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LOCALLY D-OPTIMAL DESIGNS BASED ON A CLASS OF
COMPOSED MODELS RESULTED FROM BLENDING

EMAX AND ONE-COMPARTMENT MODELS1

BY X. FANG AND A. S. HEDAYAT

University of Illinois, Chicago

A class of nonlinear models combining a pharmacokinetic compartmen-
tal model and a pharmacodynamic Emax model is introduced. The locally
D-optimal (LD) design for a four-parameter composed model is found to be
a saturated four-point uniform LD design with the two boundary points of the
design space in the LD design support. For a five-parameter composed model,
a sufficient condition for the LD design to require the minimum number of
sampling time points is derived. Robust LD designs are also investigated for
both models. It is found that an LD design with k parameters is equivalent to
an LD design with k − 1 parameters if the linear parameter in the two com-
posed models is a nuisance parameter. Assorted examples of LD designs are
presented.

1. Introduction. A class of models is constructed by plugging a pharmacoki-
netic (PK) compartmental model into a pharmacodynamic (PD) Emax model. Un-
der this class of models, only one measurement is required per study subject rather
than multiple measurements and both PK and PD parameters can be estimated by a
single experimental setup. Other advantages of this approach will be listed shortly
after the related PK and PD models are introduced.

A basic PD Emax model can be expressed as E([D]) = E0 + Emax[D]/
(ED50 + [D]), where E(·) is the drug effect such as reduction in low-density
cholesterol and [D] is the concentration of free drug in the environs of the drug
receptor. The Emax model contains three PD parameters. ED50 is the drug con-
centration showing 50% of the maximum drug effect, Emax is the maximum drug
effect and E0 is the baseline effect. For the concept of Emax model, the reader
is referred to Ritschel [22]. Various applications of Emax models have been dis-
cussed by, but are not limited to, Graves et al. [7], Demana et al. [4], Angus et al.
[1], Staab et al. [26] and Hedayat, Yan and Pezzuto [11, 12].
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Since a PK compartmental model describes drug concentration across time,
the [D] can be approximated by an appropriate PK model. After replacing [D]
in the Emax model by an open one-compartment model with IV bolus input and
first-order elimination results in the composed Emax-PK1 model

Ytj = β0 + β1 · D
β2eβ3t + D

+ εtj ,(1.1)

where Ytj is the effect of the drug at time t observed on subject j , β0 is the min-
imum residual effect, β1 is the maximum drug effect, β2 is the ED50 and β3 is
the total elimination rate. It is assumed that the errors across time and subjects
are i.i.d. N(0, σ 2). Throughout this paper, D is the administered dose in the unit
of drug amount per unit body weight. For the concept and essential results of the
one-compartment model related to IV bolus, the reader is referred to Rowland and
Tozer [24], Landaw [16], Dette and Neugebauer [5], Han and Chaloner [8] and
Hedayat, Zhong and Nie [10].

If [D] is replaced by an open one-compartment model with the first-order input
and the first-order elimination, the resulting composed Emax-PK2 model becomes

Ytj = β0 + β1 · D(e−β2t − e−β3t )

β4(1 − β3β
−1
2 ) + D(e−β2t − e−β3t )

+ εtj ,(1.2)

where β0 is the baseline effect, β1 is Emax, β2 is the absorption rate, β3 is the
total elimination rate and β4 is the ED50. The assumption about the error terms is
the same as that in model (1.1). For the concept and various results related to this
one-compartment model, the reader is referred to Rodda, Sampson and Smith [23],
Davidian and Gallant [3], Mallet [18], Mandema, Verotta and Sheiner [19], Verme
et al. [27], Lindsey et al. [17], Landaw [16], Atkinson et al. [2] and Wakefield [28].

Other advantages of the Emax-PK models include (1) The PK parameters can
be estimated without drawing blood samples. (2) Drug effect becomes a function
of time rather than a function of drug concentration which itself is a function of
time. As a result, the drug effect is predictable across time, such as blood pressure
is being reduced across time. (3) Sampling at various time points is controllable
before taking samples, whereas the drug concentration in an Emax model alone is
unknown before sampling. Therefore, one can obtain better estimates of PK and
PD parameters by implementing suitable designs. (4) The residual effect of a drug
can be estimated at any time point through the Emax-PK1 model. (5) The baseline
effect of a drug can be estimated through the Emax-PK2 model.

