)
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where Aε is the set of points whose distance from A is less than ε. Applying
Corollary 3.2 of [6] (with s = 0 and ρ = ε) we obtain that for a convex set A,
w∗

IA
(ε;�) ≤ b(k)ε, where b(k) is a constant depending on k only. Hence, since

the set {‖u‖ ≤ dn} is convex and f is bounded, we conclude that

w∗
f (ε;�) ≤ Dn1/4b(k)ε = O(n−1/4).

This completes the proof that (4.25) is bounded by O(n−1/4) = o(1/x).

4.4. Elimination of the indicator. This section proceeds the analysis of the two
(compactly written) terms,

Et [e−X/Ŝ0;X + log M̂0 ≥ ±ε],
which originated from the analysis in the previous sections. In order to remove
the dependency on the event, we proceed in two steps. The first step involves a
conditioning argument, where the conditioning here is with respect to the σ -field
generated by the derivative components U̇. These components generate the local
random field. Note that both Ŝ0, and M̂0 are measurable with respect to this σ -field.
The second step presents a Mill’s ratio type of an approximation of the innermost
expectation. Recall that (U, U̇) are jointly Gaussian, hence the conditional distrib-
ution of U , given the σ -field, is normal. We apply a simple lemma which is proved
in the Appendix:

LEMMA 4.8. Let Y ∼ N(μ,σ 2). Suppose x → ∞ and y → 0, such that xy

converges to a constant. Then,

E[e−xY ;Y ≥ y]

= e−xy · φ
(

y − μ

σ

)
·

k∑
m=0

(−1)m(2m)!
σ 2m2mm!

[
x + y − μ

σ 2

]−(2m+1)

+ r,

where φ(·) is the standard normal density function and r = o([x + y−μ

σ 2 ]−(2k+2)).

Let Ft = σ(U̇) denote the σ -field generated by the kth order partial derivatives
of the (centered) field at t , for 1 ≤ k ≤ α + 1 and for some α ≤ 2. Let Z(t) =
U(t)+ x be a random variable which, under Pt , is normally distributed with mean
x and variance Vart (U(t)). Let ρ = Cov(Z(t), U̇) and � = Cov(U̇) [recall that
Cn = Cov(U)]. Observe that the conditional mean of Z(t) − x is

μ = Et

(
Z(t) − x|Ft

) = 〈ρ,�−1U̇〉,(4.28)

while the conditional variance is σ 2 = Vart (Z(t)−x|Ft ) = 1−〈ρ,�−1ρ〉. There-
fore, conditioning on Ft , taking y = (− log M̂0 ± ε)/x − rn(t) and applying
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Lemma 4.8 we obtain, up to a o(x−α) remainder,

Et

[
e−X

Ŝ0
;X + log M̂0 ≥ ±ε

]

= e∓ε

x
Et

[
M̂0

Ŝ0
· e−1/(2σ 2)(μ + (log M̂0/x) ∓ ε/x + rn(t))

2
√

2πσ 2
(4.29)

×
�α/2�∑
m=0

[(−1)m(2m)!]/[x2mσ 2m2mm!]
(1 − [μ/x + (log M̂0/x2) ∓ ε/x2 + rn(t)/x]/σ 2)2m+1

]
.

The difference rn(t) = ∑
u∈An

βu,n(t)ψ
′
u(ξt θu(t)) − x was defined in (1.11).

Although the expression in square brackets is pretty involved, note that the de-
pendency on the event is removed and the result is an expectation of a function of
the derivatives. The next section shows a general algorithm to produce an explicit
approximate evaluation of this expectation.

4.5. Evaluation of the functional. The expression in the square brackets on
the right-hand side of approximation (4.29) has four significant terms: M̂0, Ŝ0,
φ(− log M̂0/xσ − μ/σ − rn(t)/σ ), and the finite sum of rational functions. In
order to obtain an approximation with error term of the order of magnitude of
o(x−α) we show below how each term can be expanded as power series in 1/x.
Clearly, ε can be ignored in what follows. Except for the second term, Ŝ0, the three
other involve the maxima M̂0. We leave the discussion about Ŝ0 to the end of the
section, and commence with the maxima.

