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OPTIMAL THIRD ROOT ASYMPTOTIC BOUNDS IN THE
STATISTICAL ESTIMATION OF THRESHOLDS

BY FRANZ MERKL AND LEILA MOHAMMADI

University of Munich and University of Leiden

This paper is concerned with estimating the intersection point of two
densities, given a sample of both of the densities. This problem arises in clas-
sification theory. The main results provide lower bounds for the probability
of the estimation errors to be large on a scale determined by the inverse cube
root of the sample size. As corollaries, we obtain probabilistic bounds for the
prediction error in a classification problem. The key to the proof is an en-
tropy estimate. The lower bounds are based on bounds for general estimators,
which are applicable in other contexts as well. Furthermore, we introduce a
class of optimal estimators whose errors asymptotically meet the border per-
mitted by the lower bounds.

1. Introduction.

1.1. Motivation and origin of the problem. In this paper we derive lower
bounds for the probability of large errors of some estimators to occur. Let P be a
class of probability measures on a measurable space (�,A), and a :P → R be a
parameter. Consider an i.i.d. random sample Z1, . . . ,Zn from P ∈ P and an es-
timator ân(Z1, . . . ,Zn), ân :�n → R, for a. We are interested in the asymptotic
behavior of ân as n → ∞.

In the theory of empirical processes one usually considers a deterministic loss
function whose minimizer over a particular class is equal to or close to the para-
meter. Under some technical assumptions, if the loss is differentiable with respect
to the parameter, the empirical risk minimizers converge to the parameter with the
rate |ân − a(P )| = OP (n−1/2) as the sample size n grows to ∞; see van de Geer
[19] and van der Vaart and Wellner [20].

Kim and Pollard [9] establish a new functional central limit theorem for empir-
ical processes. They describe an interesting class of asymptotic problems where
the estimators converge at a rate different from OP (n−1/2) to limit distributions.

An important noncontinuous loss function, frequently used in the theory of clas-
sification, is the indicator loss function. Let us first describe a general view of
classification (or learning theory). We formulate the simplest case, which is a two-
class problem. Assume that we have two distributions on a result space X, labeled
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by Y = 1 and Y = −1. The values of Y are called “labels” or “natures.” Take an
observation X from a mixture of the two distributions. It is sometimes called a
“feature.” The problem is to predict the unknown nature Y of a feature X. Sup-
pose we have n i.i.d. copies (Xi, Yi), i = 1, . . . , n, of a realization (X,Y ), having
an unknown probability distribution P . A classifier h is a measurable function
h :X → {±1}. (Here, we do not consider more general [−1,1]-valued classifiers.)
The realization (X,Y ) is called misclassified by the classifier h if h(X) �= Y . We
take the deterministic loss function (x, y) �→ 1{h(x) �= y}. For X ⊆ R and fea-
tures X with a continuous distribution (at least close to a point), Mohammadi and
van de Geer [13] apply this setup to the case where the classifier h is varied over
the class H = (ha)a∈R, where ha(x) := 1 for x ≥ a and ha(x) := −1 for x < a.
Let

fP (x, y) = f +
P (x)1{y = 1} + f −

P (x)1{y = −1},
(1.1)

(x, y) ∈ � = X × {±1},
denote the joint density of (X,Y ), that is, the density of P with respect to some
reference measure λ ⊗ (counting measure).

Let us assume that there is a unique point a(P ) at which f +
P − f −

P changes
its sign, and that this sign change is from “−” to “+.” Then, to minimize the risk
P [h(X) �= Y ], it suffices to restrict the classifier h to the class H , since one has in
this case

inf
classifiers h

P [h(X) �= Y ] = inf
a∈R

P [ha(X) �= Y ] = P
[
ha(P )(X) �= Y

]
.(1.2)

The Bayes rule in this case corresponds to the threshold a(P ) = arg mina∈R LP (a),

where LP (a) := P(ha(X) �= Y) denotes the prediction error. A natural choice for
an estimator of a is the threshold ân = arg mina∈R P̂n[ha(X) �= Y ] that minimizes
the classification error in the sample, where P̂n := ∑n

i=1 δ(Xi,Yi)/n denotes the
empirical distribution of the sample. Strictly speaking, here the “arg min” is not
unique, but one may take any (measurable) choice. In the theory of classification
this is called empirical risk minimization. Mohammadi and van de Geer [13] in-
voke the theory of Kim and Pollard [9] to get the rate OP (n−1/3) of ân under
some conditions. Under monotonicity assumptions, it is shown that ân is a non-
parametric maximum likelihood estimator, and that n−1/3(ân − a(P )) converges
in distribution to a continuous random variable. For more background informa-
tion about empirical risk minimization in classification, see, for instance, [7], [16]
and [11].

1.2. Statement of the problem and results. In this paper we address the follow-
ing question: Is there any sequence of estimators (ân :�n → R)n∈N which con-
verges to a(P ) with a rate faster than OP (n−1/3)? Under some assumptions, to be
specified below, the answer is no.
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Let us introduce the class P of probability measures P that we consider. We
assume that the feature X takes values in the unit interval X = [0,1].

Let P̃ denote the set of all probability distributions P = fP [λ[0,1] ⊗ (counting
measure)] on � = [0,1] × {±1} (with the Borel σ -field) with fP ∈ C1([0,1] ×
{±1}). Here, λ[0,1] denotes the Lebesgue measure on [0,1]. [This particular choice
of the reference measure—at least locally— plays a role in some technical esti-
mates, e.g., in the basic entropy bound (4.13) below.]

