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HIGH-DIMENSIONAL GENERALIZED LINEAR MODELS
AND THE LASSO

BY SARA A. VAN DE GEER

ETH Zürich

We consider high-dimensional generalized linear models with Lipschitz
loss functions, and prove a nonasymptotic oracle inequality for the empirical
risk minimizer with Lasso penalty. The penalty is based on the coefficients
in the linear predictor, after normalization with the empirical norm. The ex-
amples include logistic regression, density estimation and classification with
hinge loss. Least squares regression is also discussed.

1. Introduction. We consider the lasso penalty for high-dimensional gener-
alized linear models. Let Y ∈ Y ⊂ R be a real-valued (response) variable and X be
a co-variable with values in some space X. Let

F =
{
fθ(·) =

m∑
k=1

θkψk(·), θ ∈ �

}

be a (subset of a) linear space of functions on X. We let � be a convex subset of
Rm, possibly � = Rm. The functions {ψk}mk=1 form a given system of real-valued
base functions on X.

Let γf :X×Y → R be some loss function, and let {(Xi, Yi)}ni=1 be i.i.d. copies
of (X,Y ). We consider the estimator with lasso penalty

θ̂n := arg min
θ∈�

{
1

n

n∑
i=1

γfθ (Xi, Yi) + λnÎ (θ)

}
,

where

Î (θ) :=
m∑

k=1

σ̂k|θk|

denotes the weighted �1 norm of the vector θ ∈ Rm, with random weights

σ̂k :=
(

1

n

n∑
i=1

ψ2
k (Xi)

)1/2

.

Moreover, the smoothing parameter λn controls the amount of complexity regular-
ization.
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Indeed, when m is large (possibly m > n), a complexity penalty is needed to
avoid overfitting. One could penalize the number of nonzero coefficients, that is,
use an �0 penalty, but this leads to a nonconvex optimization problem. The lasso
is a convex �1 penalty which often behaves similarly as the �0 penalty. It corre-
sponds to soft thresholding in the case of quadratic loss and orthogonal design,
see Donoho (1995). In Donoho (2006a), (2006b), the agreement of �1- and �0-
solutions in general (nonorthogonal) systems is developed further. We will address
the distributional properties of the lasso penalty. The acronym “lasso” (least ab-
solute shrinkage and selection operator) was introduced by Tibshirani (1996), with
further work in Hastie, Tibshirani and Friedman (2001).

Let P be the distribution of (X,Y ). The target function f̄ is defined as

f̄ := arg min
f ∈F

Pγf ,

where F ⊇ F (and assuming for simplicity that there is a unique minimum). We
will show that if the target f̄ can be well approximated by a sparse function fθ∗

n
,

that is a function fθ∗
n

with only a few nonzero coefficients θ∗
n,k , the estimator θ̂n

will have prediction error roughly as if it knew this sparseness. In this sense, the
estimator mimics a sparseness oracle. Our results are of the same spirit as those
in Bunea, Tsybakov and Wegkamp (2007b), which we learned about when writ-
ing this paper, and which is about quadratic loss. We will assume Lipschitz loss
(see Assumption L below). Examples are the loss functions used in quantile regres-
sion, logistic regression, the hinge loss function used in classification, and so forth.
Quadratic loss can, however, be handled using similar arguments, see Example 4.

Let us briefly sketch our main result. The excess risk of f is

E(f ) := Pγf − Pγf̄ .

We will derive a probability inequality for the excess risk E(f
θ̂n

) (see Theorems
2.1 and 2.2). This inequality implies that with large probability,

E(f
θ̂n

) ≤ const. × min
θ∈�

{E(fθ ) + Vθ }.
Here, the error term Vθ will be referred to as “estimation error.” It is typically
proportional to λ2

n ×dimθ , where dimθ := |{θk �= 0}|. Moreover, as we will see, the
smoothing parameter λn can be chosen of order

√
logm/n. Thus, again typically,

the term Vθ is of order logm× dimθ/n, which is the usual form for the estimation
error when estimating dimθ parameters, with the (logm)—term the price to pay
for not knowing beforehand which parameters are relevant.

We will study a more general situation, with general margin behavior, that is,
the behavior of the excess risk near the target (see Assumption B). The term Vθ

will depend on this margin behavior as well as on the dependence structure of the
features {ψk}mk=1 (see Assumption C).

The typical situation sketched above corresponds to “quadratic” margin behav-
ior and, for example, a well conditioned inner product matrix of the features.



616 S. A. VAN DE GEER

To avoid digressions, we will not discuss in detail in the case where the inner
product matrix is allowed to be singular, but only briefly sketch an approach to
handle this (see Section 3.1).

There are quite a few papers on estimation with the lasso in high-dimensional
situations. Bunea, Tsybakov and Wegkamp (2006) and Bunea, Tsybakov and
Wegkamp (2007b) are for the case of quadratic loss. In Tarigan and van de Geer
(2006), the case of hinge loss function is considered, and adaptation to the margin
in classification. Greenshtein (2006) studies general loss with �1 constraint. The
group lasso is studied and applied in Meier, van de Geer and Bühlmann (2008) for
logistic loss and Dahinden et al. (2008) for log-linear models. Bunea, Tsybakov
and Wegkamp (2007a) studies the lasso for density estimation.

We will mainly focus on the prediction error of the estimator, that is, its excess
risk, and not so much on selection of variables. Recent work where the lasso is in-
voked for variable selection is Meinshausen (2007), Meinshausen and Bühlmann
(2006), Zhao and Yu (2006), Zhang and Huang (2006) and Meinshausen and Yu
(2007). As we will see, we will obtain inequalities for the �1 distance between θ̂n

and the “oracle” θ∗
n defined below [see (6) and (9)]. These inequalities can be

invoked to prove variable selection, possibly after truncating the estimated coeffi-
cients.

We extend results from the papers [Loubes and van de Geer (2002),
van de Geer (2003)], in several directions. First, the case of random design is
considered. The number of variables m is allowed to be (much) larger than the
number of observations n. The results are explicit, with constants with nonasymp-
totic relevance. It is not assumed a priori that the regression functions fθ ∈ F are
uniformly bounded in sup norm. Convergence of the estimated coefficients θ̂n in
�1 norm is obtained. And finally, the penalty is based on the weighted �1 norm of
the coefficients θ , where it is allowed that the base functions ψk are normalized
with their empirical norm σ̂k .

The paper is organized as follows. In the remainder of this section, we intro-
duce some notation and assumptions that will be used throughout the paper. In
Section 2, we first consider the case where the weights σk := (Eψ2

k (X))1/2 are
known. Then the results are more simple to formulate. It serves as a preparation
for the situation of unknown σk . We have chosen to present the main results (The-
orems 2.1 and 2.2) with rather arbitrary values for the constants involved, so that
their presentation is more transparent. The explicit dependence on the constants
can be found in Theorem A.4 (for the case of known σk) and Theorem A.5 (for the
case of unknown σk).

Section 3 discusses the Assumptions L, A, B and C given below, and presents
some examples. Some extensions are considered, for instance hinge loss, or sup-
port vector machine loss, (which may need an adjustment of Assumption B), and
quadratic loss (which is not Lipschitz). Moreover, we discuss the case where some
coefficients (for instance, the constant term) are not penalized.
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The proof of the main theorems is based on the concentration inequality of
Bousquet (2002). We moreover use a convexity argument to obtain reasonable
constants. All proofs are deferred to the Appendix.

We use the following notation. The empirical distribution based on the sample
{(Xi, Yi)}ni=1 is denoted by Pn, and the empirical distribution of the covariates
{Xi}ni=1 is written as Qn. The distribution of X is denoted by Q. We let σ 2

k := Qψ2
k

and σ̂ 2
k := Qnψ

2
k , k = 1, . . . ,m. The L2(Q) norm is written as ‖ · ‖. Moreover,

‖ · ‖∞ denotes the sup norm.
We impose four basic assumptions: Assumptions L, A, B and C.

ASSUMPTION L. The loss function γf is of the form γf (x, y) = γ (f (x), y)+
b(f ), where b(f ) is a constant which is convex in f , and γ (·, y) is convex for all
y ∈ Y. Moreover, it satisfies the Lipschitz property

|γ (fθ (x), y) − γ (fθ̃ (x), y)| ≤ |fθ (x) − fθ̃ (x)|
∀ (x, y) ∈ X × Y, ∀ θ, θ̃ ∈ �.

Note that by a rescaling argument, there is no loss of generality that Assump-
tion L takes the Lipschitz constant equal to one.

ASSUMPTION A. It holds that

Km := max
1≤k≤m

‖ψk‖∞
σk

< ∞.

ASSUMPTION B. There exists an η > 0 and strictly convex increasing G, such
that for all θ ∈ � with ‖fθ − f̄ ‖∞ ≤ η, one has

E(fθ ) ≥ G(‖fθ − f̄ ‖).

ASSUMPTION C. There exists a function D(·) on the subsets of the index set
{1, . . . ,m}, such that for all K ⊂ {1, . . . ,m}, and for all θ ∈ � and θ̃ ∈ �, we have∑

k∈K

σk|θk − θ̃k| ≤
√

D(K)‖fθ − fθ̃‖.