For each t , the function log M̂0 is the maximum, subject to constraints, of a
polynomial. The coefficients are functions of the random and deterministic deriva-
tives. The constraint is the neighborhood Vt of t . The dominant part in the polyno-
mial X̂t (s) are the linear component associated with the random gradient and the
quadratic component associated with the deterministic Hessian. We ignore here
the issue of the constraint, since it does not affect the evaluation to the order of
accuracy considered here, and proceed with the unconstrained maximization. We
reintroduce maximization under constraints when we deal with boundary effects,
for which constraints are significant and may be active.

The change of variable y = x(s − t) will produce the representation

f (y) = X̂t (y/x + t)

= 〈y, U̇(t)〉 − 1
2〈y,	n(t)y〉 +

α∑
j=1

x−j [gj+1(y,U) + hj+2(y,β)],

where

gj (y,U) = yi1,...,ij U
i1,...,ij (t)/j !,

hj (y,β) = yi1,...,ij

∑
u∈An

β
i1,...,ij
u,n ψ ′

u(ξt θu(t))/xj !.



MAXIMA OF RANDOM FIELDS 1395

The remainder terms r1,r2 that appear in (4.6) are discarded in the above but may
be introduced. In general, the level of accuracy α determines whether remainder
terms (which depend both on x and on n) will affect the final result or not. Let
f (y) = q(y) + r(y), where q(y) is the dominant quadratic part, and r(y) is the
remainder. We denote the maximum value log M̂0 by f (y∗), for y∗ the maximizer.
In order to approximate this maximum we use a quasi Newton–Raphson algorithm
(see, e.g., [8]). This entails finding a point ŷ which approximates the location of
the maximum of f (y) up to a certain order. This point, in turn, will also be used
to bound the difference f (ŷ) − f (y∗).

To be more specific, take y0 = 0, y1 = 	−1
n (t)U̇ (t), and define recursively

yk+1 = yk + 	−1
n (t)ḟ (yk) = 	−1

n (t)U̇ (t) + 	−1
n (t)ṙ(yk).

Plugging this back into f produces

f (yk+1) = 1
2〈U̇ (t),	−1

n (t)U̇ (t)〉
− 1

2〈ṙ(yk),	
−1
n (t)ṙ(yk)〉 + r

(
	−1

n (t)[U̇ (t) + ṙ(yk)]).
The incremental increase is

f (yk+1) − f (yk)

= 〈
ṙ(yk) − ṙ(yk−1),	

−1
n (t)

[
ṙ(ỹ) − (

ṙ(yk−1) + ṙ(yk)
)
/2

]〉
,

for some ỹ on the line segment connecting yk and yk−1.
By running the iterative process �α/2� + 1 times, one gets that the difference

f (ŷ) − f (y∗) is o(x−α), as required. By the form of the function f , and the de-
finition of the recursive Newton–Raphson sequence, it is clear that f (ŷ) is also
a polynomial, which can be rearranged according to powers of 1/x. The coeffi-
cient of the polynomial are sums of products of both the random and deterministic
derivatives.

The finite sum, which appears on the right-hand side of expression (4.29), is
clearly a functional of the derivatives only; it contains μ, which is a linear function
of the derivatives vector U̇, and log M̂0. After substituting f (ŷ) for log M̂0, this
sum is expressible as power series. Terms with smaller order of magnitude than
x−α can be ignored. This way, a finite representation in the form of a polynomial
may be obtained.

Another term involves the normal density. A Taylor expansion of the exponent
function, combined with the polynomial representation of log M̂0, enables us to
rewrite the term as 1

σ
φ(μ/σ) multiplied by a polynomial, with coefficient which

are functions of the derivatives. In the final evaluation of the expectation, the nor-
mal density 1

σ
φ(μ/σ) may be absorbed back into the joint normal density of the

partial derivatives vector U̇. This leads to another normal density function, easily
recognized as the conditional density of U̇ given {Z(t) = x}. To see this, note that
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Et (U̇|{Z(t) = x}) = 0, Vart (U̇|{Z(t) = x}) = � − ρ ⊗ ρ, and that the following
two relations hold:

μ2

σ 2 + 〈U̇,�−1U̇〉 =
〈
U̇,

[
�−1 + �−1[ρ ⊗ ρ]�−1

1 − 〈ρ,�−1ρ〉
]
U̇

〉

= 〈U̇, [(� − ρ ⊗ ρ)−1]U̇〉
and

det(� − ρ ⊗ ρ) = det(�) · (1 − 〈ρ,�−1ρ〉) = σ 2 det(�).

