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OPTIMAL RANK-BASED TESTS FOR HOMOGENEITY
OF SCATTER

BY MARC HALLIN1 AND DAVY PAINDAVEINE2

Université Libre de Bruxelles

We propose a class of locally and asymptotically optimal tests, based
on multivariate ranks and signs for the homogeneity of scatter matrices in m

elliptical populations. Contrary to the existing parametric procedures, these
tests remain valid without any moment assumptions, and thus are perfectly
robust against heavy-tailed distributions (validity robustness). Nevertheless,
they reach semiparametric efficiency bounds at correctly specified ellipti-
cal densities and maintain high powers under all (efficiency robustness). In
particular, their normal-score version outperforms traditional Gaussian likeli-
hood ratio tests and their pseudo-Gaussian robustifications under a very broad
range of non-Gaussian densities including, for instance, all multivariate Stu-
dent and power-exponential distributions.

1. Introduction.

1.1. Homogeneity of variances and covariance matrices. The assumption of
variance homogeneity is central to the theory and practice of univariate m-sample
inference, playing a major role in such models as m-sample location (ANOVA)
or m-sample regression (ANOCOVA). The problem of testing the null hypothesis
of variance homogeneity, therefore, is of fundamental importance, and for more
than half a century, has been a subject of continued interest in the statistical liter-
ature. The standard procedure, described in most textbooks, is Bartlett’s modified
(Gaussian) likelihood ratio test (see [2]). This test, however, is well known to be
highly nonrobust against violations of Gaussian assumptions, a fact that gave rise
to a large number of “robustified” versions of the likelihood ratio procedure ([3,
5, 6, 21], to quote only a few). Soon, it was noticed that these “robustifications,”
if reasonably resistant to nonnormality, unfortunately were lacking power: in the
convenient terminology of Heritier and Ronchetti [22], they enjoy validity robust-
ness but not efficiency robustness.

In an extensive simulation study, Conover, Johnson and Johnson [7] have inves-
tigated the validity robustness (against nonnormal densities) and efficiency robust-
ness properties of 56 distinct tests, including several (signed-) rank-based ones.
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Their conclusion is that only three of them survive the examination, and that two
of the three survivors are normal-score signed-rank tests (adapted from [10]).

In view of its applications in MANOVA, MANOCOVA, discriminant analysis,
and so forth, the multivariate problem of testing for homogeneity of covariance
matrices is certainly no less important than its univariate counterpart. The same
problem moreover is of intrinsic interest in such fields as psychometrics or genet-
ics where, for instance, the homogeneity of genetic covariance structure among
species is a classical subject of investigation. Robustness and power issues, how-
ever, are even more delicate and complex in the multivariate context.

Here again, the traditional procedure is a Gaussian modified likelihood ratio
test, φ

(n)
MLRT, the unbiasedness of which has been established (for general dimen-

sion k and number m of populations, under Gaussian assumptions) by Perlman
[31]. Unfortunately, this test shares the poor resistance to nonnormality of its uni-
variate counterpart, and is invalid even under elliptical densities with finite fourth-
order moments: see [12, 38] or [41]. The test proposed by Nagao [27], as shown
in [19], is asymptotically equivalent to φ

(n)
MLRT—still under finite fourth-order mo-

ments, and hence inherits of the poor robustness properties of the latter. Quite
surprisingly, and except for some attempts to bootstrap φ

(n)
MLRT ([11, 42, 43]), the

important problem of testing homogeneity of covariance matrices under possibly
non-Gaussian densities has remained an open problem for more than fifty years.

In 2001, Schott [35] proposed a Wald test, φ
(n)
Schott, the validity of which still re-

quires Gaussian densities, but also two modified versions thereof—denote them as
φ

(n)
Schott∗ and φ

(n)
Schott†—enjoying validity robustness at homokurtic and heterokurtic

elliptical densities with finite fourth-order moments, respectively. More recently, a
detailed account of the pseudo-Gaussian approach of the problem has been given
in [19], where we derive the locally asymptotically most stringent (in the Le Cam
sense) Gaussian test φ

(n)
N , and show how to turn it into pseudo-Gaussian tests φ

(n)
N ∗

and φ
(n)
N † that are valid under homokurtic and heterokurtic m-tuples of elliptical

densities with finite fourth-order moments, respectively. We also show that φ
(n)
Schott∗

and φ
(n)
N ∗ (resp. φ

(n)
Schott† and φ

(n)
N †) asymptotically coincide. Schott himself recom-

mends using the homokurtic version φ
(n)
Schott∗ of his test and, since heterokurtic

samples are not considered here, we will concentrate on φ
(n)
Schott∗ and φ

(n)
N ∗ as the

only pseudo-Gaussian tests available so far for the problem under study (one of the
findings of [19] indeed is that the bootstrapped MLRT, although perfectly valid, is
highly unsatisfactory in the non-Gaussian case).

This pseudo-Gaussian qualification, however, still requires finite moments of
order four, and only addresses validity robustness issues. Although no multivariate
equivalent of the Conover, Johnson and Johnson study [7] has been conducted so
far, the results we are obtaining in Sections 5.2 and 6 below, however, indicate that
φ

(n)
Schott∗ and φ

(n)
N ∗ still suffer a severe lack of efficiency robustness, particularly so
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at radial densities with high kurtosis such as the Student with 4 + δ degrees of
freedom (with δ ≈ 0).

It is thus very likely that the conclusions of Conover et al. [7] still apply, which
strongly suggests considering a “rank-based” approach—with a concept of “ranks”
adapted to the multivariate context. The purpose of this paper is to develop such
an approach under elliptical assumptions, based on the signs and ranks considered
in [15] for location, [16] for (auto)regression, [14] and [17] for shape.

Contrary to all existing methods, our tests do not require any moment assump-
tions, so that the null hypothesis they address actually is that of homogeneity
of scatter matrices, reducing to more classical homogeneity of covariance ma-
trices under finite second-order moments. They are asymptotically distribution-
free, reach semiparametric efficiency at correctly specified densities, and are both
validity- and efficiency-robust. When based on Gaussian scores, their asymptotic
relative efficiency with respect to the Gaussian and pseudo-Gaussian tests is larger
than one under almost all elliptical densities (see Section 6 for details).

1.2. Testing equality of scatter (covariance) matrices. Denote by (Xi1, . . . ,

Xini
), i = 1, . . . ,m, a collection of m mutually independent samples of i.i.d.

k-dimensional random vectors with elliptically symmetric densities. More pre-
cisely, for all i = 1, . . . ,m, the ni observations Xij , j = 1, . . . , ni , are assumed
to have a probability density function of the form

fi(x) := ck,f1 |�i |−1/2f1
((

(x − θ i )
′�−1

i (x − θ i )
)1/2)

, x ∈ R
k,(1.1)

for some k-dimensional vector θ i (location), symmetric and positive definite
(k × k) matrix �i (the scatter matrix), and (duly standardized: see below) function
f1 : R+

0 → R
+ (the radial density). The null hypothesis considered throughout is

the hypothesis H0 :�1 = · · · = �m of scatter homogeneity (reducing, under finite
variances, to covariance homogeneity).

Define (throughout, �1/2 stands for the symmetric root of �)

Uij (θ i ,�i ) := �
−1/2
i (Xij − θ i )

‖�−1/2
i (Xij − θ i )‖

and

(1.2)
dij (θ i ,�i ) := ‖�−1/2

i (Xij − θ i )‖.
Denoting by n = ∑m

i=1 ni the total sample size and writing Rij (θ1, . . . , θm,�1,

. . . ,�m) for the rank of dij (θ i ,�i ) among d11(θ1,�1), . . . , dmnm(θm,�m), con-
sider the signed-rank scatter matrices

S˜K;i := 1

ni

ni∑
j=1

K

(
Rij (θ̂1, . . . , θ̂m, �̂, . . . , �̂)

n + 1

)
Uij (θ̂ i , �̂)U′

ij (θ̂ i , �̂),

(1.3)
i = 1, . . . ,m,
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where θ̂1, . . . , θ̂m are consistent estimates of the various location parameters, �̂ is
a consistent (under H0) estimate of the common null value of the �i ’s, and K

is some appropriate score function. The proposed signed-rank tests reject the null
hypothesis of scatter homogeneity for large values of

Q˜
(n)
K := 1

n

∑
1<i<i′<m

(ni + ni′)Q˜
(n)
K;i,i′,(1.4)

where Q˜
(n)
K;i,i′ := nini′

ni+ni′
{αk,K tr[(S˜K;i − S˜K;i′)2] + βk,K tr2[S˜K;i − S˜K;i′ ]}; αk,K

and βk,K are constants depending on the dimension k and the score function K .
The form of (1.4) follows from Le Cam type optimality arguments, but Q˜

(n)
K

also can be obtained by replacing traditional sample covariance matrices with the
signed-rank scatter matrices (1.3) in the statistic of the pseudo-Gaussian test φ

(n)
N ∗

derived in [19].
The use of signed ranks is justified by the invariance principle: H0 indeed is not

only invariant under affine transformations, but also under the group of (continu-
ous monotone) radial transformations; see Section 3.2 for details. Beyond affine-
invariance (all tests considered in this paper are affine-invariant), our rank tests—
unlike their competitors—are also (asymptotically) invariant with respect to the
groups of radial transformations; their validity robustness actually follows from
this latter invariance property.

As announced, our methodology combines validity and efficiency robustness.
We will show that for (essentially) any radial density f1, it is possible to define
a score function K := Kf1 characterizing a signed-rank test which is locally and
asymptotically optimal (locally and asymptotically most stringent, in the Le Cam
sense) under radial density f1. In particular, when based on Gaussian scores, our
rank tests achieve the same asymptotic performances as the optimal Gaussian tests
φ

(n)
N at the multinormal, while enjoying the validity robustness of the pseudo-

Gaussian φ
(n)
N ∗ (or φ

(n)
Schott∗) and even more, since no moment assumption is re-

quired. Moreover, the asymptotic relative efficiencies (AREs) of these normal-
score tests are almost always larger than one with respect to their parametric com-
petitors; see Section 6. The class of tests we are proposing thus in most cases
dominates the existing parametric ones, both in terms of robustness and power.

1.3. Outline of the paper. The paper is organized as follows. In Section 2, we
collect the main assumptions needed in the sequel. Section 3 discusses semipara-
metric modeling issues and their relation to group invariance. Section 4.1 states
the uniform local asymptotic normality result (ULAN) on which our construction
of locally and asymptotically optimal tests is based. In Section 4.2, we construct
rank-based versions of the central sequences appearing in this ULAN result. In
Section 5.1, we derive and study the proposed nonparametric (signed-rank) tests
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[based on (1.4)] and, in Section 5.2, for the purpose of performance comparisons,
the optimal pseudo-Gaussian ones. Asymptotic relative efficiencies with respect
to those pseudo-Gaussian tests are derived in Section 6. Section 7 provides some
simulation results confirming the theoretical ones. Finally, the Appendix collects
proofs of asymptotic linearity and other technical results.

2. Main assumptions. For the sake of convenience, we are collecting here
the main assumptions to be used in the sequel.

2.1. Elliptical symmetry. As mentioned before, we throughout assume that all
populations are elliptically symmetric. More precisely, defining the collections F
of radial densities and F1 of standardized radial densities as

F := {f > 0 a.e. :μk−1;f < ∞}
and

F1 :=
{
f1 ∈ F :

1

μk−1;f1

∫ 1

0
rk−1f1(r) dr = 1

2

}
,

respectively, where μ�;f := ∫∞
0 r�f (r) dr , we require the following.

ASSUMPTION (A). The observations Xij , j = 1, . . . , ni , i = 1, . . . ,m, are
mutually independent, with p.d.f. fi , i = 1, . . . ,m, given in (1.1), for some f1 ∈
F1.

Clearly, for the scatter matrices �i in (1.1) to be well defined, identifiability
restrictions are needed. This is why we impose that f1 ∈ F1, which implies that
dij (θ i ,�i ) defined in (1.2) has median one under (1.1), and identifies �i without
requiring any moment assumptions (see [17] for a discussion). Note, however, that
under finite second-order moments, �i is proportional to the covariance �0i of
Xij , with a proportionality constant that does not depend on i: the hypotheses of
scatter and covariance homogeneity then coincide.

Special instances of elliptical densities are the k-variate multinormal distri-
butions, with standardized radial density f1(r) = φ1(r) := exp(−akr

2/2), the
k-variate Student distributions, with radial densities (for ν ∈ R

+
0 degrees of

freedom) f1(r) = f t
1,ν(r) := (1 + ak,νr

2/ν)−(k+ν)/2, and the k-variate power-
exponential distributions, with radial densities of the form f1(r) = f e

1,η(r) :=
exp(−bk,ηr

2η), η ∈ R
+
0 ; the positive constants ak , ak,ν and bk,η are such that

f1 ∈ F1.
The equidensity contours associated with (1.1) are hyper-ellipsoids centered

at θ i , the shape and orientation of which are determined by the scatter matrix �i .
The multivariate signs Uij (θ i ,�i ) and standardized radial distances dij (θ i ,�i )

defined in (1.2) are the (within-group) elliptical coordinates associated with those
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ellipsoids: the observation Xij then decomposes into θ i + dij�
1/2
i Uij , where

the Uij ’s, j = 1, . . . , ni , i = 1, . . . ,m are i.i.d. uniform over the unit sphere
in R

k , and the dij ’s are i.i.d., independent of the Uij ’s, with common density
f̃1k(r) := (μk−1;f1)

−1rk−1f1(r) over R
+ (justifying the terminology standard-

ized radial density for f1) and distribution function F̃1k . In the sequel, the notation
g̃1k and G̃1k will be used for the corresponding functions computed from a stan-
dardized radial density g1(∈ F1).