We endow P̃ with the metric d , given by

d(P,Q) := ‖fP − fQ‖∞ + ‖∂1fP − ∂1fQ‖∞,(1.3)

where ∂1 denotes the derivative with respect to the first argument.
Let P ⊆ P̃ denote the set of all P ∈ P̃ , such that f +

P := fP (·,1) and f −
P :=

fP (·,−1) have a unique intersection point a(P ), and this intersection point is con-
tained in the open interval (0,1), and the intersection is transversal with a specified
orientation,

f +
P (a(P )) = f −

P (a(P )), (f +
P )′(a(P )) > (f −

P )′(a(P )).(1.4)

We endow P with the topology induced by the metric d .
For our results it is essential to have at least some control on the derivative

of fP , which is reflected by the choice (1.3) of the metric d .
Here, we present the main results of this paper. The first theorem considers the

estimation error on the critical scale const ·n−1/3, uniformly over (small) open
subsets of P .

THEOREM 1.1. Let U ⊆ P be a nonempty open set. Then there is c1 =
c1(U) > 0, such that for every δ ∈ (0,1/4] and for every sequence of estimators
ân :�n → R, n ∈ N one has

lim inf
n→∞ sup

P∈U
P n[n1/3|ân − a(P )| > T ] ≥ δ,(1.5)

where T = T (U, δ) := c1| log(11δ)|1/3.

Unlike Theorem 1.1, the following theorem considers the asymptotics of the es-
timation error point-wise, that is, it takes the limit as n → ∞ before taking a supre-
mum over open sets U ⊆ P . To motivate this order of taking limits, consider the
following game of a statistician against “nature.” Nature chooses just one P ∈ P ,
unknown to the statistician. The statistician may choose various sample sizes n,
and she or he obtains a certain rate of convergence of the estimators as n → ∞
for this fixed, given P . Thus, examining the limit n → ∞ for fixed, but arbitrary
P may contain at least as relevant information as taking lim infn→∞ supP∈U. The
following theorem does not examine the critical scale n−1/3; it rather works with
a smaller scale 1/βn � n−1/3. The reason for this is explained below.
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THEOREM 1.2. Let (βn)n∈N be a sequence of positive numbers with
limn→∞ n−1/3βn = ∞. Then, for all nonempty open sets U ⊆ P and for all se-
quences of estimators ân :�n → R, n ∈ N, one has

sup
P∈U

lim sup
n→∞

P n[βn|ân − a(P )| > 1] ≥ 1/4.(1.6)

Theorem 1.2 states that, independently of how small our statistical model U is,
we always find a particular model P in this class such that the estimation error
for this particular model will be with positive probability asymptotically larger
than any given scale smaller than n−1/3. The proof of this theorem uses Baire’s
theorem. A related argument, concerning the equicontinuity and the consistency
of substitution estimators with values in a metric space, is presented in [15].

In contrast to Theorem 1.1, Theorem 1.2 does not consider the critical scale
const ·n−1/3. Indeed, its claim (1.6) breaks down on this critical scale. This is the
content of the following theorem.

THEOREM 1.3. There is a family of estimators (ân,L :�n → R)n∈N,L>0 with
the following property: For all P ∈ P , there is a neighborhood N ⊆ P of P , such
that for all T > 0 one has

lim
L→∞ sup

Q∈N
lim sup
n→∞

Qn[n1/3|ân,L − a(Q)| > T ] = 0.(1.7)

Such estimators ân,L are explicitly described in Section 5 below. Speaking very
roughly, one estimates the density fP in a certain neighborhood of size Ln−1/3 of
a first approximation of a(Q) using regression lines.

The following corollaries translate the asymptotic bounds in Theorems 1.1, 1.2
and 1.3 to bounds for the rate of convergence of the prediction error LP (ân) to the
optimal value LP (a(P )).

COROLLARY 1.4. Under the conditions of Theorem 1.1, one has

lim inf
n→∞ sup

P∈U
P n[LP (ân) > LP (a(P )) + Sn−2/3] ≥ δ,(1.8)

where S = S(U, δ) := c2| log(11δ)|2/3 with a constant c2 = c2(U) > 0.

COROLLARY 1.5. Under the conditions of Theorem 1.2, in particular, for
β−2

n = o(n−2/3), one has

sup
P∈U

lim sup
n→∞

P n[LP (ân) > LP (a(P )) + c3β
−2
n ] ≥ 1/4,(1.9)

with a constant c3 = c3(U) > 0.
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COROLLARY 1.6. Take a family of estimators (ân,L)n∈N,L>0 that fulfills the
claim of Theorem 1.3. Then, for all P ∈ P , there is a neighborhood N ⊆ P of P ,
such that, for all T > 0, one has

lim
L→∞ sup

Q∈N
lim sup
n→∞

Qn[LQ(ân) > LQ(a(Q)) + T n−2/3] = 0.(1.10)

1.3. Discussion and comparison to other results. Let us discuss our results
and compare them with some previous results on lower bounds in classification
and regression.

The paper [10] by Mammen and Tsybakov views the classification problem as
the estimation problem of a set V . The authors consider the case that the region
V has a smooth boundary or belongs to another nonparametric class of sets. They
show that the empirical risk minimizers achieve the optimal rates for estimation of
V and optimal rates of convergence for Bayes risks.