Finally, we consider the ratio between M̂0 and Ŝ0, which is given by the integral
of exp{f (y) − f (y∗) + δ(t + y/x) − δ(t)} over the region 	

−1/2
n (t)B(logx). By

centering about y1, the first point in the Newton–Raphson series, we obtain the
following approximation:

(2π)d/2|	n(t)|−1/2

×
{

1 + EY [r(Y ) − r(y1) + δ(t + Y/x) − δ(t)]

+ · · · + 1

α!EY [r(Y ) − r(y1) + δ(t + Y/x) − δ(t)]α
}
,

for Y ∼ N(y1,	
−1
n (t)). The integrands, (r(Y ) − r(y1))

m, are polynomial in
1/x, with coefficients that are polynomials of the partial derivatives. The ex-
pectation of moments of polynomials will produce again polynomials. The term
δ(t + y/x)− δ(t) should be expanded about t up to the required order of accuracy.
Specifically, if we let x = (n1/ν), for 4 ≤ ν < 6, then, conditional on Y = y, we
have the expansion

〈y, δ̇(t)〉
x

+ 1

2

〈y, δ̈(t)y〉
x2 + · · · + 1

m!
yi1,...,imδi1,...,im(t)

xm
,(4.30)

where m = �3 + α − ν/2� − 1. For ν ≥ 6 (and any given accuracy level α), δ(t +
y/x) − δ(t) may be approximated by zero since δ(t) is of the order of magnitude
of O(x3n−1/2).

Incorporating all the approximating expressions for the four terms mentioned
earlier (by standard polynomial multiplication and division), one obtains an α-de-
gree polynomial in 1/x. The coefficients of the polynomial are of the form of a
sum of products of the partial derivatives. The expectation of these products, with
respect to the conditional distribution of U̇, can be handled using Wick’s formula
(see Adler [2]).

4.5.1. Boundary effect. Up to this point the derivation of the terms associated
with the local behavior of the random field ignored the boundedness of the set of
parameters T . This is justified at points t for which the local neighborhood Vt is
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a subset of T . However, the approximation as presented above does not apply at
points near the boundary, where Vt extends beyond T . In this section we outline
the modifications that allow a rigorous expansion in the vicinity of the boundary.
Indeed, substituting Vt ∩ T for Vt and walking once more the path that brought us
to this point, one can observe that the proofs hold, essentially word for word, up to
Section 4.5. No more than simple regularity conditions regarding the smoothness
of the boundary are needed. Divergence in the details of the argument occur in
Section 4.5, which deals with the presentation of the relevant term in the form of a
conditional expectation of a function of the derivatives of the local process. Again,
this function is composed of the elements that resulted from the Mill’s ratio type
of approximation and the ratio between the maximum of the exponentiated local
field and the integral of that field. However, maximization and integration now
occur only over the constrained region Vt ∩ T .

Recall that the parameter set was represented in (1.7) in the form T = {t ∈
R

d :gi(t) ≤ 0,1 ≤ i ≤ m}, for a finite collection of smooth constraint functions.
Here we develop the algorithms for obtaining approximations of the constrained
maximum and integral for this representation. In particular, in this section we will
assume that t = t (x) is such that x · gj (t) converges to a negative constant for
a given j , whereas x · gi(t) ≤ − logx, for i �= j . Depending on the order of ap-
proximation required, other situations may need to be considered. The algorithms
presented for the present context can be generalized in a straightforward way in
order to deal with other situations as well. Some care must be taken with the dif-
ference δn(t + y/x) − δn(t) and for the remainder rn(t).