The convex conjugate of the function G given in Assumption B is denoted by H

[see, e.g., Rockafeller (1970)]. Hence, by definition, for any positive u and v, we
have

uv ≤ G(u) + H(v).

We define moreover for all θ ∈ �,

Dθ := D({k : |θk| �= 0}),
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with D(·) given in Assumption C.
We let

ān = 4an, an :=
(√

2 log(2m)

n
+ log(2m)

n
Km

)
,(1)

with Km the bound given in Assumption A. We further let for t > 0,

λn,0 := λn,0(t) := an

(
1 + t

√
2(1 + 2anKm) + 2t2anKm

3

)
(2)

and

λ̄n,0 := λ̄n,0(t) := ān

(
1 + t

√
2(1 + 2ānKm) + 2t2ānKm

3

)
.(3)

The quantity λ̄n,0 will be a lower bound for the value of the smoothing parameter
λn. Its particular form comes from Bousquet’s inequality (see Theorem A.1). The
choice of t is “free.” As we will see, large values of t may give rise to large excess
risk of the estimator, but more “confidence” in the upper bound for the excess risk.
In Section 3.2, we will in fact fix the value of λ̄n,0(t), and the corresponding value
of t may be unknown. The latter occurs when Km is unknown.

Let

I (θ) :=
m∑

k=1

σk|θk|.

We call I (θ) the (theoretical) �1 norm of θ , and Î (θ) = ∑m
k=1 σ̂k|θk| its empirical

�1 norm. Moreover, for any θ and θ̃ in �, we let

I1(θ |θ̃ ) := ∑
k : θ̃k �=0

σk|θk|, I2(θ |θ̃ ) := I (θ) − I1(θ |θ̃ ).

Likewise for the empirical versions:

Î1(θ |θ̃ ) := ∑
k : θ̃k �=0

σ̂k|θk|, Î2(θ |θ̃ ) := Î (θ) − Î1(θ |θ̃ ).

2. Main results.

2.1. Nonrandom normalization weights in the penalty. Suppose that the σk are
known. Consider the estimator

θ̂n := arg min
θ∈�

{Pnγfθ + λnI (θ)}.(4)

We now define the following six quantities:

(1) λn := 2λ̄n,0,
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(2) Vθ := H(4λn

√
Dθ),

(3) θ∗
n := arg minθ∈�{E(fθ ) + Vθ },

(4) 2ε∗
n := 3E(fθ∗

n
) + 2Vθ∗

n
,

(5) ζ ∗
n := ε∗

n/λ̄n,0,
(6) θ(ε∗

n) := arg minθ∈�,I (θ−θ∗
n )≤6ζ ∗

n
{E(fθ ) − 4λnI1(θ − θ∗

n |θ∗
n )}.

These are defined “locally,” that is, only for this subsection. This is because we
have set some arbitrary values for certain constants involved. In Section 2.2, the
six quantities will appear as well, but now with other constants. Moreover, in the
Appendix, we define them explicitly as function of the constants.

CONDITION I. It holds that ‖fθ∗
n

− f̄ ‖∞ ≤ η, where η is given in Assump-
tion B.

CONDITION II. It holds that ‖fθ(ε∗
n) − f̄ ‖∞ ≤ η, where η is given in Assump-

tion B.

THEOREM 2.1. Suppose Assumptions L, A, B and C, and Conditions I and II
hold. Let λn, θ∗

n , ε∗
n and ζ ∗

n be given in (1)–(6). Assume σk is known for all k and
let θ̂n be given in (4). Then we have with probability at least

1 − 7 exp[−nā2
nt

2],
that

E(f
θ̂n

) ≤ 2ε∗
n,(5)

and moreover

2I (θ̂n − θ∗
n ) ≤ 7ζ ∗

n .(6)

We now first discuss the quantities (1)–(6) and then the message of the theorem.
To appreciate the meaning of the result, it may help to consider the “typical” case,
with G (given in Assumption B) quadratic [say G(u) = u2/2], so that H is also
quadratic [say H(v) = v2/2], and with D(K) (given in Assumption C) being (up
to constants) the cardinality |K| of the set index set K (see Section 3.1 for a
discussion).

First, recall that λn in (1) is the smoothing parameter. Note thus that λn is chosen
to be at least (2×)(4×)

√
2 log(2m)/n.

The function Vθ in (2) depends only on the set of nonzero coefficients in θ , and
we refer to it as “estimation error” (in a generic sense). Note that in the “typical”
case, Vθ is up to constants equal to λ2

ndimθ , where dimθ := |{k : θk �= 0}|, that is, it
is of order logm × dimθ/n.

Because θ∗
n in (3) balances approximation error E(fθ ) and “estimation error”

Vθ , we refer to it as the “oracle” (although in different places, oracles may differ
due to various choices of certain constants).
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The terminology “estimation error” and “oracle” is inspired by results for the
“typical” case, because for estimating a given number, dim∗ say, of coefficients,
the estimation error is typically of order dim∗/n. The additional factor logm is the
price for not knowing which coefficients are relevant.

Because we only show that Vθ is an upper bound for estimation error, our ter-
minology is not really justified in general. Moreover, our “oracle” is not allowed
to try a different loss function with perhaps better margin behavior. To summarize,
our terminology is mainly chosen for ease of reference.

The quantity ε∗
n in (4) will be called the “oracle rate” (for the excess risk).

Moreover, ζ ∗
n in (5) will be called the “oracle rate” for the �1 norm. The latter

can be compared with the result for Gaussian regression with orthogonal (and
fixed) design (where m ≤ n). Then the soft-thresholding estimator converges in
�1 norm with rate dim∗√logn/n with dim∗ up to constants the number of co-
efficients larger than

√
logn/n of the target. In the “typical” situation, ζ ∗

n is of
corresponding form.

The last quantity (6), the vector θ(ε∗
n), balances excess risk with “being differ-

ent” from θ∗
n . Note that the balance is done locally, near values of θ where the �1

distance between θ and θ∗
n is at most 6ζ ∗

n .
Conditions I and II are technical conditions, which we need because Assump-

tion B is only assumed to hold in a “neighborhood” of the target. Condition II may
follow from a fast enough rate of convergence of the oracle.

The theorem states that the estimator with lasso penalty has excess risk at most
twice ε∗

n . It achieves this without knowledge about the estimation error Vθ or,
in particular, about the conjugate H(·) or the function D(·). In this sense, the
estimator mimics the oracle.

The smoothing parameter λn, being larger than
√

2 log(2m)/n, plays its role
in the estimation error Vθ∗

n
. So from asymptotic point of view, we have the usual

requirement that m does not grow exponentially in n. In fact, in order for the
estimation error to vanish, we require Dθ∗

n
logm/n → 0.

We observe that the constants involved are explicit, and reasonable for finite
sample sizes. In the Appendix, we formulate the results with more general con-
stants. For example, it is allowed there that the smoothing parameter λn is not
necessarily twice λ̄n,0, but may be arbitrary close to λ̄n,0, with consequences on
the oracle rate. Our specific choice of the constants is merely to present the result
in an transparent way.

The constant an is, roughly speaking (when Km is not very large), the usual
threshold that occurs when considering the Gaussian linear model with orthogonal
design (and m ≤ n). The factor “4” appearing in front of it in our definition of ān,
is due to the fact that we use a symmetrization inequality (which accounts for a
factor “2”) and a contraction inequality (which accounts for another factor “2”).
We refer to Lemma A.2 for the details.

In our proof, we make use of Bousquet’s inequality [Bousquet (2002)] for the
amount of concentration of the empirical process around its mean. This inequal-
ity has the great achievement that the constants involved are economical. There
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is certainly room for improvement in the constants we, in our turn, derived from
applying Bousquet’s inequality. Our result should, therefore, only be seen as indi-
cation that the theory has something to say about finite sample sizes. In practice,
cross validation for choosing the smoothing parameter seems to be the most rea-
sonable way to go.

Finally, Theorem 2.1 shows that the �1 difference between the estimated coef-
ficients θ̂n and the oracle θ∗

n can be small. In this sense the lasso performs feature
selection when the oracle rate is sufficiently fast. When R(f̄ ) is not small, the
convergence of I (θ̂n − θ∗

n ) is perhaps more important than fast rates for the excess
risk.

2.2. Random normalization weights in the penalty. In this subsection, we esti-
mate σ 2

k := Qψ2
k by σ̂ 2

k := Qnψ
2
k , k = 1, . . . ,m. A complication is that the bound

Km will generally also be unknown. The smoothing parameter λn depends on Km,
as well as on t . We will assume a known but rough bound on Km (see Condi-
tion III′ below). Then, we choose a known (large enough) value for λ̄n,0, which
corresponds to an unknown value of t . This is elaborated upon in Theorem 2.2.

Recall the estimator

θ̂n = arg min
θ∈�

{Pnγfθ + λnÎ (θ)}.(7)

In the new setup, we define the six quantities as:

(1)′ λn := 3λ̄n,0,
(2)′ Vθ := H(5λn

√
Dθ),

(3)′ θ∗
n := arg minθ∈�{E(fθ ) + Vθ },

(4)′ 2ε∗
n := 3E(fθ∗

n
) + 2Vθ∗

n
,

(5)′ ζ ∗
n := ε∗

n/λ̄n,0.
(6)′ θ(ε∗

n) := arg minθ∈�,I (θ−θ∗)≤6ζ ∗
n
{E(fθ ) − 5λnI1(θ − θ∗

n |θ∗
n )}.