In this paper, locally D-optimal (LD) designs and robust LD designs for the
preceding two Emax-PK models are studied for the purpose of estimating all pop-
ulation PK parameters. These PK parameters are considered fixed effects although
they likely differ between subjects. In Section 2, the equivalence theory for non-
linear models is briefly reviewed. Section 3 contains the main results about the
number of sampling time points in an LD design support for the Emax-PK models.
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Examples of LD designs for both models are provided in Section 4. Some assorted
robust LD designs are investigated in Section 5. Discussion and conclusion are
summarized in Section 6.

2. Preliminaries. The equivalence theorem for designs based on linear mod-
els was first introduced and developed by Kiefer and Wolfowiz [15]. White [29]
extended the equivalence theorem to locally optimal designs based on nonlinear
models. In a nonlinear model, the Fisher information matrix depends on unknown
parameters. As a result, there is no global optimization for all values of model pa-
rameters and the optimality of a design can be evaluated only for special values of
model parameters, called nominal or postulated values. For details, the reader is
referred to Silvey [25] and Hedayat [13].

Without loss of generality, let us consider the nonlinear model Ytj = η(t, �β) +
εtj with εtj ’s being i.i.d. N(0, σ 2). The normalized Fisher information matrix
for the entire model parameters based on the design measure ξ = {(t1,p1), . . . ,

(tK,pK)} can be expressed as

M(ξ, �β) = σ−2
K∑

i=1

pi

(
∂η(ti, �β)

∂ �β
)(

∂η(ti, �β)

∂ �β
)′

.(2.1)

A design measure ξ = {(t1,p1), . . . , (tK,pK)} is a description of sampling time
points (t1, . . . , tK) where Ytij will be measured for the j th subject at time ti . As-
sociated with ti is the mass pi such that 0 < pi < 1, and

∑
pi = 1. In design ξ ,

p1, . . . , pK represent the proportion of the number of subjects studied taken at time
t1, . . . , tK , respectively. For a total sample of size n, ni = npi is the number of sub-
jects to be studied at ti . For the purpose of obtaining the most precise estimators of
the entire model parameters, one needs to identify a design measure whose related
Fisher information matrix is nonsingular and whose determinant is maximized in
the class of competing designs. This is because M−1(ξ, �β) is proportional to the
asymptotic variance and covariance matrix of the MLE of the model parameters.
An LD design for a given set of parameters has the maximum determinant for its
Fisher information matrix based on the postulated values for these parameters.

When the number of PK parameters of interest is s ≤ k in a k-parameter non-
linear model, the asymptotic generalized variance of these s estimators can be
expressed as n−1[M(ξ, �β)/M22(ξ, �β)]−1, where(

M11(ξ, �β) M12(ξ, �β)

M21(ξ, �β) M22(ξ, �β)

)

is the partitioned form of M(ξ, �β) with M11(ξ, �β) being the associated s × s in-
formation matrix of the s parameters under the design ξ . Following White [29],
the design ξ∗ in a class of competing designs, D , is said to be an LDs

design if detM(ξ∗, �β)/detM22(ξ
∗, �β) = maxξ∈D [detM(ξ, �β)/detM22(ξ, �β)].

White [29] established that the design ξ∗ is an LDs design if and only if
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supt∈T d(t, ξ∗, �β) = s, where d(t, ξ, �β) = tr{I (t, �β)M−1(ξ, �β)} − tr{I22(t, �β) ×
M−1

22 (ξ, �β)} when s < k and d(t, ξ, �β) = tr{I (t, �β)M−1(ξ, �β)} when s = k and
T = [0,∞) is the set of all sampling time points with the understanding that
the extreme right time point is a very large practitioner-selected time point. Here,
I (t, �β) is the information matrix for the design with the support point of t only and
it is partitioned as that of M(ξ, �β). The quantity d(t, ξ, �β) can be interpreted as the
variance of the estimated response at time t when s = k and is the variance of the
estimated response after eliminating the effects of the k − s nuisance parameters
when s < k.

Before searching for optimal ti and pi , the required number of design points in
an LD design support is investigated first for both theoretical and practical inter-
ests. Knowing the required number of design points in advance would significantly
reduce the task of searching for an LD design.