It is interesting to compare our Theorem 1.1 with Theorem 3 in Mammen and
Tsybakov’s paper [10], in particular, with formula (22) there. The setup in the pa-
per [10] is much more general than ours. It differs from the one in Theorem 1.1,
even when one specializes it to our one-dimensional setup and to the special clas-
sifiers ha . More specifically, this specialization yields, for all p ≥ 1,

lim inf
n→∞ sup

P∈Ffrag

np/3EP n[|ân − a(P )|p] > 0,(1.11)

instead of our claim (1.5), where the class of distributions Ffrag specified in the
reference is not as small as our open set U.

Let us compare the estimators ân,L in Theorem 1.3 and Corollary 1.6 with the
empirical risk minimizers ân, which are examined in the paper [13] by Moham-
madi and van de Geer. For the empirical risk minimizers ân, one has

sup
Q∈N

lim sup
n→∞

Qn[n1/3|ân − a(Q)| > T ] > 0(1.12)

for all T < ∞; more details are given in Theorem 2.2 in [13]. The empirical risk
minimizers ân may be well applicable for larger classes of distributions than P ,
where our results may not apply. Our intention behind Theorem 1.3 is mainly to
show that Theorem 1.2 is optimal. However, comparing (1.12) with (1.7), one sees
that, for large L, ân,L is an improvement over ân, at least asymptotically in the limit
as n → ∞. Thus, from a practical point of view, we suggest use of the estimators
ân,L instead of ân whenever one suspects the regularity conditions imposed in our
model are reasonable in an application at hand.

Roughly speaking, the improvement is obtained by using information about the
empirical distribution in the neighborhood of the estimator ân. The scaling para-
meter L is used to determine the size of this neighborhood. More specifically, one
estimates the unknown densities close to ân using regression lines. For a given
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sample size n, it might not make sense to take L too large to get a good estimator
ân,L, due to the order of limits “limL→∞ . . . lim supn→∞” in (1.7).

Donoho and Liu [6] consider estimating a functional T (F ) of an unknown dis-
tribution F ∈ F with some class of distributions F . They compute the modulus
of continuity ω(ε) of T with respect to Hellinger distance in certain cases. For a
well-behaved loss function l(t), they show that if T is linear and F is convex, then
infTn supF∈F EF (l(Tn−T (F ))) is equivalent to l(ω(n−1/2)) within constants. The
same conclusion is drawn for three cases of nonlinear functionals: estimating the
rate of decay of a density, estimating the mode and robust nonparametric regres-
sion. Our case, estimating the intersection point of two densities, is a different
case. However, it gets the modulus of continuity ω(ε) = ε2/3 for l(t) := |t | and
therefore, ω(n−1/2) = n−1/3, which coincides with the optimal rate.

The general estimates for lower bounds, presented in Section 3 below, can also
be applied to higher-dimensional problems. This will be shown in a forthcoming
paper.

Let us briefly review some further known results which are vaguely related to
the facts proven in this paper.

Let (X,Y ), (X1, Y1), (X2, Y2), . . . be independent identically distributed R
d ×

R random variables with E(Y 2) < ∞. In a regression problem, Stone [17] showed
that for a class of distributions and for a class of regression functions which
are p times continuously differentiable, the optimal lower rate of convergence is
n−2p/(2p+d).

Antos, Györfi and Kohler [2] showed that there exist individual lower bounds on
the rate of convergence of nonparametric regression estimates which are arbitrarily
close to Stone’s minimax lower bounds.

In classification Antos and Lugosi [3] showed that for several natural concept
classes (classes of subsets of X, the domain of X), including the class of linear
half-spaces, there exist a fixed distribution of X and a fixed concept C such that
the expected error is larger than a constant times k/n for infinitely many n, where
k is the number of parameters. They obtained strong minimax lower bounds for
the tail distribution of the probability of error, which extend the corresponding
minimax lower bounds.

Our second form of lower bound, that is, Theorem 1.2, is comparable with the
individual lower rate of convergence in [1]. In the latter, the individual lower rate
of convergence for a class D of distributions of (X,Y ) is defined by an which
satisfies

inf
ĝn

sup
P∈D

lim sup
n→∞

a−1
n

(
LP (ĝn) − min

g
LP (g)

)
> 0,(1.13)

where g is a classifier and ĝn is an estimator. A class of distributions Dβ of (X,Y )

is given as the product of one uniform distribution and a cubic class of regression
functions with parameter β . Under some assumptions, the individual lower rate
of convergence for Dβ is obtained by bnn

−2β/(2β+d). The class Dβ is of course
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different from our class P , but the order of inf, sup and lim sup in (1.13) is the
same as ours in Theorem 1.2.

For more references on lower bounds, see Gill and Levit [8] and Tsybakov [18].
For a more general nonparametric setup than ours, Pfanzagl showed in [14]

that no limit distribution can be attained with the rate n1/3 uniformly on certain
shrinking neighborhoods of the sample distribution P .

In a paper by Bühlmann and Yu in [4], the n1/3-asymptotic appears in the con-
text of bagging. These authors also use the results of Kim and Pollard [9]. Us-
ing decision trees, problems concerning higher dimensional X are reduced to the
analysis of a one-dimensional setup.

