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SEMIPARAMETRIC EFFICIENCY IN GMM MODELS
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We study semiparametric efficiency bounds and efficient estimation of
parameters defined through general moment restrictions with missing data.
Identification relies on auxiliary data containing information about the dis-
tribution of the missing variables conditional on proxy variables that are ob-
served in both the primary and the auxiliary database, when such distribution
is common to the two data sets. The auxiliary sample can be independent of
the primary sample, or can be a subset of it. For both cases, we derive bounds
when the probability of missing data given the proxy variables is unknown,
or known, or belongs to a correctly specified parametric family. We find that
the conditional probability is not ancillary when the two samples are inde-
pendent. For all cases, we discuss efficient semiparametric estimators. An
estimator based on a conditional expectation projection is shown to require
milder regularity conditions than one based on inverse probability weighting.

1. Introduction. Many empirical studies are complicated by the presence of
missing data. One solution to the identification problem is based on the assumption
that information on the true value of the variables in the data set of interest (the
primary data set) can be recovered using auxiliary data sources under a conditional
independence assumption. The key element of this identification strategy is that the
distribution of the variables of interest is assumed to be independent of whether
they belong to the primary or the auxiliary sample, conditional on a set of proxy
variables, which are observed in both samples.

The first goal of this paper is to study semiparametric efficiency bounds of pa-
rameters defined through general nonlinear and over-identified moment conditions
for missing data models under a conditional independence assumption. We pro-
vide semiparametric efficiency bounds for the cases when the propensity score is
unknown, or is known, or belongs to a correctly specified parametric family. In
our context, the propensity score is defined as the probability that one observa-
tion belongs to the subsample where only the proxy variables are observed. The
auxiliary sample can be either a subset of the primary sample (“verify-in-sample”
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case) or independent of the primary sample (“verify-out-of-sample”). The former
case is a special case of the MAR or CAR missing data structure where the miss-
ing variables are common to all subjects. Semiparametric efficiency bounds for
this case are closely related to the results in Robins, Rotnitzky and Zhao (1994)
when there is a single hierarchy in the case of monotone missing data patterns for
a fixed set of instrument functions. [See also Robins and Rotnitzky (1995) and
Chen and Breslow (2004).] We provide new results on semiparametric efficiency
bounds for the “verify-out-of-sample” case. We find that while more information
on the propensity score will not affect the asymptotic efficiency bounds for para-
meters defined in the verify-in-sample case [as shown in, e.g., Robins, Rotnitzky
and Zhao (1994), Chen and Breslow (2004) and Hahn (1998)], it will improve the
asymptotic efficiency for parameters defined in the verify-out-of-sample case. Our
new efficiency bound results for the case when the parametric propensity is cor-
rectly specified should be useful in applied work because such an assumption is
frequently adopted by empirical researchers.

The second goal of the paper is to develop two classes of sieve-based, Gener-
alized Method of Moments (GMM) estimators that achieve the efficiency bounds
for parameters defined under either the “verify-out-of-sample” or the “verify-in-
sample” framework. Each estimator relies only on one nonparametric estimate;
a conditional expectation projection based GMM (hereafter CEP-GMM) estimator
only requires the nonparametric estimation of a conditional expectation, while an
inverse probability weighting based GMM (hereafter IPW-GMM) estimator only
needs a nonparametric estimate of the propensity score. We establish asymptotic
normality and efficiency properties of both estimators under weaker regularity con-
ditions than the existing ones in the literature. In particular, we allow for nonlinear
and nonsmooth moment restrictions and for unbounded support of conditioning
(or proxy) variables. The CEP-GMM estimator presents some advantages over
the IPW-GMM estimator. First, its root-n asymptotic normality and efficiency can
be derived without the strong assumption that the unknown propensity score is
uniformly bounded away from zero and one. Second, the CEP-GMM estimator
is characterized by a simple common format that achieves the relevant efficiency
bound for all the cases we consider, regardless of whether the propensity score is
unknown, or known or parametrically specified. Instead, the IPW-GMM estimator
will be generally inefficient when the propensity score is known, or is paramet-
rically estimated using a correctly specified parametric model; in such instances,
different combinations of nonparametric and parametric estimates of the propen-
sity score have to be specifically derived to achieve the efficiency bounds.

Our results can also be applied to the estimation of parametric nonlinear models
with nonclassical measurement errors with validation data, a topic that has been
studied in Carroll and Wand (1991), Sepanski and Carroll (1993), Carroll, Ruppert
and Stefanski (1995), Lee and Sepanski (1995), Chen, Hong and Tamer (2005)
among others.
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Section 2 describes the model and presents the semiparametric efficiency
bounds. Semiparametrically efficient CEP-GMM and IPW-GMM estimators are
developed in Sections 3 and 4, respectively. In Section 5 we illustrate empirically
the performance of the different estimators in the estimation of the distribution
of private consumption in rural India in the presence of missing data. Section 6
concludes. All proofs are given in the Appendices.

2. Semiparametric efficiency bounds. Let (Xi, Yi,Di)
n
i=1 be an i.i.d. sam-

ple from (X,Y,D), and denote Zi = (Yi,Xi) where Yi is only observed when
Di = 0. We are interested in the estimation of parameters β ∈ B , a compact subset
of Rdβ , defined implicitly in terms of general nonlinear moment conditions. In the
first (verify-out-of-sample) case such conditions are described by

E[m(Z;β) | D = 1] = 0 if and only if β = β0,(1)

while in the second (verify-in-sample) case the condition is

E[m(Z;β)] = 0 if and only if β = β0,(2)

where Z = (Y,X) and m(·;β) is a set of functions with dimension dm ≥ dβ .
In other words, under case (1) Y is always missing in the primary data set

(D = 1), which is a random sample from the population of interest, while an in-
dependent auxiliary sample (where D = 0) will serve the purpose of ensuring the
identification of parameters that would not be identified by the primary data set
alone. Under case (2), the auxiliary sample is instead a subset of the entire primary
sample.

In this section we present the semiparametric efficiency bound for the estimation
of β implicitly defined by either moment conditions (1) or (2). In this paper β is
typically used to denote an arbitrary value in the parameter space, but to save
notation in this section β is also used as the true parameter value β0. Define

E(X;β) = E[m(Z;β) | X](3)

to be the conditional expectation of the moment conditions given X, and define

V (m(Z;β)|X) = E[m(Z;β)m(Z;β)′ | X] − E(X;β)E(X;β)′(4)

to be the conditional variance of the moment conditions given X. In addition, de-
fine

p = Pr(D = 1) and p(X) = Pr(D = 1 | X),

J1
β = ∂

∂β
E[m(Z;β) | D = 1] and J2

β = ∂

∂β
E[m(Z;β)].

ASSUMPTION 1. (i) Both J1
β and J2

β have full column rank equal to dβ ;
(ii) The data (Xi, Yi,Di)

n
i=1 is an i.i.d. sample from (X,Y,D); (iii) p ∈ (0,1),

p(X) ∈ (0,1).
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Notice that in both cases (1) and (2) the moment conditions are assumed to
hold in the primary sample in which some information is missing. Identification
is possible because of the access to an auxiliary data set (D = 0) which contains
both Y and a set of proxy variables X that are also potentially of interest, if the
following fundamental conditional independence assumption holds:

ASSUMPTION 2. Y ⊥ D | X.

Conditional independence assumptions have been used extensively in econo-
metrics and statistics to achieve identification with missing data. Examples include
inference in models with attrition or nonresponse [e.g., Little and Rubin (2002),
Robins and Rotnitzky (1995), Rotnitzky and Robins (1995), Wooldridge (2002),
Wooldridge (2003)], the estimation of treatment effects [see e.g., the references
surveyed in Heckman, LaLonde and Smith (1999)], the recovery of comparability
over time of statistics calculated using data collected with different methodology
[e.g., Clogg, Rubin, Schenker, Schultz and Weidman (1991), Schenker (2003),
Tarozzi (2007)].

Under case (2), Assumption 1 would be satisfied if, for instance, the probability
of validating a given observation only depends on X. In case (1), Assumption 2 re-
quires that the sampling scheme used to create the auxiliary sample depends only
on X. If a simple random subset of the primary data is validated, p(X) is a constant
and the auxiliary data set is characterized by the same distribution of (Y,X) as the
primary data set, and Assumption 2 is easily seen satisfied. In this case, which is
common in the statistics literature, the auxiliary data set is usually called a vali-
dation data set. A stratified sample satisfying Assumption 2 in model (2) can also
be produced through a two-stage sampling design using a finite number of strata
[see e.g., Breslow, Robins and Wellner (2000) and Breslow, McNeney and Wellner
(2003)], in which case the only variable X that is observed for all sampled obser-
vations is a discrete stratum indicator. In the following, the “regular estimators”
are defined according to Begun, Hall, Huang and Wellner (1983) and Ibragimov
and Has’minskii (1981).

THEOREM 1. Let β be defined by the moment conditions (1) or (2). Under
Assumptions 1–2, the asymptotic variance lower bound for all regular estimators
of β is

(J′
β�−1

β Jβ)−1 for some Jβ and some positive definite �β,

where, for the moment condition (1), Jβ = J1
β and �β = �1

β :

�1
β = E

[
p(X)2

p2(1 − p(X))
V (m(Z;β) | X) + p(X)

p2 E(X;β)E(X;β)′
]
;
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and for the moment condition (2), Jβ = J2
β and �β = �2

β :

�2
β = E

[
1

1 − p(X)
V [m(Z;β) | X] + E(X;β)E(X;β)′

]
.

In Appendix A we present explicit expressions for the efficient score functions
corresponding to the asymptotic variance lower bounds in Theorem 1 as well as in
the following Theorems 2 and 3.

2.1. Information content of the propensity score. It is interesting to analyze
whether the knowledge of the propensity score p(X) decreases the semiparametric
efficiency bounds for the parameters β .

THEOREM 2. Let β be defined by the moment conditions (1) or (2). Under
Assumptions 1–2, if p(X) is known, then the asymptotic variance lower bound for
all regular estimators of β is

(J′
β�̃−1

β Jβ)−1 for some Jβ and some positive definite �̃β,

where, for the moment condition (1), Jβ = J1
β and �̃β = �̃1

β :

�̃1
β = E

[
p(X)2

p2(1 − p(X))
V (m(Z;β) | X) + p(X)2

p2 E(X;β)E(X;β)′
]
;

and for the moment condition (2), Jβ = J2
β and �̃β = �2

β given in Theorem 1.