Note that (1)′–(6)′ are just (1)–(6) with slightly different constants.

CONDITION I′ . It holds that ‖fθ∗
n
− f̄ ‖∞ ≤ η, with η given in Assumption B.

CONDITION II′ . It holds that ‖fθ(ε∗
n) − f̄ ‖∞ ≤ η, with η given in Assump-

tion B.

CONDITION III′ . We have
√

log(2m)
n

Km ≤ 0.13.

The constant 0.13 in Condition III′ was again set quite arbitrary, in the sense
that, provided some other constants are adjusted properly, it may be replaced by
any other constant smaller than (

√
6 − √

2)/2. The latter comes from our calcula-
tions using Bousquet’s inequality.



622 S. A. VAN DE GEER

THEOREM 2.2. Suppose Assumptions L, A, B and C, and Conditions I′, II′
and III′ are met. Let λn, θ∗

n , ε∗
n and ζ ∗

n be given in (1)′–(6)′ and let θ̂n be given
in (7). Take

λ̄n,0 > 4

√
log(2m)

n
× (1.6).

Then with probability at least 1 − α, we have that

E(f
θ̂n

) ≤ 2ε∗
n,(8)

and moreover

2I (θ̂n − θ∗
n ) ≤ 7ζ ∗

n .(9)

Here

α = exp[−na2
ns

2] + 7 exp[−nā2
nt

2],(10)

with s > 0 being defined by 5
9 = Kmλn,0(s), and t > 0 being defined by λ̄n,0 =

λ̄n,0(t).

The definition of λn,0(s) [λ̄n,0(t)] was given in (2) [(3)]. Thus, Theorem 2.2
gives qualitatively the same conclusion as Theorem 2.1.

To estimate the “confidence level” α, we need an estimate of Km. In Corol-
lary A.3, we present an estimated upper bound for α. An estimate of a lower bound
can be found similarly.

3. Discussion of the assumptions and some examples.

3.1. Discussion of Assumptions L, A, B and C. We assume in Assumption L
that the loss function γ is Lipschitz in f . This corresponds to the “robust case”
with bounded influence function (e.g., Huber or quantile loss functions). The Lip-
schitz condition allows us to apply the contraction inequality (see Theorem A.3). It
may well be that it depends on whether or not F is a class of functions uniformly
bounded in sup norm. Furthermore, from the proofs one may conclude that we
only need the Lipschitz condition locally near the target f̄ [i.e., for those θ with
I (θ − θ∗

n ) ≤ 6ζ ∗
n ]. This will be exploited in Example 4 where the least squares loss

is considered.
Assumption A is a technical but important condition. In fact, Condition III′

requires a bound proportional to
√

n/ log(2m) for the constant Km of Assumption
A. When for instance ψ1, . . . ,ψm actually form the co-variable X itself [i.e., X =
(ψ1(X), . . . ,ψm(X)) ∈ Rm], one possibly has that Km ≤ K where K does not
grow with m. When the ψk are truly feature mappings (e.g., wavelets), Assumption
A may put a restriction on the number m of base functions ψk .
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Inspired by Tsybakov (2004), we call Assumption B the margin assumption. In
most situations, G is quadratic, that is, for some constant C0, G(u) = u2/(2C0),
u > 0. This happens, for example, when F is the set, of all (measurable) functions,
and in addition γf (X,Y ) = γ (f (X),Y ) and E(γ (z,Y )|X) is twice differentiable
in a neighborhood of z = f̄ (X), with second derivative at least 1/C0, Q-a.s.

Next, we address Assumption C. Define the vector ψ = (ψ1, . . . ,ψm)T . Sup-
pose the m × m matrix


 :=
∫

ψψT dQ,

has smallest eigenvalue β2 > 0. Then one can easily verify that Assumption C
holds with

D(K) = |K|/β2,(11)

where |K| is the cardinality of the set K . Thus, then D indicates “dimension.”
Weighted versions are also relatively straightforward. Let A(K) be the selection
matrix: ∑

k∈K

α2
k = αT A(K)α, α ∈ Rm.

Then we can take

D(K) = ∑
k∈K

w−2
k /β2(K),

with w1, . . . ,wm being a set of positive weights, and 1/β2(K) the largest eigen-
value of the matrix 
−1/2WA(K)W
−1/2, W := diag(w1, . . . ,wm) [see also
Tarigan and van de Geer (2006)].

A refinement of Assumption C, for example the cumulative local coherence
assumption [see Bunea, Tsybakov and Wegkamp (2007a)] is needed to handle the
case of overcomplete systems. We propose the refinement

ASSUMPTION C*. There exists nonnegative functions ρ(·) and D(·) on the
subsets of the index set {1, . . . ,m}, such that for all K ⊂ {1, . . . ,m}, and for all
θ ∈ � and θ̃ ∈ �, we have∑

k∈K

σk|θk − θ̃k| ≤ ρ(K)I (θ − θ̃ )/2 + √
D(K)‖fθ − fθ̃‖.

With Assumption C*, one can prove versions of Theorems 2.1 and 2.2 with
different constants, provided that the “oracle” θ∗

n is restricted to having a value
ρ({K : θ∗

n,k �= 0}) strictly less than one. It can be shown that this is true under
the cumulative local coherence assumption in Bunea, Tsybakov and Wegkamp
(2007a), with D(K) again proportional to |K|. The reason why it works is because
the additional term in Condition C* (as compared to Condition C) is killed by
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the penalty. Thus, the results can be extended to situations where 
 is singular.
However, due to lack of space we will not present a full account of this extension.

Assumption A is intertwined with Assumption C. As an illustration, suppose
that one wants to include dummy variables for exclusive groups in the system
{ψk}. Then Assumptions A and C together lead to requiring that the number of
observations per group is not much smaller than n/K2

m.

3.2. Modifications. In many cases, it is natural to leave a given subset of the
coefficients not penalized, for example, those corresponding to the constant term
and perhaps some linear terms, or to co-variables that are considered as definitely
relevant. Suppose there are p < m such coefficients, say the first p. The penalty is
then modified to

Î (θ) =
m∑

k=p+1

σ̂k|θk|.

With this modification, the arguments used in the proof need only slight adjust-
ments.

An important special case is where {ψk} contains the constant function ψ1 ≡ 1,
and θ1 is not penalized. In that case, it is natural to modify Assumption A to

Km := max
2≤k≤m

‖ψk − μk‖∞
σk

< ∞,

where μk = Qψk and where σ 2
k is now defined as σ 2

k = Qψ2
k − μ2

k , k = 2, . . . ,m.
Moreover, the penalty may be modified to Î (θ) = ∑m

k=2 σ̂k|θk|, where now σ̂ 2
k =

Qnψ
2
k − μ̂2

k and μ̂k = Qnψk . Thus, the means μk are now also estimated. How-
ever, this additional source of randomness is in a sense of smaller order. In conclu-
sion, this modification does not bring in new theoretical complications, but does
have a slight influence on the constants.

3.3. Some examples.

EXAMPLE 1 (Logistic regression). Consider the case Y ∈ {0,1} and the logis-
tic loss function

γf (x, y) = γ (f (x), y) := [−f (x)y + log
(
1 + ef (x))]/2.

It is clear that this loss function is convex and Lipschitz. Let the target f̄ be the
log-odds ratio, that is f̄ = log( π

1−π
). where π(x) := E(Y |X = x). It is easy to see

that when for some ε > 0, it holds that ε ≤ π ≤ 1 − ε, Q-a.e., then Assumption B
is met with G(u) = u2/(2C0), u > 0, and with constant C0 depending on η and
ε. The conjugate H is then also quadratic, say H(v) = C1v

2, v > 0, where C1
easily can be derived from C0. Thus, for example, Theorem 2.2 has estimation
error Vθ = 25C1λ

2
nDθ .
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EXAMPLE 2 (Density estimation). Let X have density q0 := dQ/dν with re-
spect to a given σ -finite dominating measure ν. We estimate this density by

q̂n = exp[f
θ̂n

− b(f
θ̂n

)],
where θ̂n is the lasso-penalized estimator with loss function

γf (X) := −f (X) + b(f ), f ∈ F.

Here F = {f :
∫

ef dν < ∞} and b(f ) = log
∫

ef dν is the normalization constant.
There is no response variable Y in this case.

Clearly γf satisfies Assumption L. Now, let fθ = ∑m
k=1 θkψk , with θ ∈ � and

� = {θ ∈ Rm : fθ ∈ F}. If we assume, for some ε > 0, that ε ≤ q0 ≤ 1/ε, μ-a.e,
one easily verifies that Assumption B holds for G(u) = u2/(2C0), u > 0, with C0
depending on ε and η. So we arrive at a similar estimation error as in the logistic
regression example.

