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We consider nonparametric estimation of a regression function for a situ-
ation where precisely measured predictors are used to estimate the regression
curve for coarsened, that is, less precise or contaminated predictors. Specif-
ically, while one has available a sample (W1, Y1), . . . , (Wn,Yn) of indepen-
dent and identically distributed data, representing observations with precisely
measured predictors, where E(Yi |Wi) = g(Wi), instead of the smooth regres-
sion function g, the target of interest is another smooth regression function m

that pertains to predictors Xi that are noisy versions of the Wi . Our target
is then the regression function m(x) = E(Y |X = x), where X is a contami-
nated version of W , that is, X = W + δ. It is assumed that either the density
of the errors is known, or replicated data are available resembling, but not
necessarily the same as, the variables X. In either case, and under suitable
conditions, we obtain

√
n-rates of convergence of the proposed estimator and

its derivatives, and establish a functional limit theorem. Weak convergence
to a Gaussian limit process implies pointwise and uniform confidence inter-
vals and

√
n-consistent estimators of extrema and zeros of m. It is shown that

these results are preserved under more general models in which X is deter-
mined by an explanatory variable. Finite sample performance is investigated
in simulations and illustrated by a real data example.

1. Introduction.

1.1. Motivation and models. In this paper, we consider nonparametric esti-
mation of a regression function in the framework of a novel errors-in-variables
problem. In the classical errors-in-variables problem, the interest is to estimate a
regression function m, where

Y = m(G) + ε,
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and a sample (F1, Y1), . . . , (Fn,Yn) of independent and identically distributed
(i.i.d.) data is available, with Fi = Gi + δi , where G and δ are independent ran-
dom variables and the distribution of δ is known. References include Fan, Truong
and Wang [9], Fan and Masry [7], Fan and Truong [8], Stefanski and Cook [16],
Carroll, Ruppert and Stefanski [4], Carroll, Maca and Ruppert [3], Taupin [17],
Devanarayan and Stefanski [5], Ioannides and Matzner-Løber [12], Linton and
Whang [14] and Carroll and Hall [2].

The situation we consider here is different: we assume that an i.i.d. sample
(W1, Y1), . . . , (Wn,Yn) is observed, where

Yi = g(Wi) + εi for 1 ≤ i ≤ n,(1.1)

with independent errors εi with mean zero and finite variance. Instead of estimat-
ing the regression function g(w) = E(Y |W = w) generating the observations, the
goal is to estimate the target regression function m(x) = E(Y |X = x), which dif-
fers from g, as X is a contaminated (coarsened) version of W .

Specifically, X ∼ fX and X = W + δ, where δ ∼ fδ represents a random distor-
tion, and W and δ are independent random variables. We refer to X as a coarsened
predictor of Y . In Section 1.3 we shall note that the model for X can be general-
ized, without altering the main properties of our methods, to the situation where X

is a proxy for a variable T related to W , provided we have additional data to infer
the relationship between T and X.

The motivating idea is that the sample (W1, Y1), . . . , (Wn,Yn), where one has
precise predictors, is hard to obtain, and therefore future values of Y will be pre-
dicted from easier-to-obtain contaminated observations X of W . This type of prob-
lem arises in situations where it is expensive or involved to measure W accurately,
so that, in routine applications, only the contaminated and less precise predictors X

are available. At the same time, a training set is available containing more precise
predictors. For example, if we have a sample of repeated contaminated observa-
tions of the predictor for several individuals, the averaged observations Wi = X̄i.

will provide relatively accurate measurements of the predictor.
The problem we address is how to use the information in the training sample,

with its accurate measurements, to predict a future response Y from a future con-
taminated predictor X. One of our central findings is that this coarsening of the
predictor has the consequence of accelerating the convergence of the proposed es-
timator of m from the usual nonparametric rate, strictly slower than

√
n, to a para-

metric
√

n-rate, even if the target regression function is known only to be smooth
and does not follow any particular parametric model.

In the setting of (1.1), m is generally not identifiable unless we know fδ . The
latter assumption is commonly made in errors-in-variables problems. See, for ex-
ample, Stefanski and Carroll [15] and Fan [6]. However, if we have additional
data directly on δ, or if the data at (1.1) are replicated, then we can identify m(x)

without knowing fδ . In either of these settings we might have a parametric model
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for fδ , or we might wish to treat inference about fδ from a nonparametric view-
point. In order to show that estimation of m is a semiparametric problem, even if fδ

is not known and we treat it nonparametrically, we shall consider a more general,
relatively “uninformative” type of replication, where we observe only

Uij = Vi + δij for 1 ≤ j ≤ ni and 1 ≤ i ≤ N .(1.2)

Here, V1, . . . , VN are arbitrary random variables, δ11, . . . , δNnN
are mutually inde-

pendent, the δij are all distributed as δ, and it is assumed that each ni ≥ 2. Our
results demonstrate that it is possible to attain

√
n-consistency without making

joint assumptions about the data at (1.1) and (1.2). In particular, it is not necessary
to suppose that the Uij are independent of the (Wi, δi) or that the Vi are indepen-
dent of the δij . A direct application of the model in (1.2) is where Uij are replicated
measurements of Xi , and Vi = Wi .