3. Main results. In this section, the support size of an LD design for the
Emax-PK1 model under the normality assumption is investigated. Since the cor-

responding induced design space, C = {σ−1(
∂η(t, �β)

∂ �β ) : t ∈ T }, is a bounded subset

in R
k and the determinant of the Fisher information matrix is a continuous function

on C, thus an LD design for this setup must exist. In what follows, by a saturated
design it is meant a design in which the number of design time points is equal to
the number of model parameters.

THEOREM 1. Under model (1.1): E(Yt ) = β0 + β1·D
β2e

β3t+D
with Var(Yt ) = σ 2,

where t ∈ [0, u], an LD design ξ∗ is a saturated D-optimal design with time 0 and
u in its support.

PROOF. Let M(ξ∗, �β) be the Fisher information matrix for �β = (β0, β1, β2,

β3)
T based on an LD design ξ∗ and define f0(t) = tr(I (t, �β)M−1(ξ∗, �β)) + c,

where c ∈ R is arbitrary and

I (t, �β) = σ−2

⎛
⎜⎜⎝

1
D(β2e

β3t + D)−1

−β1Deβ3t (β2e
β3t + D)−2

−β1Dβ2te
β3t (β2e

β3t + D)−2

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

1
D(β2e

β3t + D)−1

−β1Deβ3t (β2e
β3t + D)−2

−β1Dβ2te
β3t (β2e

β3t + D)−2

⎞
⎟⎟⎠

T

.

It can be shown that f0(t) has the same number of zeros as f (t) = a40e
4β3t +

e3β3t (a31t + a30) + e2β3t (a22t
2 + a21t + a20) + eβ3t (a11t + a10) + a00, where aij

depends on ξ∗,D and βk , i ∈ {0,1,2,3,4}, j ∈ {0,1,2}, k ∈ {1,2,3}. Notice that
a22 > 0 and a31 < 0 since the cofactor Cof14 in M−1 is positive (Appendix). Also,



432 X. FANG AND A. S. HEDAYAT

by the Remark in the Appendix, it can be shown that a11 > 0. Now in order to
prove that f (t) has at most six zeros, the properties of various derivatives of f (t)

will be explored.
By differentiating f (t) with respect to t , one has

f ′(t) = 4β3a40e
4β3t + e3β3t (3β3a31t + b30)

+ e2β3t (2β3a22t
2 + b21t + b20) + eβ3t (β3a11t + b10),

where the bij ’s are the corresponding constants. After setting f ′(t) = 0 and multi-
plying both sides of f ′(t) = 0 by e−4β3t , one obtains

f̃ ′(t) = 4β3a40 + e−β3t (3β3a31t + b30) + e−2β3t (2β3a22t
2 + b21t + b20)

+ e−3β3t (β3a11t + b10).

Notice that f ′(t) and f̃ ′(t) have the same number of zeros. After differentiating
f̃ ′(t), one has

f̃ ′′(t) = e−β3t (−3β2
3a31t + c30) + e−2β3t (−4β2

3a22t
2 + c21t + c20)

+ e−3β3t (−3β2
3a11t + c10),

where cij ’s are the corresponding constants. By multiplying f̃ ′′(t) by e3β3t , one
has

˜̃
f ′′(t) = e2β3t (−3β2

3a31t + c30)

+ eβ3t (−4β2
3a22t

2 + c21t + c20) + (−3β2
3a11t + c10).

Differentiating ˜̃
f ′′(t) yields

˜̃̃
f ′′′(t) = e2β3t (−6β3

3a31t + d30) + eβ3t (−4β3
3a22t

2 + d21t + d20) − 3β2
3a11,

where dij ’s are the corresponding constants. Next, it will be shown that the func-
tion

g(t) = e2β3t (−6β3
3a31t + d30) + eβ3t (−4β3

3a22t
2 + d21t + d20)

has at most three stationary points. By multiplying both sides of g′(t) = 0 by
e−2β3t , one has

g̃′(t) = −12β4
3a31t + e30 + e−β3t (−4β4

3a22t
2 + e21t + e20) = 0,

where eij ’s are the corresponding constants. Setting g̃′′(t) = 0, one has

e−β3t (4β5
3a22t

2 + f21t + f23) = 12β4
3a31,(3.1)

where fij ’s are the corresponding constants. Since the left-hand side of (3.1) has at
most two stationary points and it approaches 0 above the t axis as t goes to ∞, the
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most right monotone interval of the left-hand side will not intersect the horizontal
line y = 12β4

3a31, which is below the t axis. Therefore, (3.1) has at most two roots.
Now, since (3.1) has at most two roots, g̃′(t) will have at most three zeros.