Organization of this paper. Let us explain how the rest of this paper is or-
ganized. In Section 2 we collect some fundamental entropy estimates. Section 3
shows universal, general counterparts of Theorems 1.1 and 1.2, without assuming
the specific form of our model (�,A,P ). We expect these lemmas to be useful
for other examples too. One key idea is the use of Baire’s theorem to show that
the set of P ’s with estimation errors being asymptotically large on a given scale is
of the second Baire category. In Section 4 Theorems 1.1 and 1.2 are proven. The
proofs are based on a bound for relative entropies for slightly perturbed densities,
described in Lemma 4.1 below. In Section 5 Theorem 1.3 is shown by constructing
the estimators ân,L in a two-step procedure. Section 6 contains the proofs of the
corollaries. The key idea for the higher dimensional case is sketched in Section 7.

2. Preliminaries. In this section we review some standard estimates to com-
pare probabilities with respect to different measures, based on bounds of the
relative entropy. Alternatively (and more or less equivalently), one could use
bounds for the Hellinger distance instead of the relative entropy, but we do not
follow this alternative approach here. Here, we need not assume any specific
form of the model (�,A,P ); we take an arbitrary parameter a :P → R, and
(ân :�n → R)n∈N denotes any sequence of estimators.

Let H(P,Q) := EP [log dP
dQ

] denote the relative entropy for P,Q ∈ P , when-
ever it is well defined.

LEMMA 2.1. Let P and Q be probability measures with H(P,Q) < ∞. For
every random variable X with 0 ≤ X ≤ 1, one has

EQ[X] ≥ e−2H(P,Q)−1(
EP [X] − 1

2

)
.(2.1)

PROOF. For x ≥ 0, set ψ(x) := x logx − x + 1. Note that ψ ≥ 0. We set
N := e2H(P,Q)+1 ≥ e and A := {dP/dQ > N}. Using ψ ≥ 0, ψ(1) = 0 and the
convexity of ψ , one sees that

ψ(x) ≥ ψ(N)

N
1{x > N}x(2.2)



2200 F. MERKL AND L. MOHAMMADI

for all x ≥ 0, and thus,

H(P,Q) = EQ

[
ψ

(
dP

dQ

)]
≥ ψ(N)

N
EQ

[
1(A)

dP

dQ

]
= ψ(N)

N
P [A].(2.3)

We conclude, using ψ(N)/N = log(N/e) + 1/N ≥ 2H(P,Q),

EQ[X] ≥ EQ[X1(Ac)] ≥ 1

N
EP [X1(Ac)] ≥ 1

N
(EP [X] − P [A])

(2.4)

≥ 1

N

(
EP [X] − N

ψ(N)
H(P,Q)

)
≥ 1

N

(
EP [X] − 1

2

)
,

which is the claim (2.1). �

The 2 in the exponent of (2.1) could be replaced by any fixed number larger
than 1, if one replaced the 1

2 in (2.1) by a different constant. This would only
change the constants in our main theorems.

LEMMA 2.2. Let χ : R → [0,1] be a measurable function with χ(x) = 1
for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2. Take n ∈ N, βn > 0, Pn,Qn ∈ P , and
δ ∈ (0,1/4]. If

nH(Pn,Qn) ≤ 1

2
log

1

11δ
, βn|a(Pn) − a(Qn)| > 4(2.5)

hold, then at least one of the two bounds

EP n
n

[
χ

(
βn

(
ân − a(Pn)

))]
< 1 − δ or

(2.6)
EQn

n

[
χ

(
βn

(
ân − a(Qn)

))]
< 1 − δ

is valid.

PROOF. (Indirectly). Assume that both formulas in (2.6) fail to hold. Using
Lemma 2.1, we get

Qn
n

[∣∣βn

(
ân − a(Pn)

)∣∣ ≤ 2
]

≥ EQn
n

[
χ

(
βn

(
ân − a(Pn)

))]
(2.7)

≥ e−2nH(Pn,Qn)−1
(
EP n

n

[
χ

(
βn

(
ân − a(Pn)

))] − 1

2

)

≥ e−2nH(Pn,Qn)−1
(

1 − δ − 1

2

)
≥ 1

4e
e−2nH(Pn,Qn) ≥ 11

4e
δ > δ

by (2.5); recall that δ ≤ 1/4. Furthermore, we have

Qn
n[βn|ân − a(Qn)| ≤ 2] ≥ EQn

n

[
χ

(
βn

(
ân − a(Qn)

))] ≥ 1 − δ(2.8)

by the opposite of the right-hand side of (2.6) and the choice of χ . Recall that
χ : R → [0,1]. The bounds (2.8) and (2.7) imply that the events {βn|ân −a(Qn)| ≤
2} and {βn|ân − a(Pn)| ≤ 2} have a nonempty intersection. This implies the con-
tradiction βn|a(Pn) − a(Qn)| ≤ 4. �
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3. General lower bounds. In this section we prepare the proofs of Theorems
1.1 and 1.2 by providing some general, abstract lower bounds for estimators. Since
we expect these lemmas to be useful also in contexts other than the estimation of
thresholds, we do not assume �, P and a :P �→ a(P ) have the specific form de-
scribed in Section 1. Rather, in this section (�,A) may be any measurable space,
P may be any set of probability measures on (�,A), endowed with a topology,
and a :P → R may be any parameter; only some very general assumptions for the
topology on P and for the parameter a are required in Lemma 3.2 below. The first
lemma in this section is a general statement which plays an essential role in the
proof of Theorem 1.1.