The derivation of locally and asymptotically optimal tests at radial density f1
will be based on the uniform local and asymptotic normality (ULAN) of the model
at given f1. This ULAN property—the statement of which requires some further
preparation and is delayed to Section 4.1—only holds under some further mild
regularity conditions on f1. More precisely, ULAN (see Proposition 4.1 below)
requires f1 to belong to the collection Fa of absolutely continuous densities in F1
such that, letting ϕf1 := −ḟ1/f1 (with ḟ1 the a.e.-derivative of f1), the integrals

Ik(f1) :=
∫ 1

0
ϕ2

f1
(F̃−1

1k (u)) du and Jk(f1) :=
∫ 1

0
ϕ2

f1
(F̃−1

1k (u))(F̃−1
1k (u))2 du

are finite. The quantities Ik(f1) and Jk(f1) play the roles of radial Fisher in-
formation for location and radial Fisher information for shape/scale, respectively
(see [17]).

2.2. Asymptotic behavior of sample sizes. Although, for the sake of nota-
tional simplicity, we do not mention it explicitly, we actually consider sequences
of statistical experiments, with triangular arrays of observations of the form
(X(n)

11 , . . . ,X(n)

1n
(n)
1

,X(n)
21 , . . . ,X(n)

2n
(n)
2

, . . . ,X(n)
m1, . . . ,X(n)

mn
(n)
m

) indexed by the total sam-

ple size n, where the sequences n
(n)
i satisfy the following assumption.

ASSUMPTION (B). For all i = 1, . . . ,m, ni = n
(n)
i → ∞ as n → ∞.

Note that this assumption is weaker than the corresponding classical assumption
in (univariate or multivariate) multisample problems, which requires that ni/n be
bounded away from 0 and 1 for all i as n → ∞. Letting λ

(n)
i := n

(n)
i /n, it is easy

to check that Assumption (B) is actually equivalent to the Noether conditions

max
(

1 − λ
(n)
i

λ
(n)
i

,
λ

(n)
i

1 − λ
(n)
i

)
= o(n) as n → ∞, for all i,

that are needed for the representation result in Lemma 4.1(i) below. However, in
the derivation of asymptotic distributions under local alternatives, the following
reinforcement of Assumption (B) is assumed to hold (mainly, for notational com-
fort):

ASSUMPTION (B′). For all i = 1, . . . ,m, λ
(n)
i → λi ∈ (0,1), as n → ∞.
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2.3. Score functions. The score functions K appearing in the rank-based sta-
tistics (1.3)–(1.4) will be assumed to satisfy the following regularity conditions.

ASSUMPTION (C). The score function K : (0,1) → R (C1) is a continu-
ous, nonconstant, and square-integrable mapping which (C2) can be expressed
as the difference of two monotone increasing functions, and (C3) satisfies∫ 1

0 K(u)du = k.

Assumption (C3) is a normalization constraint that is automatically satisfied by
the score functions K(u) = Kf1(u) := ϕf1(F̃

−1
1k (u))F̃−1

1k (u) leading to local and
asymptotic optimality at radial density f1 (at which ULAN holds); see Section 4.1.
For score functions K,K1,K2 satisfying Assumption (C), let Jk(K1,K2) :=
E[K1(U)K2(U)] and Lk(K1,K2) := Cov[K1(U),K2(U)] = Jk(K1,K2) − k2

[throughout, U stands for a random variable uniformly distributed over (0,1)].
For simplicity, we write Jk(K) for Jk(K,K), Lk(K) for Lk(K,K), Jk(K,f1)

for E[K(U)Kf1(U)], Lk(f1, g1) for E[Kf1(U)Kg1(U)] − k2, etc.
The power score functions Ka(u) := k(a + 1)ua (a > 0) provide some tradi-

tional score functions satisfying Assumption (C), with Jk(Ka) = k2(a+1)2/(2a+
1) and Lk(Ka) = k2a2/(2a + 1): Wilcoxon and Spearman scores are obtained
for a = 1 and a = 2, respectively. As for score functions of the form Kf1 ,
an important particular case is that of van der Waerden or normal scores, ob-
tained for f1 = φ1. Then, denoting by �k the chi-square distribution func-
tion with k degrees of freedom, Kφ1(u) = �−1

k (u), Jk(φ1) = k(k + 2), and
Lk(φ1) = 2k. Similarly, writing Gk,ν for the Fisher–Snedecor distribution func-
tion with k and ν degrees of freedom, Student densities f1 = f t

1,ν yield Kf t
1,ν

(u) =
k(k + ν)G−1

k,ν(u)/(ν + kG−1
k,ν(u)), Jk(f

t
1,ν) = k(k + 2)(k + ν)/(k + ν + 2) and

Lk(f
t
1,ν) = 2kν/(k + ν + 2).

3. Semiparametric modeling of the family of elliptical densities.

3.1. Scatter, scale, and shape. Consider an observed n-tuple X1, . . . ,Xn of
i.i.d. k-dimensional elliptical random vectors, with location θ , scatter �, and ra-
dial density f1 ∈ F1 but otherwise unspecified. The family P (n) of distributions
for this observation is indexed by (θ,�, f1). As soon as a semiparametric point of
view is adopted, or when rank-based methods are considered, the scatter matrix �

naturally decomposes into � = σ 2V, where σ is a scale parameter (equivariant
under multiplication by a positive constant) and V a shape matrix (invariant under
multiplication by a positive constant). A semiparametric model with specified σ

and unspecified standardized radial density f1 indeed would be highly artificial,
and we, therefore, only consider the case under which σ and f1 are both unspec-
ified. This semiparametric setting is also the one that enjoys the group invariance
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structure in which the ranks and the signs to be used in our method spontaneously
arise from invariance arguments; see Section 3.2 below.

The concepts of scale and shape however require a more careful definition. De-
noting by Sk the collection of all k × k symmetric positive definite real matrices,
consider a function S :Sk → R

+
0 satisfying S(λ�) = λS(�) for all λ ∈ R

+
0 and

� ∈ Sk , and define scale and shape as σS := (S(�))1/2 and VS := �/S(�), re-
spectively. Clearly, VS is the only matrix in Sk which is proportional to � and
satisfies S(VS) = 1: denote by VS

k := {V ∈ Sk : S(V) = 1} the set of all possible
shape matrices associated with S. Classical choices of S are (i) S(�) = (�)11 ([14,
17, 23] and [33]); (ii) S(�) = k−1 tr(�) ([8, 28] and [39]); (iii) S(�) = |�|1/k ([9,
34, 36] and [37]).

In practice, all choices of S are essentially equivalent. Bickel (Example 4 of [4],
with a trace-based normalization of �−1) actually shows that irrespective of S, the
asymptotic information matrix for VS in the presence of unspecified θ and σS is
the same, at any θ ∈ R

k , σS ∈ R
+
0 , VS ∈ VS

k and f1, whether f1 is specified (para-
metric model) or not (semiparametric model): once θ and σS are unspecified, an
unspecified f1 does not induce any additional loss for inference about VS . In [30],
Paindaveine establishes the stronger result that the information matrix for VS in
the presence of unspecified θ , σS and f1 is strictly less, at any θ ∈ R

k , σS ∈ R
+
0 ,

VS ∈ VS
k and f1, than in the corresponding parametric model with specified θ , σS

and f1—except for S :� 	→ |�|1/k , where those two information matrices coin-
cide: under this determinant-based normalization, thus, the presence of nuisances
(θ , σS and f1) (resp., θ , VS , and f1) asymptotically has no effect on inference
about shape (resp., inference about scale). In both cases, it can be said (adopt-
ing a point estimation terminology) that shape can be estimated adaptively. This
Paindaveine adaptivity, however, where θ , σS and f1 lie in the nuisance space of
the semiparametric model, is much stronger than Bickel adaptivity where only f1
does. This finding strongly pleads in favor of the determinant-based definition of
shape which, with its block-diagonal information matrix for θ , σS and VS , is also
more convenient from the point of view of statistical inference, and as we will see
in Section 5.1, allows for an ANOVA-type decomposition of the test statistics into
two mutually independent parts providing tests against subalternatives of scale and
shape heterogeneity, respectively. Therefore, throughout we adopt S(�) = |�|1/k ,
and henceforth simply write V ∈ Vk and σ for the resulting shape and scale.

The parameter in our problem then is the L-dimensional vector

ϑ := (ϑ ′
I ,ϑ

′
II,ϑ

′
III)

′ := (θ ′
1, . . . , θ

′
m,σ 2

1 , . . . , σ 2
m, (

◦
vechV1)

′, . . . , ( ◦
vech Vm)′)′,

where L = mk(k + 3)/2 and
◦

vech(V) is characterized by vech(V) =: ((V)11,

(
◦

vech V)′)′. Indeed, �i is entirely determined by σ 2
i and

◦
vech(Vi ). Write � for the

set R
mk ×(R+

0 )m×(
◦

vech(Vk))
m of admissible ϑ values, and P(n)

ϑ;f1
or P(n)

ϑI ,ϑ II ,ϑ III;f1
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for the joint distribution of the n observations under parameter value ϑ and stan-
dardized radial density f1 (always implicitly assumed to belong to F1, when nota-
tion f1 is used).

Finally, note that (i) Uij (θ i ,�i ) = Uij (θ i ,Vi) and (ii) dij (θ i ,�i ) = σ−1
i dij (θ i ,

Vi ). It follows from (ii) that under H0, the ranks of the radial distances computed
from the common value V of the shape matrices coincide with those of the stan-
dardized radial distances computed from the common value � of the scatter ma-
trices.

3.2. Invariance issues. Denoting by M(ϒ) the vector space spanned by the
columns of the L × r full-rank matrix ϒ (r < L), the null hypothesis of scatter
homogeneity H0 : σ 2

1 V1 = · · · = σ 2
mVm can be written as H0 :ϑ ∈ M(ϒ), with

ϒ :=
⎛⎝ϒI 0 0

0 ϒII 0
0 0 ϒIII

⎞⎠ :=
⎛⎝ Imk 0 0

0 1m 0
0 0 1m ⊗ Ik0

⎞⎠ ,

(3.1)

k0 := k(k + 1)

2
− 1,

where 1m := (1, . . . ,1)′ ∈ R
m and I� denotes the �-dimensional identity matrix.

Two distinct invariance structures play a role here. The first one is related with
the group of affine transformations of the observations, which generates the para-
metric families P (n)

ϒ,f1
:=⋃

ϑ∈M(ϒ){P(n)
ϑ;f1

}. More precisely, this group is the group

Gm,k,◦ of affine transformations of the form Xij 	→ AXij + bi , where A is a full-
rank (k × k) matrix and B := (b1, . . . ,bm) a (k × m) matrix. Associated with that
group is the group G̃m,k,◦ of transformations ϑ 	→ gm,k

A,B(ϑ) of the parameter space,
where

gm,k
A,B(ϑ) := (

(Aθ1 + b1)
′, . . . , (Aθm + bm)′, |A|2/kσ 2

1 , . . . , |A|2/kσ 2
m,

(
◦

vech(AV1A′))′/|A|2/k, . . . , (
◦

vech(AVmA′))′/|A|2/k)′.
Clearly, H0 is invariant under Gm,k,◦—meaning that gm,k

A,B(M(ϒ)) = M(ϒ) for all

gm,k
A,B. Therefore, it is reasonable to restrict to affine-invariant tests of H0. Beyond

their distribution-freeness with respect to the θ i’s and the common null values σ

and V of the scale and shape parameters, affine-invariant test statistics—that is,
statistics Q such that Q(AX11 + b1, . . . ,AXmnm + bm) = Q(X11, . . . ,Xmnm) for
all A,b1, . . . ,bm—yield tests that are coordinate-free.

A second invariance structure is induced by the groups G,◦ := GϑI ,V,◦ of con-
tinuous monotone radial transformations, of the form

X 	→ Gg (X11, . . . ,Xmnm)

= Gg

(
θ1 + d11(θ1,V)V1/2U11(θ1,V), . . . ,
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θm + dmnm(θm,V)V1/2Umnm(θm,V)
)

:= (
θ1 + g(d11(θ1,V))V1/2U11(θ1,V), . . . ,

θm + g(dmnm(θm,V))V1/2Umnm(θm,V)
)
,

where g : R
+ → R

+ is continuous, monotone increasing, and such that g(0) = 0
and limr→∞ g(r) = ∞. For each ϑI ,V, this group GϑI ,V,◦ is a generating group
for P (n)

ϑI ,V
:= ⋃

σ

⋃
f1

{P(n)

ϑI ,σ
21m,1m⊗(

◦
vechV);f1

} (a nonparametric family). In such

families, the invariance principle suggests basing inference on statistics that are
measurable with respect to the corresponding maximal invariant, namely the vec-
tors (U11, . . . ,Umnm) of signs and the vector (R11, . . . ,Rmnm) of ranks, where
Uij = Uij (θ i ,V), and Rij = Rij (θ1, . . . , θm,V, . . . ,V). Such invariant statistics

of course are distribution-free under P (n)
ϑI ,V

.