Now, a constant term will not be identifiable in this case, so we do not put
the constant function in the system {ψk}. We may moreover take the functions
ψk centered in a convenient way, say

∫
ψk dν = 0, ∀ k. In that situation a natural

penalty with nonrandom weights could be
∑m

k=1 wk|θk|, where w2
k = ∫

ψ2
k dν, k =

1, . . . ,m. However, with this penalty, we are only able to prove a result along the
lines of Theorem 2.1 or 2.2, when the smoothing parameter λ̂n is chosen depending
on an estimated lower bound for the density q0. The penalty Î (θ) with random
weights σ̂k = (Qnψ

2
k )1/2, k = 1, . . . ,m, allows a choice of λn which does not

depend on such an estimate.
Note that in this example, γ (f (X),Y ) = −f (X) is linear in f . Thus, in

Lemma A.2, we do not need a contraction or symmetrization inequality, and may
replace ān (λ̄n,0) by an (λn,0) throughout, that is, we may cancel a factor 4.

EXAMPLE 3 (Hinge loss). Let Y ∈ {±1}. The hinge loss function, used in
binary classification, is

γf (X,Y ) := (
1 − Yf (X)

)
+.

Clearly, hinge loss satisfies Assumption L. Let π(x) := P(Y = 1|X = x) and F be
all (measurable) functions. Then the target f̄ is Bayes decision rule, that is f̄ =
sign(2π − 1). Tarigan and van de Geer (2006) show that instead of Condition B, it
in fact holds, under reasonable conditions, that

E(fθ ) ≥ G(‖fθ − f̄ ‖1/2
1 ),

with G being again a strictly convex increasing function, but with ‖ ·‖1/2
1 being the

square root L1(Q) norm instead of the L2(Q) norm. The different norm however
does not require essentially new theory. The bound ‖f − f̄ ‖ ≤ η‖f − f̄ ‖1/2

1 (which
holds if ‖f − f̄ ‖∞ ≤ η) now ties Assumption B to Assumption C. See Tarigan and
van de Geer (2006) for the details.
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Alternatively, we may aim at a different target f̄ . Consider a minimizer fθ̄ over
F = {fθ : θ ∈ �}, of expected hinge loss E(1 − Yf (X))+. Suppose that sign(fθ̄ )

is Bayes decision rule sign(2π −1). Then fθ̄ is a good target for classification. But
for f̄ = fθ̄ , the margin behavior (Assumption B) is as yet not well understood.

EXAMPLE 4 (Quadratic loss). Suppose Y = f̄ (X) + ε, where ε is N (0,1)

distributed and independent of X. Let γf be quadratic loss

γf (X,Y ) := 1
2

(
Y − f (X)

)2
.

It is clear that in this case, Assumption B holds for all f , with G(u) = u2/2, u > 0.
However, the quadratic loss function is not Lipschitz on the whole real line. The
Lipschitz property was used in order to apply the contraction inequality to the em-
pirical process [see (15) of Lemma A.2 in Section 4.2]. To handle quadratic loss
and Gaussian errors, we may apply exponential bounds for Gaussian random vari-
ables and a “local” Lipschitz property. Otherwise, one can use similar arguments
as in the Lipschitz case. This leads to the following result for the case {σk} known.
(The case {σk} is unknown can be treated similarly.)

THEOREM 3.1. Suppose Assumptions A and C hold. Let λn, θ∗
n , ε∗

n and ζ ∗
n be

given in (1)–(6), with H(v) = v2/2, v > 0, but now with λ̄n,0 replaced by

λ̃n,0 :=
√

14

9

√
2 log(2m)

n
+ 2t2ā2

n + λ̄n,0.

Assume moreover that ‖fθ∗
n

− f̄ ‖∞ ≤ η ≤ 1/2, that 6ζ ∗
n Km + 2η ≤ 1, and that√

log(2m)
n

Km ≤ 0.33. Let σk be known for all k and let θ̂n be given in (4). Then we
have with probability at least 1 − α, that

E(f
θ̂n

) ≤ 2ε∗
n,(12)

and moreover

2I (θ̂n − θ∗
n ) ≤ 7ζ ∗

n .(13)

Here

α = exp[−na2
ns

2] + 7 exp[−nā2
nt

2],
with s > 0 a solution of 9

5 = Kmλn,0(s).

We conclude that when the oracle rate is small enough, the theory essentially
goes through. For example, when Km = O(1) we require that the oracle has
not more than O(

√
n/ logn) nonzero coefficients. This is in line with the results

in Bunea, Tsybakov and Wegkamp (2007b). We also refer to Bunea, Tsybakov
and Wegkamp (2007b) for possible extensions, including non-Gaussian errors and
overcomplete systems.
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APPENDIX

The proofs of the results in this paper have elements that have become standard
in the literature on penalized M-estimation. We refer to Massart (2000b) for a
rather complete account of these. The �1 penalty however has as special feature
that it allows one to avoid estimating explicitly the estimation error. Moreover,
a new element in the proof is the way we use the convexity of the penalized loss
function to enter directly into local conditions.

The organization of the proofs is as follows. We start out in the next subsec-
tion with general results for empirical processes. This is applied in Section A.2
to obtain, for all M > 0, a bound for the empirical process uniformly over
{θ ∈ � : I (θ − θ∗) ≤ M}. Here, θ∗ is some fixed value, which can be chosen con-
veniently, according to the situation. We will choose θ∗ to be the oracle θ∗

n . Once
we have this, we can start the iteration process to obtain a bound for I (θ̂n − θ∗

n ).
Given this bound, we then proceed proving a bound for the excess risk E(f̂n).
Section A.3 does this when the σk are known, and Section A.4 goes through the
adjustments when the σk are estimated. Section A.5 considers quadratic loss.

Throughout Sections A.1–A.4, we require that Assumptions L, A, B and C hold.

A.1. Preliminaries. Our main tool is a result from Bousquet (2002),
which is an improvement of the constants in Massart (2000a), the latter being
again an improvement of the constants in Ledoux (1996). The result says that the
supremum of any empirical process is concentrated near its mean. The amount of
concentration depends only on the maximal sup norm and the maximal variance.

THEOREM A.1 (Concentration theorem [Bousquet (2002)]). Let Z1, . . . ,Zn

be independent random variables with values in some space Z and let � be a class
of real-valued functions on Z, satisfying for some positive constants ηn and τn

‖γ ‖∞ ≤ ηn ∀ γ ∈ �

and

1

n

n∑
i=1

var(γ (Zi)) ≤ τ 2
n ∀ γ ∈ �.

Define

Z := sup
γ∈�

∣∣∣∣∣1

n

n∑
i=1

(
γ (Zi) − Eγ (Zi)

)∣∣∣∣∣.
Then for z > 0,

P
(

Z ≥ EZ + z

√
2(τ 2

n + 2ηnEZ) + 2z2ηn

3

)
≤ exp[−nz2].
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Bousquet’s inequality involves the expectation of the supremum of the empir-
ical process. This expectation can be a complicated object, but one may derive
bounds for it using symmetrization, and—in our Lipschitz case—contraction. To
state these techniques, we need to introduce i.i.d. random variables ε1, . . . , εn, tak-
ing values ±1 each with probability 1/2. Such a sequence is called a Rademacher
sequence.

THEOREM A.2 (Symmetrization theorem [van der Vaart and Wellner (1996)]).
Let Z1, . . . ,Zn be independent random variables with values in Z, and let
ε1, . . . , εn be a Rademacher sequence independent of Z1, . . . ,Zn. Let � be a class
of real-valued functions on Z. Then

E

(
sup
γ∈�

∣∣∣∣∣
n∑

i=1

{γ (Zi) − Eγ (Zi)}
∣∣∣∣∣
)

≤ 2E

(
sup
γ∈�

∣∣∣∣∣
n∑

i=1

εiγ (Zi)

∣∣∣∣∣
)
.

THEOREM A.3 (Contraction theorem [Ledoux and Talagrand (1991)]). Let
z1, . . . , zn be nonrandom elements of some space Z and let F be a class of real-
valued functions on Z. Consider Lipschitz functions γi : R → R, that is,

|γi(s) − γi(s̃)| ≤ |s − s̃| ∀ s, s̃ ∈ R.

Let ε1, . . . , εn be a Rademacher sequence. Then for any function f ∗ :Z → R, we
have

E

(
sup
f ∈F

∣∣∣∣∣
n∑

i=1

εi{γi(f (zi)) − γi(f
∗(zi))}

∣∣∣∣∣
)

≤ 2E

(
sup
f ∈F

∣∣∣∣∣
n∑

i=1

εi

(
f (zi) − f ∗(zi)

)∣∣∣∣∣
)
.

Now, suppose � is a finite set of functions. In that case, a bound for the expecta-
tion of the supremum of the empirical process over all γ ∈ � can be derived from
Bernstein’s inequality.

LEMMA A.1. Let Z1, . . . ,Zn be independent Z-valued random variables,
and γ1, . . . , γm be real-valued functions on Z, satisfying for k = 1, . . . ,m,

Eγk(Zi) = 0,∀ i ‖γk‖∞ ≤ ηn,
1

n

n∑
i=1

Eγ 2
k (Zi) ≤ τ 2

n .