LEMMA 3.1. Take a sequence (βn)n∈N of positive numbers, δ ∈ (0,1/4], and
a nonempty open set U ⊆ P . For all large n ∈ N, assume that there are Pn,Qn ∈
U such that

nH(Pn,Qn) ≤ 1

2
log

1

11δ
and βn|a(Pn) − a(Qn)| > 4(3.1)

hold. Then for all sequences (ân :�n → R)n∈N of estimators, one has

lim inf
n→∞ sup

P∈U
P n[βn|ân − a(P )| > 1] ≥ δ.(3.2)

PROOF. Take χ := 1[−1,1]. By (3.1) and Lemma 2.2, (2.6) holds for all
large n. Thus,

inf
P∈U

P n[βn|ân − a(P )| ≤ 1] < 1 − δ(3.3)

holds for all large n; hence, (3.2) is true. �

The constant 4 on the right-hand side in (3.1) is not optimal. However, improv-
ing it does not improve our main theorems.

The next lemma provides an abstract key ingredient for the proof of Theo-
rem 1.2.

LEMMA 3.2. Let a :P → R be a parameter and (ân :�n → R)n∈N be a se-
quence of estimators. Let P be endowed with a Baire space metrizable topology.
Assume that a :P → R is continuous. Furthermore, assume that for all P ∈ P ,
the total variation distance from P , that is, Q �→ ‖P − Q‖A = supA∈A |P [A] −
Q[A]|, Q ∈ P , is continuous too. Let (βn)n∈N be a sequence of positive numbers,
and take δ ∈ (0,1/4].

Suppose that for all P ∈ P , for all neighborhoods N of P , and for all m ∈ N,
there are n ≥ m and Qn ∈ N such that

βn|a(P ) − a(Qn)| > 4 and nH(P,Qn) ≤ 1
2 | log(11δ)|(3.4)

are valid. Then for all nonempty open sets U ⊆ P , one has

sup
P∈U

lim sup
n→∞

P n[βn|ân − a(P )| > 1] ≥ δ.(3.5)
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PROOF. Let χ : R → [0,1] be a continuous function with χ(x) = 1 for |x| ≤
1, and χ(x) = 0 for |x| ≥ 2. For m,n ∈ N, we set

Pn := {
P ∈ P :EP n

[
χ

(
βn

(
ân − a(P )

))] ≥ 1 − δ
}
, Fm := ⋂

n≥m

Pn.(3.6)

We claim that the map

P → [0,1], P �→ EP n

[
χ

(
βn

(
ân − a(P )

))]
(3.7)

is continuous. To prove this claim, let P ∈ P , and consider a sequence (Qk)k in
P converging to P . Then for all ω ∈ �n, we have

χ
(
βn

(
ân(ω) − a(Qk)

)) k→∞−→ χ
(
βn

(
ân(ω) − a(P )

))
(3.8)

by the continuity of a and of χ . Using Lebesgue’s dominated convergence theo-
rem, this implies

EP n

[
χ

(
βn

(
ân − a(Qk)

))] k→∞−→ EP n

[
χ

(
βn

(
ân − a(P )

))];(3.9)

recall that χ takes values in the unit interval. Furthermore,∣∣EQn
k

[
χ

(
βn

(
ân − a(Qk)

))] − EP n

[
χ

(
βn

(
ân − a(Qk)

))]∣∣
(3.10)

≤ n‖Qk − P‖A
k→∞−→ 0,

since, by our hypothesis, the total variation distance from P is continuous. Com-
bining (3.9) and (3.10), we get

EQn
k

[
χ

(
βn

(
ân − a(Qk)

))] k→∞−→ EP n

[
χ

(
βn

(
ân − a(P )

))]
,(3.11)

which shows that EP n[χ(βn(ân − a(P )))] depends continuously on P . Note that
in the last step we used the fact that the chosen topology on P is metrizable (or, at
least, that sequential continuity on P implies continuity).

The continuity of the map described in (3.7) implies that the sets Pn ⊆ P are
closed; thus, their intersections Fm are closed too.

Next, we show that the sets Fm ⊆ P , m ∈ N, are nowhere dense. To check this,
take P ∈ Fm and a neighborhood N of P in P . By the hypothesis of the lemma,
there exist n ≥ m and Qn ∈ N such that (3.4) holds. Then Lemma 2.2 implies

EP n

[
χ

(
βn

(
ân − a(P )

))]
< 1 − δ or

(3.12)
EQn

n

[
χ

(
βn

(
ân − a(Qn)

))]
< 1 − δ,

that is, P /∈ Pn ⊇ Fm or Qn /∈ Pn ⊇ Fm, and thus, N �⊆ Fm. This shows that
indeed Fm is nowhere dense.