1.2. Estimators. First we express m as a ratio, where each component can be
estimated separately. Since m(x) = E(Y |X = x) = E(g(W)|X = x), then

m(x) =
∫

g(w)fX|W(x|w)fW(w)dw

fX(x)
(1.3)

=
∫

g(w)fδ(x − w)fW(w)dw∫
fδ(x − w)fW(w)dw

= ϕ(x)

ψ(x)
,

where we define ψ(x) = ∫
fδ(x − w)fW(w)dw = E(fδ(x − W)) and

ϕ(x) =
∫

g(w)fδ(x − w)fW(w)dw = E
(
g(W)fδ(x − W)

) = E
(
Yfδ(x − W)

)
.

If the data (Wi, Yi) are generated by the model (1.1), and fδ is assumed known,
then the representations above motivate the estimators

ϕ̂(x) = n−1
n∑

i=1

Yifδ(x − Wi),

ψ̂(x) = n−1
n∑

i=1

fδ(x − Wi)

of ϕ(x) and ψ(x), respectively, leading to the estimators

m̂(x) =
∑n

i=1 Yifδ(x − Wi)∑n
i=1 fδ(x − Wi)

= ϕ̂(x)

ψ̂(x)
(1.4)

of m(x). An attractive feature of m̂ is that it does not require a smoothing parame-
ter.

When additional data following (1.2) are available, we propose a Fourier-
inversion approach to estimating ϕ and ψ , as follows. Assume that δ has a sym-
metric distribution, with positive characteristic function f ft

δ ,

f ft
δ (t) = �f ft

δ (t) > 0 for all real t ,(1.5)
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where the superscript ft denotes Fourier transform, and the Fourier transform of
a function f is given by f ft(t) = ∫

f (x)eitx dx. The real part of f ft is denoted
by �f ft. (Our methods can be generalized to the case of asymmetric error distrib-
utions, using techniques borrowed from Li and Vuong [13].) Our estimator of f ft

δ

is

f̂ ft
δ (t) =

∣∣∣∣∣ 1

M

N∑
j=1

∑∑
1≤k1<k2≤nj

exp[it (Ujk1 − Ujk2)]
∣∣∣∣∣
1/2

,(1.6)

where M = 1
2

∑N
j=1 nj (nj − 1). (Here and below, f̂ ft denotes an estimator of the

Fourier transform of f , not the Fourier transform of an estimator f̂ of f .)
Writing fW for the density of W , estimators of the Fourier transforms, f ft

W and
(fWg)ft, of fW and fWg are respectively given by

f̂ ft
W(t) = 1

n

n∑
j=1

exp(itWj ), (̂fWg)ft(t) = 1

n

n∑
j=1

Yj exp(itWj ).(1.7)

Estimators of ψ and ϕ based on Fourier inversion are then obtained as

ψ̃(x) = 1

2π

∫
|t |≤τn

f̂ ft
W(t)f̂ ft

δ (t)e−itx dt,

(1.8)

ϕ̃(x) = 1

2π

∫
|t |≤τn

(̂fWg)ft(t)f̂ ft
δ (t)e−itx dt,

where τn is a smoothing parameter. Our estimator of m is m̃ = �ϕ̃/�ψ̃ .

1.3. Generalizations. The main features of our approach also apply to the
more general case where X = p(T | θ) + δ, that is, where W = p(T | θ) for a
r.v. T , and (T ,Y ) rather than (W,Y ) is observed in a subset of the available data.
Here p(· | θ) is a parametric model, determined by the finite parameter θ .

In this setting, we would ideally take Wi = p(Ti | θ). However, in most cases,
we have to settle instead for Ŵi = p(Ti | θ̂ ), where θ̂ is a

√
n-consistent esti-

mator of θ , computed by least squares from data (T ′
i ,X

′
i), with the same dis-

tribution as (T ,X), and related by X′
i = p(T ′

i | θ) + δ′
i , for 1 ≤ i ≤ r , say. The

most important special case is that where p is linear: p(t | θ) = θ(1) + θ(2)t , with
θ = (θ(1), θ (2)) denoting a vector of length 2.