This implies that g(t) has at most three stationary points. Since g(t) goes to 0
below the t axis as t goes to −∞ and 3β2

3a11 > 0, the most left monotone inter-
val will not intersect the horizontal line y = 3β2

3a11, which is above the t axis.

Consequently,
˜̃̃

f ′′′(t) has at most three zeros. This implies that f̃ ′′(t) has at most
four zeros and f ′(t) has at most five zeros. As a result, f (t) has at most six zeros.

Since f (t) has at most six zeros for all c′s and by the equivalence theo-
rem the interior points of an LD design must be locally maximum points of
tr(I (t, �β)M−1(ξ∗, �β)), therefore there are at most two optimal design points on
(0,∞). Otherwise, f (t) has more than six zeros for some c. Since the induced
design point at time 0 is not proportional to that at time u > 0, the existence of
an LD design based on model (1.1) forces the two boundary points to be in the
optimal design support. �

Theorem 1 demonstrates that an LD design for model (1.1) is of the form ξ∗ =
{(0,1/4), (t2,1/4), (t3,1/4), (u,1/4)} over t ∈ [0, u]. Consequently, to search for
an LD design for model (1.1), one only needs to find out t2 and t3.

THEOREM 2. An LD design for the Emax-PK2 model has minimum support
size with time point 0 in its support if d(t, ξ, �β) has precisely four locally maximum
time points when t ∈ (0,∞).

PROOF. By Carathéodory’s theorem [25], for this five-parameter nonlinear
model, an LD design must have at least five time points in its support. By the equiv-
alence theorem, LD design time points must be necessarily the locally maximum
points of d(t, ξ, �β) when t ∈ (0,∞). Since d(t, ξ, �β) has four locally maximum
time points and the induced design time points at t = 0 and t = ∞ are the same,
the existence of an LD design forces time point 0 and the four locally maximum
points to be in the design support. �

Theorem 2 provides a sufficient condition for an LD design for the Emax-PK2
model to be minimally supported when the original design space is [0,∞). In
general, if the required number of LD sampling time points is unknown for a
k-parameter nonlinear model, the practitioner could search for the best k-point
uniform LD design first. Then the V-algorithm by Fedorov [6] can be applied to
search for an LD design with the k-point uniform LD design as the initial design.

When β0 is a nuisance parameter, it is found that an LD design is also an LDk−1
design for a k-parameter nonlinear model of the form ytj = β0 + η̃(t, �β) + εtj ,
where εtj are i.i.d. N(0, σ 2) and ∂η̃(t, �β)/∂βi is not free of βi for i = 1, . . . , k −1.
For a model of this form, the following result is obtained.
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THEOREM 3. An LD design for the k-parameter nonlinear model is also an
LDk−1 design for parameters β1, . . . , βk−1.

The proof is based on the fact that both I22 in I (t, �β) and M−1
22 in M(ξ∗, �β) are

equal to 1. Theorem 3 shows that the LDk−1 design is globally optimized for β0
although it is only locally optimal for the other nonlinear parameters. Theorem 3 is
applicable to both Emax-PK models discussed in this paper. Examples of LDk−1
designs originated from LD designs for both Emax-PK1 and Emax-PK2 models
are given in Section 4.

4. Illustrated examples. Maximizing the determinant of the Fisher informa-
tion matrix under nonlinear models requires the foreknowledge of the values of
model parameters. In practice, a good guess can be obtained from a pilot experi-
ment. For example, suppose based on the prior information from the pilot exper-
iment, the minimum residual effect is equal to 0.5, the maximum drug effect is
equal to 10, the ED50 is equal to 1 mg/kg and the total elimination rate is equal to
0.1 hour−1. The search for an LD design generally contains two steps: (1) finding
a best k-point uniform LD design; (2) using the V-algorithm (Fedorov [6]) to find
an LD design given the initial design as that found in step (1). For the Emax-PK2
model, a search as described was performed. However, for the Emax-PK1 model,
the search was stopped at step (1) since Theorem 1 shows that an LD design for
this model is a saturated LD design.