Then

E

(
max

1≤k≤m

∣∣∣∣∣1

n

n∑
i=1

γk(Zi)

∣∣∣∣∣
)

≤
√

2τ 2
n log(2m)

n
+ ηn log(2m)

n
.
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PROOF. Write γ̄k := 1
n

∑n
i=1 γk(Zi), k = 1, . . . ,m. A classical intermediate

step of the proof of Bernstein’s inequality [see, e.g., van de Geer (2000)] tells us
that for n/β > ηn, we have

E exp(βγ̄k) ≤ exp
(

β2τ 2
n

2(n − βηn)

)
.

The same is true if we replace γ̄k by −γ̄k . Hence,

E
(

max
1≤k≤m

|γ̄k|
)

≤ 1

β
log

(
E exp

(
β max

k
±γ̄k

))

≤ log(2m)

β
+ βτ 2

n

2(n − βηn)
.

Now, take

n

β
= ηn +

√
nτ 2

n

2 log(2m)
. �

A.2. First application to M-estimation with lasso penalty. We now turn to
our specific context. We let ε1, . . . , εn be a Rademacher sequence, independent of
the training set (X1, Y1), . . . , (Xn,Yn). Moreover, we fix some θ∗ ∈ � and let for
M > 0, FM := {fθ : θ ∈ �, I (θ − θ∗) ≤ M} and

Z(M) := sup
f ∈FM

|(Pn − P)(γfθ − γfθ∗ )|,(14)

where γf (X,Y ) = γ (f (X),Y ) + b(f ) now denotes the loss function.

LEMMA A.2. We have

EZ(M) ≤ 4ME

(
max

1≤k≤m

∣∣∣∣∣1

n

n∑
i=1

εiψk(Xi)/σk

∣∣∣∣∣
)
.

PROOF. By the Symmetrization Theorem,

EZ(M) ≤ 2E

(
sup

f ∈FM

∣∣∣∣∣1

n

n∑
i=1

εi{γ (fθ (Xi), Yi) − γ (fθ∗(Xi), Yi)}
∣∣∣∣∣
)
.

Now, let (X,Y) = {(Xi, Yi)}ni=1 denote the sample, and let E(X,Y) denote the con-
ditional expectation given (X,Y). Then invoke the Lipschitz property of the loss
functions, and apply the Contraction Theorem, with zi := Xi and γi(·) := γ (Yi, ·),
i = 1, . . . , n, to find

E(X,Y)

(
sup

f ∈FM

∣∣∣∣∣1

n

n∑
i=1

εi{γ (fθ (Xi), Yi) − γ (fθ∗(Xi), Yi)}
∣∣∣∣∣
)

(15)

≤ 2E(X,Y)

(
sup

f ∈FM

∣∣∣∣∣1

n

n∑
i=1

εi

(
fθ (Xi) − fθ∗(Xi)

)∣∣∣∣∣
)
.
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But clearly,∣∣∣∣∣1

n

n∑
i=1

εi

(
fθ (Xi) − fθ∗(Xi)

)∣∣∣∣∣ ≤
m∑

k=1

σk|θk − θ∗
k | max

1≤k≤m

∣∣∣∣∣1

n

n∑
i=1

εiψk(Xi)/σk

∣∣∣∣∣
= I (θ − θ∗) max

1≤k≤m

∣∣∣∣∣1

n

n∑
i=1

εiψk(Xi)/σk

∣∣∣∣∣.
Since for fθ ∈ FM , we have I (θ − θ∗) ≤ M , the result follows. �

Our next task is to bound the quantity

E
(

max
1≤k≤m

|1/n
∑n

i=1 εiψk(Xi)|
σk

)
.

Recall definition (1):

an =
(√

2 log(2m)

n
+ log(2m)

n
Km

)
.

LEMMA A.3. We have

E
(

max
1≤k≤m

∣∣∣∣(Qn − Q)(ψk)

σk

∣∣∣∣
)

≤ an,

as well as

E
(

max
1≤k≤m

|1/n
∑n

i=1 εiψ(Xi)|
σk

)
≤ an.

PROOF. This follows from ‖ψk‖∞/σk ≤ Km and var(ψk(X))/σ 2
k ≤ 1. So we

may apply Lemma A.1 with ηn = Km and τ 2
n = 1. �

We now arrive at the result that fits our purposes.

COROLLARY A.1. For all M > 0 and all θ ∈ � with I (θ − θ∗) ≤ M , it holds
that

‖γfθ − γfθ∗ ‖∞ ≤ MKm

and

P(γfθ − γfθ∗ )
2 ≤ M2.

Therefore, since by Lemmas A.2 and A.3, for all M > 0,

EZ(M)

M
≤ ān, ān = 4an,

we have, in view of Bousquet’s Concentration theorem, for all M > 0 and all t > 0,

P
(

Z(M) ≥ ānM

(
1 + t

√
2(1 + 2ānKm) + 2t2ānKm

3

))
≤ exp[−nā2

nt
2].
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A.3. Proofs of the results in Section 2.1. In this subsection, we assume that
σk are known and we consider the estimator

θ̂n := arg min
θ∈�

{
1

n

n∑
i=1

γfθ (Xi, Yi) + λnI (θ)

}
.

Take b > 0, d > 1, and

db := d

(
b + d

(d − 1)b
∨ 1

)
.

Let

(A1) λn := (1 + b)λ̄n,0

(A2) Vθ := 2δH(
2λn

√
Dθ

δ
), where 0 < δ < 1,

(A3) θ∗
n := arg minθ∈�{E(fθ ) + Vθ },

(A4) ε∗
n := (1 + δ)E(fθ∗

n
) + Vθ∗

n
,

(A5) ζ ∗
n := ε∗

n

λ̄n,0
,

(A6) θ(ε∗
n) := arg minθ∈�,I (θ−θ∗

n )≤dbζ
∗
n /b{δE(fθ ) − 2λnI1(θ − θ∗

n |θ∗
n )}.

CONDITION I(b, δ). It holds that ‖fθ∗
n

− f̄ ‖∞ ≤ η.

CONDITION II(b, d, δ). It holds that ‖fθ(ε∗
n) − f̄ ‖∞ ≤ η.

In this subsection, we let λn, Vθ , θ∗
n , ε∗

n , ζ ∗
n and θ(ε∗

n) be defined in (A1)–(A6).
Theorem 2.1 takes b = 1, δ = 1/2 and d = 2.

We start out with proving a bound for the �1 norm of the coefficients θ , when
restricted to the set where θ∗

n,k �= 0, in terms of the excess risk E(fθ ).

LEMMA A.4. Suppose Condition I(b, δ) and Condition II(b, δ, d) are met.
For all θ ∈ � with I (θ − θ∗

n ) ≤ dbζ
∗
n /b, it holds that

2λnI1(θ − θ∗
n |θ∗

n ) ≤ δE(fθ ) + ε∗
n − E(fθ∗

n
).

PROOF. We use the short-hand notation I1(θ) = I1(θ |θ∗
n ), θ ∈ �. When I (θ −

θ∗
n ) ≤ dbζ

∗
n /b, one has

2λnI1(θ − θ∗
n ) = 2λnI1(θ − θ∗

n ) − δE(fθ ) + δE(fθ )

≤ 2λnI1
(
θ(ε∗

n) − θ∗
n

) − δE
(
fθ(ε∗)

) + δE(fθ ).

By Assumption C, combined with Condition II(b, δ, d),

2λnI1
(
θ(ε∗

n) − θ∗
n

) ≤ 2λn

√
Dθ∗

n

∥∥fθ(ε∗
n) − fθ∗

n

∥∥.
By the triangle inequality,

2λn

√
Dθ∗

n

∥∥fθ(ε∗
n) − fθ∗

n

∥∥ ≤ 2λn

√
Dθ∗

n

∥∥fθ(ε∗
n) − f̄

∥∥ + 2λn

√
Dθ∗

n
‖fθ∗

n
− f̄ ‖.
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Since ‖fθ(ε∗
n) − f̄ ‖ ≤ η as well as ‖fθ∗

n
− f̄ ‖ ≤ η, it follows from Condition I(b, δ)

and Condition II(b, δ, d), combined with Assumption B, that

2λn

√
Dθ∗

n

∥∥fθ(ε∗
n) − fθ∗

n

∥∥ ≤ δE
(
fθ(ε∗

n)

) + δE(fθ∗
n
) + Vθ∗

n
.

Hence, when I (θ − θ∗
n ) ≤ dbζ

∗
n /b,

2λnI1(θ − θ∗
n ) ≤ δE(fθ ) + δE(fθ∗

n
) + Vθ∗

n
= δE(fθ ) + ε∗

n − E(fθ∗
n
). �

We now show that for any θ̃ for which the penalized empirical risk is not larger
than that of the oracle θ∗

n , the �1 difference between θ̃ and θ∗
n has to be “small.”

Lemma A.5 represents one iteration, which shows that on the set I (θ̃ − θ∗
n ) ≤

d0ζ
∗
n /b, in fact, except on a subset with small probability, I (θ̃ − θ∗

n ) is strictly
smaller than d0ζ

∗
n /b.

Let for M > 0, Z(M) be the random variable defined in (14), with θ∗ = θ∗
n .