Let us start with the maximum of the local field. Using the notation of Sec-
tion 4.5 we will consider a function of the form f (y) = q(y) + r(y), where q(y)

is the quadratic dominant part, and r(y) is the remainder. Dropping the index j ,
we represent the constraint function in the form

xg(t + y/x) = x · g(t) + 〈ġ(t), y〉 + x · v(t, y) = g + 〈ġ, y〉 + v(y),

for an appropriate remainder function v. Note, that the linear part is dominant over
the remainder part. Since the target function f is asymptotically concave, it fol-
lows that the constraint is active, unless the global maximum is in the interior of
Vt ∩ T . The global maximum M̂0 was approximated in the previous section. What
is remains is to compute the maximum when the constraint function is active. The
Sequential Quadratic Programming (SQP) algorithm (see [8]) is a natural general-
ization of the quasi Newton–Raphson algorithm from the previous section to the
case where the constraint is active. The Lagrangian is maximized by an iterative
refinement of its pair of arguments (y, λ). The SQP algorithm applies the recursive
formula: (

yk+1
λk+1

)
=

(
yk

λk

)
− H−1

(
ṙ(yk) + λkv̇(yk)

v(yk)

)
,
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where

−H−1 =
(

	−1
n (t) 0
0 0

)

− 1

〈ġ,	−1
n (t)ġ〉

(
	−1

n (t)[ġ ⊗ ġ′]	−1
n (t) 	−1

n (t)ġ

ġt	−1
n (t) 1

)
,

Starting at the (d + 1)-origin (0,0), under appropriate regularity conditions, one
can show that f (yk) approximates the constraint maximum up to an order of mag-
nitude of 1/xk .

The term Ŝ0 was approximated in the previous section by the expectation of
polynomials of a Gaussian random vector Y with mean vector y1 and covariance
matrix 	−1

n (t). In the presence of a boundary, the expectation should be replaced
by the expectation over the event {g + ġ′Y + v(Y ) ≤ 0}. Below we indicate how
one can approximate such expectations.

Observe that the vector Y may be decomposed into two orthogonal (hence in-
dependent) components: ġ′Y = Y1 ∼ N(ġ′y1, 〈ġ,	−1

n (t)ġ〉) and [I − 	−1
n (t)[ġ ⊗

ġ]/〈ġ,	−1
n (t)ġ〉]Y = Y2. The polynomials can then be reformulated in terms of

polynomials in Y1 and Y2 and the event can be represented in the form: {Y1 ≤
−g − v(Y1, Y2)}. This event can be approximated by the event {Y1 ≤ ṽ(g, Y2)},
for ṽ formed by collection of all terms of the appropriate order from the iter-
ative application of the function G(z1) = −z1 − v(z1, Y2), starting at the point
z1 = g. The following step is the computation of the expectation with respect
to Y1. One can use the recursion ψj(y) = −yj−1φ(y) + (j − 1)ψj−2(y), where
ψj(y) = ∫ y

−∞ zjφ(z) dz, φ the standard normal density. The recursion is initiated
by ψ0(y) = �(y), the normal c.d.f. function, and ψ1(y) = −φ(y). Finally, after a
Taylor expansion of the outcome, an expectation is taken with respect to Y2. This
involves expectation of a Gaussian polynomial, and may be carried out with the
aid of Wick’s formula.

4.5.2. A detailed example. Let us consider the exact form of the expansion for
α = 1, and x = o(n1/4). Putting together the previous arguments we have a second
order expansion of the form:

xd−1(2π)−d/2φ(x)

∫
T

e−δn(t)|	n(t)|1/2

(4.31)

×
[
1 − r2

n(t)/2σ 2
n (t) + 1

x
Ẽt (a1) + Ẽt (ā1)

]
dt.

The expectation Ẽt here is with respect to the conditional distribution of U̇ given
{Z(t) = x}. The coefficient a1 is given by

a1 = EY 〈Y, δ̇n(t)〉 + 〈ρ,�−1U̇〉(1 − ‖	−1/2
n (t)U̇ (t)‖2/2

)
/σ 2

n (t)

− [(
EY g2(Y, U̇) − g2(y1, U̇)

) + (
EY h3(Y,β) − h3(y1, β)

)]
.
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It can be shown that all terms in the definition of a1 but the first one are cen-
tered variables. Moreover, an expectation of 〈Y, δ̇n(t)〉 with respect to PY , fol-
lowed by an expectation with respect to P̃t shows that this term vanishes as well,
so Ẽt (a1) = 0.