In other words, knowledge of p(X) reduces the semiparametric efficient vari-
ance bound for β under the “verify-out-of-sample” case, but it does not under the
“verify-in-sample” case. The following argument provides an intuition for this re-
sult. When (2) holds, β is defined through the relation∫ ∫

m(y, x;β)f (y | x)dyf (x) dx = 0.

The propensity score p(X) does not enter the definition of β , therefore its knowl-
edge should not affect the variance bound for β . However, the relation that identi-
fies β when (1) holds clearly depends on p(X):∫ ∫

m(y, x;β)p(x)f (y | x)dyf (x) dx = 0.

REMARK 1. A special case of Theorem 2 is when p(X) is a constant p. In this
case, the auxiliary sample is also called a validation sample and is drawn randomly
from the same population as the primary sample, so that Y,X ⊥ D [Carroll and
Wand (1991), Sepanski and Carroll (1993), Lee and Sepanski (1995)]. In such case
it is then easy to see that the two efficiency bounds given in Theorem 2 become
identical.
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Another interesting question is what is the efficiency bound for the estima-
tion of β defined by moment condition (1) if the propensity score is unknown
but is assumed to belong to a correctly specified parametric family, so that
p(X) = p(X;γ ). Let pγ (X) = ∂p(X;γ )/∂γ , and define the score function for
γ as Sγ = Sγ (D,X) = D−p(X;γ )

p(X;γ )(1−p(X;γ ))
pγ (X).

THEOREM 3. Let β be defined by the moment conditions (1). Under As-
sumptions 1–2, if p(X) = p(X;γ ) and E[Sγ (D,X)Sγ (D,X)′] is positive defi-
nite, then the asymptotic variance lower bound for all regular estimators of β is
(J′

β�̃−1
β Jβ)−1, where Jβ = J1

β , �̃1
β is given in Theorem 2 and

�̃β = �̃1
β +

[
E

E(X;β)pγ (X)′

p

]
[ESγ S′

γ ]−1
[
E

pγ (X)E(X;β)′

p

]
.

This variance bound is clearly larger than �̃1
β stated in Theorem 2, but it is

smaller than the bound in Theorem 1. This latter result can be verified noting first
that the bound in Theorem 3 corresponds to the variance of the following influence
function:

(1 − D)p(X)

p(1 − p(X))

(
m(Z;β) − E(X;β)

)
+ Proj

(
E(X;β)

p

(
D − p(X)

)∣∣∣Sγ (D,X)

)
+ p(X)E(X;β)

p
,

where we use Proj(Z1|Z2) to denote the population least squares projection of a
random variable Z1 onto the linear space spanned by Z2. The conclusion follows
noting that the variance bound stated in Theorem 1 for moment condition (1) is
instead the variance of the following influence function

1

p
DE(X;β) + (1 − D)p(X)

p(1 − p(X))
[m(Z;β) − E(X;β)],

whose corresponding variance is larger.
Our results for GMM models complement and extend the finding in the program

evaluation literature that knowing the propensity score decreases the efficient vari-
ance bound for the estimation of the average effect of treatment on the treated,
while the propensity score is ancillary for the average treatment effect parameter
[Hahn (1998)].

3. CEP-GMM estimation. In this section, we consider a first class of semi-
parametrically efficient estimators based on a conditional expectation projection
(CEP) method. If Assumption 2 holds, identification follows by noting that, under
case (1)

E[m(Z;β) | D = 1] =
∫

E[m(Z;β) | x,D = 0]f (x | D = 1) dx,
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while under case (2),

E[m(Z;β)] =
∫

E[m(Z;β) | x,D = 0]f (x) dx.

Therefore, estimation of the parameters of interest can proceed by first estimating
E[m(Z;β)|x,D = 0] nonparametrically from the auxiliary sample, and then in-
tegrating the conditional expectation against the distribution of x in the primary
sample.

3.1. Efficient estimation with unknown propensity score. In the following, we
use subscripts p and a to refer respectively to observations belonging to the pri-
mary and to the auxiliary sample. Let np be the size of the primary sample
and na be the size of the auxiliary sample. Observations in the primary sam-
ple are indexed by i = 1, . . . , np . Observations in the auxiliary sample are in-
dexed by j = 1, . . . , na . Under moment condition (1) (verify-out-of-sample case),
n = np + na . Under moment condition (2) (verify-in-sample case), n = np . Let
Ê(X;β) denote a nonparametric estimate of E(X;β) using the auxiliary sample.
Chen, Hong and Tamer (2005) (hereafter CHT) used a sieve Least Squares (LS)
estimator. Let {ql(X), l = 1,2, . . .} denote a sequence of known basis functions
that can approximate any square-measurable function of X arbitrarily well. Also
let

qk(na)(X) = (
q1(X), . . . , qk(na)(X)

)′
and

Qa = (
qk(na)(Xa1), . . . , q

k(na)(Xana )
)′

for some integer k(na), with k(na) → ∞ and k(na)/n → 0 when n → ∞. Then
for each given β , the sieve LS estimator of E(X;β) is

Ê(X;β) =
na∑

j=1

m(Zaj ;β)qk(na)(Xaj )(Q
′
aQa)

−1qk(na)(X).

A generalized method of moment estimator for β0 can then be defined as

β̂ = arg min
β∈B

(
1

np

np∑
i=1

Ê(Xpi;β)

)′
Ŵ

(
1

np

np∑
i=1

Ê(Xpi;β)

)
.(5)

The
√

n-consistency and asymptotic normality of this CEP-GMM estimator
have been established in CHT. Following the proof of their claim (A.2), we have
the following asymptotic representation:

√
n

np

np∑
i=1

Ê(Xpi;β0) =
√

n

np

np∑
i=1

E(Xpi;β0)
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+
√

n

na

na∑
j=1

fXp(Xaj )

f (Xaj |D = 0)
[m(Zaj ;β0) − E(Xaj ;β0)]

+ op(1),

where we use fXp(X) to denote the density of X in the primary data set, and op(1)

represents a term that converges to 0 in probability.
When moment condition (1) holds, n = np + na , fXp(X) = f (X | D = 1) and

fXp(X)

f (X | D = 0)
= (1 − p)p(X)

p(1 − p(X))
.

In this case we can also write the influence function for
√

n
np

∑np

i=1 Ê(Xpi;β0) as

1√
n

n∑
i=1

{
1

p
DiE(Xi;β0)

+ (1 − Di)
p(Xi)

p(1 − p(Xi))
[m(Zi;β0) − E(Xi;β0)]

}
(6)

+ op(1).

The proof of Theorem 1 shows that the two terms in the influence function cor-
respond to the two components of the efficient influence function that contain in-
formation about f (X|D = 1) and f (Y | X), respectively. These two terms are
orthogonal to each other, so that

Avar

(√
n

np

np∑
i=1

Ê(Xpi;β0)

)
= �1

β,

where �1
β is given in Theorem 1.

When moment condition (2) holds, fXp(X) = f (X), np = n and

fXp(X)

f (X | D = 0)
= 1 − p

1 − p(X)
.

The influence function for
√

n
np

∑np

i=1 Ê(Xpi;β0) can then be written as

1√
n

n∑
i=1

{
E(Xi;β0) + (1 − Di)

1

1 − p(Xi)
[m(Zi;β0) − E(Xi;β0)]

}
(7)

+ op(1).

The two terms in the influence function correspond to the two components of the
projected efficiency influence function that contain information about f (X) and
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f (Y | X) in the proof of Theorem 1. The orthogonality between these two terms
implies that

Avar

(√
n

np

np∑
i=1

Ê(Xpi;β0)

)
= �2

β,

where �2
β is given in Theorem 1. The semiparametric efficiency bounds given in

Theorem 1 are then achieved by an optimally weighted GMM estimator β̂ for β0

that uses a weighting matrix Ŵ = �−1
β + op(1).

THEOREM 4. Let β̂ be the CEP-GMM estimator given in (5). Under As-
sumptions 1–2, and Assumptions 3–5 of CHT, we have

√
n(β̂ − β0) ⇒ N (0,V ),

with V = (J′
βWJβ)−1J′

βW�βWJβ(J′
βWJβ)−1, where �β is given in Theo-

rem 1. Furthermore, if W = �−1
β , then

√
n(β̂ − β0) ⇒ N (0,V0), with V0 =

(J′
β�−1

β Jβ)−1, where Jβ = J1
β and �β = �1

β under moment condition (1), and

Jβ = J2
β and �β = �2

β under moment condition (2).

CHT derive the root-n consistency and normality of the CEP-GMM estima-
tor. Theorem 4 says that their estimator β̂ is also semiparametrically efficient. The
proof of Theorem 4 follows directly from that of Theorem 2 in CHT, who also pro-
vide simple consistent estimators of V and V0. In the working paper version of this
article, we have stated Assumptions 3–5 of CHT in terms of the notations of this
paper. These assumptions are mild regularity conditions. In particular, they allow
for (i) nonsmooth m(Z;β), such as quantile-based moment functions; (ii) the sup-
port of the conditioning (proxy) variable X could be unbounded; (iii) the propen-
sity score function p(X) does not need to be uniformly bounded away from zero
and one. Recall that in the program evaluation literature such as in Hirano, Im-
bens and Ridder (2003), the stronger condition 0 < p ≤ p(x) ≤ p < 1 is typically
imposed for root-n asymptotically normal and efficient estimation of β0 .

3.2. CEP estimation with parametric or known propensity score. Suppose
now that the propensity score p(X) is correctly parameterized as p(X;γ ) up to
a finite-dimensional unknown parameter γ . Theorems 2 and 4 show that the opti-
mally weighted CEP-GMM estimator defined in (5) still achieves the semiparamet-
ric efficiency bound for β defined by moment condition (2). However, according
to Theorems 3 and 4, such an estimator is no longer efficient for β defined through
moment condition (1).

Rewriting moment condition (1) as E[E(Xi;β0)
p(Xi)

p
] = 0, we can again con-

struct an efficient estimator for β0 based on the sieve estimate Ê(X;β) and the
correctly specified parametric form p(X;γ ). In particular, the optimally weighted
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GMM estimator using the following sample moment condition will achieve the
efficiency bound in Theorem 3 for β defined through (1):

1

n

n∑
i=1

Ê(Xi;β)
p(Xi; γ̂ )

p̂
,(8)

where p̂ = np

n
and γ̂ is the parametric MLE that solves the score equation for γ :

1

n

n∑
i=1

Sγ̂ (Di,Xi) = 1

n

n∑
i=1

Di − p(Xi; γ̂ )

p(Xi; γ̂ )(1 − p(Xi; γ̂ ))
pγ̂ (Xi) = 0.