In this model, the variable X typically represents a proxy for the variable T ,
where T often is not available in applications, because it is too costly to measure it,
for example. In some applications, however, we are able to observe (Ti,Xi, Yi) for
1 ≤ i ≤ n in a “training set,” where r = n. We then propose to use the estimator m̂,
rather than a more conventional nonparametric regression based on (Xi, Yi), since
it is more accurate, as we will demonstrate. In some cases the training set (T ′

i ,X
′
i)

might be genuinely different from (Ti,Xi). For example, (T ′
i ,X

′
i) might represent

external data.
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In the case where X = p(T | θ) + δ the estimators m̂ and m̃ differ only in that
we replace Wi by Ŵi at each appearance. Under appropriate regularity conditions
the main properties of m̂ and m̃, and in particular their

√
n-consistency [provided

n = O(r)], do not change. This point will be discussed in Section 2.

2. Asymptotic results.

2.1. Case where fδ is assumed known. Here we discuss asymptotic properties
of the estimator defined at (1.4). A central result is the weak convergence of a
suitably scaled estimator process, with

√
n-scaling, to a Gaussian limit process

in the location argument x. This result (Theorem 1 below) implies, among other
matters, pointwise and uniform limits, local and simultaneous confidence bands,
and convergence of estimated extrema locations.

We assume throughout Section 2 that the distribution corresponding to fδ is
absolutely continuous, and in Section 2.1 that fδ has a bounded derivative. In
Section 2.1 it is not necessary to suppose that the densities fW or fW,Y ex-
ist, although it is convenient to use the notation fW and fW,Y when introduc-
ing the quantities needed to state and derive our results. However, the differential
elements fW(w)dw and fW,Y (w,y) dw dy may be interpreted as FW(dw) and
FW,Y (dw,dy), respectively; the distributions need not be absolutely continuous.

Given an integer ν ≥ 0, and assuming all quantities are well defined, let ϕ and ψ

be as in Section 1 and define

h(x,w) = f
(ν)
δ (x − w),

α(x) = ϕ(ν)(x) =
∫ ∫

yfW,Y (w,y)h(x,w)dw dy,

β(x) = ψ(ν)(x) =
∫

h(x,w)fW(w)dw.

Below, the notation D denotes a compact set on which we shall estimate ϕ and ψ .
The following conditions, indexed by ν = 0 or 1, will be used to prove our results.
For ν = 1 they can be relaxed to an assertion about the modulus of continuity for
the corresponding quantity when ν = 0; we impose the more stringent condition
only for simplicity and brevity.

(Aν,1) (boundedness of f
(ν)
δ ) supx,y∈R |h(x, y)| < ∞;

(Aν,2) (smoothness of f
(ν)
δ ) h(x,w) is an integrable function which is uniformly

Lipschitz continuous in x, that is, supw |h(x1,w)−h(x2,w)| ≤ L|x1 −x2|,
for a constant L > 0;

(Aν,3) (boundedness of β−1) infx∈D |β(x)| = cβ > 0;
(A4) (finiteness of moments)

∫ |y|fY (y) dy < ∞ and
∫

y2fY (y) dy < ∞.

Note in particular that conditions (Aν,1) and (A4) guarantee that all the
quantities defined above exist, and α and β satisfy supx∈D |α(x)| < ∞ and
supx∈D |β(x)| < ∞.
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Let ⇒ denote weak convergence in C(D) and define

μ(x1, x2) =
∫

yfW,Y (w,y)fδ(x1 − w)fδ(x2 − w)dw,

ϕ1(x1, x2) =
∫

y2fW,Y (w,y)fδ(x1 − w)fδ(x2 − w)dw,

ψ1(x1, x2) =
∫

fW(w)fδ(x1 − w)fδ(x2 − w)dw.

Our main result is a functional limit theorem for the proposed estimator. (All proofs
are deferred to Section 5.)

THEOREM 1. Under conditions (Aν,1), (Aν,2) for ν = 0,1, (A0,3) and (A4),
we have that, for the process Zn(x) = √

n(m̂(x)−m(x)), Zn ⇒ Z on C(D), where
Z is a Gaussian process with zero mean and covariance

cov{Z(x1),Z(x2)}
= ϕ1(x1, x2)/{ψ(x1)ψ(x2)} + ψ1(x1, x2)ϕ(x1)ϕ(x2)/{ψ2(x1)ψ

2(x2)}
− μ(x1, x2){ϕ(x1)ψ(x2) + ϕ(x2)ψ(x1)}/{ψ2(x1)ψ

2(x2)},
for x1, x2 ∈ D.