LEMMA A.5. Suppose Condition I(b, δ) and Condition II(b, δ, d) are met.
Consider any (random) θ̃ ∈ � with Rn(fθ̃ ) + λnI (θ̃) ≤ Rn(fθ∗

n
) + λnI (θ∗

n ). Let
1 < d0 ≤ db. Then

P
(
I (θ̃ − θ∗

n ) ≤ d0
ζ ∗
n

b

)

≤ P
(
I (θ̃ − θ∗

n ) ≤
(

d0 + b

1 + b

)
ζ ∗
n

b

)
+ exp[−nā2

nt
2].

PROOF. We let Ẽ := E(fθ̃ ) and E∗ := E(fθ∗
n
). We also use the short hand no-

tation I1(θ) = I1(θ |θ∗
n ) and I2(θ) = I2(θ |θ∗

n ). Since Rn(fθ̃ )+λnI (θ̃) ≤ Rn(fθ∗
n
)+

λnI (θ∗
n ), we know that when I (θ̃ − θ∗

n ) ≤ d0ζ
∗
n /b, that

Ẽ + λnI (θ̃) ≤ Z(d0ζ
∗
n /b) + E∗ + λnI (θ∗

n ).

With probability at least 1 − exp[−nā2
nt

2], the random variable Z(d0ζ
∗
n /b) is

bounded by λ̄n,0d0ζ
∗
n /b. But then we have

Ẽ + λnI (θ̃) ≤ λ̄n,0
d0ζ

∗
n

b
+ E∗ + λnI (θ∗

n ).

Invoking λn = (1 + b)λ̄n,0, I (θ̃) = I1(θ̃) + I2(θ̃) and I (θ∗
n ) = I1(θ

∗
n ), we find on

{I (θ̃ − θ∗
n ) ≤ d0ζ

∗
n /b} ∪ {Z(d0ζ

∗
n /b) ≤ λ̄n,0d0ζ

∗
n /b}, that

Ẽ + (1 + b)λ̄n,0I2(θ̃)

≤ λ̄n,0
d0ζ

∗
n

b
+ E∗ + (1 + b)λ̄n,0I1(θ

∗
n ) − (1 + b)λ̄n,0I1(θ̃)

≤ λ̄n,0
d0ζ

∗
n

b
+ E∗ + (1 + b)λ̄n,0I1(θ̃ − θ∗

n ).
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But I2(θ̃) = I2(θ̃ − θ∗
n ). So if we add another (1 + b)λ̄n,0I1(θ̃ − θ∗

n ) to both left-
and right-hand side of the last inequality, we obtain

Ẽ + (1 + b)λ̄n,0I (θ̃ − θ∗
n ) ≤ λ̄n,0

d0ζ
∗
n

b
+ 2(1 + b)λ̄n,0I1(θ̃ − θ∗

n ).

Since d0 ≤ db, we know from Lemma A.4 that this implies

Ẽ + (1 + b)λ̄n,0I (θ̃ − θ∗
n ) ≤ λ̄n,0

d0ζ
∗
n

b
+ δẼ + ε∗

n

= (d0 + b)λ̄n,0
ζ ∗
n

b
+ δẼ ,

as ε∗
n = λ̄n,0ζ

∗
n . But then

(1 − δ)Ẽ + (1 + b)λ̄n,0I (θ̃ − θ∗
n ) ≤ (d0 + b)λ̄n,0

ζ ∗
n

b
.

Because 0 < δ < 1, the result follows. �

One may repeat the argument of the previous lemma N times, to get the next
corollary.

COROLLARY A.2. Suppose Condition I(b, δ) and Condition II(b, δ, d) are
met. Let d0 ≤ db. For any (random) θ̃ ∈ � with Rn(fθ̃ ) + λnI (θ̃) ≤ Rn(fθ∗

n
) +

λnI (θ∗
n ),

P
(
I (θ̃ − θ∗

n ) ≤ d0
ζ ∗
n

b

)

≤ P
(
I (θ̃ − θ∗

n ) ≤(
1 + (d0 − 1)(1 + b)−N )ζ ∗

n

b

)
+ N exp[−nā2

nt
2].

The next lemma considers a convex combination of θ̂n and θ∗
n , such that the �1

distance between this convex combination and θ∗
n is small enough.

LEMMA A.6. Suppose Condition I(b, δ) and Condition II(b, δ, d) are met.
Define

θ̃s = sθ̂n + (1 − s)θ∗
n ,

with

s = dζ ∗
n

dζ ∗
n + bI (θ̂n − θ∗

n )
.

Then, for any integer N , with probability at least 1 − N exp[−nā2
nt

2] we have

I (θ̃s − θ∗
n ) ≤ (

1 + (d − 1)(1 + b)−N )ζ ∗
n

b
.
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PROOF. The loss function and penalty are convex, so

Rn(fθ̃s
) + λnI (θ̃s) ≤ sRn(fθ̂n

) + sλnI (θ̂n) + (1 − s)Rn(fθ∗
n
) + (1 − s)λnI (θ∗

n )

≤ Rn(fθ∗
n
) + λnI (θ∗

n ).

Moreover,

I (θ̃s − θ∗
n ) = sI (θ̂n − θ∗

n ) = dζ ∗
n I (θ̂n − θ∗

n )

dζ ∗
n + bI (θ̂n − θ∗

n )
≤ d

ζ ∗
n

b
.

By the definition of db, we know d ≤ db. Now apply the previous lemma with
θ̃ = θ̃s and d0 = d . �

One may now deduce that not only the convex combination, but also θ̂n itself is
close to θ∗

n , in �1 distance.

LEMMA A.7. Suppose Condition I(b, δ) and Condition II(b, δ, d) are met. Let
N1 ∈ N and N2 ∈ N ∪ {0}. Define δ1 = (1 + b)−N1 (N1 ≥ 1), and δ2 = (1 + b)−N2 .
With probability at least 1 − (N1 + N2) exp[−nā2

nt
2], we have

I (θ̂n − θ∗
n ) ≤ d(δ1, δ2)

ζ ∗
n

b
,

with

d(δ1, δ2) = 1 +
(

1 + (d2 − 1)δ1

(d − 1)(1 − δ1)

)
δ2.

PROOF. We know from Lemma A.6 that with probability at least 1 −
N1 exp[−nā2

nt
2],

I (θ̃s − θ∗
n ) ≤ (

1 + (d − 1)δ1
)ζ ∗

n

b
.

But then

I (θ̂n − θ∗
n ) ≤ d(1 + (d − 1)δ1)

(d − 1)(1 − δ1)

ζ ∗
n

b
:= d̄0

ζ ∗
n

b
.

We have d̄0 ≤ db, since 0 < δ1 ≤ 1/(1 + b), and by the definition of db. Therefore,
we may Corollary A.2 to θ̂n, with d0 replaced by d̄0. We find that with probability
at least 1 − (N1 + N2) exp[−nānt

2],

I (θ̂n − θ∗
n ) ≤ (

1 + (d0 − 1)δ2
)ζ ∗

n

b

=
(

1 +
(

1 + (d2 − 1)δ1

(d − 1)(1 − δ1)

)
δ2

)
ζ ∗
n

b
. �
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Recall the notation

d(δ1, δ2) := 1 +
(

1 + (d2 − 1)δ1

(1 − d)(1 − δ1)

)
δ2.(16)

Write

�(b, δ, δ1, δ2) := d(δ1, δ2)
1 − δ2

δb
∨ 1.(17)

THEOREM A.4. Suppose Condition I(b, δ) and Condition II(b, δ, d) are met.
Let δ1 and δ2 be as in Lemma A.7. We have with probability at least

1 −
(

log1+b

(1 + b)2�(b, δ, δ1, δ2)

δ1δ2

)
exp[−nā2

nt
2],

that

E(f
θ̂n

) ≤ ε∗
n

1 − δ
,

and moreover

I (θ̂n − θ∗
n ) ≤ d(δ1, δ2)

ζ ∗
n

b
.

PROOF. Define Ê := E(f̂
θ̂n

) and E∗ := E(fθ∗
n
). We also again use the short

hand notation I1(θ) = I1(θ |θ∗
n ) and I2(θ) = I2(θ |θ∗

n ). Set

c := δb

1 − δ2 .

We consider the cases (a) c < d(δ1, δ2) and (b) c ≥ d(δ1, δ2).

(a) Suppose first that c < d(δ1, δ2). Let J be an integer satisfying (1+b)J−1c ≤
d(δ1, δ2) and (1 + b)J c > d(δ1, δ2). We consider the cases (a1) cζ ∗

n /b < I (θ̂n −
θ∗
n ) ≤ d(δ1, δ2)ζ

∗
n /b and (a2) I (θ̂n − θ∗

n ) ≤ cζ ∗
n /b.

(a1) If cζ ∗
n /b < I (θ̂n − θ∗

n ) ≤ d(δ1, δ2)ζ
∗
n /b, then

(1 + b)j−1cζ ∗
n /b < I (θ̂n − θ∗

n ) ≤ (1 + b)j cζ ∗
n /b,

for some j ∈ {1, . . . , J }. Except on set with probability at most exp[−nā2
nt

2], we
thus have that

Ê + (1 + b)λ̄n,0I (θ̂n) ≤ (1 + b)λ̄n,0I (θ̂n − θ∗
n ) + E∗ + (1 + b)λ̄n,0I (θ∗

n ).