For the Emax-PK1 model with postulated �β = (0.5,10,1,0.1) and an initial
dose of 5 mg/kg, a four-point LD design is found to be uniform at times 0,
13.48, 31.62 and 160.00 hours. Figure 1 illustrates some essential characteristics
of d(t, ξ, �β) for this design.

FIG. 1. Plots of d(t, ξ∗, �β) with (a) t ∈ [0,20] and (b) t ∈ [20,200], respectively. The design space
is [0,∞) and the optimal sampling times are found at 0,13.481506,31.624511,160.00199. The
initial IV dose is 5 mg/kg.
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FIG. 2. Plots of d(t, ξ∗, �β) with (a) t ∈ [0,20] and (b) t ∈ [20,200], respectively. The design space
is [0,72] hours and the optimal sampling times are found to be at 0,13.263029,31.050686 and
72 hours.

If the maximum sampling time is 72 or 24 hours, then the LD design can be
found to be uniform at times 0, 13.26, 31.05 and 72 hours or at times 0, 7.97, 17.83
and 24 hours, respectively. The d(t, ξ, �β) for these two designs are illustrated in
Figures 2 and 3.

Although the upper bound of the support size for an LD design based on
the Emax-PK2 model is 16 by Carathéodory’s theorem, one can still follow
the two-step search described above. For the Emax-PK2 model with postulated
�β = (0.5,10,0.5,0.1,1), an LD design is found to be uniform at times 0, 0.275,
2.999, 14.75 and 32.7 hours. The associated d(t, ξ, �β) for this design is illustrated
in Figure 4.

FIG. 3. Plot of d(t, ξ∗, �β) when the design space is [0,24] hours based on the Emax-PK1 model.
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FIG. 4. Plots of d(t, ξ∗, �β) with (a) t ∈ [0,0.5], (b) t ∈ [0.5,20], (c) t ∈ [20,60] and (d)
t ∈ [60,200], respectively. The numerical solutions of the local maximums are 0, 0.275, 2.999, 14.75,
32.695. The initial dose is 5 mg/kg.

5. Robust designs. Applying an LD design in practice may be criticized for
its local optimality. If the nominal values of the model parameters are not close to
the true values, a more desirable design would be a robust design, which would
lead to a better parameter estimation than an LD design while maintaining high
efficiency. The relative efficiency of a design ξ compared to an LD design ξ∗ for
the postulated �β is defined as det (ξ, �β)/det (ξ∗, �β).

A robust index defined as |(∂(detM(ξ, �β))/∂βi)
−1| for parameter βi , i =

0,1, . . . is introduced to compare the robustness of LD designs based on differ-
ent nominal values of the model parameters. For a linear model, this robust index
is ∞, indicating that an LD design is globally optimal for all values of the model
parameters. However, for a nonlinear model, it measures the inverse of the chang-
ing rate of the determinant in the neighborhood of the postulated �β . Therefore, it
is called the locally robust index (LRI). The larger the value of the LRI, the more
locally robust the design.
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One class of robust designs is the equally spaced uniform LD (ESULD) designs.
An advantage of this class of designs is that it can be implemented very easily. It
is robust for the estimation of parameters in the models that were described in
Hedayat, Yan and Pezzuto [11, 12] and Hedayat, Zhong and Nie [10]. The class
of ESULD designs is examined here for both Emax-PK1 and Emax-PK2 models.
Table 1 shows that an ESULD design retains its robustness but loses its efficiency
as the size of the design support increases. For practical applications, the five- or
the six-point ESULD designs are recommended.