THEOREM 5. Let p(X;γ ) be the parametric propensity score function known
up to the parameters γ and let E[Sγ0(D,X)Sγ0(D,X)′] be positive definite. Let
β0 satisfy the moment condition (1) and β̂ be its CEP-GMM estimator using the
sample moment (8). Under Assumptions 1–2 and Assumptions 3–5 of CHT, we
have

√
n(β̂ − β0) ⇒ N (0,V ), with

V = (J1
β

′
WJ1

β)−1J1
β

′
W�̃βWJ1

β(J1
β

′
WJ1

β)−1,

where �̃β is given in Theorem 3. Further, if W = �̃−1
β , then

√
n(β̂ − β0) ⇒

N (0,V0), where V0 = (J1
β

′
�̃−1

β J1
β)−1 is the efficiency variance bound given in

Theorem 3.

The proof of this theorem is similar to that of Theorem 2 in CHT and is thus
omitted. The influence function representation of (8) is stated in the working paper
version of this article.

We remark that even when a parametric assumption is being made about the
propensity score p(X;γ ) [in fact even if in addition f (Y ) is assumed to be a para-
metric likelihood], the inference about β is still semiparametric. This is because
the marginal density f (X) is still nonparametric and contains semiparametric in-
formation about β . This explains why nonparametric estimation is still needed to
achieve the bound for β .

The case where the propensity score is fully known can be considered a special
case of parametric propensity score where the parameters are known. In this case,
the efficient moment condition is as in (8) after replacing p(Xj ; γ̂ ) with the known
p(Xj ).

REMARK 2. When the auxiliary data set is a validation data set, for example,
p(X) = p, the parameters β defined by both moment conditions (1) and (2) co-
incide. Therefore, the CEP-GMM estimator defined in (5) when we take np = n

and the summation to be over the all observations will achieve semiparametric
efficiency.
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4. IPW-GMM estimation. An alternative estimation method for β is the
inverse probability weighting based GMM (IPW-GMM). Several authors have
considered inverse probability weighting paired with a conditional independence
assumption for estimation in presence of missing information. Recent examples in-
clude parametric IPW as in Robins, Mark and Newey (1992), Wooldridge (2002),
Wooldridge (2003) and Tarozzi (2007), for missing data models, and nonparamet-
ric inverse probability weighting as in Hirano, Imbens and Ridder (2003) for the
case of mean treatment effect analysis. In this section, we extend existing results
and first show that the optimally weighted IPW-GMM estimator of β is semipara-
metrically efficient when the propensity score is unknown. The same estimator,
however, will be generally inefficient when the propensity score is known or be-
longs to a correctly specified parametric family; combinations of nonparametric
and known or parametric estimated propensity scores are needed to achieve the
semiparametric efficiency bounds for these cases.

4.1. Efficient estimation with unknown propensity score. The IPW-GMM
method uses the fact that under Assumption 2, moment condition (1) can be rewrit-
ten as

E[m(Z;β) | D = 1] = E

[
m(Z;β)

p(X)(1 − p)

(1 − p(X))p

∣∣∣ D = 0
]
,(9)

while moment condition (2) is equivalent to

E[m(Z;β)] = E

[
m(Z;β)

1 − p

1 − p(X)

∣∣∣ D = 0
]
.(10)

Let p̂(X) be a consistent estimate of the true propensity score. Then we can esti-
mate β0 defined by case (1) using GMM with the following sample moment:

√
n

1

na

na∑
j=1

m(Zj ;β)
p̂(Xj )

1 − p̂(Xj )

1 − p̂

p̂
,(11)

and estimate β0 defined by case (2) using GMM with the following sample mo-
ment:

√
n

1

na

na∑
j=1

m(Zj ;β)
1 − p̂

1 − p̂(Xj )
.(12)

The inverse probability weighting approach is considered semiparametric when
p̂(X) is estimated nonparametrically. In this case, it can be shown that the sample
moment (11) evaluated at β0 is asymptotically equivalent to

1

p

1√
n

n∑
i=1

[
(1 − Di)m(Zi;β0)

p(Xi)

1 − p(Xi)
+ E(Xi;β0)

Di − p(Xi)

1 − p(Xi)

]
(13)

+ op(1).
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The two components of this influence function are negatively correlated. Because
of this, the asymptotic variance might be smaller than that of the estimator of β0
based on moment condition (11) with the known p(X). Simple manipulations are
sufficient to show that (13) is identical to the influence function in (6) whose cor-
responding asymptotic variance is �1

β given in Theorem 1. An optimally weighted
GMM estimator for β0 defined by case (1) using sample moment (11) achieves
then the semiparametric efficiency bound stated in Theorem 1.

The influence function representation for sample moment (12) can be calculated
as

1√
n

n∑
i=1

[
(1 − Di)m(Zi;β0)

1

1 − p(Xi)
+ E(Xi;β0)

Di − p(Xi)

1 − p(Xi)

]
+ op(1),

whose two components are again negatively correlated. However, it is again simple
to show that this influence function representation is identical to the one in (7).
Hence, an optimally weighted GMM estimator for β0 defined by case (2) using
sample moment (12) achieves the bound for case (1) stated in Theorem 1.

In this subsection, to emphasize that the true propensity score function is un-
known and has to be estimated nonparametrically, we use po(x) ≡ E(D | X = x)

to indicate the true propensity score and p(x) to denote any candidate function.
[Note that to save notations in the rest of the main text p(x) denotes the true
propensity score.] Let p̂(·) be a sieve estimator of po(x) that uses the combined
sample {(Di,Xi) : i = 1, . . . , n}. Let {Zai = (Yai,Xai) : i = 1, . . . , na} be the aux-
iliary (i.e., D = 0) data set. We define the IPW-GMM estimator β̂ for moment
condition (1) as

β̂ = arg min
β∈B

(
1

na

na∑
i=1

m(Zai;β)
p̂(Xai)

1 − p̂(Xai)

)′
Ŵ

(14)

×
(

1

na

na∑
i=1

m(Zai;β)
p̂(Xai)

1 − p̂(Xai)

)

and the IPW-GMM estimator β̂ for moment condition (2) as

β̂ = arg min
β∈B

(
1

na

na∑
i=1

m(Zai;β)
1

1 − p̂(Xai)

)′
Ŵ

(15)

×
(

1

na

na∑
i=1

m(Zai;β)
1

1 − p̂(Xai)

)
.

There are two popular sieve nonparametric estimators of po(·):
(i) A sieve Least Squares (LS) estimator p̂ls(x) as in Hahn (1998):

p̂ls = arg min
p(·)∈Hn

1

n

n∑
i=1

(
Di − p(Xi)

)2
/2,



820 X. CHEN, H. HONG AND A. TAROZZI

Hn =
{
h(x) = qkn(x)′π =

kn∑
j=1

qj (x)πj

}
for some known basis (qj )

∞
j=1.

In the Appendix we establish the consistency and convergence rate of p̂ls(x) under
the assumption that the variables in X have unbounded support.

(ii) A sieve Maximum Likelihood (ML) estimator p̂mle(x) as in Hirano, Im-
bens and Ridder (2003):

p̂mle = arg max
p(·)∈Hn

1

n

n∑
i=1

{Di log[p(Xi)] + (1 − Di) log[1 − p(Xi)]},

Hn = {h(x) = [Akn(x)′π ]2} or {h(x) = exp(Akn(x)′π)}.
Before we present the large sample properties of the IPW-GMM estimator,

we need to introduce some notations and assumptions. Let the support of X be
X = Rdx . We could use more complicated notations and let X = Xc × Xdc, with
Xc being the support of the continuous variables and Xdc the support of the fi-
nitely many discrete variables. Further we could decompose Xc = Xc1 × Xc2
with Xc1 = Rdx,1 and Xc2 being a compact and connected subset of Rdx,2 . Then,
under simple and usual modifications of the assumptions, the large sample results
stated below would remain valid. To avoid tedious notation yet to allow for some
unbounded support elements of X, we assume X = Xc = Rdx . For any 1 × dx

vector a = (a1, . . . , adx ) of nonnegative integers, we write |a| = ∑dx

k=1 ak , and for
any x = (x1, . . . , xdx )

′ ∈ X, we denote the |a|th derivative of a function h :X → R
as

∇ah(x) = ∂ |a|

∂x
a1
1 · · · ∂x

adx

dx

h(x).

For some γ > 0, let γ be the largest integer smaller than γ , and let �γ (X) denote
a Hölder space with smoothness γ , that is, a space of functions h :X → R which
have up to γ continuous derivatives, and the highest (γ th) derivatives are Hölder
continuous with the Hölder exponent γ − γ ∈ (0,1]. The Hölder space becomes a
Banach space when endowed with the Hölder norm:

‖h‖�γ = sup
x

|h(x)| + max|a|=γ
sup
x �=x

|∇ah(x) − ∇ah(x)|√
(x − x)′(x − x)

γ−γ < ∞.

We call �
γ
c (X) ≡ {h ∈ �γ (X)‖h‖�γ ≤ c < ∞} a Hölder ball (with radius c).

Define a weighted sup-norm ‖g‖∞,ω ≡ supx∈X |g(x)[1 + |x|2]−ω/2| for some
ω > 0. Denote 	∞ng as the projection of g onto the sieve space Hn under the
norm ‖ · ‖∞,ω. Let fXa(x) = fX|D=0(x) and Ea(·) = E(·|D = 0).

ASSUMPTION 3. Let Ŵ − W = op(1) for a positive semidefinite matrix W ,
and the followings hold: (1) po(·) belongs to a Hölder ball H = {p(·) ∈
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�
γ
c (X) : 0 < p ≤ p(x) ≤ p < 1} for some γ > 0; (2)

∫
(1 + |x|2)ωfX(x) dx < ∞

for some ω > 0; (3) there is a function b(·) such that b(δ) → 0 as δ → 0 and
Ea[sup‖β−β̃|<δ |m(Zi;β) − m(Zi, β̃)‖2] ≤ b(δ) for all small positive value δ;
(4) Ea[supβ∈B ‖m(Zi;β)‖2] < ∞; (5) for any h ∈ H , there is a sequence
	∞nh ∈ Hn such that ‖h − 	∞nh‖∞,ω = o(1).

THEOREM 6. Let β̂ be the IPW-GMM estimator given in (14) or (15). Under
Assumptions 1, 2 and 3, if kn

n
→ 0, kn → ∞, then β̂ − β0 = op(1).

Let E(·) = ∫
(·)fX(x) dx, ‖h‖2 =

√∫
h(x)2fX(x) dx, and 	2nh be the projec-

tion of h onto the closed linear span of qkn(x) = (q1(x), . . . , qkn(x))′ under the
norm ‖ · ‖2. We need the following additional assumptions to obtain asymptotic
normality.