So then, by similar arguments as in the proof of Lemma A.5, we find

Ê ≤ 2(1 + b)λ̄n,0I1(θ̂n − θ∗
n ) + E∗.

Since d(δ1, δ2) ≤ db, we obtain Ê ≤ ε∗
n + δÊ , so then Ê ≤ ε∗

n

1−δ
.
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(a2) If I (θ̂n − θ∗
n ) ≤ cζ ∗

n /b, we find, except on a set with probability at most
exp[−nā2

nt
2], that

Ê + (1 + b)λ̄n,0I (θ̂n) ≤
(

δ

1 − δ2

)
λ̄n,0ζ

∗
n + E∗ + (1 + b)I (θ∗

n ),(18)

which gives

Ê ≤
(

δ

1 − δ2

)
λ̄n,0ζ

∗
n + E∗ + (1 + b)λ̄n,0I1(θ̂n − θ∗

n )

≤
(

δ

1 − δ2

)
λ̄n,0ζ

∗
n + E∗ + δ

2
E∗ + Vθ∗

n

2
+ δ

2
Ê

=
(

δ

1 − δ2 + 1

2

)
ε∗
n + E∗

2
+ δ

2
Ê

≤
(

δ

1 − δ2 + 1

2
+ 1

2(1 + δ)

)
ε∗
n.

But this yields

Ê ≤ 2

2 − δ

(
δ

1 − δ2 + 1

2
+ 1

2(1 + δ)

)
ε∗
n = 1

1 − δ
ε∗
n.

Furthermore, by Lemma A.7, we have with probability at least 1 − (N1 +
N2) exp[−nānt

2], that

I (θ̂n − θ∗
n ) ≤ d(δ1, δ2)

b
ζ ∗
n .

The result now follows from

J + 1 ≤ log1+b

(
(1 + b)2d(δ1, δ2)

c

)

and

N1 = log1+b

(
1

δ1

)
, N2 = log1+b

(
1

δ2

)
.

(b) Finally, consider the case c ≥ d(δ1, δ2). Then on the set where
I (θ̂n − θ∗

n ) ≤ d(δ1, δ2)ζ
∗
n /b, we again have that, except on a subset with proba-

bility at most exp[−nānt
2],

Ê + (1 + b)λ̄n,0I (θ̂n) ≤ d(δ1, δ2)
ζ ∗
n

b
+ E∗ + (1 + b)I (θ∗

n )

≤
(

δ

1 − δ2

)
λ̄n,0ζ

∗
n + E∗ + (1 + b)I (θ∗

n ),

as

d(δ1, δ2) ≤ c = δb

1 − δ2 .
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So we arrive at the same inequality as (18) and we may proceed as there. Note
finally that also in this case

(N1 + N2 + 1) ≤ (N1 + N2 + 2)

= log1+b

(1 + b)2

δ1δ2

= log1+b

(1 + b)2�(b, δ, δ1, δ2)

δ1δ2
. �

PROOF OF THEOREM 2.1. Theorem 2.1 is a special case of Theorem A.4,
with b = 1, δ = 1/2, d = 2 and δ1 = δ2 = 1/2. �

A.4. Proof of the results in Section 2.2. Let

� = {σk/c1 ≤ σ̂k ≤ c2σk ∀ k},
where c1 > 1 and c2 =

√
2c2

1 − 1/c1. We show that for some s depending on c1,

the set � has probability at least 1 − exp[−na2
ns

2].

LEMMA A.8. We have

E
(

max
1≤k≤m

∣∣∣∣ σ̂
2
k

σ 2
k

− 1
∣∣∣∣
)

≤ anKm.

PROOF. Apply Lemma A.1 with ηn = K2
m and τ 2

n = K2
m. �

Recall now that for s > 0,

λn,0(s) := an

(
1 + s

√
2(1 + 2anKm) + 2s2anKm

3

)
.

LEMMA A.9. Let c0 > 1. Suppose that

2

√
log(2m)

n
Km ≤

√
6c2

0 − 4 −
√

2c2
0

c0
.

Let c1 > c0. Then there exists a solution s > 0 of

1 − 1

c2
1

= Kmλn,0(s).(19)

Moreover, with this value of s,

P(�) ≥ 1 − exp[−na2
ns

2].
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PROOF. We first note that

2

√
log(2m)

n
Km ≤

√
6c2

0 − 4 −
√

2c2
0

c0
,

implies

anKm ≤ 1 − 1

c2
0

.

Therefore, there exists a solution s > 0 satisfying (19). By Bousquet’s inequality
and Lemma A.8,

P
(

max
k

∣∣∣∣ σ̂
2
k

σ 2
k

− 1
∣∣∣∣ ≥ Kmλn,0(s)

)
≤ exp[−na2

ns
2].

In other words,

P
(

max
k

∣∣∣∣ σ̂
2
k

σ 2
k

− 1
∣∣∣∣ ≥ 1 − 1

c2
1

)
≤ exp[−na2

ns
2].

But the inequality ∣∣∣∣ σ̂
2
k

σ 2
k

− 1
∣∣∣∣ ≥ 1 − 1

c2
1

∀ k

is equivalent to

σk/c1 ≤ σ̂ ≤ c2σk ∀ k. �

Recall the estimator

θ̂n = arg min
θ∈�

{Rn(fθ ) + λnÎ (θ)}.

In this case, for 1 + b > c1 > 1, c2 =
√

2c2
1 − 1/c1, and d > 1, and for

db := d

(
d + b

(d − 1)b
∨ 1

)
,

given as before, we define:

(A1)′ λn := c1(1 + b)λ̄n,0,

(A2)′ Vθ := 2δH(
2c2λn

√
Dθ

δ
), where 0 < δ < 1,

(A3)′ θ∗
n := arg minθ∈�{E(fθ ) + Vθ },

(A4)′ ε∗
n := (1 + δ)E(fθ∗

n
) + Vθ∗

n
,

(A5)′ ζ ∗
n := ε∗

n/λ̄n,0,
(A6)′ θ(ε∗

n) := arg minθ∈�,I (θ−θ∗)≤dbζ
∗
n /b{δE(fθ ) − 2c2λnI1(θ − θ∗

n |θ∗
n )}.
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Note that on �,

I (θ)/c1 ≤ Î (θ) ≤ c2I (θ) ∀ θ

and

Ik(θ |θ∗
n )/c1 ≤ Îk(θ |θ∗

n ) ≤ c2Ik(θ |θ∗
n ), k = 1,2, ∀ θ.

Hence, we have upper and lower bounds for the estimated �1 norms. This means
we may proceed as in the previous subsection.

CONDITION I(δ, b, c1, c2). It holds that

‖fθ∗
n

− f̄ ‖∞ ≤ η.

CONDITION II(δ, b, d, c1, c2). It holds that ‖fθ(ε∗
n) − f̄ ‖∞ ≤ η.

CONDITION III (c0). For some known constant c0 > 1, it holds that

2
√

log(2m)/nKm ≤ (
√

6c2
0 − 4 −

√
2c2

0)/c0.

LEMMA A.10. Suppose Condition I(δ, b, c1, c2) and Condition II(δ, b, d,

c1, c2). Let c1b/(1 + b − c1) < d0 ≤ d̄b. For any (random) θ̃ ∈ � with Rn(fθ̃ ) +
λnI (θ̃) ≤ Rn(fθ∗

n
) + λnI (θ∗

n ), we have

P
(
I (θ̃ − θ∗

n ) ≤ d0
ζ ∗
n

b

)

≤ P
(
I (θ̃ − θ∗

n ) ≤
(

c1(d0 + b)

1 + b

)
ζ ∗
n

b

)

+ 1 − P(�) + exp[nā2
nt

2].

PROOF. This is essentially repeating the argument of Lemma A.5. Let Ẽ :=
E(fθ̃ ) and E∗ := E(fθ∗

n
), and use the short hand notation I1(θ) = I1(θ |θ∗

n ) and

I2(θ) = I2(θ |θ∗
n ). Likewise, Î1(θ) = Î1(θ |θ∗

n ) and Î2(θ) = Î2(θ |θ∗
n ).

On the set {I (θ̃ − θ∗
n ) ≤ d0ζ

∗
n /b}, we have, except on a subset with probability

at most exp[−nā2
nt

2], that

Ẽ + λnÎ (θ̃ ) ≤ λ̄n,0
d0ζ

∗
n

b
+ E∗ + λnÎ (θ∗

n ).

In the remainder of the proof, we will, therefore, only need to consider the set

� ∩ {I (θ̃ − θ∗
n ) ≤ d0ζ

∗
n /b} ∩

{
Ẽ + λnÎ (θ̃ ) ≤ λ̄n,0

d0ζ
∗
n

b
+ E∗ + λnÎ (θ∗

n )

}
.
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Invoking λn = c1(1 + b)λ̄n,0, Î (θ̃ ) = Î1(θ̃) + Î2(θ̃) and Î (θ∗
n ) = Î1(θ

∗
n ), we find

Ẽ + c1(1 + b)λ̄n,0Î2(θ̃)

≤ λ̄n,0
d0ζ

∗
n

b
+ E∗ + c1(1 + b)λ̄n,0Î1(θ

∗
n ) − c1(1 + b)λ̄n,0Î1(θ̃)

≤ λ̄n,0
d0ζ

∗
n

b
+ E∗ + c1(1 + b)λ̄n,0Î1(θ̃ − θ∗

n ).