The correlation structure for estimates at points x1 �= x2 is seen not to vanish as-
ymptotically, in contrast to the well-known behavior of local smoothing estimators
where estimates at different points become asymptotically uncorrelated as band-
widths and windows converge to zero. Define μ̂(x1, x2) = n−1 ∑n

i=1 Yifδ(x1 −
Wi)fδ(x2 −Wi), ψ̂1(x1, x2) = n−1 ∑n

i=1 fδ(x1 −Wi)fδ(x2 −Wi) and ϕ̂1(x1, x2) =
n−1 ∑n

i=1 Y 2
i fδ(x1 − Wi)fδ(x2 − Wi). Particular consequences of Theorem 1 in-

clude the properties supx∈D

√
n(m̂(x) − m(x))

D→ supx∈D Z(x) and
√

n(m̂(x) −
m(x))

D→ N(0,V (x)) as n → ∞, where V (x) = cov(Z(x),Z(x)) is estimated
uniformly and

√
n-consistently by V̂ (x) = ϕ̂1(x, x)ψ̂−2(x) + ϕ̂2(x)ψ̂1(x, x) ×

ψ̂−4(x) − 2ϕ̂(x)μ̂(x, x)ψ̂−3(x), in the sense that supx∈D |V̂ (x) − V (x)| =
OP (n−1/2). It follows that an asymptotic (1 − α)-level confidence interval for
m(x) has endpoints m̂(x) ± V̂ (x)1/2−1(1 − α/2), m̂(x), where  denotes the
standard normal distribution function.

Semiparametric efficiency of m̂ can be established, in regular cases where
fδ(x − w) is monotone in x for w in the support of W , by considering the follow-
ing simpler problem. Suppose we observe independent and identically distributed
pairs (R1, S1), . . . , (Rn, Sn), where Ri ≥ 0 and Si = ρ(Ri) + εi , with ρ a smooth
function and εi independent of Ri and distributed as N(0, σ 2). Consider the prob-
lem of estimating (θ1, θ2) = (E(R),E{Rρ(R)}) from these data. The estimator
(θ̂1, θ̂2) = (n−1 ∑n

i=1 Ri,n
−1 ∑n

i=1 RiSi) is asymptotically normally distributed
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and semiparametric efficient in this problem, and thus θ̂2/θ̂1 is semiparametric
efficient for θ2/θ1. (The proof follows via Examples 3.2.1 and 3.3.4, and Proposi-
tions 3.3.1 and A.5.2, of Bickel et al. [1].) We may identify m(x) and m̂(x) with
θ2/θ1 and θ̂2/θ̂1, respectively, by taking Ri = fδ(x − Wi) and ρ(r) = g{f −1

δx (r)},
where fδx(w) = fδ(x − w).

Under additional regularity conditions, Theorem 1 continues to hold, although
with an altered covariance structure for the limiting process Z, in the more general
setting described in Section 1.3. There we observe Ti , in the setting of an unknown
parameter θ , rather than Wi = p(Ti | θ), and Wi is replaced by Ŵi = p(Ti | θ̂ ) in
the definition of m̂. If the model p(· | θ) is linear, then the only additional assump-
tions needed are two bounded derivatives of fδ , and E(T 2) < ∞, where T denotes
a generic Ti . See Section 5.3 for an outline proof.

2.2. Case where fδ is estimated from replicated data. The conditions imposed
below [see particularly (2.2)] imply that the distributions of W and δ are absolutely
continuous, and in particular that the respective densities fW and fδ are square-
integrable. We shall assume that

max
i≥1

ni < ∞, n = o(N), n1/(2(λ+λδ−1))  τn  N1/(2(1+λδ)),(2.1)

where an  bn for positive sequences an and bn means that an/bn → 0 as n → ∞;
and that, for constants λ,λδ > 0 satisfying

λ > λδ + 1 and λδ > 1,(2.2)

we have

|(fWg)ft(t)| + |f ft
W(t)| ≤ const.|t |−λ for all t ,

(2.3)
f ft

δ (t) > 0 for all t, |f ft
δ (t)| � |t |−λδ as t → ∞.

The second part of (2.1) asks that there be an order of magnitude more values
of Uij , at (1.2), than there are pairs (Wi, Yi), at (1.1). Conditions (2.2) and (2.3)
ask that fδ be sufficiently smooth, with its Fourier transform decaying in the stan-
dard polynomial way, and that fW and fWg be sufficiently smooth relative to fδ .
The second part of (2.1), and (2.2), imply that it is always possible to choose the
smoothing parameter τn such as to satisfy the third part of (2.1).