ASSUMPTION 4. Let β0 ∈ int(B), E[ po(X)
1−po(X)

E(X;β0)E(X;β0)
′] be positive

definite, and the followings hold: (1) Assumptions 3.1 and 3.2 are satisfied with
γ > dx/2 and ω > γ ; (2) There exist a constant ε ∈ (0,1] and a small δ0 > 0 such
that

Ea

[
sup

‖β−β̃‖<δ

‖m(Zi;β) − m(Zi, β̃)‖2
]

≤ const.δε

for any small positive value δ ≤ δ0; (3) Ea[supβ∈B:‖β−β0‖≤δ0
‖m(Zi;β)‖2(1 +

|Xi |2)ω] < ∞ for some small δ0 > 0; (4) E[‖ ∂E(X;β0)
∂β

‖(1 + |X|2)ω/2] < ∞,

and for all x ∈ X, ∂E(x;β)
∂β

is continuous around β0; (5) kn = O(ndx/(2γ+dx)),

n−γ /(2γ+dx) × ‖ E(·;βo)
1−po(·) − 	2n

E(·;βo)
1−po(·)‖2 = o(n−1/2); (6) either (6a)

supβ∈B: : β−β0 : ≤δ0
supx∈X ‖E(x,β)‖ ≤ const. < ∞ for some small δ0 > 0; or

(6b) Ea[supβ∈B:‖β−β0‖≤δ0
‖E(X,β)‖4] ≤ const. < ∞ for some small δ0 > 0, and

fXa(·) ∈ �
γ
c (X) with γ > 3dx/4; or (6c) Ea[supβ∈B:‖β−β0‖≤δ0

‖E(X,β)‖2] ≤
const. < ∞ for some small δ0 > 0, and fXa(·) ∈ �

γ
c (X) with γ > dx .

THEOREM 7. Let β̂ be the IPW-GMM estimator given in (14) or (15). Under
Assumptions 1, 2, 3 and 4, we have

√
n(β̂ − β0) ⇒ N (0,V ), with V the same as

in Theorem 4.

REMARK 3. (i) The weighting ω is needed since the support of the condition-
ing variable X is assumed to be the entire Euclidean space. When X has bounded
support and fX|D=0 is bounded above and below over its support, we can sim-
ply set ω = 0 in Assumptions 3 and 4 and replace 4.1 with the assumption that
3.1 holds with γ > dx/2. Note that Assumption 4.6a is easily satisfied when X

has compact support. When X = Rdx , Assumption 4.6a rules out E(x,β) being
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linear in x; Assumptions 4.6b or 4.6c allow for linear E(x,β) but need smoother
propensity score p(x) and density fX|D=0. (ii) Assumptions 3 and 4 again allow

for non-smooth moment conditions. (iii) Since fX|D=0(X)

fX(X)
= 1−po(X)

1−p
, the assump-

tion 0 < p ≤ po(x) ≤ p < 1 implies that 1−p
1−p

≤ fX|D=0(X)

fX(X)
≤ 1−p

1−p
, hence E(·) and

Ea(·) in Assumptions 3 and 4 are effectively equivalent. (iv) Although Assump-
tion 3.1 imposes the same strong condition 0 < p ≤ po(x) ≤ p < 1 as that typ-
ically assumed in the program evaluation literature, unlike most existing papers
on estimation of average treatment effects, our paper allows for unbounded sup-
port of X and assumes weaker smoothness on po(x) and E(·;βo). In particular, if

we let kn = O(n
dx

2γ+dx ), the growth order which leads to the optimal convergence
rate of ‖p̂(·) − po(·)‖2 = Op(n−γ /(2γ+dx)), then Assumption 4.5 is satisfied with

‖ E(·;βo)
1−po(·) − 	2n

E(·;βo)
1−po(·)‖2 = o(n−dx/(2(2γ+dx))) = o(k

−1/2
n ).

4.2. IPW estimation with parametric or known propensity score. The case of
moment condition (2) is simpler, and therefore, we briefly discuss it first. Theorems
1 and 2 have shown that knowledge about the propensity score does not change the
semiparametric efficiency bound. Furthermore, Theorems 4 and 7 show that both
a nonparametric CEP-GMM estimator and a nonparametric IPW-GMM estima-
tor for β achieve this semiparametric efficiency bound regardless of whether the
propensity score is unknown, known or parametrically specified. The following
theorem also states, without proof, the interesting result that the parametric IPW
estimator using p(X; γ̂ ) is in fact less efficient than the one using a nonparametric
estimate p̂(X) in (12), but is more efficient than the one using the known p(X).

THEOREM 8. Suppose that E[Sγ (D,X)Sγ (D,X)′] is positive definite and
that the parametric model p(Xi;γ ) is correctly specified. Under moment condi-
tion (2) and using the optimally weighted sample moment condition (12), an IPW-
GMM estimator for β using a parametric estimate of p(Xi; γ̂ ) in place of p̂(Xi)

in (12) is more efficient than the one using the known p(Xi), but is less efficient
than the one using a nonparametric estimate p̂(Xi) of the propensity score.

This result is based on the following relations, which hold asymptotically:

Avar

(√
n

na

na∑
j=1

m(Zj ;β0)
1 − p̂

1 − p(Xi; γ̂ )

)
≤ Avar

(√
n

na

na∑
j=1

m(Zj ;β0)
1 − p̂

1 − p(Xi)

)

and

Avar

(√
n

na

na∑
j=1

m(Zj ;β0)
1 − p̂

1 − p(Xi; γ̂ )

)
≥ Avar

(√
n

na

na∑
j=1

m(Zj ;β0)
1 − p̂

1 − p̂(Xi)

)
.

Now consider the more interesting case where moment condition (1) holds and
sample moment condition (11) is used. Consider the case when the parametric
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propensity score is correctly specified. First, it is clear that the optimally weighted
IPW-GMM estimator of β based on (11) that uses a nonparametric estimate of
p̂(X) does not achieve the efficiency bound in Theorem 3, because we see from
Theorem 7 that this estimator achieves instead the variance bound in Theorem 1,
which is larger than the variance bound in Theorem 3.

However, the parametric two step IPW estimator that uses a parametric first step
for p(X;γ ) does not achieve the efficiency bound in Theorem 3 either. To see this,
note that the parametric two step IPW estimator is based on the moment condition

√
n

1

na

na∑
j=1

m(Zj ;β)
p(Xj ; γ̂ )

1 − p(Xj ; γ̂ )

1 − p̂

p̂
,

which has a linear influence function representation of

1

p

[
m(Zi;β0)

(1 − Di)p(Xi)

1 − p(Xi)
+ Proj

(
E(Xi;β0)

Di − p(Xi)

1 − p(Xi)

∣∣∣ Sγ (Di,Xi)

)]
,

where

Proj
(
E(Xi;β0)

Di − p(Xi)

1 − p(Xi)

∣∣∣ Sγ (Di,Xi)

)

= E

[
E(X;β0)

pγ (X)

1 − p(X)

]
× E[Sγ (Di,Xi)Sγ (Di,Xi)

′]−1Sγ (Di,Xi)

is the influence function from the first step estimation of γ . The difference between
this influence function and that in Theorem 3 can be verified to be equal to

Res
((

D − p(X)
) p(X)

1 − p(X)
E(X;β0)

∣∣∣ Sγ (Di,Xi)

)
,

which is obviously orthogonal to the influence function of Theorem 3. Therefore,
the two step parametric IPW estimator has a variance larger than the efficiency
bound under the assumption of correct specification of the parametric model for
p(X;γ ).

An IPW type estimator that achieves the efficiency bound under correct specifi-
cation can be obtained by combining both nonparametric and parametric estimates
of the propensity score. Such an efficient moment condition is given by

√
n

1

na

na∑
j=1

m(Zj ;β)
p(Xj ; γ̂ )

1 − p̂(Xj )

1 − p̂

p̂
,(16)

where γ̂ is the maximum likelihood estimator for γ0 and p̂(X) is the sieve estimate
of the propensity score. This moment condition has the following asymptotic linear
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representation:

1

p

1√
n

n∑
i=1

[
(1 − Di)

(
m(Zi;β0) − E(Xi;β0)

) p(Xi)

1 − p(Xi)
+ p(Xi)E(Xi;β0)

]

+ E

[
E(X;β0)

p
pγ (Xi)

]√
n(γ̂ − γ ),

which is identical to the influence function under correct parametric specification
of p(X;γ ) leading to the semiparametric efficiency bound in Theorem 3.

The case where the propensity score is fully known can be considered a spe-
cial case of parametric propensity score where the parameters are known. In this
case, the efficient moment condition is as in (16) after replacing p(Xj ; γ̂ ) with the
known p(Xj ).

It is finally worth noting that Assumption 2 is an identification assumption that is
not testable. Therefore, both the CEP-GMM estimator and the IPW-GMM estima-
tor will converge to the same population limit regardless of whether Assumption 2
holds, as long as the same weighting matrix is being used. The population differ-
ence between CEP and IPW can only arise from the parametric mis-specification
of the approximating models for E(X;β) and p(X).

5. Empirical illustration. We illustrate our method empirically using data
from the Indian National Sample Survey (NSS), which is used to monitor changes
in the distribution of private consumption in India. Several researchers have argued
that changes in survey methodology caused noncomparability between poverty es-
timates calculated for 1999–2000 and those from previous years. Changes in the
questionnaire likely led to the overestimation of food consumption, and hence to
the underestimation of poverty [Deaton and Kozel (2005), Tarozzi (2007)]. In other
words, a missing data problem arises because the variable of interest (expenditure
recorded using the “standard” questionnaire) is not observed. Deaton and Drèze
(2002), Deaton (2003) and Tarozzi (2007) argue that expenditure in a set of miscel-
laneous items for which the questionnaire was not modified (“comparable items”
hereafter) can be used as a proxy variable to produce an estimate of poverty for
1999–2000 that is comparable with previous years.