Let U ⊆ P be a nonempty open set. Since P is endowed with a Baire space
topology, we conclude that U is not contained in

⋃
m∈N Fm; so we can take P ∈
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U \ ⋃
m∈N Fm. For this P , we know that P /∈ Pn for infinitely many n ∈ N. Thus,

we get

lim inf
n→∞ EP n

[
χ

(
βn

(
ân − a(P )

))] ≤ 1 − δ.(3.13)

Using

P n[βn|ân − a(P )| > 1] ≥ 1 − EP n

[
χ

(
βn

(
ân − a(P )

))]
,(3.14)

this implies

lim sup
n→∞

P n[βn|ân − a(P )| > 1] ≥ δ,(3.15)

and thus, the claim (3.5) follows. �

4. Lower bounds for errors in threshold estimation. In this section we
prove Theorems 1.1 and 1.2. Thus, let P denote again the concrete space of
probability measures defined in Section 1, endowed with the metric d , defined
in (1.3). Note that (P̃ , d) is a complete metric space. We claim that a :P → [0,1]
is a continuous parameter. Indeed, this is a consequence of the implicit func-
tion theorem applied to the map F : (0,1) × C1([0,1] × {±1}) → R, F(x,f ) :=
f (x,1) − f (x,−1). Theorem 10.2.1 in [5] presents a version of the implicit func-
tion theorem applicable to our situation. The map F is continuously differentiable
with the derivative

DF(x,f ) : (�x,�f )
(4.1)

�→ [D1f (x,1) − D1f (x,−1)]�x + �f (x,1) − �f (x,−1);
thus, the implicit function theorem is applicable for any point (x, f ) for which the
transversality condition D1f (x,1) �= D1f (x,−1) holds. It yields the continuity of
the function a :P → (0,1), implicitly defined by the equation F(a(P ), fP ) = 0.
Furthermore, P is an open subset of the space P̃ . In particular, by Baire’s category
theorem, P is a Baire space.

The following lemma contains the basic entropy estimate for perturbed den-
sities. Here is the idea. A given probability density fP is slightly modified by a
perturbation of order O(ε) in a neighborhood of size O(ε) of the transversal in-
tersection point a(P ). Let Q denote the probability measure corresponding to the
modified density fQ; then we show that the entropy H(P,Q) has roughly the or-
der O(ε3), but the parameter a(Q) deviates from a(P ) on a scale of order ε. The
cube of ε arising in the entropy bound is the key to derive the cube root asymptotic
lower bounds in this paper.

LEMMA 4.1. Let P ∈ P , and let U ⊆ P be an open neighborhood of P . Then
there is c1 = c1(P,U) > 0 such that for every δ ∈ (0,1/4] and for all large n [say
for n ≥ n0(P,U, δ)], there is Qn ∈ U such that

nH(P,Qn) ≤ 1
2 | log(11δ)| and

n1/3

c1| log(11δ)|1/3 |a(P ) − a(Qn)| > 4.(4.2)
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PROOF. Choose a ball N ⊆ U (with respect to the metric d) centered at P .
Let r denote the radius of N . Let c1 > 0 be small enough (to be specified below).
Take δ ∈ (0,1/4]. We abbreviate

βn := n1/3

c1| log(11δ)|1/3 > 0.(4.3)

Take a fixed, compactly supported φ ∈ C1(R) with φ(0) = 1, 0 ≤ φ ≤ 1, and
‖φ′‖∞‖fP ‖∞ < r . For ε > 0, we set


ε(x) := εφ

(
x − a(P )

ε

)
.(4.4)

Recall the definitions of f +
P and f −

P in (1.1). We set

ρ+
P := f +

P

f +
P + f −

P

, ρ−
P := f −

P

f +
P + f −

P

;(4.5)

at least in some compact neighborhood VP of a(P ), these functions are well de-
fined with values in [1/3,2/3]. For all small ε > 0, 
ε is supported in such a
neighborhood VP . We set

εn := c4| log(11δ)|1/3n−1/3,(4.6)

where c4 = c4(P,φ) := (‖fP ‖∞‖φ‖2
2)

−1/3. Let Qn be defined by its density fQn ,
where

f ±
Qn

:= (1 + 
εnρ
∓
P )f ±

P ,(4.7)

fQn(x, y) := f +
Qn

(x)1{y = 1} + f −
Qn

(x)1{y = −1}.(4.8)

Figure 1 illustrates these definitions.
Here 
εnρ

±
P is to be interpreted as 0 outside the support of 
εn . Note that for

all large n, f ±
Qn

is well defined. As a consequence of the assumptions (1.4), one

sees that f +
P (a(P )) = f −

P (a(P )) > 0. For large n, εn is small; thus f ±
Qn

is nonneg-
ative and fQn is a probability density. Furthermore, using ‖φ′‖∞‖fP ‖∞ < r and
|ρ∓

P f ±
P | ≤ ‖fP ‖∞, one sees that d(Qn,P ) < r and, thus, Qn ∈ N ⊆ U holds for

all large n. We calculate, for (x, y) ∈ �,

dQn

dP
(x, y) = 1 + (

1{y = 1}ρ−
P (x) − 1{y = −1}ρ+

P (x)
)

εn(x).(4.9)

For |t − 1| ≤ 1/2, one has − log t + t − 1 ≤ |t − 1|2. So

H(P,Qn) = EP

[
− log

dQn

dP
+ dQn

dP
− 1

]
≤ EP

[(
dQn

dP
− 1

)2]
(4.10)

for |dQn

dP
− 1| ≤ 1/2, which holds for all large n. Note that |
εn | ≤ εn. For all large

n, ρ±
P ∈ [1/3,2/3] holds on the support of 
εn . Then one has

1
3 ≤ |1{y = 1}ρ−

P (x) − 1{y = −1}ρ+
P (x)| ≤ 2

3(4.11)
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FIG. 1. Perturbation of the two densities.

on the support of 
εn , and therefore,
(

dQn

dP
− 1

)2

≤
(

2

3

)2


2
εn

(X).(4.12)

We get the following O(ε3
n) estimate for the relative entropy:

nH(P,Qn) ≤ 4
9nEP [
2

εn
(X)] ≤ 4

9n‖fP ‖∞‖
εn‖2
2

(4.13)
≤ 1

2n‖fP ‖∞‖φ‖2
2ε

3
n ≤ 1

2 | log(11δ)|
by the choice (4.6) of εn.