THEOREM 2. If the function g is uniformly bounded, if the errors εi at (1.1)
have zero mean and finite variance, and if (2.1)–(2.3) hold, then, uniformly in x,

ψ̃(x) = ψ̂(x) + op(n−1/2), ϕ̃(x) = ϕ̂(x) + op(n−1/2).(2.4)

Let I denote an interval for which infx∈I ψ(x) > 0. Result (2.4) implies that,
under the additional conditions imposed for Theorem 1, the estimator m̃ = ϕ̃/ψ̃ ,
which is an alternative to m̂ = ϕ̂/ψ̂ discussed in Section 2.1, satisfies m̃(x) =
m̂(x) + op(n−1/2) uniformly in x ∈ I. Therefore m̃ inherits the weak convergence
and semiparametric-efficiency properties of m̃ on I. Theorem 2 holds, under more
restrictive assumptions, in the more general setting of Section 1.3; see Section 5.3.
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3. Simulations. We implemented our estimator m̂(x) of m(x) on samples of
(W,Y ) generated from models of two types:

(1) g(w) = [3w + 20(2π)−1/2 exp(−200(w − 1/2)2)]1[0,1](w), W ∼ U [0,1],
ε ∼ N(0, σ 2

ε ) and δ ∼ N(0, σ 2
δ ) or δ ∼ U [−1/2,1/2];

(2) Y |W = w ∼ Bernoulli(g(w)), with g(w) = exp(6w)/[1 + exp(6w)], W ∼
U [−0.5,0.5], δ ∼ N(0, σ 2

δ ) or with g(w) = 0.45 sin(aπw)+ 0.5, a = 2 or 4, W ∼
U [0,1], δ ∼ N(0, σ 2

δ ) or δ ∼ U [−1/2,1/2].
The last example was used by Hobert and Wand [11]. In each case, we con-

sidered several sample sizes (n = 50,100 and 250) and the parameters var(δ) and
var(ε) were chosen such that the noise-to-signal ratios NSδ = var(δ)/var(W) and
NSε = var(ε)/‖g‖∞ equal 10%, 25% or 50%. We considered the situation where
the values of X are available as well, which allowed us to compare our estima-
tors with the n−2/5-consistent Nadaraya–Watson estimator m̂N of m(x), based on
observations of (X,Y ). In all cases, our estimators based on (W,Y ) performed
much better than m̂N , which was biased and much more variable. These findings
continued to hold in the setting of Section 1.3, where the sample available was
(Ti,Xi, Yi), i = 1, . . . , n, and the error variance was unknown and estimated by
the empirical variance of the sample Xi − Ŵi , i = 1, . . . , n. More details are avail-
able from the first author’s website.

The typical behavior of our estimator is illustrated in Figure 1, where we com-
pare, for case (1) with uniform δ, NSδ = 0.1, NSδ = 0.25 and n = 250, the results
of 1000 replications of the estimators m̂ with the correct error density fδ and m̂

with fδ misspecified (here we used Gaussian error instead of the uniform error).
In both cases, the estimates shown correspond to the first, fifth and ninth deciles of
the ordered 1000 values of the integrated squared error

∫
(m̂(x) − m(x))2 dx. We

see that for small NSδ , the estimator is quite robust to error misspecification, but,
without any surprise, the quality deteriorates as the ratio increases. Note, however,
that the results remain quite good for NSδ = 0.25.

FIG. 1. The estimator m̂ with the error fδ known (uniform) or misspecified (Gaussian) for case (2),
with NSδ = 0.1 (left panel) or NSδ = 0.25 (right panel), with NSε = 0.1 and n = 250. The solid
curve is the target curve m.
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4. Real data illustration. We illustrate the proposed estimator in the setting
of Section 1.3 on a real data example. The data set was collected during a South
African study on heart disease and was used by Hastie, Tibshirani and Friedman
[10]. The data are available at www-stat.stanford.edu/ElemStatLearn. During the
study, several variables were measured on males in a heart-disease high-risk region
of the Western Cape, including low density lipoprotein cholesterol (LDL) and to-
tal cholesterol (CHOL) as predictors, and coronary heart disease history (CHD)
as response, coded as 0 = nonincidence of CHD, 1 = incidence of CHD. LDL is
much more difficult to measure than CHOL, which motivates the use of CHOL as
a proxy for LDL (Carroll, Ruppert and Stefanski [4]). After deleting several out-
liers, the relationship between LDL and CHOL can be reasonably well modeled as
log(CHOL) = θ(1) +θ(2) log(LDL)+δ with δ a random variable of zero mean; see
Carroll, Ruppert and Stefanski [4], who use the same model for a similar data set.
Checking for outliers, we deleted the observations corresponding to the smallest
(resp., two largest) value(s) of CHOL, the smallest three (resp., largest two) values
of LDL, and the eight points of (log(CHOL), log(LDL)) the furthest away from
the least squares line.