We assume that the object of interest is the cumulative distribution function
(c.d.f.) for rural India in 1999–2000 of a measure of total monthly expenditure
that is comparable with previous NSS rounds. In the terminology used in this ar-
ticle, this situation corresponds to a verify-out-of-sample case (1), where the pa-
rameter of interest β is identified in terms of a variable Y that is not observed in
the primary sample (the 1999–2000 survey). The moment function takes the form
m(Z;β0) = 1(Y ≤ y) − β0, where y is a given threshold. We use the previous
round of the NSS (1993–94) as auxiliary survey, and expenditure in “comparable
items” as proxy variable X. The crucial identifying assumption is that the distri-
bution of Y conditional on X remained stable between 1993–94 and 1999–2000
[Tarozzi (2007)].
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TABLE 1
Cumulative distribution functions (×100) of total (log) household expenditure

(1) (2) (3) (4) (5)
y Unadjusted Adjusted Adjusted Adjusted Adjusted

(primary) NP CEP NP IPW Par. IPW Eff. CEP

6 2.92 (0.067) 3.388 (0.0695) 3.387 (0.0694) 3.15 (0.0594) 3.23 (0.0598)
6.25 5.67 (0.092) 6.521 (0.0948) 6.522 (0.0948) 6.31 (0.0846) 6.38 (0.0845)
6.50 11.06 (0.125) 12.272 (0.1237) 12.273 (0.1234) 12.21 (0.1165) 12.21 (0.1149)
6.75 20.28 (0.161) 21.679 (0.1588) 21.674 (0.1587) 21.89 (0.1645) 21.76 (0.1575)
7 34.06 (0.189) 35.052 (0.1763) 35.041 (0.1772) 35.53 (0.1794) 35.28 (0.1738)
7.25 50.75 (0.200) 50.600 (0.1967) 50.592 (0.1975) 51.19 (0.1948) 50.88 (0.1920)
7.50 66.98 (0.188) 65.682 (0.1925) 65.687 (0.1929) 66.15 (0.1973) 65.91 (0.1880)

Source: Authors’ calculations from Indian National Sample Survey, rounds 50 (1993–94, n =
58,846) and 55 (1999–2000, n = 62,679), rural sector only from the major Indian states, which
account for more than 95% of the total population. Column (1)—Calculated from the unadjusted
primary sample. Column (2)—CEP-GMM cubic sieve Estimator, with 10 knots, using “comparable
items” as predictor. Column (3)—IPW-GMM. Flexible logit with cubic sieve, with 10 knots, using
“comparable items” as predictor. Column (4)—Parametric IPW Estimator. The propensity score is
estimated using logit and including total expenditure in “comparable items” as sole predictor. Col-
umn (5)—Semiparametric estimator efficient for the case of correctly specified propensity score.

Table 1 reports point estimates and standard errors for the c.d.f. at selected
thresholds. The first column reports estimates using the noncomparable data from
the primary sample. Column 2 reports CEP-GMM estimates, calculated using 3rd
order polynomial splines in expenditure in comparable items as sieve basis, with
10 knots at the equal range quantiles of the empirical distribution of the proxy vari-
ables. Column 3 reports estimates obtained using moment condition (9), but with
a nonparametric first step where we estimate P(X) using sieve-logit, including the
basis functions we used for CEP-GMM as regressors. In column 4 we impose a
parametric model, and we estimate the propensity score using logit, with X en-
tered linearly in the single index. Column 5 reports the results for the estimator
described in Section 3.2, which is efficient when a parametric model is correctly
specified for P(X).

For values of Y below 7 the adjusted estimates of the cdf in columns 2 to 4
are slightly larger than the unadjusted figures in column 1. As expected, CEP and
IPW non-parametric estimators produce virtually identical results. The estimates
in columns 4 and 5 impose a simple logit for the propensity score, but they are still
very similar. In the verify-out-of-sample case, knowledge of a parametric form
for P(X) lowers the semiparametric efficiency bound, and this may explain why
in some cases the standard errors in column 4 are lower than those in columns
2 and 3, where the estimator is only efficient when P(X) is unknown. Note also
that when the parametric assumption is correct the efficient estimator is the one in
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column 5. Indeed the standard errors for this estimator are always lower or virtually
identical to those in column 4 every time this latter estimator is more precise than
the nonparametric estimators in columns 2 and 3.

6. Conclusions. We derive semiparametric efficiency bounds for the estima-
tion of parameters defined through general nonlinear, possibly nonsmooth and
over-identified moment conditions, when variables in the primary sample of in-
terest are missing. For identification we rely on the validity of a conditional inde-
pendence assumption and on the availability of an auxiliary sample that contains
information on the relation between missing variables and other proxy variables
that are also observed in the primary sample. We study two alternative frameworks.
In the first case (“verify-out-of-sample”) validation is done with an auxiliary data
set which is independent from the primary data set of interest. In the second case
(“verify-in-sample”) a subset of the observations in the primary sample is vali-
dated.

We show that the optimally weighted CEP-GMM estimators achieve the semi-
parametric efficiency bounds when the propensity score is unknown, or is known
or belongs to a correctly specified parametric family. These estimators only use
a nonparametric estimate of the conditional expectation of the moment functions,
and their asymptotic efficiency is obtained under regularity conditions weaker than
the existing ones in the literature. In particular, these CEP-GMM estimators still
achieve efficiency bounds when proxy (conditioning) variables have unbounded
supports and moment conditions are not smooth.

We also prove that an optimally weighted IPW-GMM estimator is semipara-
metrically efficient with fully unknown propensity score. However, this estimator
is not efficient when the propensity score is either known, or is parametrically esti-
mated using a correctly specified parametric model; in such instances, appropriate
combinations of nonparametric and parametric estimates of the propensity score
are needed to achieve the efficiency bounds.

We have also demonstrated that, from the theoretical point of view, the CEP-
GMM estimators are more attractive than the IPW-GMM estimators. Recently and
independently Imbens, Newey and Ridder (2005) advocated a similar sieve condi-
tional expectation projection based estimator for the average treatment effect pa-
rameter in program evaluation applications. Also, for the estimation of the average
treatment effects in missing data models, Wang, Linton and Hardle (2004) sug-
gested that a semiparametrically specified propensity score, such as a single index
or a partially linear form, can be used to reduce the curse of dimensionality in the
nonparametric estimation of the propensity score. An interesting topic for future
research is to study the efficiency implications of these semiparametric restrictions
on the propensity score.
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APPENDIX A: CALCULATION OF EFFICIENCY BOUNDS

PROOF OF THEOREM 1. We follow closely the structure of semiparametric ef-
ficiency bound derivation of Newey (1990) and Bickel, Klaassen, Ritov and Well-
ner (1993).

Case (1). Consider a parametric path θ for the joint distribution of Y,D and X.
Define pθ = Pθ(D = 1). The joint density function for Y,D and X is given by

fθ(y, x, d) = pd
θ (1 − pθ)

1−dfθ (x | D = 1)dfθ (x | D = 0)1−df (y | x)1−d .(17)

The resulting score function is given by

Sθ (d, y, x) = d − pθ

pθ (1 − pθ)
ṗθ + (1 − d)sθ (x | D = 0)

+ dsθ (x | D = 1) + (1 − d)sθ (y | x),

where sθ (y | x) = ∂
∂θ

logfθ (y | x), ṗθ = ∂
∂θ

pθ , sθ (x | d) = ∂
∂θ

logfθ (x | d). The
tangent space of this model is therefore given by:

T = a(d −pθ)+(1−d)sθ (x | D = 0)+(1−d)sθ (y | x)+dsθ (x | D = 1),(18)

where
∫

sθ (y | x)fθ (y | x)dy = 0,
∫

sθ (x | d)fθ (x | d)dx = 0, and a is a finite
constant.

Consider first the case when the model is exactly identified. In this case β is
uniquely identified by condition (1). Differentiating under the integral gives

∂β(θ)

∂θ
= −(J1

β)−1E

[
m(Z;β)

∂ logfθ(Y,X | D = 1)

∂θ ′
∣∣∣ D = 1

]
.(19)

The second component of the right-hand side of this expression can be calculated
as

E[m(Z;β)sθ (Y | X)′ | D = 1] + E[m(Z;β)sθ (X | D = 1)′ | D = 1].(20)

Pathwise differentiability follows if we can find 
1(Y,X,D) ∈ T such that

∂β(θ)/∂θ = E[
1(Y,X,D)Sθ (Y,X,D)′].(21)

Define pθ = ∫
pθ(x)fθ (x) dx, Eθ (X) = E[m(Z;β) | X]. It can be verified that

pathwise differentiability is satisfied by choosing: 
1(Y,X,D) = −(J1
β)−1 ×

F 1
β (Y,X,D) where

F 1
β (Y,X,D) = 1 − D

p

p(X)

1 − p(X)
[m(Z;β) − E(X)] + E(X)

p
D.(22)

Since J1
β is a nonsingular transformation, this can be shown proving that

E

[
m(Z;β)

∂

∂θ ′ logfθ (Y,X | D = 1)
∣∣∣ D = 1

]
(23)

= E[F 1
β (Y,X,D)Sθ (Y,X,D)′].
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This can in turn be verified by checking that

E[m(Z;β)sθ (Y | X)′ | D = 1]
= E

[
1 − D

p

p(X)

1 − p(X)
[m(Z;β) − E(X)]sθ (Y | X)′

]
,

E[m(Z;β)sθ (X | D = 1)′ | D = 1] = E

[
E(X)

p
Dsθ(X | D = 1)′

]
.

Now one can also verify that F 1
β (Y,X,D) belongs to the tangent space T in

equation (18), with the first and second terms of F 1
β (Y,X,D) taking the role of

(1 − d)sθ (y|x) and dsθ (X|D = 1), respectively, and the two other components in
(18) being identically equal to 0.

Therefore all the conditions of Theorem 3.1 in Newey (1990) hold, so that 
1

is the efficient score function and the efficiency bound for regular estimators of the
parameter β is given by

V1 = (J1
β)−1E[F 1

β (Y,X,D)F 1
β (Y,X,D)′](J1

β)′−1 = (J1
β)−1�1

β(J1
β)′−1.(24)

Case (2). For this case we use an alternative factorization of the likelihood func-
tion. Define pθ(x) = Pθ(D = 1 | x). The joint density function for Y, D and X is
given by

fθ(y, x, d) = fθ (x)pθ (x)d [1 − pθ(x)]1−dfθ (y | x)1−d .(25)

The resulting score function is then given by

Sθ (d, y, x) = (1 − d)sθ (y | x) + d − pθ(x)

pθ (x)(1 − pθ(x))
ṗθ (x) + tθ (x),

where

sθ (y | x) = ∂

∂θ
logfθ (y | x), ṗθ (x) = ∂

∂θ
pθ (x), tθ (x) = ∂

∂θ
logfθ (x).

The tangent space of this model is therefore given by:

T = {
(1 − d)sθ (y | x) + a(x)

(
d − pθ(x)

) + tθ (x)
}

(26)

where
∫

sθ (y | x)fθ (y | x)dy = 0,
∫

tθ (x)fθ (x) dx = 0, and a(x) is any square
integrable function.