Since the efficiency of the ESULD designs is very low for the Emax-PK2 model,
another class of robust designs is constructed based on an LD design. The support
of such a robust design includes all the design time points of an LD design as well
as the design time points in the form of t∗ + r or t∗ − r , where t∗ is a design
time point of an LD design and r is a fixed number. For convenience, this class of
designs is referred to as equal-step expanded uniform LD (ESEULD) designs. For
example, if an LD design is

ξ∗ =
(

t1 t2 t3
1/3 1/3 1/3

)
,

then a four-point ESEULD design would be

ξ∗∗ =
(

t1 t1 + r t2 t3
1/4 1/4 1/4 1/4

)
;

a five-point ESEULD design would be

ξ∗∗ =
(

t1 t1 + r t2 t2 + r t3
1/5 1/5 1/5 1/5 1/5

)
;

a six-point ESEULD design would be

ξ∗∗ =
(

t1 t1 + r t2 t2 + r t3 − r t3
1/6 1/6 1/6 1/6 1/6 1/6

)

and a seven-point ESEULD design would be

ξ∗∗ =
(

t1 t1 + r t2 − r t2 t2 + r t3 − r t3
1/7 1/7 1/7 1/7 1/7 1/7 1/7

)
.

Since the relative efficiency of the design ξ∗∗ relative to an LD design ξ∗,
detM(ξ∗∗, �β)/detM(ξ∗, �β), is a function of r given ξ∗ and �β , it is impossible
to give an explicit form of r as a function of efficiency. However, it is possible to
plot efficiency versus step length r to find out the numerical relationship between r

and the efficiency. Figure 5(a) and 5(b) shows such plots based on the Emax-PK1
model and the Emax-PK2 model, respectively. The same postulated values of βi ’s
as those in Section 4 are used for illustrations and tables throughout this section.
From this figure, it is clear that the value of r cannot be assigned arbitrarily for
some n-point ESEULD designs. For example, r = 0.95 does not exist for a five-
point ESEULD design based on the Emax-PK1 model. In this figure, r = 1 hour
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TABLE 1
ESULD designs for the model with the initial dose = 5 mg/kg and the nominal values β1 = 10, β2 = 1 mg/kg, β3 = 0.1 h−1

Support size Support of ξ Efficiency of ξ LRI for β1 LRI for β2 LRI for β3

4 0,13.48,31.62,160.00 1 0.95901654 0.10344687 0.019187232
5 0,16.176 × i, i = 1,2,3,4 0.476373989 2.0131589 0.19911378 0.040256987
6 0,14.736 × i, i = 1,2,3,4,5 0.481038755 1.9936368 0.20439842 0.039876038
7 0,13 × i, i = 1,2, . . . ,6 0.440686613 2.1761871 0.22903063 0.043844867
8 0,11.094 × i, i = 1,2, . . . ,7 0.403119466 2.3789884 0.25133456 0.047580261
9 0,9.647 × i, i = 1,2, . . . ,8 0.376132417 2.549678 0.26807298 0.050989122

10 0,8.558 × i, i = 1,2, . . . ,9 0.355042847 2.701129 0.28268401 0.054018207
11 0,7.686 × i, i = 1,2, . . . ,10 0.3379349 2.8378736 0.29572619 0.056762451
12 0,7 × i, i = 1,2, . . . ,11 0.323818285 2.9615886 0.30723535 0.058653795

When s = 4, the design is the LD design.
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FIG. 5. The efficiency of a ESEULD design versus step length r based on (a) Emax-PK1 model and
(b) Emax-PK2 model.

and r = 0.2 hour are chosen for robustness study based on the Emax-PK1 model
and the Emax-PK2 model, respectively. The corresponding design time points are
listed in Tables 2 and 3. The LRI’s are calculated and listed in Tables 4 and 5.
From these results, it appears that the higher the relative efficiency of a robust LD
design, the less the robustness of the design.

6. Conclusion and discussion. This paper introduced a class of models by
blending a PD Emax model and a PK compartmental model and studied some
important features of LD, ESULD and ESEULD designs for the Emax-PK1 and
the Emax-PK2 models in this class.

For Emax-PK1 model, an LD design is a saturated four-point uniform LD de-
sign with the two boundary time points of the design space in its support. Both
time 0 and the upper bound of the design space are the informative time points
here. This can be observed directly from the model. As t approaches ∞, the Emax-
PK1 model is reduced to Ytj = β0 + εtj . Therefore, the upper bound of the design

TABLE 2
ESEULD designs based on the Emax-PK1 model with r = 1 hour

Support size ESEULD design point

4 0,13.48,31.62,160.00
5 0,1,13.48,31.62,160.00
6 0,1,13.48,14.48,31.62,160.00
7 0,1,13.48,14.48,31.62,32.62,160.00
8 0,1,13.48,14.48,31.62,32.62,159,160.00
9 0,1,12.48,13.48,14.48,31.62,32.62,159,160.00