We set Y = CHD, X = log(CHOL) and Ŵ = θ̂ (1) + θ̂ (2) log(LDL), where
θ̂ (1) = 4.8890 and θ̂ (2) = 0.3663 are the least squares estimators of θ(1) and θ(2).
Our goal is to estimate m(x) = E(Y |X = x), the conditional expectation of in-
cidence of coronary heart disease given the (transformed) total cholesterol level,
using the sample of n = 446 observations.

We compare the proposed estimator m̂(x) with the Nadaraya–Watson estima-
tor m̂N . The data suggest that it is reasonable to assume that the errors δi = Xi −Wi

are normal, where the variance can be estimated from the differences Xi − Ŵi . In
Figure 2, we overlay the proposed estimator m̂ and the Nadaraya–Watson esti-
mator m̂N calculated with an appropriate data-driven cross-validation bandwidth.
The graphs suggest that the probability of coronary heart disease increases with the
cholesterol level. The increase is highly nonlinear, and there are clear differences

FIG. 2. The proposed estimator m̂ and the Nadaraya–Watson estimator m̂N based on the obser-
vations of (X,Y ), and a scatter plot of the 446 observed values of (X,Y ) (left panel) or the 446
observed values of (Ŵ , Y ) (right panel), for the coronary heart disease data.

www-stat.stanford.edu/ElemStatLearn
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between the classical Nadaraya–Watson estimator and the proposed estimator. The
Nadaraya–Watson estimator exhibits additional fluctuations, especially in the right
tail, thus giving a less stable appearance.

5. Proofs.

5.1. Outline proof of Theorem 1. Define the auxiliary quantities

Z̃n(x) = √
n

[
ϕ̂(x) − ϕ(x)

ψ(x)
− (ψ̂(x) − ψ(x))ϕ(x)

ψ2(x)

]
,

α̂(x) = n−1
n∑

i=1

Yih(x,Wi),

α1(x1, x2) =
∫ ∫

y2h(x1,w)h(x2,w)fW,Y (w,y) dw dy,

β̂(x) = n−1
n∑

i=1

h(x,Wi),

β1(x1, x2) =
∫

h(x1,w)h(x2,w)fW(w)dw.

The next two results will be useful to prove the theorem. Their proof is given at
the end of this section.

LEMMA 1. Let ν be a positive integer and x ∈ D. Under Conditions (Aν,1),
(Aν,2) and (A4),

√
n
(
α̂(x) − α(x)

) ⇒ Zα(x),
√

n
(
β̂(x) − β(x)

) ⇒ Zβ(x),

where Zα,Zβ are Gaussian processes characterized by the moments E(Zα(x)) =
E(Zβ(x)) = 0, and cov(Zα(x1),Zα(x2)) = α1(x1, x2) − α(x1)α(x2), cov(Zβ(x1),

Zβ(x2)) = β1(x1, x2) − β(x1)β(x2), for all x1, x2 ∈ D.

LEMMA 2. Let x1, . . . , xk ∈ D. Under conditions (A0,1) and (A4), for all t =
(t1, . . . , tk)

′ ∈ Rk , we have
∑k

j=1 tj Z̃n(xj )
D→ N(0, t ′�t), where

(�)jl = ϕ1(xj , xl)

ψ(xj )ψ(xl)
+ ϕ(xj )ϕ(xl)ψ1(xj , xl)

ψ2(xj )ψ2(xl)

− ϕ(xl)μ(xj , xl)

ψ(xj )ψ2(xl)
− ϕ(xj )μ(xj , xl)

ψ(xl)ψ2(xj )
.

Put Zn(x) = √
n(m̂(x)−m(x)) = Xn(x)+Yn(x), where ψ(x)Xn = √

n(ϕ̂(x)−
ϕ(x)) and ψ̂(x)ψ(x)Yn(x) = −√

n(ψ̂(x) − ψ(x))ϕ̂(x). It suffices to prove
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(a) convergence of the finite-dimensional limit distribution of Zn, and (b) tight-
ness of Zn. To establish (a), note that

Zn(x) = Z̃n(x) − √
n
ψ̂(x) − ψ(x)

ψ(x)

[
ϕ̂(x)

ψ̂(x)
− ϕ(x)

ψ(x)

]
.(5.1)

Now

sup
x∈D

∣∣∣∣ ϕ̂(x)

ψ̂(x)
− ϕ(x)

ψ(x)

∣∣∣∣ ≤ supx∈D |ϕ̂(x) − ϕ(x)|
infx∈D |ψ̂(x)|

+ supx∈D |ϕ(x)| · supx∈D |ψ(x) − ψ̂(x)|
infx∈D |ψ(x)ψ̂(x)| ,

where infx∈D |ψn(x)| P→ infx∈D |ψ(x)| > 0, which, combined with Lemma 1,
proves that the last term of (5.1) tends to zero as n tends to infinity, and thus Zn(x)

has the same finite-dimensional limit distribution as Z̃n(x). From Lemma 2 and
the Cramér–Wold device, this limit distribution is the same as that claimed for Z

in Theorem 1. To prove (b), note that, by the proof of Lemma 1, the sequences√
n(ϕ̂(x) − ϕ(x)) and