In case (2), equation (19) is replaced by

∂β(θ)

∂θ
= −(J2

β)−1E

[
m(Z;β)

∂ logfθ (Y,X)

∂θ ′
]

(27)
= −(J2

β)−1{E[m(Z;β)sθ (Y | X)′] + E[E(X)tθ (X)′]}.
Now we replace F 1

β (Y,X,D) in (22) with the following:

F 2
β (Y,X,D) = 1 − D

1 − p(X)
[m(Z;β) − E(X)] + E(X)(28)
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and then it can be verified that E[F 2
β (Y,X,D)Sθ (Y,X,D)′] = E[m(Z;β) ×

∂ logfθ (Y,X)
∂θ ′ ]. Then the efficient influence function for case (2) is equal to

−(J2
β)−1F 2

β (Y,X,D) with the two terms being orthogonal to each other, and the
second result in Theorem 1 follows.

Now consider overidentified moment conditions. We only consider case (1), as
the derivation for case (2) is analogous. When dm > dβ, the moment conditions in
(1) is equivalent to the requirement that for any matrix A of dimension dβ × dm

the following exactly identified system of moment conditions holds AE[m(Z;β) |
D = 1] = 0. Differentiating again,

∂β(θ)

∂θ
= −

(
AE

[
∂m(Z;β)

∂β

∣∣∣D = 1
])−1

× E

[
Am(Z;β)

∂ logfθ(Y,X | D = 1)

∂θ ′
∣∣∣ D = 1

]
.

Therefore, any regular estimator for β is asymptotically linear with influence func-
tion of the form

−
(
AE

[
∂m(Z;β)

∂β

∣∣∣D = 1
])−1

Am(z;β).

For a given matrix A, the projection of the above influence function onto the tan-
gent set follows from the previous calculations, and is given by −[AJ1

β]−1F 1
β (y,

x, d). The asymptotic variance corresponding to this efficient influence function
for fixed A is therefore

[AJ1
β]−1A�A′[J1′

β A′]−1,(29)

where � = E[F 1
β (Y,X,D)F 1

β (Y,X,D)′] as calculated above. Therefore, the ef-
ficient influence function is obtained when A minimizes (29). It is easy to show
that such matrix A is equal to J1′

β �−1, so that the asymptotic variance becomes

V = (J1′
β �−1J1

β)−1. In fact, a standard textbook calculation shows

J1′
β �−1J1

β − J′
βA′(A�A′)−1AJβ

= (
J1′

β �−1/2 − J1′
β �−1/2�1/2′(�1/2�1/2′)−1�1/2)

× (�−1/2J1
β − �1/2′[�1/2�1/2′]−1�1/2�−1/2J1

β) ≥ 0. �

PROOF OF THEOREM 2. As for Theorem 1, it suffices to present the proof for
the case of exact identification, since the overidentified case follows from choosing
the optimal linear combination matrix. If the propensity score p(x) is known, the
score becomes [cf. Hahn (1998)] Sθ (d, y, x) = (1 − d)sθ (y | x) + tθ (x), so that
the tangent space becomes T = {(1 − d)sθ (y | x) + tθ (x)} where

∫
sθ (y | x)fθ (y |
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x)dy = 0, and
∫

tθ (x)fθ (x) dx = 0. Consider case (1) first. The pathwise deriva-
tive becomes

E

[
p(X)

p
m(Z;β)s(Y | X)′

]
+ E

[
p(X)

p
E(X)t (X)′

]
.

Pathwise differentiability is established by verifying that equation (21) holds, with

F 1
β (y, x, d) = 1 − d

p

p(x)

1 − p(x)

(
m(z;β) − E(x)

) + E(x)

p
p(x).(30)

Then the efficient influence function is as before equal to −(J1
β)−1F 1

β (y, x, d),

and the result of Theorem 2 follows using Theorem 3.1 of Newey (1990).
Since p(x) does not enter the definition of β in case (2), there is no change to

the efficient influence function and to the semiparametric efficiency bound for that
case. �

PROOF OF THEOREM 3. When p(X) belongs to a correctly specified para-
metric family p(X;γ ), the score function for moment (1) becomes

Sθ (d, y, x) = (1 − d)sθ (y | x) + d − pθ(x)

pθ (x)(1 − pθ(x))

∂p(x;γ )

∂γ ′
∂γ

∂θ
+ tθ (x).

The tangent space is therefore T = {(1 − d)sθ (y | x) + c′Sγ (d;x) + tθ (x)} where
c is a finite vector of constants and Sγ (d;x) is the parametric score function. Now
define F 1

β (Y,X,D) as

1 − D

p

p(X)

1 − p(X)
[m(Z;β) − E(X)] + Proj

(
E(X)

D − p(X)

p

∣∣∣ Sγ (D,X)

)
.

It is clear that F 1
β (Y,X,D) lies in the tangent space. Also note that ∂β(θ)

∂θ
can be

written as

−(J1
β)−1

{
E[m(Z;β)sθ (Y | X)′ | D = 1]

+ E

[
m(Z;β)

(
tθ (x)′ + Sγ (d;x)′ ∂γ

∂θ

) ∣∣∣ D = 1
]}

.

The second term in curly brackets can also be written as

E(D − p(X))E(X)Sγ (D;X)′

p

∂γ

∂θ
+ p(X)E(X)tθ (X)

p
.

With these calculations it can be verified that

∂β(θ)

∂θ
= −(J1

β)−1E[F 1
β (Y,X,D)Sθ (Y,X,D)].
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In particular,

E

[
(D − p(X))E(X)Sγ (D;X)′

p

]

= E

[
Proj

(
E(X)

D − p(X)

p

∣∣∣ Sγ (D,X)

)
Sθ (Y,X,D)′

]
.

Therefore −(J1
β)−1F 1

β (Y,X,D) is the desired efficient influence function and its
variance is given as the efficient variance of Theorem 3. �

APPENDIX B: PROOFS OF ASYMPTOTIC PROPERTIES

In this Appendix we establish the large sample properties for the IPW-GMM
estimator with nonparametrically estimated propensity score function. Again to
stress the fact that the true propensity score is unknown, in this Appendix we de-
note the true propensity score by po(x) ≡ E[D|X = x] and any candidate function
by p(x).

Denote

L2(X) =
{
h :X → R :‖h‖2 =

√∫
h(x)2fX(x) dx < ∞

}
and

L2,a(X) =
{
h :X → R :‖h‖2,a =

√∫
h(x)2fXa(x) dx < ∞

}
as the two Hilbert spaces. We use ‖h‖2 � ‖h‖2,a to mean that there are two posi-
tive constants c1, c2 such that c1‖h‖2 ≤ ‖h‖2,a ≤ c2‖h‖2, which is true under the
assumption 0 < p ≤ po(x) ≤ p < 1.

Proposition B.1 provides large sample properties for the sieve LS estimator p̂(x)

of po(x).

PROPOSITION B.1. Under Assumptions 3.1, 3.2 and 3.5, and kn

n
→ 0, kn →

∞, we have (i)

‖p̂(·) − po(·)‖∞,ω = op(1); ‖p̂(·) − po(·)‖2,a � ‖p̂(·) − po(·)‖2 = op(1);
(ii) in addition, if Assumption 4.1 holds, then

‖p̂(·) − po(·)‖2,a � ‖p̂(·) − po(·)‖2 = Op

(√
kn

n
+ (kn)

−γ /dx

)
.

PROOF. (i) Recall that p̂(x) is the sieve LS estimator of po(·) ∈ �
γ
c (X) based

on the entire sample. That is,

p̂(·) = arg min
p(·)∈Hn

1

n

n∑
i=1

{Di − p(Xi)}2/2,
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where Hn increases with sample size n, and is dense in �
γ
c (X) as kn → ∞ (by

Assumption 3.5). Moreover, by Assumptions 3.1 and 3.2 we have the following
results: (1) the parameter space is compact under the norm ‖ · ‖∞,ω for ω > 0, see
Ai and Chen (2003); (2) E[{Di − p(Xi)}2/2] is uniquely maximized at po(x) =
E[D|X = x] ∈ H ; (3) E[{Di − p(Xi)}2/2] is continuous in p(·) under the metric
‖ · ‖∞,ω; and (4)

sup
p(·)∈H

∣∣∣∣∣1

n

n∑
i=1

{Di − p(Xi)}2/2 − E{Di − p(Xi)}2/2

∣∣∣∣∣ = op(1);

where both results (3) and (4) are due to the fact that for any p(·), p̃(·) ∈ H ,

|{Di − p(Xi)}2 − {Di − p̃(Xi)}2|
= |{2Di − [p(Xi) + p̃(Xi)]}[p(Xi) − p̃(Xi)]|
≤ const.|[p(Xi) − p̃(Xi)](1 + X′

iXi)
−ω/2| × (1 + X′

iXi)
ω/2.

Now E[(1 + X′
iXi)

ω/2] < ∞ by Assumption 3.2.
Hence by either Theorem 0 in Gallant and Nychka (1987) or Lemma 2.9 and

Theorem 2.1 in Newey (1994), ‖p̂(·) − po(·)‖∞,ω = op(1). Now

‖p̂(·) − po(·)‖2 =
√∫

[p̂(x) − po(x)]2fX(x) dx

≤
√(‖p̂(·) − po(·)‖∞,ω

)2
∫

(1 + x′x)ωfX(x) dx = op(1)

(by Assumption 3.2).

(ii) We can obtain the convergence rate of ‖p̂(·) − po(·)‖2 by applying The-
orem 1 in Chen and Shen (1998) or Theorem 2 in Shen and Wong (1994).
Let Ln(p(·)) = 1

n

∑n
i=1 �(Di,Xi,p(·)) with �(Di,Xi,p(·)) = −{Di −p(Xi)}2/2.

Since all the assumptions of Chen and Shen (1998) Theorem 1 are satisfied given
our Assumptions 3.1 and 3.2. We obtain

‖p̂(·) − po(·)‖2 = Op

(
max

{√
kn

n
,‖po − 	2npo‖2

})
.

Under Assumption 4.1, for po ∈ �
γ
c (X), there exists 	∞npo ∈ �

γ
c (X) such that

for any fixed ω > γ ,

‖po − 	∞npo‖∞,ω = sup
x

|[po(x) − 	∞npo(x)](1 + |x|2)−ω/2|

≤ const.(kn)
−γ /dx ,
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see Ai and Chen (2003). Hence by Assumption 4.1 with ω = γ + ε for a small
ε > 0,

‖po − 	2npo‖2 ≤ ‖po − 	∞npo‖2

=
√∫

[po(x) − 	∞npo(x)]2fX(x) dx

≤
√(‖po(·) − 	∞npo(·)‖∞,ω

)2
∫

(1 + x′x)ωfX(x) dx

≤ c′(kn)
−γ /dx .