4. Uniform local asymptotic normality, signs and ranks.

4.1. Uniform local asymptotic normality (ULAN). As mentioned in Section 1,
we plan to develop tests that are optimal at correctly specified densities, in the
sense of Le Cam’s asymptotic theory of statistical experiments. In this section, we
state the ULAN result (with respect to location, scale and shape parameters for
fixed radial density f1) on which optimality will be based. Writing

ϑ (n) = (
ϑ

(n)′
I ,ϑ

(n)′
II ,ϑ

(n)′
III
)′

= (
θ

(n)′
1 , . . . , θ (n)′

m ,σ
2(n)
1 , . . . , σ 2(n)

m ,
( ◦
vechV(n)

1

)′
, . . . ,

( ◦
vechV(n)

m

)′)′
for an arbitrary sequence of L-dimensional parameter values in �, consider se-
quences of “local alternatives” ϑ (n) + n−1/2ν(n)τ (n), where

τ (n) = (
τ

(n)′
I ,τ

(n)′
II ,τ

(n)′
III
)′

= (
t(n)′
1 , . . . , t(n)′

m , s
2(n)
1 , . . . , s2(n)

m ,
( ◦
vech v(n)

1

)′
, . . . ,

( ◦
vech v(n)

m

)′)′
is such that supn τ (n)′τ (n) < ∞ and where, denoting by 	(n) = (

(n)
ii′ ) the (m×m)

diagonal matrix with 
(n)
ii := (λ

(n)
i )−1/2 (see Section 2.2),

ν(n) :=
⎛⎜⎝ ν

(n)
I 0 0
0 ν

(n)
II 0

0 0 ν
(n)
III

⎞⎟⎠ :=
⎛⎝	(n) ⊗ Ik 0 0

0 	(n) 0
0 0 	(n) ⊗ Ik0

⎞⎠(4.1)

[under Assumption (B′), we also write ν for limn→∞ ν(n)]. Clearly, these lo-
cal alternatives do not involve (v(n)

i )11, i = 1, . . . ,m. It is natural, though, to

see that the perturbed shapes V(n)
i + n

−1/2
i v(n)

i remain [up to o(n
−1/2
i )’s] within
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the family Vk of shape matrices: this leads to defining (v(n)
i )11 in such a way

that tr[(V(n)
i )−1v(n)

i ] = 0, i = 1, . . . ,m, which entails |V(n)
i + n

−1/2
i v(n)

i |1/k =
1 + o(n

−1/2
i ) (see [18], Section 4).

The following notation will be used throughout. Let diag(B1,B2, . . . ,Bm) stand
for the block-diagonal matrix with diagonal blocks B1, B2, . . . ,Bm. Write V⊗2 for
the Kronecker product V ⊗ V. Denoting by e� the �th vector of the canonical
basis of R

k , let Kk := ∑k
i,j=1(eie′

j ) ⊗ (ej e′
i ) be the (k2 × k2) commutation ma-

trix, and put Jk := (vec Ik)(vec Ik)
′. Finally, let Mk(V) be the (k0 × k2) matrix

such that (Mk(V))′( ◦
vech v) = (vec v) for any symmetric k × k matrix v such that

tr(V−1v) = 0. As shown in Lemma 4.2(v) of [30], Mk(V)(vec V−1) = 0 for all
V ∈ Vk .

We then have the following ULAN result; the proof follows along the same lines
as in Theorem 2.1 of [30], and hence is omitted.

PROPOSITION 4.1. Assume that (A) and (B) hold, and that f1 ∈ Fa . Then the
family P (n)

f1
:= {P(n)

ϑ;f1
|ϑ ∈ �} is ULAN, with central sequence


ϑ;f1 = 

(n)
ϑ;f1

:=
⎛⎜⎝
I

ϑ;f1


II
ϑ;f1


III
ϑ;f1

⎞⎟⎠ ,


I
ϑ;f1

=
⎛⎜⎝
I,1

ϑ;f1
...


I,m
ϑ;f1

⎞⎟⎠ ,


II
ϑ;f1

=
⎛⎜⎝�

II,1
ϑ;f1
...

�
II,m
ϑ;f1

⎞⎟⎠ , 
III
ϑ;f1

=
⎛⎜⎝
III,1

ϑ;f1
...


III,m
ϑ;f1

⎞⎟⎠ ,

where [with dij = dij (θ i ,Vi) and Uij = Uij (θ i ,Vi)]


I,i
ϑ;f1

:= n
−1/2
i

σi

ni∑
j=1

ϕf1

(
dij

σi

)
V−1/2

i Uij ,

�
II,i
ϑ;f1

:= n
−1/2
i

2σ 2
i

ni∑
j=1

(
ϕf1

(
dij

σi

)
dij

σi

− k

)
,


III,i
ϑ;f1

:= n
−1/2
i

2
Mk(Vi)(V

⊗2
i )−1/2

ni∑
j=1

ϕf1

(
dij

σi

)
dij

σi

vec(Uij U′
ij ),

i = 1, . . . ,m, and full-rank block-diagonal information matrix

�ϑ;f1 := diag(�I
ϑ;f1

,�II
ϑ;f1

,�III
ϑ;f1

),(4.2)



1272 M. HALLIN AND D. PAINDAVEINE

where, defining σ := diag(σ1, . . . , σm), V := diag(V1, . . . ,Vm), Mk(V) :=
diag(Mk(V1), . . . ,Mk(Vm)) and V⊗2 := diag(V⊗2

1 , . . . ,V⊗2
m ), we let

�I
ϑ;f1

:= 1

k
Ik(f1)(σ

−2 ⊗ Ik)V−1, �II
ϑ;f1

:= 1
4Lk(f1)σ

−4

and

�III
ϑ;f1

:= Jk(f1)

4k(k + 2)
Mk(V)[Im ⊗ (Ik2 + Kk)](V⊗2)−1(Mk(V))′.

More precisely, for any ϑ (n) = ϑ + O(n−1/2) and any bounded sequence τ (n), we
have


(n)

ϑ (n)+n−1/2ν(n)τ (n)/ϑ (n);f1
:= log

(
dP(n)

ϑ (n)+n−1/2ν(n)τ (n);f1
/dP(n)

ϑ (n);f1

)
= (

τ (n))′
(n)

ϑ (n);f1
− 1

2

(
τ (n))′�ϑ;f1τ

(n) + oP(1)

and 
ϑ (n);f1

L−→ N (0,�ϑ;f1) under P(n)

ϑ (n);f1
, as n → ∞.

The classical theory of hypothesis testing in Gaussian shifts (see Section 11.9
of [26]) provides the general form for locally asymptotically optimal (namely, most
stringent) tests in ULAN models. Such tests, for a null hypothesis of the form
ϑ ∈ M(ϒ), should be based on the asymptotically chi-square null distribution of

Qϒ := 
′
ϑ;f1

�
−1/2
ϑ;f1

[
I − proj

(
�

1/2
ϑ;f1

(
ν(n))−1

ϒ
)]

�
−1/2
ϑ;f1


ϑ;f1

[with ϑ replaced by an appropriate estimator ϑ̂ ; see Assumption (D) below],
where proj(A) = A[A′A]−1A′, for any (L × r) matrix A with full rank r , is
the matrix projecting R

L onto M(A). Whenever �ϑ;f1 , ν(n) and ϒ all hap-
pen to be block-diagonal, which is the case in our problem, this projection ma-
trix clearly is block-diagonal, with diagonal blocks proj((�I

ϑ;f1
)1/2(ν

(n)
I )−1ϒI ),

proj((�II
ϑ;f1

)1/2(ν
(n)
II )−1ϒII), and proj((�III

ϑ;f1
)1/2(ν

(n)
III )−1ϒIII), denoting projec-

tions in R
mk , R

m and R
mk0 , respectively. Since moreover M((�I

ϑ;f1
)1/2(ν

(n)
I )−1 ×

ϒI ) = R
mk , we have proj((�I

ϑ;f1
)1/2(ν

(n)
I )−1ϒI ) = Imk , so that Qϒ reduces to

Qϒ = (
II
ϑ;f1

)′(�II
ϑ;f1

)−1/2

× [
I − proj

(
(�II

ϑ;f1
)1/2(ν(n)

II
)−1

ϒII
)]

(�II
ϑ;f1

)−1/2
II
ϑ;f1

(4.3)
+ (
III

ϑ;f1
)′(�III

ϑ;f1
)−1/2

× [
I − proj

(
(�III

ϑ;f1
)1/2(ν(n)

III
)−1

ϒIII
)]

(�III
ϑ;f1

)−1/2
III
ϑ;f1

,

where 
I
ϑ;f1

does not play any role. Accordingly, in the next section, we proceed

with rank-based analogues of 
II
ϑ;f1

and 
III
ϑ;f1

only.
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Note that the decomposition (4.3) of Qϒ into two asymptotically orthogonal
quadratic forms corresponds to the decomposition of scatter heterogeneity into
scale and shape heterogeneity; each of the two quadratic forms in the right-hand
side of (4.3) actually constitutes a locally asymptotically optimal test statistic for
H0 against one of those two subalternatives.

4.2. A rank-based central sequence for scale and shape (scatter). A general
result by [20] implies that, in adaptive models for which fixed-f1 submodels are
ULAN and fixed-ϑ submodels are generated by a group Gϑ , invariant versions
of central sequences exist under very general assumptions. In the present context,
this result would imply the existence, for the null values of ϑ , of central sequences
based on the multivariate signs Uij and the ranks Rij . Although that result does
not directly apply here, it is very likely that it still holds. This fact is confirmed by
the asymptotic representation of Lemma 4.1(i) below.

Consider the signed-rank statistic [associated with some score function K

satisfying Assumption (C)] 
˜ ϑ;K := ((
˜ II
ϑ;K)′, (
˜ III

ϑ;K)′)′ := (�˜
II,1
ϑ;K, . . . ,�˜

II,m
ϑ;K,

(
˜
III,1
ϑ;K)′, . . . , (
˜

III,m
ϑ;K )′)′, where

�˜
II,i
ϑ;K := n

−1/2
i

2σ 2
i

ni∑
j=1

(
K

(
Rij

n + 1

)
− k

)
(4.4)

and


˜
III,i
ϑ;K := n

−1/2
i

2
Mk(Vi)(V

⊗2
i )−1/2

ni∑
j=1

K

(
Rij

n + 1

)
vec(Uij U′

ij ).(4.5)

The following lemma provides (i) an asymptotic representation and (ii) the asymp-
totic distribution of 
˜ ϑ;K (see the Appendix for the proof). An immediate corol-

lary of (i) is that 
˜ ϑ;f1 := 
˜ ϑ;Kf1
, with K = Kf1 , actually constitutes a signed-

rank version of the scatter part ((
II
ϑ;f1

)′, (
III
ϑ;f1

)′)′ of the central sequence 
ϑ;f1 .

LEMMA 4.1. Assume that (A), (B) and (C) hold. Fix ϑ ∈ M(ϒ) (with com-
mon values σ and V of the scale and shape parameters). Let Rij be the rank
of dij := dij (θ i ,V) among d11, . . . , dmnm , and let Uij := Uij (θ i ,V). Then, for
all g1 ∈ F1:

(i) 
˜ ϑ;K = 
ϑ;K;g1 + oL2(1), under P(n)
ϑ;g1

, as n → ∞, where 
ϑ;K;g1 :=
((
II

ϑ;K;g1
)′, (
III

ϑ;K;g1
)′)′ := (�

II,1
ϑ;K;g1

, . . . ,�
II,m
ϑ;K;g1

, (
III,1
ϑ;K;g1

)′, . . . , (
III,m
ϑ;K;g1

)′)′,
with

�
II,i
ϑ;K;g1

:= n
−1/2
i

2σ 2

ni∑
j=1

(
K

(
G̃1k

(
dij

σ

))
− k

)
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and


III,i
ϑ;K;g1

:= n
−1/2
i

2
Mk(V)(V⊗2)−1/2

ni∑
j=1

K

(
G̃1k

(
dij

σ

))
vec(Uij U′

ij );(4.6)

(ii) defining Hk(V) := 1
4k(k+2)

Mk(V)[Ik2 + Kk](V⊗2)−1(Mk(V))′, 
ϑ;K;g1 is
asymptotically normal with mean zero and mean( 1

4σ 4 Lk(K,g1)τ II

Jk(K,g1)[Im ⊗ Hk(V)]τ III

)

under P(n)
ϑ;g1

and P(n)

ϑ+n−1/2ν(n)τ ;g1
, respectively, and covariance matrix

�ϑ;K := diag(�II
ϑ;K,�III

ϑ;K) := diag
(

1

4σ 4 Lk(K)Im,Jk(K)[Im ⊗ Hk(V)]
)

under both (the claim under P(n)

ϑ+n−1/2ν(n)τ ;g1
further requires g1 ∈ Fa).