√
n(ψ̂(x) − ψ(x)) are tight. The sequence ϕ̂(x)/ψ̂(x) is

tight if we show that for given ε, η ≥ 0 and sufficiently small δ and large n,

P

(
sup

|x−y|≤δ

|ϕ̂(x)/ψ̂(x) − ϕ̂(y)/ψ̂(y)| ≥ ε

)
≤ η.(5.2)

Now, defining ξ(x) = ∫∫
yfW,Y (w,y)f ′

δ(x − w)dw dy, ζ(x) = ∫
fW(w)f ′

δ(x −
w)dw, ξ̂ (x) = n−1 ∑n

i=1 Yif
′
δ(x − Wi) and ζ̂ (x) = n−1 ∑n

i=1 f ′
δ(x − Wi), let

T̂ (x) = [ξ̂ (x)ψ̂(x) − ϕ̂(x)ζ̂ (x)]/ψ̂2(x). By the mean value theorem, the left-hand
side of (5.2) is bounded by P(supx∈D |T̂ (x)| ≥ ε/δ) and (5.2) follows if we note
that

sup
x∈D

|T̂ (x)| ≤ sup
x∈D

|ξ̂ (x) − ξ(x)|/|ψ̂(x)| + sup
x∈D

|ξ(x)|/|ψ̂(x)|

+
[

sup
x∈D

|ϕ̂(x) − ϕ(x)|/|ψ̂(x)|2 + sup
x∈D

|ϕ(x)|/|ψ̂(x)|2
]

×
[

sup
x∈D

|ζ̂ (x) − ζ(x)|/|ψ̂(x)|2 + sup
x∈D

|ζ(x)|/|ψ̂(x)|2
]
,

which tends to zero as n tends to infinity. Property (b) follows.

PROOF OF LEMMA 1. We prove the result for α; the proof for β is analo-
gous. Let x1, . . . , xk ∈ D, α̂ = (α̂(x1), . . . , α̂(xk))

′, α = (α(x1), . . . , α(xk))
′ and

Zα ∼ Nk(0,�α), where (�α)ij = α1(xi, xj ) − α(xi)α(xj ). Applying the central
limit theorem to the i.i.d. sequence T1, . . . , Tn, with Ti = ∑k

j=1 tj Yih(xj ,Wi), it is

not hard to prove that, for all t = (t1, . . . , tk)
′ ∈ Rk ,

√
nt ′(α̂−α)

D→ t ′Zα . From the
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Cramér–Wold device, we deduce that
√

n(α̂ −α)
D→ Zα , which implies weak con-

vergence of the finite-dimensional distributions. Using uniform Lipschitz continu-
ity of h in the first coordinate, one can show that E(

√
n[α̂(x1) − α(x1) − α̂(x2) +

α(x2)])2 ≤ c|x1 − x2|2, which implies tightness of
√

n(α̂ − α). �

PROOF OF LEMMA 2. Since Eϕ̂(x) = ϕ(x) and Eψ̂(x) = ψ(x), we have
that E(Z̃n(x)) = 0. The result follows from the central limit theorem if we note
that

√
n

∑k
j=1 tj Z̃n(xj ) may be written as

∑n
i=1 Ti , where Ti = ∑k

j=1 tj fδ(xj −
Wi)[Yi/ψ(xj ) − ϕ(xj )/ψ

2(xj )]. �

5.2. Outline proof of Theorem 2. We shall derive the second result at (2.4);
a proof of the first result there is similar. Define the functions a = (fWg)ft, â =
(̂fWg)ft, b = (f ft

δ )2, b̂ = (f̂ ft
δ )2, c = f ft

δ , �a = â − a and �b = b̂ − b. Let T

denote the interval [−τn, τn], write T̃ for the complement in R of T , and put
ux(t) = e−itx . Then, uniformly in x,

2πϕ̃(x) =
∫
T

â|b̂|1/2ux

=
∫
T

(a + �a)|b|1/2(1 + b−1�b)
1/2ux

=
∫
T

(a + �a)cux + Op

[∫
T

|a/c|(E�2
b)

1/2 +
∫
T

c−1(E�2
aE�2

b)
1/2

]
.