Then ‖p̂(·) − po(·)‖2 = Op(
√

kn

n
+ (kn)

−γ /dx ) = op(1). �

PROOF OF THEOREM 6. We only provide the proof of the IPW-GMM esti-
mator for moment condition (1), since the one for moment condition (2) is very
similar. We establish this theorem by applying Theorem 1 in Chen, Linton and van
Keilegom (2003) (hereafter CLK) with their θ being our β and their h being our
p(·). Define

Mn(β,p(·)) = 1

na

na∑
i=1

m(Zi,β)
p(Xi)

1 − p(Xi)
;

M(β,p(·)) = Ea

[
m(Zi,β)

p(Xi)

1 − p(Xi)

]
= E

[
m(Z,β)

p(X)

1 − p(X)

∣∣∣D = 0
]
.

CLK’s conditions (1.1) and (1.2) are directly implied by our Assumptions 1.1,
2 and moment condition (1). Note that for any p(·) ∈ H , 0 < 1

1−p
≤ 1

1−p(X)
≤

1
1−p

< ∞, we have

|M(β,p(·)) − M(β,po(·))|
=

∣∣∣∣E[
m(Z,β)

{
p(X)

1 − p(X)
− po(X)

1 − po(X)

} ∣∣∣ D = 0
]∣∣∣∣

≤ 1

(1 − p)2 Ea[‖m(Z,β)‖(1 + |X|2)ω/2]

× sup
x∈X

∣∣[p(x) − po(x)](1 + |x|2)−ω/2∣∣
≤ 1

(1 − p)2

{
Ea

[
sup
β∈B

‖m(Z,β)‖2
]

× Ea[(1 + |X|2)ω]
}1/2

× ‖p(·) − po(·)‖∞,ω,
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where the last inequality is due to our Assumptions 3.1, 3.2 and 3.4, hence CLK’s
condition (1.3) is satisfied with respect to the norm ‖ · ‖H = ‖ · ‖∞,ω. CLK’s con-
dition (1.4) ‖p̂(·) − po(·)‖∞,ω = op(1) is implied by Proposition B.1(i). Note that

Ea

[
sup

‖β−β̃‖<δ,‖p(·)−p̃(·)‖∞,ω<δ

∣∣∣∣m(Zi,β)
p(Xi)

1 − p(Xi)
− m(Zi, β̃)

p̃(Xi)

1 − p̃(Xi)

∣∣∣∣]

≤ Ea

[
sup

‖β−β̃‖<δ

‖m(Zi,β) − m(Zi, β̃)‖ × sup
p(·)∈H

∣∣∣∣ p(Xi)

1 − p(Xi)

∣∣∣∣]

+ Ea

[
sup
β̃∈B

‖m(Zi, β̃)‖ × sup
‖p(·)−p̃(·)‖∞,ω<δ

∣∣∣∣ p(Xi)

1 − p(Xi)
− p̃(Xi)

1 − p̃(Xi)

∣∣∣∣]

≤ Ea

[
sup

‖β−β̃‖<δ

‖m(Zi,β) − m(Zi, β̃)‖
]

× p

1 − p

+ Ea

[
sup
β̃∈B

‖m(Zi, β̃)‖(1 + |Xi |2)ω/2
]

× sup‖p(·)−p̃(·)‖∞,ω<δ supx∈X |[p(x) − p̃(x)](1 + |x|2)−ω/2|
(1 − p)2

≤ const.b(δ) + const.δ,

where the last inequality is due to our Assumptions 3.1–3.4 and Proposition B.1(i).
Then CLK’s condition (1.5) is satisfied, hence β̂ − β0 = op(1). �

LEMMA B.2. Under Assumptions 1, 2, 3 and 4, we have

√
nE

{
E(X,βo)

p̂(X) − po(X)

1 − po(X)

}

= 1√
n

n∑
i=1

Di − po(Xi)

1 − po(Xi)
E(X,βo) + op(1).

PROOF. To establish this result, we follow the approach in Shen (1997) and
Chen and Shen (1998). Recall po(x) = E[D|X = x] ∈ �

γ
c (X) and

p̂(·) = arg min
p(·)∈Hn

1

n

n∑
i=1

{Di − p(Xi)}2/2.

Define the inner product associated with the space L2(X) as

〈h,g〉 = E{h(X)g(X)} hence ‖h(·)‖2
2 = 〈h,h〉 = E[{h(X)}2].
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Then the Riesz representor υ∗ for functional E{E(X,βo)
p(X)−po(X)

1−po(X)
} is simply

given by

υ∗(X) = E(X,βo)

1 − po(X)
,

this is because

‖υ∗‖2 = sup
p(·)∈H :p �=po

[E{E(X,βo)((p(X) − po(X))/(1 − po(X)))}]2

E[(p(X) − po(X))2]

= E

[(
E(X,βo)

1 − po(X)

)2]
and

E

{
E(X,βo)

p(X) − po(X)

1 − po(X)

}
= 〈υ∗,p(·) − po(·)〉

= E{υ∗(X)[p(X) − po(X)]}.
Let Ln(p(·)) = 1

n

∑n
i=1 �(Di,Xi,p(·)) with �(Di,Xi,p(·)) = −{Di −

p(Xi)}2/2. Let Ui ≡ Di − po(Xi). Then by definition E[Ui |Xi] = 0, and
�(Di,Xi,p(·)) = −{Ui − [p(Xi) − po(Xi)]}2/2. We denote μn(g) = 1

n
×∑n

i=1[g(Di,Xi) − E(g(Di,Xi))] as the empirical process indexed by g, and εn

be any positive sequence with εn = o( 1√
n
). Then by definition,

0 ≤ Ln(p̂) − Ln(p̂ ± εn	2nυ
∗)

= μn

(
�(Di,Xi, p̂) − �(Di,Xi, p̂ ± εn	2nυ

∗)
)

+ E
(
�(Di,Xi, p̂) − �(Di,Xi, p̂ ± εn	2nυ

∗)
)
.

A simple calculation yields

E
(
�(Di,Xi, p̂) − �(Di,Xi, p̂ ± εn	2nυ

∗)
)

= ±εnE[	2nυ
∗(Xi){p̂(Xi) − po(Xi)}]

+ 1
2ε2

nE[{	2nυ
∗(Xi)}2],

μn

(
�(Di,Xi, p̂) − �(Di,Xi, p̂ ± εn	2nυ

∗)
)

= ∓εn × μn(	2nυ
∗Ui)

± εn × μn

(
	2nυ

∗ 2{p̂(·) − po(·)} ± εn	2nυ
∗

2

)
hence

0 ≤ ∓μn(	2nυ
∗(Xi)Ui) ± E[	2nυ

∗(Xi){p̂(Xi) − po(Xi)}]
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± μn

(
	2nυ

∗(Xi){p̂(Xi) − po(Xi)}) + εn

2n

n∑
i=1

{	2nυ
∗(Xi)}2

= ∓μn([	2nυ
∗ − υ∗]Ui) ± μn(υ

∗Ui)

± E
[[	2nυ

∗ − υ∗]{p̂ − po}] ∓ E[υ∗{p̂ − po}]

± μn

(
	2nυ

∗(Xi){p̂(Xi) − po(Xi)}) + εn

2n

n∑
i=1

{	2nυ
∗(Xi)}2.

In the following we shall establish (B2.1)–(B2.4):

μn

([	2nυ
∗(Xi) − υ∗(Xi)]Ui

) = op

(
1√
n

)
,(B2.1)

E
([	2nυ

∗(Xi) − υ∗(Xi)]{p̂(Xi) − po(Xi)}) = op

(
1√
n

)
,(B2.2)

μn

(
	2nυ

∗(Xi){p̂(Xi) − po(Xi)}) = op

(
1√
n

)
,(B2.3)

1

n

n∑
i=1

{	2nυ
∗(Xi)}2 = Op(1).(B2.4)

Note that (B2.1) is implied by Chebychev inequality, i.i.d. data, and ‖	nυ
∗ −

υ∗‖2 = o(1) which is satisfied given the expression for υ∗ and Assumptions
3.1 and 4.5. (B2.2) is implied by Assumption 4.5 and ‖p̂(·) − po(·)‖2 =
Op(n−γ /(2γ+dx)) from Proposition B.1(ii). (B2.4) is implied by Markov in-
equality, i.i.d. data, and Assumptions 3.1 and 4.5. Finally for (B2.3), let Fn =
{	2nυ

∗(·)h(·) :h(·) ∈ �
γ
c (X)}, then by Assumption 4.1, logN[·](δ,Fn,‖ · ‖2) ≤

const.( c
δ
)dx/γ for any δ > 0. Applying Theorem 3 in Chen and Shen (1998) with

their δn = n−γ /(2γ+dx), we have

sup
h∈Fn : ‖h(·)−po(·)‖2≤δn

∣∣√nμn

(
	2nυ

∗{h(·) − po(·)})∣∣
= Op

(
n−(2γ−dx)/(2(2γ+dx))) = op(1).

Hence we obtain (B2.3). Now (B2.1)–(B2.4) imply 0 ≤ ±μn(υ
∗Ui) ∓ E[υ∗{p̂ −

po}] + op( 1√
n
), that is

√
nE[υ∗(X){p̂(X) − po(X)}] = 1√

n

∑n
i=1 υ∗(Xi)Ui +

op(1), hence the result follows. �

PROOF OF THEOREM 7. Again we only provide the proof of the IPW-GMM
estimator for moment condition (1). We establish this theorem by applying The-
orem 2 in CLK (2003). Given the definition of β0 and Theorem 6, CLK’s con-
dition (2.1) is directly satisfied. Note that their �1(β,po) = p

1−p
J 1

β , hence their
condition (2.2) is satisfied with our Assumption 1.1.
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Following the proof of CLK’s Theorem 2, we note that the conclusion of CLK’s
Theorem 2 remains true when CLK’s conditions (2.3)(i) and (2.4) are replaced by
the following one:

sup
β∈B‖β−β0‖≤δ0

‖M(β, p̂(·)) − M(β,po(·))
(*)

− �2(β,po)[p̂(·) − po(·)]‖ = op(n−1/2),

where

�2(β,po)[p(·) − po(·)] = E

{
m(Z,β)

p(X) − po(X)

(1 − po(X))2

∣∣∣D = 0
}

= Ea

{
E(X,β)

p(X) − po(X)

(1 − po(X))2

}

= E

{
E(X,β)

p(X) − po(X)

(1 − po(X))2

fX|D=0(X)

fX(X)

}

= 1

1 − p
E

{
E(X,β)

p(X) − po(X)

1 − po(X)

}
,

and the last equality is due to fX|D=0(X)/fX(X) = (1 − po(X))/(1 − p).