As mentioned in the description of the most stringent tests (see the comments
after Proposition 4.1), we will need replacing the parameter ϑ with some estimate.
For this purpose, we assume the existence of ϑ̂ := ϑ̂ (n) satisfying:

ASSUMPTION (D). The sequence of estimators (ϑ̂ (n), n ∈ N) is:

(D1) constrained: P(n)
ϑ;g1

[ϑ̂ (n) ∈ M(ϒ)] = 1 for all n, ϑ ∈ M(ϒ), and g1 ∈ F1;

(D2) n1/2(ν(n))−1-consistent: for all ϑ ∈ M(ϒ), n1/2(ν(n))−1(ϑ̂ (n)−ϑ) = OP(1),
as n → ∞, under

⋃
g1∈F1

{P(n)
ϑ;g1

};
(D3) locally asymptotically discrete: for all ϑ ∈ M(ϒ) and all c > 0, there exists

M = M(c) > 0 such that the number of possible values of ϑ̂ (n) in balls of
the form {t ∈ R

L :n1/2‖(ν(n))−1(t − ϑ)‖ ≤ c} is bounded by M as n → ∞,
and

(D4) affine-equivariant: denoting by ϑ̂ (n)(A,B) the value of ϑ̂ (n) computed
from the transformed sample AXij + bi , j = 1, . . . , ni , i = 1, . . . ,m,
ϑ̂ (n)(A,B) = gm,k

A,B(ϑ̂ (n)), for all gm,k
A,B ∈ G̃m,k .

There are many possible choices for ϑ̂ . However, still in order to avoid mo-
ment assumptions, we propose the following estimators, related with the affine-
equivariant median proposed by [23]. For each i = 1, . . . ,m, let θ̂ i and V̂i be
characterized by

1

ni

ni∑
j=1

Uij (θ̂ i , V̂i) = 0 and
1

ni

ni∑
j=1

Uij (θ̂ i , V̂i)U′
ij (θ̂ i , V̂i) = 1

k
Ik,
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with |V̂i | = 1. Then, under ϑ ∈ M(ϒ), the common value V of the Vi’s is consis-
tently estimated [as n → ∞, under

⋃
g1∈F1

{P(n)
ϑ;g1

} and Assumptions (A) and (B),
without any moment assumption on g1], at the rate required by Assumption (D2),
by the Tyler [39] estimator V̂ computed from the n data points Xij − θ̂ i and nor-
malized in such a way that |V̂| = 1. Under the same conditions, the null value
σ of the scale is the common median of the i.i.d. radial distances dij (θ i ,V), so
that the empirical median σ̂ of the dij (θ̂ i , V̂)’s can be used as an estimator of σ .
Consequently, the estimator

ϑ̂ := (
θ̂

′
1, . . . , θ̂

′
m, σ̂ 21′

m,1′
m ⊗ (

◦
vech V̂)′

)′(4.7)

satisfies (D2) above—except perhaps for the ϑ̂ II part which, however, is not in-
volved in the test statistics below. This estimator also satisfies (D1) and (D4). As
for (D3), it is a purely technical requirement, with little practical implications (for
fixed sample size, any estimator indeed can be considered part of a locally asymp-
totically discrete sequence). Therefore, we henceforth assume that (4.7) satisfies
Assumption (D).

The resulting ranks R̂ij := Rij (θ̂1, . . . , θ̂m, V̂, . . . , V̂) are usually called aligned
ranks. The following asymptotic linearity result describes the asymptotic behavior
of the aligned version 
˜ ϑ̂;K of 
˜ ϑ;K under P(n)

ϑ;g1
; see the Appendix for the proof.

PROPOSITION 4.2. Assume that Assumptions (A), (B), (C) and (D1)–(D3)
hold. Let g1 ∈ Fa and ϑ ∈ M(ϒ) (with common values σ and V for the scale and
shape parameters). Then,


˜ II
ϑ̂;K − 
˜ II

ϑ;K + 1

4σ 4 Lk(K,g1)
(
ν

(n)
II
)−1

n1/2(ϑ̂ (n)
II − ϑ II

)
and


˜ III
ϑ̂;K − 
˜ III

ϑ;K + Jk(K,g1)[Im ⊗ Hk(V)](ν(n)
III
)−1

n1/2(ϑ̂ (n)
III − ϑ III

)
are oP(1) under P(n)

ϑ;g1
, as n → ∞.

5. Optimal tests of scatter homogeneity.

5.1. Optimal rank-based tests. For all ϑ ∈ M(ϒ) (with common values σ

and V for the scale and shape parameters), define

PII
ϑ;K := (�II

ϑ;K)−1 − (
ν

(n)
II
)−1

ϒII
(
ϒ ′

II
(
ν

(n)
II
)−1

�II
ϑ;K

(
ν

(n)
II
)−1

ϒII
)−1

ϒ ′
II
(
ν

(n)
II
)−1

= 4σ 4

Lk(K)

[
Im − C(n)]
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and

PIII
ϑ;K := (�III

ϑ;K)−1 − (
ν

(n)
III
)−1

ϒIII
(
ϒ ′

III
(
ν

(n)
III
)−1

�III
ϑ;K

(
ν

(n)
III
)−1

ϒIII
)−1

ϒ ′
III
(
ν

(n)
III
)−1

= (Jk(K))−1[Im − C(n)]⊗ (Hk(V))−1,

where C(n) = (C
(n)
ii′ ) denotes the (m×m) matrix with entries C

(n)
ii′ := (λ

(n)
i λ

(n)
i′ )1/2.

The K-score version φ˜
(n)
K of the rank-based tests we are proposing rejects H0 :ϑ ∈

M(ϒ) whenever the (affine-invariant) test statistic

Q˜
(n)
K := (
˜ II

ϑ̂;K)′PII
ϑ̂;K
˜ II

ϑ̂;K + (
˜ III
ϑ̂;K)′PIII

ϑ̂;K
˜ III
ϑ̂;K

=
m∑

i,i′=1

[
δi,i′

ni

− 1

n

]

×
ni∑

j=1

ni′∑
j ′=1

{
1

Lk(K)

(
K

(
R̂ij

n + 1

)
− k

)(
K

(
R̂i′j ′

n + 1

)
− k

)
(5.1)

+ k(k + 2)

2Jk(K)
K

(
R̂ij

n + 1

)
K

(
R̂i′j ′

n + 1

)

×
(
(Û′

ij Ûi′j ′)2 − 1

k

)}
exceeds the α-upper quantile χ2

(m−1)(k0+1);1−α of the chi-square distribution with
(m − 1)(k0 + 1) degrees of freedom (δi,i′ stands for the usual Kronecker symbol);
the explicit form of (Hk(V))−1 allowing for (5.1) can be found in Lemma 5.2
of [18]. In the sequel, we write φ˜

(n)
f1

and Q˜
(n)
f1

for φ˜
(n)
Kf1

and Q˜
(n)
Kf1

, respectively.

The decomposition (5.1) of the rank-based test statistic Q˜
(n)
K into two asymp-

totically orthogonal terms parallels the corresponding decomposition (4.3) of Qϒ

(see the closing remark of Section 4.1), with the same interpretation in terms of
subalternatives of scale and shape heterogeneity, respectively.

We are now ready to state the main result of this paper; for the sake of simplic-
ity, asymptotic powers are expressed under Assumption (B′) and perturbations τ (n)

such that limn→∞ ν(n)τ (n) = ντ /∈ M(ϒ), with νIIτ II = (s2
1/

√
λ1, . . . , s

2
m/

√
λm)′

and νIIIτ III = ((
◦

vech v1)
′/

√
λ1, . . . , (

◦
vech vm)′/

√
λm)′. For any such τ and any

ϑ ∈ M(ϒ) (still with common values σ and V of the scale and shape parame-
ters), let

r II
ϑ,τ := 1

σ 4 lim
n→∞

{(
τ

(n)
II
)′[Im − C(n)]τ (n)

II
}

(5.2)

= ∑
1≤i<i′≤m

λiλi′

σ 4

(
s2
i√
λi

− s2
i′√
λi′

)2
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and
r III
ϑ,τ := 2k(k + 2) lim

n→∞
{(

τ
(n)
III
)′[[Im − C(n)]⊗ Hk(V)

]
τ

(n)
III
}

(5.3)

= ∑
1≤i<i′≤m

λiλi′ tr
[(

V−1
(

vi√
λi

− vi′√
λi′

))2]
;

note that tr(V−1vi ) = 0 for all i (see the comments before Proposition 4.1).

THEOREM 5.1. Assume that (A), (B), (C) and (D1)–(D3) hold. Then:

(i) Q˜
(n)
K is asymptotically chi-square with (m− 1)(k0 + 1) degrees of freedom

under
⋃

ϑ∈M(ϒ)

⋃
g1∈Fa

{P(n)
ϑ;g1

}, and [provided that (B) is reinforced into (B′)] as-
ymptotically noncentral chi-square, still with (m − 1)(k0 + 1) degrees of freedom,
but with noncentrality parameter

L2
k(K,g1)

4Lk(K)
r II
ϑ,τ + J2

k(K,g1)

2k(k + 2)Jk(K)
r III
ϑ,τ(5.4)

under P(n)

ϑ+n−1/2ν(n)τ (n);g1
, ϑ ∈ M(ϒ), ντ := limn→∞ ν(n)τ (n) /∈ M(ϒ), and

g1 ∈ Fa ;
(ii) the sequence of tests φ˜

(n)
K has asymptotic level α under⋃

ϑ∈M(ϒ)

⋃
g1∈Fa

{P(n)
ϑ;g1

};
(iii) if f1 ∈ Fa and Kf1 satisfies Assumption (C), the sequence of tests φ˜

(n)
f1

is locally and asymptotically most stringent, still at asymptotic level α, for⋃
ϑ∈M(ϒ)

⋃
g1∈Fa

{P(n)
ϑ;g1

} against alternatives of the form
⋃

ϑ /∈M(ϒ){P(n)
ϑ;f1

}.
See the Appendix for the proof. After some algebra, one obtains

Q˜
(n)
K = 1

n

∑
1≤i<i′≤m

(ni + ni′)Q˜
(n)
K;i,i′,

where

Q˜
(n)
K;i,i′ = nini′

ni + ni′

×
{

1

Lk(K)

[
1

ni

ni∑
j=1

K

(
R̂ij

n + 1

)
− 1

ni′

ni′∑
j ′=1

K

(
R̂i′j ′

n + 1

)]2

+ k(k + 2)

2Jk(K)
(5.5)

×
∥∥∥∥∥
[

1

ni

ni∑
j=1

K

(
R̂ij

n + 1

)
vec

(
Ûij Û′

ij − 1

k
Ik

)]

−
[

1

ni′

ni′∑
j ′=1

K

(
R̂i′j ′

n + 1

)
vec

(
Ûi′j ′Û′

i′j ′ − 1

k
Ik

)]∥∥∥∥∥
2}
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is the test statistic obtained in the two-sample case (for populations i and i ′);
see [40] for a similar decomposition in MANOVA problems. As announced, no
estimate ϑ̂ II of the common scale appears in the test statistics. Also, letting

S˜K;i := 1

ni

ni∑
j=1

K

(
R̂ij

n + 1

)
Ûij Û′

ij ,

the statistics in (5.5) take the simple form

Q˜
(n)
K;i,i′ = nini′

ni + ni′

{
1

Lk(K)
tr2[S˜K;i − S˜K;i′ ]

+ k(k + 2)

2Jk(K)

[
tr[(S˜K;i − S˜K;i′)2] − 1

k
tr2[S˜K;i − S˜K;i′ ]

]}

= nini′

ni + ni′

{
k(k + 2)

2Jk(K)
tr[(S˜K;i − S˜K;i′)2]

− k(Jk(K) − k(k + 2))

2Jk(K)Lk(K)
tr2[S˜K;i − S˜K;i′ ]

}
.

For Gaussian scores (i.e., for K = Kφ1 ; see Section 2.3), one obtains the van
der Waerden test statistics

Q˜
(n)
vdW = 1

n

∑
1≤i<i′≤m

(ni + ni′)Q˜
(n)
vdW;i,i′,(5.6)

where

Q˜
(n)
vdW;i,i′ =

nini′

2(ni + ni′)
tr[(S˜vdW;i − S˜vdW;i′)2],

with S˜vdW;i := n−1
i

∑ni

j=1 �−1
k (R̂ij /(n + 1))Ûij Û′

ij . The Student scores (i.e., K =
Kf t

1,ν
; see Section 2.3 again) yield

Q˜
(n)

f t
1,ν

= 1

n

∑
1≤i<i′≤m

(ni + ni′)Q˜
(n)

f t
1,ν;i,i′,(5.7)

where

Q˜
(n)

f t
1,ν;i,i′ = nini′

ni + ni′
k + ν + 2

2(k + ν)

×
{

tr[(S˜f t
1,ν;i − S˜f t

1,ν;i′)
2] + 1

ν
tr2[S˜f t

1,ν;i − S˜f t
1,ν;i′ ]

}
with S˜f t

1,ν;i := k(k + ν)n−1
i

∑ni

j=1 G−1
k,ν(R̂ij /(n + 1))/[ν + kG−1

k,ν(R̂ij /(n + 1))] ×
Ûij Û′

ij . As for the tests associated with the power score functions Ka , they are
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based on

Q˜
(n)
Ka

= 1

n

∑
1≤i<i′≤m

(ni + ni′)Q˜
(n)
Ka;i,i′, a > 0,(5.8)

where, letting S˜Ka;i := k(a + 1)(n + 1)−an−1
i

∑ni

j=1(R̂ij )
aÛij Û′

ij ,

Q˜
(n)
Ka;i,i′ = nini′

ni + ni′
2a + 1

2a2(a + 1)2k2 {a2k(k + 2) tr[(S˜Ka;i − S˜Ka;i′)2]

− (a2k − 4a − 2) tr2[S˜Ka;i − S˜Ka;i′ ]}.