Using the fact that â equals a sum of n independent and identically distrib-
uted random variables, and b̂ is expressed in a form similar to a U -statistic, it
can be shown that E[�a(t)

2] = O(n−1) and E[�b(t)
2] = O(N−1), uniformly

in t . Moreover, (2.2) and (2.3) imply that
∫
T |a/c| = O(1),

∫
T c−1 = O(τλδ+1

n ),∫
T̃ acux = O(τ 1−λ−λδ

n ) and
∫
T̃ �acux = Op(n−1/2τ 1−λδ

n ), the latter two results
holding uniformly in x. Therefore, uniformly in x,

2πϕ̃(x) =
∫

(a + �a)cux

+ Op(N−1/2 + n−1/2N−1/2τλδ+1
n + τ 1−λ−λδ

n + n−1/2τ 1−λδ
n )(5.3)

=
∫

âcux + op(n−1/2).

Since ϕ̂(x) = (2π)−1 ∫
âcux , then the second part of (2.4) follows from (5.3).

5.3. Case where X = p(T | θ)+δ. This generalization, in which (T ,Y ) rather
than (W,Y ) is observed, was introduced in Section 1.3. There we noted that the
unknown parameter θ could be estimated by least squares from data (T ′

i ,X
′
i), for

1 ≤ i ≤ r , on (T ,X). In the case of a linear model, p(t | θ) = θ(1) + θ(2)t , and our
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estimator of Wi = θ(1) + θ(2)Ti is Ŵi = θ̂ (1) + θ̂ (2)Ti . We shall treat this particular
case below; other models for p can be addressed similarly.

Let m̂∗, ϕ̂∗, ψ̂∗ and ψ̃∗ denote the versions of m̂, ϕ̂, ψ̂ and ψ̃ , respectively,
obtained on replacing Wi by Ŵi throughout. It will be assumed that n = O(r). In
this case the least squares estimators θ̂ (1) and θ̂ (2) are

√
n-consistent.

First we consider the setting where fδ is known. Provided fδ has two bounded
derivatives, we may write

ϕ̂∗(x) = n−1
n∑

i=1

Yifδ(x − Ŵi)

= ϕ̂(x) − (
θ̂ (1) − θ(1))E{Yf ′

δ(x − W)}(5.4)

− (
θ̂ (2) − θ(2))E{T Yf ′

δ(x − W)} + op(n−1/2),

ψ̂∗(x) = n−1
n∑

i=1

fδ(x − Ŵi)

= ψ̂(x) − (
θ̂ (1) − θ(1))E{f ′

δ(x − W)}(5.5)

− (
θ̂ (2) − θ(2))E{Tf ′

δ(x − W)} + op(n−1/2).

Here, ϕ̂ and ψ̂ are the original estimators of ϕ and ψ given in Section 1.2 for the
case where Wi is directly observed; W = θ(1) + θ(2)T ; and the remainder terms
op(n−1/2) are uniform in x, provided the conditions of Theorem 2 hold and, in
addition, E(T 2) < ∞.

It follows from (5.4) and (5.5) that ϕ̂ and ψ̂ are
√

n-consistent for φ and ψ ,
respectively, and m̂∗ = ϕ̂∗/ψ̂∗ is

√
n-consistent for m. A version of Theorem 1 is

readily obtained in this setting, using (5.4) and (5.5). Unless r/n → ∞, the co-
variance structure of the limiting Gaussian process depends on whether the data
(T ′

i ,X
′
i), from which θ̂ (1) and θ(2) are computed, are independent of the data

(Wi, Yi) used to calculate ϕ̂ and ψ̂ , or whether (T ′
i ,X

′
i) = (Ti,Xi) and the triples

(Ti,Xi, Yi) are observed.
The case where fδ is not known, and is consistently estimated from replicated

data as discussed in Section 1.2, is similar although more complex. Our estima-
tor f̂ ft

δ , given at (1.6), does not alter since it does not use the data Wi . On the other

hand, the estimators f̂ ft
W and (̂fWg)ft, given at (1.6) and (1.7), are replaced by

f̂ ft
W

∗(t) = n−1
n∑

j=1

exp(itŴj ),

(̂fWg)ft∗ = n−1
n∑

j=1

Yj exp(itŴj ).
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Substituting the latter for f̂ ft
W and (̂fWg)ft, respectively, in (1.8); Taylor-expanding

exp(−itŴj ) as exp(itWj ){1 + it (Ŵj − Wj) + · · ·}; and taking the smoothing pa-
rameter τn in (1.8) to be of order n(1/2)−2η, for some η > 0 [so that, under moment
conditions on Wj , τn supj≤n |Ŵj − Wj | = Op(n−η)], we may deduce that (2.4)

continues to hold if ϕ̂ and ψ̂ there are replaced by ϕ̂∗ and ψ̂∗, provided more
restrictive assumptions than those given in Theorem 2 are imposed.
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