For the boundary we have a parallel result with regard to ā1:

ā1 =
[
IA + IAc · exp

{
−1

2

(
y‖ġt‖ − 〈ġt , y1〉

(〈ġ(t),	−1
n (t)ġ(t)〉)1/2

)2}]

×
[
�

(
y‖ġ(t)‖ − 〈ġ(t), y1〉

(〈ġ(t),	−1
n (t)ġ(t)〉)1/2

)
− 1

]−1

,

where A = {〈ġ(t), y1〉 ≤ y‖ġ(t)‖}. Integration along the boundary of T produces,
after some manipulations,

φ(x)xd−2

(2π)d/2

∫
∂T

∫ ∞
0

e−δn(t)|	n(t)|1/2
Ẽt (ā1) dy dV∂T (t)

= φ(x)xd−2

2(2π)(d−1)/2

×
∫
∂T

[
e−δn(t)|	n(t)|1/2〈ġ(t),	−1

n (t)ġ(t)〉1/2/‖ġ(t)‖]
dV∂T (t).

To summarize, we obtain:

THEOREM 4.9. Let {Zn(t); t ∈ T } be a random field given, marginally,
by (1.4). Assume that T is a compact, convex subset of the d-dimensional Euclid-
ean space. Let the conditions of Theorem 4.1 with α = 1 hold. Assume further
that θu(·), and ψu(·) are bounded, as well as their second and forth order deriva-
tives, respectively. Finally, assume that the function g, which defines the boundary
of T , is piecewise continuously differentiable. Let x → ∞, n → ∞ be such that
x = o(n1/4). Then P(supt∈T Zn(t) ≥ x) is approximated by (1.6). For x = o(n1/5)

the term r2
n(t)/2σ 2

n (t) can be neglected.

5. Extensions. In this work we presented a second order approximation,
which accounts for edge effects, for a specific class of random fields. At most
locations it was indicated in the proofs how one may carry out a higher order ap-
proximation by including more terms in the Taylor expansion of the local field
and by using higher order asymptotic expansions (for continuous distributions).
The product is a functional of these derivatives under a Gaussian joint distribution,
which needs to be evaluated. Some details, such as the appropriate extension of the
Mill’s ratio expansion, have been omitted. Additional work would also be required
in order to obtain higher order boundary corrections, which take into account cur-
vature of the boundary and points of nondifferentiability. Although higher order
expansions may produce better approximations, it is likely that they will be very
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complex and not provide additional insight. In addition, numerical examples in the
Gaussian case suggest that the two term approximation is frequently reasonably
accurate.

The methods we have developed are quite general. The “moving average” rep-
resentation we have assumed for Xt has much the same effect that moving av-
erage representations have long assumed in time series analysis. It allows us to
derive by calculation detailed estimates needed in our arguments, especially our
use of versions of a local central limit theorem to prove (4.23). It is easy to iden-
tify places in our argument, where one could rewrite the result of a calculation
as an assumption to provide an approximation for a more general class of ran-
dom fields, which then could be specialized to subclasses by checking the assump-
tions.

For the well developed case of a Gaussian random field {Z(t) : t ∈ T }, with
components that are standard normal, several technical conditions and aspects of
the proof can be significantly improved and simplified. See [9] for details.

An interesting generalization is random fields, even Gaussian random fields,
with both smooth and nonsmooth components. Such fields arise naturally in the
monitoring of images over time, so time is another component that should be added
to the parameter space. At each given point in time the score may vary smoothly as
the function of the structure of the signal. However, if a signal may abruptly appear,
then the score will not be smooth in the direction of the time component. The
advantage of our method, which was originally developed in nonsmooth settings, is
its flexibility. The essential argument is blind with respect to issues of smoothness,
and the calculations can be carried out in a unified manner. Only in the detailed
investigation of the local field does the level of smoothness become important.