COROLLARY 5.1. Assume that the conditions of Theorem 5.1 hold. Then:

(i) provided that g1 ∈ Fa is such that Lk(K,g1) �= 0 �= Jk(K,g1), φ˜
(n)
K is

consistent under any local g1-alternative [i.e., under any P(n)

ϑ+n−1/2ν(n)τ (n);g1
, ϑ ∈

M(ϒ), limn→∞ ν(n)τ (n) /∈ M(ϒ)];
(ii) the same conclusion holds if u 	→ K(u) absolutely continuous with a.e.

derivative K̇ , and if g1 ∈ Fa is such that
∫∞

0 K̇(G̃1k(r))r(g̃1k(r))
2 dr > 0 (in par-

ticular, if K̇ is nondecreasing).

We refer to the Appendix for the proof. This corollary shows that the van der
Waerden tests above, as well as those achieving local asymptotic stringency at
prespecified Student or power-exponential densities, are locally consistent against
arbitrary elliptical alternatives, since the corresponding score functions are strictly
increasing. Similar conclusions hold for the tests associated with the power score
functions Ka , a > 0. More general consistency results, against nonlocal and pos-
sibly nonelliptical alternatives, of course, are highly desirable, and can be ob-
tained by exploiting Hájek’s results on rank statistics under alternatives (see [13]),
much along the same lines as in Section 5.2 of [17]. Such results, which we
do not include here, imply that consistency is achieved at “almost all” nonlocal
alternatives—the exception being those very particular densities achieving a set of
orthogonality conditions involving the scores and the Uij ’s.

Another important concern is validity under homogeneous scatter but possibly
heterogeneous or/and nonelliptical densities. The ranks of the dij ’s then lose their
distribution-freeness and/or their independence with respect to the Uij ’s. Under to-
tally arbitrary situations, little can be said, but it is extremely unlikely that the tests
we are developing here remain valid; if ellipticity and finite moments of order four
can be assumed, the pseudo-Gaussian methods developed in [19], which remain
valid under possibly heterokurtic elliptic densities, are preferable.
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5.2. The optimal pseudo-Gaussian tests. As explained in the Introduction,
the pseudo-Gaussian tests φ

(n)
N ∗ and φ

(n)
Schott∗ are the natural competitors of our

rank-based procedures. Since they are asymptotically equivalent (see [19]),
we concentrate on φ

(n)
N ∗. This test is valid under finite fourth-order moments

Ek(g1) := ∫ 1
0 (G̃−1

1k (u))4 du = (μk−1;g1)
−1 ∫∞

0 rk+3g1(r) dr , that is, under any

P(n)
ϑ;g1

such that g1 ∈ F 4
1 := {g1 ∈ F1 :Ek(g1) < ∞}. For all such g1, let Dk(g1) :=∫ 1

0 (G̃−1
1k (u))2 du: then κk(g1) := k

(k+2)
Ek(g1)

D2
k (g1)

−1 is a measure of kurtosis (see, e.g.,

page 54 of [1]), common to the m elliptic populations under P(n)
ϑ;g1

. This kurtosis

is consistently (still under P(n)
ϑ;g1

, g1 ∈ F 4
1 ) estimated by

κ̂k := k

(k + 2)

(n−1∑m
i=1

∑ni

j=1 d̂4
ij )

(n−1∑m
i=1

∑ni

j=1 d̂2
ij )

2
− 1,

where d̂ij := dij (X̄i ,Si), with X̄i := n−1
i

∑ni

j=1 Xij and Si := n−1
i

∑ni

j=1(Xij −
X̄i)(Xij − X̄i )

′. At the multinormal (g1 = φ1), Ek(φ1) = k(k + 2)/a2
k and

Dk(φ1) = k/ak , so that κk(φ1) = 0.
The pseudo-Gaussian test φ

(n)
N ∗ rejects H0 (at asymptotic level α) whenever

Q
(n)
N ∗ := 1

n

∑
1≤i<i′≤m

(ni + ni′)Q
(n)
N ∗;i,i′ > χ2

(m−1)(k0+1);1−α,(5.9)

where, letting S := n−1∑m
i=1 niSi ,

Q
(n)
N ∗;i,i′ := nini′

ni + ni′
1

2(1 + κ̂k)

×
{

tr[(S−1(Si − Si′))
2] − κ̂k

(k + 2)κ̂k + 2
tr2[S−1(Si − Si′)]

}
.

This test statistic is clearly affine-invariant; the following Theorem (see [19]) sum-
marizes its asymptotic properties, which also are those of φ

(n)
Schott∗.

THEOREM 5.2. Assume that (A) and (B) hold. Then:

(i) Q
(n)
N ∗ is asymptotically chi-square with (m−1)(k0 +1) degrees of freedom

under
⋃

ϑ∈M(ϒ)

⋃
g1∈F 4

1
{P(n)

ϑ;g1
}, and [provided that (B) is reinforced into (B′)]

asymptotically noncentral chi-square, still with (m−1)(k0 +1) degrees of freedom
but with noncentrality parameter

k

(k + 2)κk(g1) + 2
r II
ϑ,τ + 1

2(1 + κk(g1))
r III
ϑ,τ(5.10)

under P(n)

ϑ+n−1/2ν(n)τ (n);g1
, with ϑ ∈ M(ϒ), ντ := limn→∞ ν(n)τ (n) /∈ M(ϒ), g1 ∈

F 4
a (:= F 4

1 ∩ Fa), r II
ϑ,τ and r III

ϑ,τ defined in (5.2) and (5.3);
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(ii) φ
(n)
N ∗ has asymptotic level α under

⋃
ϑ∈M(ϒ)

⋃
g1∈F 4

1
{P(n)

ϑ;g1
};

(iii) φ
(n)
N ∗ is locally and asymptotically most stringent, still at asymptotic

level α, for
⋃

ϑ∈M(ϒ)

⋃
g1∈F 4

1
{P(n)

ϑ;g1
} against alternatives of the form⋃

ϑ /∈M(ϒ){P(n)
ϑ;φ1

}.
6. Asymptotic relative efficiencies. The asymptotic relative efficiencies of

the rank-based tests φ˜
(n)
K with respect to φ

(n)
N ∗ and φ

(n)
Schott∗ directly follow as ratios

of noncentrality parameters under local alternatives (see Theorems 5.1 and 5.2).

PROPOSITION 6.1. Assume that (A), (B′), (C) and (D) hold, and that g1 ∈
F 4

a . Then, the asymptotic relative efficiency of φ˜
(n)
K with respect to φ

(n)
N ∗, when

testing P(n)
ϑ;g1

against P(n)

ϑ+n−1/2ν(n)τ (n);g1
[ϑ ∈ M(ϒ) and ντ := limn→∞ ν(n)τ (n) /∈

M(ϒ)], is

AREϑ,τ ,k,g1

(
φ˜

(n)
K /φ

(n)
N ∗
)

= (1 − ξ)ARE(scale)
k,g1

(
φ˜

(n)
K /φ

(n)
N ∗
)+ ξARE(shape)

k,g1

(
φ˜

(n)
K /φ

(n)
N ∗
)
,

where

ARE(scale)
k,g1

(
φ˜

(n)
K /φ

(n)
N ∗
) := ((k + 2)κk(g1) + 2)L2

k(K,g1)

4kLk(K)
,(6.1)

ARE(shape)
k,g1

(
φ˜

(n)
K /φ

(n)
N ∗
) := (1 + κk(g1))J

2
k(K,g1)

k(k + 2)Jk(K)
(6.2)

and ξ := ξϑ,τ ,k,g1 ∈ [0,1] is given by

ξϑ,τ ,k,g1 := (
(k + 2)κk(g1) + 2

)
r III
ϑ,τ

× [
2k
(
1 + κk(g1)

)
r II
ϑ,τ + (

(k + 2)κk(g1) + 2
)
r III
ϑ,τ

]−1
.

The “shape AREs” in (6.2) coincide with those obtained in problems involving
shape only—such as testing null hypotheses of the form V = V0 for fixed V0
(see [17]). Proposition 6.1 shows that the AREs, with respect to the pseudo-
Gaussian tests of Section 5.2, of the rank tests proposed in Section 5.1 are convex
linear combinations of these “shape AREs” and the “scale AREs” in (6.1).

Numerical values of (6.1) and (6.2), for various values of the space dimension k

and various radial densities (Student, Gaussian and power-exponential), are given
in Table 1 for the van der Waerden test φ˜

(n)
vdW, the Wilcoxon test φ˜

(n)
K1

, and the

Spearman test φ˜
(n)
K2

(the score functions Ka , a > 0 were defined in Section 2.3).

These ARE values are uniformly large (with the exception, possibly, of univariate
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TABLE 1
AREs, for ξ = 0 (pure scale alternatives) and ξ = 1 (pure shape alternatives), of the van der

Waerden (vdW), Wilcoxon (W), and Spearman (SP) rank-based tests with respect to the pseudo-
Gaussian tests, under k-dimensional Student (with 5, 8 and 12 degrees of freedom), Gaussian, and

power-exponential densities (with parameter η = 2,3,5), for k = 2, 3, 4, 6, 10 and k → ∞

Underlying density

k ξ t5 t8 t12 N e2 e3 e5

vdW 1 0 2.321 1.230 1.082 1.000 1.151 1.376 1.822
1 —— —— —— —— —— —— ——

2 0 2.551 1.280 1.102 1.000 1.115 1.296 1.669
1 2.204 1.215 1.078 1.000 1.129 1.308 1.637

3 0 2.732 1.322 1.120 1.000 1.092 1.241 1.558
1 2.270 1.233 1.086 1.000 1.108 1.259 1.536

4 0 2.881 1.358 1.136 1.000 1.077 1.202 1.475
1 2.326 1.249 1.093 1.000 1.093 1.223 1.462

6 0 3.108 1.416 1.163 1.000 1.057 1.151 1.361
1 2.413 1.275 1.106 1.000 1.072 1.174 1.363

10 0 3.403 1.498 1.204 1.000 1.037 1.099 1.239
1 2.531 1.312 1.126 1.000 1.050 1.121 1.254

∞ 0 4.586 1.894 1.446 1.000 1.000 1.000 1.000
1 3.000 1.500 1.250 1.000 1.000 1.000 1.000

W 1 0 1.993 0.939 0.769 0.608 0.519 0.509 0.517
1 —— —— —— —— —— —— ——

2 0 2.604 1.185 0.959 0.750 0.694 0.703 0.743
1 2.258 1.174 1.001 0.844 0.789 0.804 0.842

3 0 2.929 1.304 1.045 0.811 0.775 0.795 0.854
1 2.386 1.246 1.068 0.913 0.897 0.933 1.001

4 0 3.140 1.377 1.096 0.844 0.820 0.844 0.911
1 2.432 1.273 1.094 0.945 0.955 1.006 1.095

6 0 3.407 1.467 1.156 0.879 0.866 0.892 0.961
1 2.451 1.283 1.105 0.969 1.008 1.075 1.188

10 0 3.685 1.560 1.216 0.908 0.903 0.925 0.984
1 2.426 1.264 1.088 0.970 1.032 1.106 1.233

∞ 0 4.323 1.794 1.374 0.955 0.955 0.955 0.955
1 2.250 1.125 0.938 0.750 0.750 0.750 0.750

SP 1 0 2.333 1.126 0.935 0.760 0.705 0.724 0.774
1 —— —— —— —— —— —— ——

2 0 2.737 1.289 1.063 0.868 0.868 0.924 1.038
1 2.301 1.230 1.067 0.934 0.965 1.042 1.168

3 0 2.913 1.348 1.105 0.904 0.924 0.993 1.136
1 2.277 1.225 1.070 0.957 1.033 1.141 1.317

4 0 3.016 1.378 1.125 0.920 0.949 1.020 1.170
1 2.225 1.200 1.051 0.956 1.057 1.179 1.383

6 0 3.137 1.410 1.142 0.932 0.966 1.032 1.176
1 2.128 1.146 1.007 0.936 1.057 1.189 1.414

10 0 3.255 1.438 1.154 0.937 0.969 1.022 1.139
1 2.001 1.068 0.936 0.891 1.017 1.144 1.365

∞ 0 3.507 1.503 1.176 0.895 0.895 0.895 0.895
1 1.667 0.833 0.694 0.556 0.556 0.556 0.556
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scale Wilcoxon AREs), particularly so under heavy tails, as often in rank-based
inference. Also note that the AREs of the proposed van der Waerden tests with
respect to the parametric Gaussian tests are larger than or equal to one for all dis-
tributions considered in Table 1. For pure shape alternatives, [29] has shown that
a Chernoff–Savage property holds, that is, infg1 ARE(shape)

k,g1
(φ˜

(n)
vdW/φ

(n)
N ∗) = 1. One

may wonder whether this uniform dominance property of van der Waerden tests
extends to the present situation. Although it does for usual distributions, includ-
ing all Student and power-exponential ones, the general answer unfortunately is
negative; see Section 4 of [29] for a (pathological) counter example.