10 0,1,12.48,13.48,14.48,30.62,31.62,32.62,159,160.00
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TABLE 3
ESEULD designs based on the Emax-PK2 model with r = 0.2 hour

Support size ESEULD design points

5 0,0.275,2.999,14.75,32.695
6 0,0.275,0.475,2.999,14.75,32.695
7 0,0.275,0.475,2.999,3.199,14.75,32.695
8 0,0.275,0.475,2.999,3.199,14.75,14.95,32.695
9 0,0.275,0.475,2.999,3.199,14.75,14.95,32.495,32.695

10 0,0.275,0.475,2.799,2.999,3.199,14.75,14.95,32.495,32.695

space is an informative time point for parameter β0. When t = 0, the model is re-
duced to Ytj = β0 + β1D

β2+D
+ εtj . Consequently, time 0 is an informative time point

for β0 as well as the ratio of β1/β2.
A sufficient condition for the Emax-PK2 model to be minimally supported is

given. Time 0 is an informative time point here. This also can be explained from
the Emax-PK2 model directly. As time goes to 0, the Emax-PK2 model is reduced
to Ytj = β0 + εtj .

When β0 is considered as a nuisance parameter, an LD design and an LDk−1

design based on any of the Emax-PK models are equivalent. The corresponding
LD design is globally optimal for the linear parameter β0 and locally optimal for
the other nonlinear parameters.

Future research for the Emax-PK models could involve random effects for cer-
tain PK parameters since these parameters likely differ between subjects. The
reader is referred to Mentre, Mallet and Baccar [20], Palmer and Muller [21], Han
and Chaloner [9] for recent results in this area.

TABLE 4
Efficiency and robustness of ESEULD designs for the Emax-PK1 model

ESEULD design Efficiency of ξ LRI: β1 LRI: β2 LRI: β3

4-point 1 0.95901654 0.10344687 0.019187232
5-point 0.7588 1.2638471 0.135847 0.025576467
6-point 0.7284 1.3165725 0.13967382 0.025674003
7-point 0.7846 1.2223363 0.12857595 0.021936078
8-point 0.9193 1.0431845 0.10970443 0.018685843
9-point 0.8583 1.1172873 0.1190755 0.020901414
10-point 0.8437 1.1366831 0.12194774 0.022945661
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TABLE 5
Efficiency and robustness of ESEULD designs for the Emax-PK2 model

ESEULD
design Efficiency of ξ LRI: β1 LRI: β2 LRI: β3 LRI: β4

5-point 1 0.3067854 0.046489413 0.0090373459 0.043066663
6-point 0.7667 0.40014335 0.055507767 0.011777852 0.058844405
7-point 0.6995 0.43857707 0.059457229 0.013001578 0.064883822
8-point 0.7168 0.42799782 0.05768681 0.012643369 0.063180006
9-point 0.7952 0.38580638 0.052011575 0.011571927 0.057033582
10-point 0.6995 0.4385802 0.059583199 0.013097578 0.064855939

APPENDIX: PROOFS

Cof14 of M(ξ∗, �β)−1 is positive and Cof24 of M(ξ∗, �β)−1 is negative. Since
the Fisher information matrix of �β = (β0, β1, β2, β3)

T at sampling time ti for an
LD design ξ∗ = ( t1 t2 ... ts

p1 p2 ... ps

)
based on model (1.1) or the Emax-PK1 model is

I (ti, �β) = σ−2pi

⎛
⎜⎜⎝

1
D(β2e

β3ti + D)−1

−β1Deβ3ti (β2e
β3ti + D)−2

−β1Dβ2tie
β3ti (β2e

β3ti + D)−2

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

1
D(β2e

β3ti + D)−1

−β1Deβ3ti (β2e
β3ti + D)−2

−β1Dβ2tie
β3ti (β2e

β3ti + D)−2

⎞
⎟⎟⎠

T

,

the Cof14 has the same sign as

−detm14 = −det

⎛
⎜⎜⎜⎜⎜⎜⎝

s∑
i=1

pi

D

(β2eβ3ti + D)