[As a side remark, note that the estimate (4.13) relies on our choice to take the
Lebesgue measure λ[0,1] in the reference measure. In some cases with arbitrary
reference measures it would break down.]

On the other hand, defining ρ±
Qn

in analogy to (4.5), from (4.7) and using f +
Qn

+
f −

Qn
= f +

P + f −
P , it follows that

ρ±
Qn

:= (1 + 
εnρ
∓
P )ρ±

P .(4.14)

Using ρ−
P (a(P )) = ρ+

P (a(P )) = ρ+
Qn

(a(Qn)) = 1/2 and (4.14), we get

εn

4
= 1

4
|
εn(a(P ))| = |
εn(a(P ))ρ−

P (a(P ))ρ+
P (a(P ))|

= |ρ+
P (a(P )) − ρ+

Qn
(a(P ))| = |ρ+

Qn
(a(Qn)) − ρ+

Qn
(a(P ))|(4.15)

≤ ‖(ρ+
Qn

)′‖∞,VP
|a(Qn) − a(P )|.
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Taking the derivative of (4.14) and taking a supremum over VP , we see that
‖(ρ+

Qn
)′‖∞,VP

is bounded by a constant c5(P,φ) > 0 for all large n; note that
‖
′

εn
‖∞ = ‖φ′‖∞ does not depend on n. We obtain

βn|a(Qn) − a(P )| ≥ βn

εn

4c5(P )
(4.16)

= n1/3

c1| log(11δ)|1/3

c4| log(11δ)|1/3n−1/3

4c5(P,φ)
> 4

when we choose

0 < c1(P,U) <
c4(P,φ)

16c5(P,φ)
;(4.17)

recall the choices (4.3) and (4.6) of βn and εn. The statements (4.16) and (4.13)
together are just the claim (4.2). �

PROOF OF THEOREM 1.1. Take a fixed P ∈ U, and take c1(U) =
c1(P,U) > 0 from Lemma 4.1. Then Lemma 4.1 guarantees that the hypothe-
sis (3.1) of Lemma 3.1 holds with Pn = P , where βn is again given by (4.3). Thus
Lemma 3.1 yields the claim (1.5). �

PROOF OF THEOREM 1.2. The class P with the metric d is indeed a Baire
space, and a :P → (0,1) is continuous. Note that the total variation distance is
continuous with respect to d .

We check that Lemma 3.2 is applicable with δ = 1/4. Let P ∈ P , and let N be
a neighborhood of P in P . We apply Lemma 4.1 to obtain a sequence (Qn)n in P
such that (4.2) holds. Hence, we get, for all large n [say, for n ≥ c6(P,U)],

βn|a(P ) − a(Qn)| ≥ n1/3

c1(P,U)| log(11δ)|1/3 |a(P ) − a(Qn)| > 4(4.18)

by n−1/3βn → ∞. Together with the entropy bound in (4.2), this shows that
Lemma 3.2 is indeed applicable, and it yields the claim (1.6). �

Note that this proof would break down if we had taken βn on the critical scale
βn = const ·n1/3. Indeed, the constant c1(P,U) depends on U (and it really di-
verges as U gets smaller), but βn must not depend on the choice of U. This break-
down has to occur, since Theorem 1.3 shows that the claim (1.6) of Theorem 1.2
cannot hold any more on the critical scale βn = const ·n1/3.

5. Optimal estimators for thresholds. In this section we prove Theorem 1.3.
The optimal estimators, whose errors asymptotically meet the border permitted
by the lower bounds, are constructed by a two-step procedure. In the first step
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(Lemma 5.1 below) we use the empirical risk minimizer to obtain a starting es-
timator, which yields error terms roughly on the scale n−1/3. The second step
(Lemma 5.2 below) constructs a refined family of estimators, based on a starting
approximation a0. Let (Xi, Yi) :�n → � again denote the canonical projections.

LEMMA 5.1. There is a sequence of estimators ân :�n → [0,1], n ∈ N, such
that, for all P ∈ P , there is a neighborhood N (P ) of P in P , such that

lim
L→∞ sup

Q∈N (P )

lim
n→∞Qn[|ân − a(Q)| ≥ Ln−1/3] = 0.(5.1)

PROOF. Consider the empirical risk minimizers ân, n ∈ N. We abbreviate
f �

Q := f +
Q + f −

Q . Take P ∈ P and

N (P ) := {Q ∈ P : 2|(ρ+
Q)′(a(Q))| > |(ρ+

P )′(a(P ))|,
(5.2)

2f �
Q (a(Q)) > f �

P (a(P ))},
where ρ+

Q is again defined as in (4.5). By the transversality of the intersection

point a(Q) of f +
Q and f −

Q , the maps Q �→ (ρ+
Q)′(a(Q)) and Q �→ f �

Q (a(Q)),

Q ∈ N (P ), are continuous. Furthermore, f �
P (a(P )) > 0 and |(ρ+

P )′(a(P ))| > 0
hold. Using these facts, one sees that N (P ) is a neighborhood of P .