Note that Theorem 5.2 clearly shows that φ
(n)
N ∗ and φ

(n)
Schott∗ are not efficiency-

robust. Indeed, the noncentrality parameter (5.10) under Student radial densities
with 4 + δ degrees of freedom tends to zero as δ → 0, so that asymptotic local
powers are arbitrarily close to the nominal level α. The efficiency-robustness of our
rank tests, quite on the contrary, is not affected, as the ARE values (6.1) and (6.2),
under the same Student densities with 4 + δ degrees of freedom, both tend to
infinity as δ → 0.

7. Simulations. We conducted two simulations, one for pure scale alter-
natives and another one for pure shape alternatives, both in dimension k = 2.
More precisely, starting from two sets of i.i.d. bivariate random vectors ε1j

(j = 1, . . . , n1 = 100) and ε2j (j = 1, . . . , n2 = 100) with spherical densities (the
standard bivariate normal and bivariate t-distributions with 0.5, 2 and 5 degrees of
freedom) centered at 0, we considered independent samples obtained from

X1j = A1ε1j + θ1, j = 1, . . . , n1,

and

X2j = A2(�)ε2j + θ2, j = 1, . . . , n2,

where A2(�)A′
2(�) = (1 + �s2)(A1A′

1 + �v) [v a symmetric (k × k) matrix with
tr((A1A′

1)
−1v) = 0], � = 0,1,2,3. The values of � produce the null (� = 0) and in-

creasingly heterogeneous alternatives (� = 1,2,3); all tests being affine-invariant,
there is no loss of generality in letting A1 = I2 and θ1 = θ2 = 0.

In the first simulation (pure scale alternatives), we generated N = 2,500 inde-
pendent samples, with v = 0 and s2 = 0.30, 0.44, 0.56 and 1.50 under Gaussian, t5,
t2 and t0.5 alternatives, respectively; these values of s2 have been chosen in order
to obtain rejection frequencies of the same order under those four densities. In the
second simulation (pure shape alternatives), we similarly generated N = 2,500 in-

dependent samples, with s2 = 0 and
◦

vech v = (0,0.18)′, (0,0.20)′, (0,0.21)′ and
(0,0.22)′ under Gaussian, t5, t2 and t0.5 alternatives, respectively, still with the
same objective of obtaining comparable empirical powers under the various den-
sities considered.
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In each of these samples, we performed the following eight tests (all at as-
ymptotic level α = 5%): (a) the modified likelihood ratio test φ

(n)
MLRT; (b) the

parametric Gaussian test φ
(n)
N (equivalently, Schott’s original test φ

(n)
Schott); (c) its

pseudo-Gaussian version φ
(n)
N ∗, based on (5.9) (equivalently, the modified Schott

test φ
(n)
Schott∗); (d) the van der Waerden test φ˜

(n)
vdW [based on (5.6)]; (e)–(g) tν -score

tests φ˜
(n)

f t
1,ν

with ν = 5, 2 and 0.5 [based on (5.7)], as well as (h) the Spearman test

φ˜
(n)
K2

[based on (5.8)]. It can be checked that the Wilcoxon test φ˜
(n)
K1

, for k = 2,

coincides with φ˜
(n)

f t
1,2

.

Rejection frequencies are reported in Table 2 for pure scale alternatives, and
in Table 3 for pure shape alternatives [the corresponding individual confidence
intervals (for N = 2,500 replications), at confidence level 0.95, have half-widths
0.0044, 0.0080 and 0.0100, for frequencies of the order of 0.05 (0.95), 0.20 (0.80)
and 0.50, resp.]. These frequencies indicate that the rank tests, when based on their
asymptotic chi-square critical values, are conservative and significantly biased at
moderate sample size (100 observations in each group). In order to remedy this,
we also implemented versions of each of the rank procedures based on estima-
tions of the (distribution-free) quantile of the test statistic under known location
and known common null value of the shape. These estimations, just as the as-
ymptotic chi-square quantile, are consistent approximations of the corresponding
exact quantiles under the null, and were obtained for each of the five rank tests un-
der consideration in (d)–(h) above, as the empirical 0.05-upper quantiles q0.95 of
each rank-based test statistic in a collection of 105 simulated multinormal samples,
yielding q0.95 = 7.2117, 7.6351, 7.7473, 7.7636 and 7.6773, respectively. These
bias-corrected critical values all are smaller than the asymptotic chi-square one
χ2

3;0.95 = 7.8147, so that the resulting tests are uniformly less conservative than
the original ones. The resulting rejection frequencies are given in parentheses.

Inspection of Tables 2 and 3 confirms the fact that the parametric Gaussian
tests φN , contrary to the pseudo-Gaussian ones φN ∗, are invalid under non-
Gaussian densities (culminating, under t0.5, with a size of 0.9992). However, even
the pseudo-Gaussian tests φN ∗, though resisting non-Gaussian densities with finite
fourth-order moments, are collapsing under the heavy-tailed t0.5 and t2 distribu-
tions (with power less than 10−4 under t0.5). In sharp contrast with this, all rank-
based tests appear to satisfy the 5% probability level constraint. They are conser-
vative in their original versions (particularly so for van der Waerden scores), but
reasonably unbiased (for n1 = n2 = 100) after bias-correction. Empirical power
rankings are essentially consistent with ARE values; in order to allow for mean-
ingful comparisons under infinite fourth-order moments, we also provide AREs
with respect to the van der Waerden rank test.
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TABLE 2

Rejection frequencies (out of N = 2,500 replications), under the null and various scale alternatives (see Section 7 for details), of the Gaussian modified
LRT (φMLRT), the parametric Gaussian test (φN ), its pseudo-Gaussian version (φN ∗), and the signed-rank van der Waerden (φ˜ vdW), tν -score (φ˜ f t

1,ν
,

ν = 0.5, 2, 5), Wilcoxon-type (φ˜K1 ) and Spearman-type (φ˜K2 ) tests, respectively. Sample sizes are n1 = n2 = 100. ARE values are provided with

respect to the parametric pseudo-Gaussian (AREN ∗) and van der Waerden rank tests (AREvdW); “ND” means “not defined”
(this occurs as soon as one the tests involved is not valid under the distribution under consideration)

�

Test 0 1 2 3 AREN ∗ AREvdW

φLRT N 0.0512 0.3168 0.7932 0.9776 1.000 1.000
φMLRT 0.0500 0.3100 0.7876 0.9772 1.000 1.000
φN 0.0464 0.3008 0.7760 0.9756 1.000 1.000
φN ∗ 0.0472 0.2944 0.7568 0.9736 1.000 1.000
φ˜ vdW 0.0348 (0.0472) 0.2388 (0.2932) 0.6912 (0.7316) 0.9520 (0.9676) 1.000 1.000

φ˜ f t
1,5

0.0444 (0.0496) 0.2604 (0.2724) 0.7080 (0.7200) 0.9552 (0.9600) 0.918 0.918

φ˜ f t
1,2

= φ˜K1 0.0516 (0.0524) 0.2180 (0.2248) 0.6360 (0.6404) 0.9004 (0.9016) 0.750 0.750

φ˜ f t
1,0.5

0.0476 (0.0492) 0.1224 (0.1248) 0.3252 (0.3260) 0.5692 (0.5724) 0.360 0.360

φ˜K2 0.0432 (0.0480) 0.2448 (0.2572) 0.6956 (0.7060) 0.9480 (0.9508) 0.868 0.868

φLRT t5 0.3288 0.6308 0.9168 0.9872 ND ND
φMLRT 0.3244 0.6260 0.9144 0.9868 ND ND
φN 0.3160 0.6208 0.9092 0.9856 ND ND
φN ∗ 0.0300 0.1896 0.5268 0.7892 1.000 0.392
φ˜ vdW 0.0320 (0.0444) 0.2500 (0.2956) 0.7068 (0.7468) 0.9396 (0.9560) 2.551 1.000

φ˜ f t
1,5

0.0428 (0.0480) 0.3004 (0.3152) 0.7740 (0.7812) 0.9636 (0.9676) 2.778 1.089

φ˜ f t
1,2

= φ˜K1 0.0488 (0.0512) 0.2916 (0.2980) 0.7456 (0.7520) 0.9528 (0.9544) 2.604 1.021
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TABLE 2
Continued

�

Test 0 1 2 3 AREN ∗ AREvdW

φ˜ f t
1,0.5

0.0512 (0.0516) 0.1824 (0.1848) 0.4916 (0.4972) 0.7556 (0.7612) 1.543 0.605

φ˜K2 0.0448 (0.0484) 0.3068 (0.3184) 0.7720 (0.7828) 0.9644 (0.9656) 2.737 1.073

φLRT t2 0.8728 0.9164 0.9496 0.9712 ND ND
φMLRT 0.8696 0.9156 0.9496 0.9700 ND ND
φN 0.8648 0.9120 0.9480 0.9684 ND ND
φN ∗ 0.0120 0.0300 0.0672 0.1276 ND ND
φ˜ vdW 0.0428 (0.0568) 0.1880 (0.2264) 0.5368 (0.5816) 0.7988 (0.8324) ND 1.000

φ˜ f t
1,5

0.0536 (0.0592) 0.2532 (0.2644) 0.6592 (0.6704) 0.9000 (0.9072) ND 1.250

φ˜ f t
1,2

= φ˜K1 0.0508 (0.0532) 0.2732 (0.2816) 0.6912 (0.6964) 0.9212 (0.9236) ND 1.333

φ˜ f t
1,0.5

0.0496 (0.0500) 0.2116 (0.2136) 0.5404 (0.5468) 0.8128 (0.8144) ND 1.000

φ˜K2 0.0572 (0.0588) 0.2568 (0.2652) 0.6632 (0.6708) 0.9036 (0.9080) ND 1.250

φLRT t0.5 0.9992 0.9996 0.9996 0.9988 ND ND
φMLRT 0.9992 0.9996 0.9996 0.9988 ND ND
φN 0.9992 0.9996 0.9988 0.9988 ND ND
φN ∗ 0 0 0 0 ND ND
φ˜ vdW 0.0388 (0.0520) 0.1464 (0.1764) 0.3096 (0.3572) 0.4608 (0.5188) ND 1.000

φ˜ f t
1,5

0.0496 (0.0524) 0.2328 (0.2452) 0.5000 (0.5132) 0.6920 (0.7044) ND 1.543

φ˜ f t
1,2

= φ˜K1 0.0508 (0.0528) 0.3076 (0.3136) 0.6404 (0.6448) 0.8276 (0.8316) ND 2.083

φ˜ f t
1,0.5

0.0604 (0.0616) 0.3928 (0.3972) 0.7572 (0.7600) 0.9208 (0.9212) ND 2.778

φ˜K2 0.0488 (0.0524) 0.2136 (0.2228) 0.4728 (0.4840) 0.6672 (0.6792) ND 1.435
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TABLE 3

Rejection frequencies (out of N = 2,500 replications), under the null and various shape alternatives (see Section 7 for details), of the Gaussian modified
LRT (φMLRT), the parametric Gaussian test (φN ), its pseudo-Gaussian version (φN ∗), and the signed-rank van der Waerden (φ˜ vdW), tν -score (φ˜ f t

1,ν
,

ν = 0.5, 2, 5), Wilcoxon-type (φ˜K1 ) and Spearman-type (φ˜K2 ) tests, respectively. Sample sizes are n1 = n2 = 100. ARE values are provided with

respect to the parametric pseudo-Gaussian (AREN ∗) and van der Waerden rank tests (AREvdW); “ND” means “not defined”
(this occurs as soon as one the tests involved is not valid under the distribution under consideration)

�

Test 0 1 2 3 AREN ∗ AREvdW

φLRT N 0.0512 0.1564 0.6032 0.9668 1.000 1.000
φMLRT 0.0500 0.1532 0.5984 0.9656 1.000 1.000
φN 0.0464 0.1484 0.5900 0.9640 1.000 1.000
φN ∗ 0.0472 0.1444 0.5812 0.9648 1.000 1.000
φ˜ vdW 0.0348 (0.0472) 0.1212 (0.1464) 0.5248 (0.5828) 0.9488 (0.9632) 1.000 1.000

φ˜ f t
1,5

0.0444 (0.0496) 0.1452 (0.1536) 0.5456 (0.5596) 0.9464 (0.9496) 0.945 0.945

φ˜ f t
1,2

= φ˜K1 0.0516 (0.0524) 0.1364 (0.1392) 0.4928 (0.5004) 0.9272 (0.9276) 0.844 0.844