s∑
i=1

pi

D2

(β2eβ3ti + D)2

s∑
i=1

pi

−D2β1e
β3ti

(β2eβ3ti + D)3

s∑
i=1

pi

−Dβ1e
β3ti

(β2eβ3ti + D)2

s∑
i=1

pi

−D2β1e
β3ti

(β2eβ3ti + D)3

s∑
i=1

pi

D2β2
1e2β3ti

(β2eβ3ti + D)4

s∑
i=1

pi

−Dβ1β2tie
β3ti

(β2eβ3ti + D)2

s∑
i=1

pi

−D2β1β2tie
β3ti

(β2eβ3ti + D)3

s∑
i=1

pi

D2β2
1β2tie

2β3ti

(β2eβ3ti + D)4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let

g(ti, tj , tk) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D

(β2eβ3ti + D)

D2

(β2e
β3tj + D)2

−D2β1e
β3tk

(β2eβ3tk + D)3

−Dβ1e
β3ti

(β2eβ3ti + D)2

−D2β1e
β3tj

(β2e
β3tj + D)3

D2β2
1e2β3tk

(β2eβ3tk + D)4

−Dβ1β2tie
β3ti

(β2eβ3ti + D)2

−D2β1β2tj e
β3tj

(β2e
β3tj + D)3

D2β2
1β2tke

2β3tk

(β2eβ3tk + D)4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∀i < j < k ≤ s, then the determinant of m14 is detm14 =∑
i<j<k≤s

∑
permutations of i,j,k pipjpkg(ti, tj , tk).
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Now without loss of generality, let i = 1, j = 2, k = 3; then it can be shown that

∑
permutations of 1,2,3

g(t1, t2, t3) = − D7β3
1β3

2

(β2eβ3t1 + D)4(β2eβ3t2 + D)4(β2eβ3t3 + D)4

×
∣∣∣∣∣∣
1 eβ3t1 t1e

β3t1

1 eβ3t2 t2e
β3t2

1 eβ3t3 t3e
β3t3

∣∣∣∣∣∣
∣∣∣∣∣∣
1 eβ3t1 e2β3t1

1 eβ3t2 e2β3t2

1 eβ3t3 e2β3t3

∣∣∣∣∣∣ ,

since

g(t1, t2, t3) = − D6β3
1β2

(β2eβ3t1 + D)4(β2eβ3t2 + D)4(β2eβ3t3 + D)4

∣∣∣∣∣∣
1 eβ3t1 t1e

β3t1

1 eβ3t2 t2e
β3t2

1 eβ3t3 t3e
β3t3

∣∣∣∣∣∣
× (β2e

β3t1 + D)2(β2e
β3t2 + D)eβ3t3 .

Now since both {1, eβ3t , teβ3t } and {1, eβ3t , e2β3t } are Chebyshev systems (see
Karlin and Studden [14]) and their determinants are positive,∑

permutations of 1,2,3 g(t1, t2, t3) < 0. Therefore, detm14 =∑
i<j<k≤s

∑
permutations of i,j,k pipjpkg(ti, tj , tk) < 0. This implies that the

Cof14 > 0.
Next, Cof24 < 0 will be shown. By the same argument, it can be proved that

Cof24 = ∑
i<j<k≤s

pipjpkQ

∣∣∣∣∣∣
1 ti tie

β3ti

1 tj tj e
β3tj

1 tk tke
β3tk

∣∣∣∣∣∣
∣∣∣∣∣∣
1 eβ3ti e2β3ti

1 eβ3tj e2β3tj

1 eβ3tk e2β3tk

∣∣∣∣∣∣ − Cof14,

where

Q = − D5β3
1β5

2eβ3(ti+tj+tk)

(β2eβ3ti + D)4(β2e
β3tj + D)4(β2eβ3tk + D)4

.

Since {1, t, eβ3t } is a Chebyshev system (see Karlin and Studden [14]) and
Cof14 > 0, this yields Cof24 < 0.

REMARK.

−Cof14 − Cof24 = − ∑
i<j<k≤s

pipjpkQ

∣∣∣∣∣∣
1 ti tie

β3ti

1 tj tj e
β3tj

1 tk tke
β3tk

∣∣∣∣∣∣
∣∣∣∣∣∣
1 eβ3ti e2β3ti

1 eβ3tj e2β3tj

1 eβ3tk e2β3tk

∣∣∣∣∣∣ ,

which is positive.
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