Before we apply Assumptions 4.6a or 4.6b or 4.6c to verify condition (*), let us
check CLK’s conditions (2.3)(ii), (2.5) and (2.6). Since for all β with ‖β − β0‖ ≤
δ0 and all p(·) with ‖p(·) − po(·)‖∞,ω ≤ δ0, we have

|�2(β,po)[p(·) − po(·)] − �2(βo,po)[p(·) − po(·)]|
=

∣∣∣∣ 1

1 − p
E

{
[E(X,β) − E(X,β0)]p(X) − po(X)

1 − po(X)

}∣∣∣∣
=

∣∣∣∣β − β0

1 − p
E

{
∂E(X,β)

∂β

p(X) − po(X)

1 − po(X)

}∣∣∣∣
≤ ‖β − β0‖

(1 − p)(1 − p)
E

[∥∥∥∥∂E(X,β)

∂β

∥∥∥∥(1 + |X|2)ω/2
]

× sup
x∈X

∣∣[p(x) − po(x)](1 + |x|2)−ω/2∣∣,
where β is in between β and β0. Thus, under our Assumptions 3.2, 4.4, Proposi-
tion B.1(i) and Theorem 6, |�2(β,po)[p(·)−po(·)]−�2(βo,po)[p(·)−po(·)]| ≤
const.‖β − β0‖ × ‖p(·) − po(·)‖∞,ω hence CLK’s condition (2.3)(ii) is satisfied.

Now we verify CKL’s condition (2.5) by applying their Theorem 3. In fact,
given our Theorem 6 and Proposition B.1(i), it suffices to consider some neigh-
borhood around (βo,po). Let δ0 > 0 be a small value, then for all (β̃, p̃) ∈ B × H
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with ‖β̃ − βo‖ ≤ δ0 and ‖p̃ − po‖∞,ω ≤ δ0, we have for any δ ∈ (0, δ0],

Ea

[
sup

‖β−β̃‖<δ,‖p(·)−p̃(·)‖∞,ω<δ

∣∣∣∣m(Zi,β)
p(Xi)

1 − p(Xi)
− m(Zi, β̃)

p̃(Xi)

1 − p̃(Xi)

∣∣∣∣2]

≤ Ea

[
sup

‖β−β̃‖<δ

‖m(Zi,β) − m(Zi, β̃)‖2 × sup
h

∣∣∣∣ p(Xi)

1 − p(Xi)

∣∣∣∣2]

+ Ea

[
sup

β̃∈B : ‖β̃−βo‖≤δ0

‖m(Zi, β̃)‖2

× sup
‖p(·)−p̃(·)‖∞,ω<δ

∣∣∣∣ p(Xi)

1 − p(Xi)
− p̃(Xi)

1 − p̃(Xi)

∣∣∣∣2]

≤ Ea

[
sup

‖β−β̃‖<δ

‖m(Zi,β) − m(Yi,Xi, β̃)‖2
]

×
(

p

1 − p

)2

+ Ea

[
sup

β̃∈B‖β̃−βo‖≤δ0

‖m(Zi, β̃)‖2(1 + |Xi |2)ω
]

× sup
‖p(·)−p̃(·)‖∞,ω<δ

sup
x∈X

∣∣[p(x) − p̃(x)](1 + |x|2)−ω/2∣∣2 1

(1 − p)2

≤ const.δ2ε + const.δ2 for some ε ∈ (0,1],
where the last inequality is due to our Assumptions 4.2, 4.3 and Proposition B.1(i).
In the following we let N(ε,�

γ
c (X),‖·‖∞,ω) denote the ‖·‖∞,ω-covering number

of �
γ
c (X) [i.e., the minimal number of N for which there exist ε-balls {h :‖h −

uj‖∞,ω ≤ ε}, j = 1, . . . ,N to cover �
γ
c (X)]. Then our Assumption 4.1 implies

logN(δ,�γ
c (X),‖ · ‖∞,ω) ≤ const.

(
c

δ

)dx/γ

,

∫ 1

0

√
logN(δ,�

γ
c (X),‖ · ‖∞,ω) dδ < ∞.

Thus by applying CLK’s Theorem 3, CLK’s condition (2.5) is satisfied.
It remains to verify CLK’s condition (2.6). First we note

√
naMn(βo,po) = 1√

na

na∑
i=1

m(Zi,βo)
po(Xi)

1 − po(Xi)

= 1√
na

n∑
i=1

(1 − Di)m(Zi,βo)
po(Xi)

1 − po(Xi)

=
√

n

na

× 1√
n

n∑
i=1

(1 − Di)m(Zi,βo)
po(Xi)

1 − po(Xi)
.
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Next we notice
√

na�2(βo,po)[p(·) − po(·)]
= √

naEa

{
E(X,βo)

p(X) − po(X)

(1 − po(X))2

}

=
√

na

n

1

1 − p
× √

nE

{
E(X,βo)

p(X) − po(X)

1 − po(X)

}
.

By Lemma B.2 and na/n = 1 − p + op(1), we obtain
√

na{Mn(βo,po) + �2(βo,po)[p̂(·) − po(·)]}

=
√

1

1 − p

× 1√
n

n∑
i=1

{
(1 − Di)m(Zi,βo)

po(Xi)

1 − po(Xi)
+ Di − po(Xi)

1 − po(Xi)
E(X,βo)

}
+ op(1),

thus CLK’s condition (2.6) is satisfied. Moreover from the proof of CLK’s Theo-
rem 2 we obtain

√
na(β̂ − βo) = −(�′

1W�1)
−1�′

1W
√

na{Mn(βo,po)

+ �2(βo,po)[p̂(·) − po(·)]} + op(1)

= −1 − p

p
(J 1′

β WJ 1
β )−1J 1′

β W
√

na{Mn(βo,po)

+ �2(βo,po)[p̂(·) − po(·)]} + op(1).

Since n
na

= 1
1−p

+ op(1),

√
n(β̂ − βo) = −1 − p

p
(J 1′

β WJ 1
β )−1J 1′

β W
√

n{Mn(βo,po)

+ �2(βo,po)[p̂(·) − po(·)]} + op(1)

= −(J 1′
β WJ 1

β )−1J 1′
β W

1

p

1√
n

×
n∑

i=1

{
m(Zi,βo)

[1 − Di]po(Xi)

1 − po(Xi)
+ Di − po(Xi)

1 − po(Xi)
E(X,βo)

}
+ op(1),

thus we obtain Theorem 7 after we establish condition (*).
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We now apply Assumption 4.6a or 4.6b or 4.6c to verify condition (*). Since

M(β,p(·)) − M(β,po(·)) − �2(β,po)[p(·) − po(·)]
= Ea

{
m(Z,β)

[
p(X)

1 − p(X)
− po(X)

1 − po(X)
− p(X) − po(X)

(1 − po(X))2

]}

= Ea

{
m(Z,β)[p(X) − po(X)]

1 − po(X)

[
1

1 − p(X)
− 1

1 − po(X)

]}

= Ea

{
E(X,β)[p(X) − po(X)]2

(1 − p(X))(1 − po(X))2

}
,

we have under Assumption 3.1,

sup
β∈B : ‖β−β0‖≤δ0

‖M(β,p(·)) − M(β,po(·)) − �2(β,po)[p(·) − po(·)]‖

= sup
β∈B : ‖β−β0‖≤δ0

∥∥∥∥Ea

{
E(X,β)[p(X) − po(X)]2

(1 − p(X))(1 − po(X))2

}∥∥∥∥∥
≤ 1

(1 − p)3 Ea

{
sup

β∈B : ‖β−β0‖≤δ0

‖E(X,β)‖ × [p(X) − po(X)]2
}
.

If Assumption 4.6a holds, then

Ea

{
sup

β∈B:‖β−β0‖≤δ0

‖E(X,β)‖ × [p(X) − po(X)]2
}

≤ sup
β∈B : ‖β−β0‖≤δ0

sup
x

‖E(x,β)‖ × Ea{[p(X) − po(X)]2}

≤ const.[‖p(·) − po(·)‖2,a]2.

Now Proposition B.1(ii), kn = O(ndx/(2γ+dx)) and γ > dx/2 imply [‖p̂(·) −
po(·)‖2,a]2 = op(n−1/2), hence condition (*) is satisfied.

If Assumption 4.6b holds, then

Ea

{
sup

β∈B : ‖β−β0‖≤δ0

‖E(X,β)‖ × [p(X) − po(X)]2
}

≤
(
Ea

[
sup

β∈B : ‖β−β0‖≤δ0

‖E(X,β)‖4
])1/4(

Ea{[p(X) − po(X)]4})1/4

×
√

Ea{[p(X) − po(X)]2}
≤ const. × [‖p(·) − po(·)‖2,a]2−dx/(4γ )

for all ‖p(·) − po(·)‖2,a = o(1),
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where the last inequality is due to the following inequalities for any s ∈ [dx

4 , γ ):(
Ea{[p(X) − po(X)]4})1/4 ≤ const.

(‖p(·) − po(·)‖2,a + ‖∇s{p(·) − po(·)}‖2,a

)
,

‖∇s{p(·) − po(·)}‖2,a ≤ const.[‖p(·) − po(·)‖2,a]1−s/γ .

Now Proposition B.1(ii), kn = O(ndx/(2γ+dx)) and γ > 3dx/4 imply [‖p̂(·) −
po(·)‖2,a]2−dx/(4γ ) = op(n−1/2), hence condition (*) is satisfied.

If Assumption 4.6c holds, then

Ea

{
sup

β∈B:‖β−β0‖≤δ0

‖E(X,β)‖ × [p(X) − po(X)]2
}

≤
√√√√Ea

[
sup

β∈B : ‖β−β0‖≤δ0

‖E(X,β)‖2
]

×
√

Ea{[p(X) − po(X)]4}

≤ const. × [‖p(·) − po(·)‖2,a]2(1−dx/(4γ ))

for all ‖p(·) − po(·)‖2,a = o(1).

Now Proposition B.1(ii), kn = O(ndx/(2γ+dx)) and γ > dx imply [‖p̂(·) −
po(·)‖2,a]2(1−dx/(4γ )) = op(n−1/2), hence condition (*) is satisfied. �
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