φ˜ f t
1,0.5

0.0476 (0.0492) 0.1120 (0.1140) 0.3996 (0.4036) 0.8356 (0.8388) 0.648 0.648

φ˜K2 0.0432 (0.0480) 0.1440 (0.1508) 0.5420 (0.5512) 0.9460 (0.9488) 0.934 0.934

φLRT t5 0.3288 0.4632 0.7840 0.9808 ND ND
φMLRT 0.3244 0.4600 0.7816 0.9800 ND ND
φN 0.3160 0.4512 0.7728 0.9796 ND ND
φN ∗ 0.0300 0.1020 0.4204 0.8552 1.000 0.454
φ˜ vdW 0.0320 (0.0444) 0.1268 (0.1592) 0.5320 (0.5816) 0.9576 (0.9692) 2.204 1.000

φ˜ f t
1,5

0.0428 (0.0480) 0.1572 (0.1676) 0.5928 (0.6036) 0.9720 (0.9740) 2.333 1.059

φ˜ f t
1,2

= φ˜K1 0.0488 (0.0512) 0.1608 (0.1632) 0.5876 (0.5916) 0.9684 (0.9692) 2.258 1.024
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Continued

�

Test 0 1 2 3 AREN ∗ AREvdW

φ˜ f t
1,0.5

0.0512 (0.0516) 0.1376 (0.1388) 0.5088 (0.5132) 0.9312 (0.9332) 1.896 0.860

φ˜K2 0.0448 (0.0484) 0.1612 (0.1704) 0.5860 (0.5976) 0.9700 (0.9716) 2.301 1.044

φLRT t2 0.8728 0.8912 0.9376 0.9768 ND ND
φMLRT 0.8696 0.8892 0.9364 0.9768 ND ND
φN 0.8648 0.8864 0.9332 0.9764 ND ND
φN ∗ 0.0120 0.0224 0.0808 0.2380 ND ND
φ˜ vdW 0.0428 (0.0568) 0.1180 (0.1488) 0.4596 (0.5120) 0.9216 (0.9416) ND 1.000

φ˜ f t
1,5

0.0536 (0.0592) 0.1488 (0.1560) 0.5460 (0.5572) 0.9576 (0.9616) ND 1.147

φ˜ f t
1,2

= φ˜K1 0.0508 (0.0532) 0.1584 (0.1612) 0.5640 (0.5668) 0.9668 (0.9668) ND 1.185

φ˜ f t
1,0.5

0.0496 (0.0500) 0.1508 (0.1524) 0.5212 (0.5256) 0.9412 (0.9420) ND 1.089

φ˜K2 0.0572 (0.0588) 0.1440 (0.1500) 0.5288 (0.5420) 0.9516 (0.9564) ND 1.111

φLRT t0.5 0.9992 0.9988 0.9992 0.9992 ND ND
φMLRT 0.9992 0.9988 0.9992 0.9992 ND ND
φN 0.9992 0.9988 0.9992 0.9992 ND ND
φN ∗ 0 0 0.0004 0.0008 ND ND
φ˜ vdW 0.0388 (0.0520) 0.0964 (0.1208) 0.3328 (0.3792) 0.7960 (0.8328) ND 1.000

φ˜ f t
1,5

0.0496 (0.0524) 0.1280 (0.1356) 0.4288 (0.4408) 0.8928 (0.9004) ND 1.254

φ˜ f t
1,2

= φ˜K1 0.0508 (0.0528) 0.1396 (0.1440) 0.4840 (0.4880) 0.9360 (0.9380) ND 1.418

φ˜ f t
1,0.5

0.0604 (0.0616) 0.1644 (0.1648) 0.5356 (0.5388) 0.9560 (0.9568) ND 1.543

φ˜K2 0.0488 (0.0524) 0.1208 (0.1272) 0.3968 (0.4064) 0.8624 (0.8704) ND 1.138
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APPENDIX

A.1. Proofs of Lemma 4.1, Theorem 5.1 and Corollary 5.1.

PROOF OF LEMMA 4.1. (i) Fix r ∈ {1, . . . ,m}. Clearly, under P(n)
ϑ;g1

, �˜
II,r
ϑ;K =

�
II,r
ϑ;K;g1

+ oL2(1) iff

m∑
i=1

ni∑
j=1

c
(n)
ij ;rK

(
Rij

n + 1

)
=

m∑
i=1

ni∑
j=1

c
(n)
ij ;rK

(
G̃1k

(
dij

σ

))
+ oL2(1),(A.1)

where c
(n)
ij ;r := n

−1/2
i δi,r . For ϑ ∈ M(ϒ), the Rij ’s are the ranks of the dij /σ ’s,

which under P(n)
ϑ;g1

are i.i.d. with distribution function G̃1k . The asymptotic equiv-
alence (A.1) thus follows from Hájek’s classical projection result for linear rank
statistics (see, e.g., [32], Chapter 2), since (a) the c

(n)
ij ;r ’s are not all equal and (b)

maxi,j (c
(n)
ij ;r − n−1∑

i,j c
(n)
ij ;r )2∑

i,j (c
(n)
ij ;r − n−1∑

i,j c
(n)
ij ;r )2

= n−1 max
(

1 − λ
(n)
r

λ
(n)
r

,
λ

(n)
r

1 − λ
(n)
r

)
= o(1) as n → ∞

(the Noether condition) holds; see the comments after Assumption (B).
Similarly, for the shape part, 
˜

III,r
ϑ;K = 
III,r

ϑ;K;g1
+ oL2(1) under P(n)

ϑ;g1
iff

n−1/2
r Mk(V)(V⊗2)−1/2

nr∑
j=1

[
K

(
Rrj

n + 1

)
− K

(
G̃1k

(
drj

σ

))]
J⊥
k vec(Urj U′

rj )

= oL2(1)

[where J⊥
k := Ik2 − 1

k
Jk satisfies Mk(V)(V⊗2)−1/2J⊥

k = Mk(V)(V⊗2)−1/2 and is
such that J⊥

k vec(Urj U′
rj ) is exactly centered], or equivalently iff

T
(n)
r;l :=

m∑
i=1

ni∑
j=1

c
(n)
ij ;r

[
K

(
Rij

n + 1

)
− K

(
G̃1k

(
dij

σ

))]
[J⊥

k vec(Uij U′
ij )]�

(A.2)
= oL2(1),

for all � ∈ {1,2, . . . , k2}, still under P(n)
ϑ;g1

. Now,

E
[(

T
(n)
r;�
)2]= C�,k

m∑
i=1

ni∑
j=1

(
c
(n)
ij ;r

)2E
[(

K

(
Ri

n + 1

)
− K

(
G̃1k

(
di

σ

)))2]

where, denoting by Uij,s the sth component of Uij , C�,k = Var[U2
11,1] = 2(k −

1)/(k2(k + 2)) for � ∈ Lk := {mk + m + 1,m = 0,1, . . . , k − 1} and C�,k =
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Var[U11,1U11,2] = 1/k2 for � /∈ Lk . Here, the Hájek projection result for linear
signed-rank statistics (see, e.g., [32], Chapter 3) yields (A.2), since maxi,j (c

(n)
ij ;r )2/∑

i,j (c
(n)
ij ;r )2 = n−1

r = o(1), as n → ∞.

As for (ii), the result straightforwardly follows, under P(n)
ϑ;g1

with ϑ ∈ M(ϒ),
from the multivariate CLT. The result under local alternatives is obtained as usual,
by establishing the joint normality under P(n)

ϑ;g1
of 
ϑ;K;g1 and 

(n)

ϑ+n−1/2ν(n)τ/ϑ;g1
,

then applying Le Cam’s third lemma; the required joint normality follows from a
routine application of the classical Cramér–Wold device. �

PROOF OF THEOREM 5.1. (i) The continuity of the mapping ϑ 	→ (PII
ϑ;K,

PIII
ϑ;K), Proposition 4.2 (jointly with Assumption (D1) and the fact that [Im −

C(n)](	(n))−11m = 0), and Lemma 4.1(i), entail

Q˜
(n)
K = (
˜ II

ϑ;K)′PII
ϑ;K
˜ II

ϑ;K + (
˜ III
ϑ;K)′PIII

ϑ;K
˜ III
ϑ;K + oP(1)

(A.3)
= (
II

ϑ;K;g1
)′PII

ϑ;K
II
ϑ;K;g1

+ (
III
ϑ;K;g1

)′PIII
ϑ;K
III

ϑ;K;g1
+ oP(1)

under P(n)
ϑ;g1

, ϑ ∈ M(ϒ) (and therefore, also under the contiguous sequence

P(n)

ϑ+n−1/2ν(n)τ (n);g1
). Now, since (�II

ϑ;K)1/2PII
ϑ;K(�II

ϑ;K)1/2 is a symmetric idempo-
tent matrix with rank m − 1, it follows from Lemma 4.1(ii) that the first term
in (A.3) is asymptotically chi-square with m − 1 degrees of freedom under P(n)

ϑ;g1
,

ϑ ∈ M(ϒ), and asymptotically noncentral chi-square, still with m − 1 degrees of
freedom, but with noncentrality parameter(

Lk(K,g1)

4σ 4

)2

lim
n→∞

{(
τ

(n)
II
)′PII

ϑ;Kτ
(n)
II
}

(A.4)

under P(n)

ϑ+n−1/2ν(n)τ (n);g1
. Evaluation of the limit in (A.4) yields the first term

in (5.4).
As for the shape part, using again Lemma 4.1(ii) and the fact that (�III

ϑ;K)1/2 ×
PIII

ϑ;K(�III
ϑ;K)1/2 is symmetric and idempotent with rank k0(m − 1), we obtain sim-

ilarly that the second term in (A.3) is asymptotically chi-square with k0(m − 1)

degrees of freedom under P(n)
ϑ;g1

, ϑ ∈ M(ϒ), and asymptotically noncentral chi-
square, still with k0(m − 1) degrees of freedom but with noncentrality parameter

(Jk(K,g1))
2 lim

n→∞
{(

τ
(n)
III
)′[Im ⊗ Hk(V)]PIII

ϑ;K [Im ⊗ Hk(V)]τ (n)
III
}

(A.5)

under P(n)

ϑ+n−1/2ν(n)τ (n);g1
. Evaluation of the limit in (A.5) yields the second

term in (5.4). As the two terms in (A.3) are asymptotically uncorrelated [see
Lemma 4.1(ii) again], they can indeed be treated separately.

(ii) The fact that φ˜
(n)
K has asymptotic level α directly follows from the asymp-

totic null distribution in part (i) and the classical Helly–Bray theorem.



RANK TESTS FOR SCATTER HOMOGENEITY 1291

(iii) Optimality is a consequence of the asymptotic equivalence (A.3), under
g1 = f1(∈ Fa), of Q˜

(n)
f1

and the locally asymptotically optimal test statistic Qϒ , as

described in (4.3). �

PROOF OF COROLLARY 5.1. (i) Fix g1 ∈ Fa , with Lk(K,g1) �= 0 �= Jk(K,g1).
Clearly, φ˜

(n)
K is consistent under P(n)

ϑ+n−1/2ν(n)τ (n);g1
, ϑ ∈ M(ϒ) iff the correspond-

ing noncentrality parameter in (5.4) is nonzero. Assume the latter is zero. Then,
the assumptions on g1 imply that s2

i /
√

λi = s2
i′/

√
λi′ and

tr
[(

V−1/2
(

vi√
λi

− vi′√
λi′

)
V−1/2

)2]
,(A.6)

for all (i, i′). Now, since tr(A2) = 0 implies that A = 0 for any symmetric k × k

matrix A, it follows from (A.6) that vi/
√

λi = vi′/
√

λi′ for all (i, i′). This is pos-
sible only for ντ ∈ M(ϒ), which establishes the result.

(ii) Going back to the definition of g1 	→ Jk(K,g1), we have

Jk(K,g1) =
∫ ∞

0
K(G̃1k(r))rϕg1(r)g̃1k(r) dr

= 1

μk−1;g1

∫ ∞
0

K(G̃1k(r))(−ġ1(r))r
k dr.