We add another c1(1 + b)λ̄n,0Î1(θ̃ − θ∗
n ) to both left- and right-hand side of the

last inequality, and then apply Î1(θ̃ − θ∗
n ) ≤ c2I1(θ̃ − θ∗

n ), to obtain

Ẽ + c1(1 + b)λ̄n,0Î (θ̃ − θ∗
n )

≤ λ̄n,0
d0ζ

∗
n

b
+ E∗ + 2c1(1 + b)λ̄n,0Î1(θ̃ − θ∗

n )

≤ λ̄n,0
d0ζ

∗
n

b
+ E∗ + 2c1(1 + b)c2λ̄n,0I1(θ̃ − θ∗

n ).

Now I (θ̃ − θ∗
n ) ≤ d0ζ

∗
n /b ≤ d̄bζ

∗
n /b. We can easily modify Lemma A.5 to the new

situation, to see that

2c1(1 + b)c2λ̄n,0 ≤ Vθ∗
n

+ δẼ + δÊ

= δẼ + ε∗
n.

So

Ẽ + c1(1 + b)λ̄n,0Î (θ̃ − θ∗
n ) ≤ λ̄n,0

d0ζ
∗
n

b
+ δẼ + ε∗

n

= (d0 + b)λ̄n,0
ζ ∗
n

b
+ δẼ .

But then, using Î (θ̃ − θ∗
n ) ≥ I (θ̃ − θ∗

n )/c1, and 0 < δ < 1, we derive

(1 + b)λ̄n,0I (θ̃ − θ∗
n ) ≤ c1(d0 + b)λ̄n,0

ζ ∗
n

b
. �

Recall the definitions

δ1 := (
1/(1 + b)

)N1, δ2 := (
1/(1 + b)

)N2

and, as in (16) and (17),

d(δ1, δ2) := 1 +
(

1 + (d2 − 1)δ̄1

(1 − d)(1 − δ1)

)
δ2

and

�(b, δ, δ1, δ2) := d(δ1, δ2)
1 − δ2

δb
∨ 1.
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THEOREM A.5. Suppose Conditions I(b, δ, c1, c2), II(b, δ, d, c1, c2) and

III(c0) are met, with c2 =
√

2c2
1 − 1 and c1 > c0 > 1. Take

λ̄n,0 > 4

√
log(2m)

n

(√
2 +

√
6c2

0 − 4 −
√

2c2
0

2c0

)
.

Then there exists a solution s > 0 of 1 − 1/c2
1 = Kmλn,0(s), and a solution t > 0

of λ̄n,0 = λ̄n,0(t). We have with probability at least 1 − α, with

α = exp[−na2
ns

2] +
(

log1+b

(1 + b)2�(b, δ, δ1, δ2)

δ1δ2

)
exp[−nā2

nt
2],

that

E(f
θ̂n

) ≤ ε∗
n

1 − δ
,

and moreover

I (θ̂n − θ∗
n ) ≤ d(δ1, δ2)

ζ ∗
n

b
.

PROOF. Since c1 > c0, there exists a solution s > 0 of 1 − 1/c2
1 = Kmλn,0(s).

By Lemma A.9, the set � has probability at least 1− exp[−na2
ns

2]. We may there-
fore restrict attention to the set �.

We also know that

an =
√

log(2m)

n

(√
2 +

√
log(2m)

n
Km

)

≤
√

log(2m)

n

(√
2 +

√
6c2

0 − 4 −
√

2c2
0

2c0

)
.

Hence there is a solution t > 0 of λ̄n,0 = λn,0(t).
This means that the rest of the proof is similar to the proof of Theorem A.4,

using that on �, Il(θ |θ∗
n )/c1 ≤ Îl(θ |θ∗

n ) ≤ c2Il(θ |θ∗
n ), for l = 1,2. �

PROOF OF THEOREM 2.2. Again, in Theorem 2.2 we have stated a special
case with b = 1, c1 = 3/2, δ = 1/2, d = 2, δ1 = δ2 = 1/2. We moreover presented
some simpler conservative estimates for the expressions that one gets from insert-
ing these values in Theorem A.5. �

When Km is not known, the values s and t in Theorem A.5 are also not known.
We may however estimate them, as well as an (and ān = 4an) to obtain estimates
of the levels exp[−na2

ns
2] and exp[−nā2

nt
2]. Define

ān(K) := 4an(K), an(K) :=
√

2 log(2m)

n
+ log(2m)

n
K.
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Let

K̂m := max
1≤k≤m

‖ψk‖∞
σ̂k

.

Note that on �,

Km/c2 ≤ K̂m ≤ c1Km.

Condition III(c1, c2) is somewhat stronger than Condition III(c0).

CONDITION III(c1, c2). For some known constant c1 > 1 and for c2 =√
2c2

1 − 1/c1, it holds that

2

√
log(2m)

n
Km <

√
6c2

1 − 4 −
√

2c2
1

c2
1c2

.

LEMMA A.11. Assume Condition III(c1, c2). On �, there exists a solution
ŝ ≤ s of the equation

1 − 1

c2
1

= c2K̂man(c2K̂m)

(20)

×
(

1 + ŝ

√
2
(
1 + 2c2K̂man(c2K̂m)

) + 2c2K̂man(c2K̂m)ŝ2

3

)
.

Take

λ̄n,0 > 4

√
log(2m)

n

(√
2 +

√
6c2

1 − 4 −
√

2c2
1

2c2
1c2

)
.

Then there is a solution t̂ ≤ t of the equation

λ̄n,0 = ān(c2K̂m)

(
1 + t̂

√
2
(
1 + 2c2K̂mān(c2K̂m)

) + 2c2K̂mān(c2K̂m)t̂2

3

)
.

PROOF. We have

2

√
log(2m)

n
K̂m ≤ c12

√
log(2m)

n
Km <

√
6c2

1 − 4 −
√

2c2
1

c1c2
.

Hence

2c2K̂m

√
log(2m)

n
<

√
6c2

1 − 4 −
√

2c2
1

c1
.

So

c2K̂man(c2K̂m) ≤ 1 − 1

c2
1

.
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Hence there exists a solution 0 < ŝ ≤ s of (20). The solution t̂ exists for similar
reasons. �

COROLLARY A.3. Suppose Condition III(c1, c2). Let the level α be defined
in Theorem A.5 and ŝ and t̂ be given in Lemma A.11. Define the estimated level

α̂U = exp[−na2(K̂m/c1)ŝ
2]

+
(

log1+b

(1 + b)2�̄(b, δ, δ̄1, δ̄2)

δ̄1δ̄2

)
exp[−nā2

n(K̂m/c1)t̂
2].

Then with probability at least 1 − exp[−na2
ns

2], it holds that α̂U ≥ α.

REMARK. Using similar arguments, one obtains an estimate α̂L such that
α̂L ≤ α with probability at least 1 − exp[−na2

ns
2].

A.5. Proof of the result of Example 4.

LEMMA A.12. Let Z(M) be the random variable defined in (14). Assume that
‖fθ∗ − f̄ ‖∞ ≤ η and that MKm + 2η ≤ c3. Then we have

P
({Z(M) ≥ λ̃n,0M} ∩ �

) ≤ 2 exp[−nā2
nt

2],
where

λ̃n,0 := λ̃n,0(t) := c2

√
2 log(2m)

nā2
n

+ 2t2 + c3λn,0(t).

PROOF. Clearly,∣∣∣∣∣1

n

n∑
i=1

εi(fθ∗ − fθ )(Xi)

∣∣∣∣∣ ≤ I (θ∗ − θ) max
1≤k≤m

∣∣∣∣∣1

n

n∑
i=1

εiψk(Xi)

∣∣∣∣∣.
Because the errors are N (0,1), we get for

a = c2ān

√
2 log(2m)

nā2
n

+ 2t2,

that

P

({∣∣∣∣∣1

n

n∑
i=1

εiψk(Xi)

∣∣∣∣∣ ≥ a

}
∩ �

)
≤ 2m exp

[
−na2

2c2
2

]
= exp[−nā2

nt
2].

Moreover, the function x �→ x2/(2c3) is Lipschitz when |x| ≤ 1. Since
‖fθ + f̄ ‖∞ ≤ 2η + MKm ≤ c3, we can apply Corollary A.1 to find that with
probability at least 1 − exp[−nā2

nt
2], we have

sup
f ∈FM

1
2

∣∣(Qn − Q)
(
(fθ − f̄ )2 − (fθ∗ − f̄ )2)∣∣ ≤ c3Mλn,0(t). �
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PROOF OF THEOREM 3.1. By Lemma A.9,

P(�) ≥ 1 − exp[−na2
ns

2].
Using Lemma A.12 and applying the same arguments as in the proof of Theo-
rem A.4, the result follows for general constants b, δ, d , δ1 and δ2 and constants c1,

c2 =
√

2c2
1 − 1/c1 and c3. Theorem 3.1 takes b = 1, δ = 1/2, d = 2, δ1 = δ2 = 1/2

and c1 = 3/2, c2 := √
14/9 and c3 = 1. �
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