APPENDIX: MORE PROOFS

PROOF OF LEMMA 4.3. Let B = B(r) and assume that ŷ ∈ [−r, r] maxi-
mizes h. The one-dimensional and multi-dimensional cases are dealt separately.
Consider first the case d = 1. If ŷ = r then h(y) − h(ŷ) ≥ H(y − ŷ), which gives∫ r

−r
eh(y)−h(ŷ) dy ≥

∫ 2r

0
e−Hy dy

(A.1)
= H−1(1 − e−2rH ) ≥ (H + 1/2r)−1.

The last inequality is verified by recalling the elementary inequality y/(1−e−y) ≤
y + 1, which holds for every y > 0. The other extremal situation, ŷ = −r , is ex-
actly the same. One only has to consider the steepest negative slope −H instead
of H . If |ŷ| < r we use them both to bound h(y)−h(ŷ) from below by −H |y − ŷ|.
The integral is then evaluated over [−r, ŷ] for positive ŷ, and over [ŷ, r] for nega-
tive ŷ. Consequently, a lower bound for interior points, (H + 1/r)−1, is achieved,
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which together with the right-hand side of (A.1) completes the proof for the one-
dimensional case.

The multi-dimensional case is again divided into two scenarios. One is when
ŷ lies on the boundary and the other is when ŷ is an interior point. We first treat
boundary points ‖ŷ‖ = r . To begin with, assume that the projections of ŷ onto each
plane yi − yj , i �= j , is the bisector of the axes yi, yj and further, that ŷi > 0, for
1 ≤ i ≤ d . That is, assume that the ŷi ’s are positive and that ŷ1 = ŷ2 = · · · = ŷd ,
with a common value which must be equal to rd−1/2. We refer to this ŷ as “sim-
ple.” For every y ∈ B there exists, by the mean-value theorem, a point η on the
line segment joining y and ŷ, such that h(y) − h(ŷ) = (y − ŷ)′ḣ(η). Now, denote
by Q = ∏d

i=1 Qi the (d-dimensional) cube inscribed in B having sides 2rd−1/2.
Therefore,

∫
B

eh(y)−h(ŷ) dy ≥
d∏

i=1

∫
Qi

e(yi−ŷi )ḣi (η) dyi .(A.2)

By a reduction to the one-dimensional case it is clear that every univariate integral
above is in the form considered there for boundary points, with r replaced by
rd−1/2. Since Hi ≡ maxz∈B |ḣi(z)| ≤ H for all 1 ≤ i ≤ d , we obtain a lower bound
(H + 1/2rd−1/2)−d . The general case of a boundary point ŷ, which is not in the
form depicted above, is handled similarly except that the axes should be rotated
first, to make ŷ “simple.” Denote by � the corresponding rotation matrix. Since
� is orthogonal norm preserving transformation the bound changes only slightly,
and is given in the form indicated by the lemma.

Last, let ŷ be an interior point. Assume, with no loss of generality, that ŷ is
simple (and also ŷi < rd−1/2). This is clearly enough by the above argument. We
repeat the scheme that yielded relation (A.2). This time each univariate integral is
evaluated over the subinterval [−rd−1/2, ŷi]. This is akin to the one-dimensional
case with rd−1/2 substituted for r , and thus, the requested bound is obtained. �

PROOF OF LEMMA 4.8. Consider first the case σ 2 = 1. The general case will
follow by substituting σx for x, μ/σ for μ, and y/σ for y. The log-likelihood ratio
associated with transforming from mean μ to mean y is (μ − y)Y − (μ2 − y2)/2.
Therefore,

Eμ(e−xY ;Y ≥ y) = Ey

(
e−(x+y−μ)(Y−y);Y − y ≥ 0

) × e−xy−(y−μ)2/2.

The random variable Y − y has a standard normal distribution under the distri-
bution measure Py . Its density satisfies:∣∣∣∣∣φ(z) − 1√

2π

k∑
m=0

(−1)mz2m

2mm!
∣∣∣∣∣ ≤ z2n+2

2n+1(n + 1)! .

The approximation and bound on the error are obtained by integration. �
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