Integrating by parts, Jk(K,g1) = ∫∞
0 [kK(G̃1k(r)) + K̇ ′(G̃1k(r))rg̃1k(r)] ×

g̃1k(r) dr = k2 + ∫∞
0 K̇ ′(G̃1k(r))r(g̃1k(r))

2 dr , so that
∫∞

0 K̇ ′(G̃1k(r)) ×
r(g̃1k(r))

2 dr > 0 guarantees that Lk(K,g1) = Jk(K,g1) − k2 > 0. The result
follows from part (i) of the corollary. �

A.2. Proof of Proposition 4.2. Consider an arbitrary value ϑ = (ϑ ′
I ,ϑ

′
II,

ϑ ′
III)

′ = (θ ′
1, . . . , θ

′
m,σ 21′

m,1′
m ⊗ (

◦
vech V)′)′ ∈ M(ϒ) of the parameter and a

(bounded) sequence of corresponding local perturbations ϑ (n) := ϑ + n−1/2ν(n) ×
τ (n), where

τ (n) = (
τ

(n)′
I ,τ

(n)′
II ,τ

(n)′
III
)′

= (
t(n)′
1 , . . . , t(n)′

m , s
2(n)
1 , . . . , s2(n)

m ,
( ◦
vech v(n)

1

)′
, . . . ,

( ◦
vech v(n)

m

)′)′
is such that ϑ (n) ∈ M(ϒ) for all n. To prove Proposition 4.2, it is sufficient to show
that, under P(n)

ϑ;g1
(where g1 is as in Proposition 4.2),


˜ II
ϑ (n);K − 
˜ II

ϑ;K + Lk(K,g1)

4σ 4 τ
(n)
II and

(A.7)

˜ III

ϑ (n);K − 
˜ III
ϑ;K + Jk(K,g1)[Im ⊗ Hk(V)]τ (n)

III
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are oP(1) as n → ∞, since the local asymptotic discreteness of ϑ̂ (see, e.g., [25],
Lemma 4.4) allows to replace the nonrandom quantity ϑ (n) with the random one ϑ̂

in (A.7). Note that ϑ̂ being constrained allows us to restrict to ϑ (n) ∈ M(ϒ). Look-
ing at block i (i ∈ {1, . . . ,m}), Proposition 4.2 thus is a corollary of the following
result.

PROPOSITION A.1. Assume that (A), (B) and (C) hold, and that g1 ∈ Fa . Fix
ϑ ∈ M(ϒ) and a sequence ϑ (n) ∈ M(ϒ) as above. Then, for all i = 1, . . . ,m,

�˜
II,i
ϑ (n);K − �˜ II,i

ϑ;K
+ Lk(K,g1)

4σ 4 s
2(n)
i and(A.8)


˜
III,i
ϑ (n);K − 
˜ III,i

ϑ;K
+ Jk(K,g1)Hk(V)

( ◦
vech v(n)

i

)
are oP(1) under P(n)

ϑ;g1
, as n → ∞.

PROOF. In this proof, we let θn
i := θ i + n

−1/2
i t(n)

i , Vn := V + n
−1/2
i v(n)

i ,

and σ 2
n := σ 2 + n

−1/2
i s

2(n)
i [since ϑ,ϑ (n) ∈ M(ϒ), σ 2

n and Vn do not depend
on i, which explains the notation]. Accordingly, let Z0

ij := V−1/2(Xij − θ i ),

d0
ij := ‖Z0

ij‖, U0
ij := Z0

ij /d
0
ij , Zn

ij := (Vn)−1/2(Xij − θn
i ), dn

ij := ‖Zn
ij‖, and Un

ij :=
Zn

ij /d
n
ij . Following an argument that goes back to [24], consider the following

truncation of the score function K : for all � ∈ N0, define

K(�)(u) := K

(
2

�

)
�

(
u − 1

�

)
I[1/�<u≤2/�] + K(u)I[2/�<u≤1−2/�]

+ K

(
1 − 2

�

)
�

((
1 − 1

�

)
− u

)
I[1−2/�<u≤1−1/�],

where IA denotes the indicator of A. Since u 	→ K(u) is continuous, the functions
u 	→ K(�)(u) are also continuous on (0,1). It follows that the truncated scores K(�)

are bounded for all �. Clearly, it can safely be assumed that K is monotone increas-
ing (rather than the difference of two monotone increasing functions), so that there
exists some L such that |K(�)(u)| ≤ |K(u)| for all u ∈ (0,1) and all � ≥ L.

We start with the proof that the scale part of (A.8) is oP(1) under P(n)
ϑ;g1

. For
the shape part, the result is an easy extension of the corresponding result in [14];
details are left to the reader. Lemma 4.1(i) shows that �˜

II,i
ϑ;K − �

II,i
ϑ;K;g1

is oP(1),

under P(n)
ϑ;g1

. Similarly, �˜
II,i
ϑ (n);K − �

II,i
ϑ (n);K;g1

is oP(1) under P(n)

ϑ (n);g1
—hence, from

contiguity, also under P(n)
ϑ;g1

. Consequently, (A.8) is asymptotically equivalent, un-

der P(n)
ϑ;g1

, to

�
II,i
ϑ (n);K;g1

− �
II,i
ϑ;K;g1

+ Lk(K,g1)

4σ 4 s
2(n)
i .(A.9)



RANK TESTS FOR SCATTER HOMOGENEITY 1293

Now, 1
2n

−1/2
i

∑ni

j=1(K(G̃1k(d
n
ij /σn)) − k), under P(n)

ϑ (n);g1
, is asymptotically

normal as n → ∞, with mean zero and variance 1
4Lk(K), so that 1

2( 1
σ 2

n
−

1
σ 2 )n

−1/2
i

∑ni

j=1(K(G̃1k(d
n
ij /σn)) − k) is oP(1), as n → ∞, under P(n)

ϑ (n);g1
, as well

as under P(n)
ϑ;g1

(from contiguity). Consequently, (A.9) is asymptotically equivalent,

under P(n)
ϑ;g1

, to

C(n)
i := 1

2σ 2 n
−1/2
i

ni∑
j=1

(
K(G̃1k(d

n
ij /σn)) − k

)

− 1

2σ 2 n
−1/2
i

ni∑
j=1

(
K(G̃1k(d

0
ij /σ )) − k

)+ Lk(K,g1)

4σ 4 s
2(n)
i .

Decompose C(n)
i into C(n)

i = D(n;�)
i1 + D(n;�)

i2 − R(n;�)
i1 + R(n;�)

i2 + R(n;�)
i3 where, de-

noting by E0 expectation under P(n)
ϑ;g1

,

D(n;�)
i1 := 1

2σ 2 n
−1/2
i

ni∑
j=1

(
K(�)(G̃1k(d

n
ij /σn)) − E

[
K(�)(U)

])

− 1

2σ 2 n
−1/2
i

ni∑
j=1

(
K(�)(G̃1k(d

0
ij /σ )) − E

[
K(�)(U)

])

− 1

2σ 2 n
−1/2
i E0

[
ni∑

j=1

(
K(�)(G̃1k(d

n
ij /σn)) − E

[
K(�)(U)

])]
,

D(n;�)
i2 := 1

2σ 2 n
−1/2
i E0

[
ni∑

j=1

(
K(�)(G̃1k(d

n
ij /σn)) − E

[
K(�)(U)

])]

+ Lk(K
(�), g1)

4σ 4 s
2(n)
i ,

R(n;�)
i1 := 1

2σ 2 n
−1/2
i

ni∑
j=1

[(
K(G̃1k(d

0
ij /σ )) − k

)
− (

K(�)(G̃1k(d
0
ij /σ )) − E

[
K(�)(U)

])]
,

R(n;�)
i2 := 1

2σ 2 n
−1/2
i

ni∑
j=1

[(
K(G̃1k(d

n
ij /σn)) − k

)
− (

K(�)(G̃1k(d
n
ij /σn)) − E

[
K(�)(U)

])]
,
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and

R(n;�)
i3 := 1

4σ 4

(
Lk(K,g1) − Lk

(
K(�), g1

))
s

2(n)
i .

We prove that C(n)
i = oP(1) [thus completing the proof that (A.8) is oP(1) under

P(n)
ϑ;g1

] by establishing that D(n;�)
i1 and D(n;�)

i2 are oP(1) under P(n)
ϑ;g1

, as n → ∞, for

fixed �, and that R(n;�)
i1 , R(n;�)

i2 and R(n;�)
i3 are oP(1) under the same sequence of

hypotheses, as � → ∞, uniformly in n. For the sake of convenience, these three
results are treated separately (Lemmas A.1, A.2 and A.3).

LEMMA A.1. For any fixed �, E0[|D(n;�)
i1 |2] = o(1) as n → ∞.

LEMMA A.2. For any fixed �, D(n;�)
i2 = o(1) as n → ∞.

LEMMA A.3. As � → ∞, uniformly in n, (i) R(n;�)
i1 is oP(1) under P(n)

ϑ;g1
,

(ii) R(n;�)
i2 is oP(1) under P(n)

ϑ;g1
for n sufficiently large and (iii) R(n;�)

i3 is o(1).

PROOF OF LEMMA A.1. First note that D(n;�)
i1 = 1

2σ 2 n
−1/2
i

∑ni

j=1[T(n;�)
ij −

E0[T(n;�)
ij ]], where T(n;�)

ij := K(�)(G̃1k(d
n
ij /σn))−K(�)(G̃1k(d

0
ij /σ )), j = 1, . . . , ni

are i.i.d. Writing Var0 for variances under P(n)
ϑ;g1

,

E0
[∣∣D(n;�)

i1

∣∣2]= Var0
[
D(n;�)

i1

]= 1

4σ 4 Var0
[
T(n;�)

i1

]≤ 1

4σ 4 E0
[∣∣T(n;�)

i1

∣∣2],
and it only remains to show that, as n → ∞,

E0
[∣∣T(n;�)

i1

∣∣2]= E0
[(

K(�)(G̃1k(d
n
i1/σn)) − K(�)(G̃1k(d

0
i1/σ))

)2]
(A.10)

= o(1)

Now, |dn
i1/σn − d0

i1/σ | ≤ |dn
i1 − d0

i1|/σn + |σ−1
n − σ−1|d0

i1 is oP(1) under P(n)
ϑ;g1

since |dn
i1 −d0

i1| is; see Lemma A.1 in [14]. This and the continuity of K(�)◦G̃1k im-

ply that K(�)(G̃1k(d
n
i1/σn)) − K(�)(G̃1k(d

0
i1/σ)) = oP(1) under P(n)

ϑ;g1
, as n → ∞.

Since K(�) is bounded, this convergence also holds in quadratic mean, which en-
tails (A.10). �

PROOF OF LEMMA A.2. Letting

B(n;�)
i1 := 1

2σ 2 n
−1/2
i

ni∑
j=1

(
K(�)(G̃1k(d

0
ij /σ )) − E

[
K(�)(U)

])
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one can show that, under P(n)
ϑ;g1

, as n → ∞,

B(n;�)
i1

L−→ N

(
0,

1

4σ 4 Var
[
K(�)(U)

])
.(A.11)

Under the sequence of local alternatives P(n)

ϑ (n);g1
, as n → ∞,

B(n;�)
i1 − Lk(K

(�), g1)

4σ 4 s
2(n)
i

L−→ N

(
0,

1

4σ 4 Lk

(
K(�))).

Defining B(n;�)
i2 := 1

2σ 2 n
−1/2
i

∑ni

j=1(K
(�)(G̃1k(d

n
ij /σn)) − E[K(�)(U)]), it follows

from ULAN that, under P(n)
ϑ;g1

, as n → ∞,

B(n;�)
i2 + Lk(K

(�), g1)

4σ 4 s
2(n)
i

L−→ N

(
0,

1

4σ 4 Lk

(
K(�))).(A.12)

Now, from (A.11) and the fact that, under P(n)
ϑ;g1

, D(n;�)
i1 = B(n;�)

i2 − B(n;�)
i1 −

E0[B(n;�)
i2 ] = oP(1) (Lemma A.1), we obtain that, under P(n)

ϑ;g1
, as n → ∞,

B(n;�)
i2 − E0

[
B(n;�)

i2

] L−→ N

(
0,

1

4σ 4 Lk

(
K(�))).(A.13)

The result then follows from comparing (A.12) and (A.13). �

We now complete the proof that (A.8) is oP(1) under P(n)
ϑ;g1

by proving
Lemma A.3.

PROOF OF LEMMA A.3. (i) In view of the independence under P(n)
ϑ;g1

of the

d0
ij ’s,

E0
[∣∣R(n;�)

i1

∣∣2]= n−1
i

4σ 4

ni∑
j=1

E0
[[(

K(G̃1k(d
0
ij /σ )) − k

)
− (

K(�)(G̃1k(d
0
ij /σ )) − E

[
K(�)(U)

])]2]
= 1

4σ 4 Var
[
K(U) − K(�)(U)

]
(A.14)

≤ 1

4σ 4 E
[(

K(U) − K(�)(U)
)2]

= 1

4σ 4

∫ 1

0

[
K(u) − K(�)(u)

]2
du

for all n. Clearly, K(�)(u) converges to K(u), for all u ∈ (0,1). Also, since
|K(�)(u)| is bounded by |K(u)|, for all � ≥ L, the integrand in (A.14) is bounded
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(uniformly in �) by 4|K(u)|2, which is integrable on (0,1). The Lebesgue dom-
inated convergence theorem thus implies that E0[|R(n;�)

i1 |2] = o(1), as � → ∞,
uniformly in n.

(ii) Claim (ii) is the same as (i), with dn
ij /σn replacing d0

ij /σ . Accordingly,

(ii) holds under P(n)

ϑ (n);g1
. That it also holds under P(n)

ϑ;g1
follows from Lemma 3.5

in [24].
(iii) Note that |Lk(K,g1) − Lk(K

(�), g1)|2 = |Cov[K(U) − K(�)(U),

Kg1(U)]|2 ≤ Lk(g1) × Var[K(U) − K(�)(U)], which is o(1) as � → ∞ [see (i)

above]. The result then follows from the boundedness of (s
2(n)
i ). �
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