Take Q ∈ N (P ). By Theorem 2.2 in [13], we know that

n1/3(ân − a(Q))
L→ [

(ρ+
Q)′(a(Q))

√
f �

Q (a(Q))
]−2/3

Z(5.3)

as n → ∞ for some continuous random variable Z not depending on Q (with
respect to some probability measure P). We set

α := inf
Q∈N (P )

[
(ρ+

Q)′(a(Q))
√

f �
Q (a(Q))

]2/3
.(5.4)

Note that α > 0 by the choice (5.2) of N (P ). We now obtain the claim (5.1):

sup
Q∈N (P )

lim
n→∞Q[|ân − a(Q)| ≥ Ln−1/3]

= sup
Q∈N (P )

P
[
Z ≥ [

(ρ+
Q)′(a(Q))

√
f �

Q (a(Q))
]2/3

L
]

(5.5)

≤ P[Z ≥ αL] L→∞−→ 0. �

The next lemma is used to construct the refined estimators in Theorem 1.3.
Here is the idea. Given a starting approximation a0 for a(Q) with an error on the
scale n−1/3, consider all data points in a neighborhood of size Ln−1/3, where L

is large, but fixed. Then construct a regression line through the data points in this
neighborhood, and take the intersection of this regression line with the x-axis as
the refined estimator.
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LEMMA 5.2. There is a family of estimators (ân,L,a0 :�n → R)n∈N,L>0,a0∈(0,1)

with the following property. For all P ∈ P , there is a neighborhood N ⊆ P of P ,
such that, for all T > 0, one has

lim
L→∞ sup

Q∈N
lim sup
n→∞

sup
a0∈(0,1)

|a0−a(Q)|≤Ln−1/3

Qn[n1/3|ân,L,a0 − a(Q)| > T ] = 0.(5.6)

PROOF. Given n ∈ N, L > 0, and a0 ∈ (0,1), we introduce the abbreviations
X̃i := Xi − a0, M := Ln−1/3 and IM := [−M,M], and we define the random set

J := {j : 1 ≤ j ≤ n, X̃j ∈ IM}.(5.7)

We define the estimator ân,L,a0 as follows: Consider the regression line � (equation
y = b̂1x + b̂2) through the points (X̃j , Yj ), j ∈ J , provided it is well defined, that
is, provided there are at least two different X̃j1 �= X̃j2 , j1, j2 ∈ J . If b̂1 �= 0, we
set

ân,L,a0 := a0 − b̂2

b̂1
.(5.8)

Geometrically this means that ân,L,a0 is the intersection of the real axis with
the regression line through the points (Xj ,Yj ), where only the points with
|Xj − a0| ≤ Ln−1/3 are taken, whenever this intersection is well defined. If the
regression line � is not well defined, or if b̂1 = 0, we set ân,L,a0 = a0, just to have
a definite value in this case too.

We abbreviate, for Q ∈ P ,

sQ := f �
Q (a(Q)), tQ := (f +

Q )′(a(Q)) − (f −
Q )′(a(Q)),(5.9)

where again f �
Q := f +

Q + f −
Q . Let P ∈ P , and take the following neighborhood

of P :

N :=
{
Q ∈ P :

|tQ| > |tP |/2, sQ < 2sP , d(P,Q) < 1,

a(Q) > a(P )/2,1 − a(Q) >
(
1 − a(P )

)
/2

}
.(5.10)

Take T > 0 and δ > 0. Let L be large enough [more specifically, so large that

2L ≥ T , L3 ≥ S2 := 5c7

δ
,

S√
L

<
T

5
(5.11)

hold with some positive constants c7 = c7(N ) and c8 = c8(N ), to be specified
below]. We claim that, for all Q ∈ N , one has

lim sup
n→∞

sup
a0∈(0,1)

|a0−a(Q)|≤Ln−1/3

Qn[n1/3|ân,L,a0 − a(Q)| > T ] ≤ δ.(5.12)
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The claim (5.6) of the lemma then follows immediately from the statement (5.12).
Here is a sketch of the proof of (5.12). For a complete proof; see [12].
To prove (5.12), let Q ∈ N . For every n ∈ N and for every a0 ∈ (0,1) with

|a0 − a(Q)| ≤ Ln−1/3,(5.13)

we are going to define an event B = B(Q,n, a0, S,L) ⊆ �n with the property

Qn[B(Q,n, a0, S,L)] ≥ 1 − δ.(5.14)

[This is done in (5.22) below.] We then show that, for all large n [say, for n ≥
n0(Q,N , S,L), but uniformly in the choice of a0], one has

B(Q,n, a0, S,L) ⊆ {n1/3|ân,L,a0 − a(Q)| ≤ T }.(5.15)

Once we have proven (5.14) and (5.15), the claim (5.12) is an immediate conse-
quence.

Take Q ∈ N and a0 ∈ (0,1) with the constraint (5.13). It is convenient to shift
quantities by a0. We set

ã := ã(Q) = a(Q) − a0,(5.16)

f̃ ±
Q (x) := f ±

Q (x + a0), f̃ �
Q (x) := f �

Q (x + a0).(5.17)

In particular, note that |ã| ≤ M = Ln−1/3 and that for all large n [uniformly in a0
and Q ∈ N with the constraint (5.13)], f̃ ±

Q is defined at least on IM .

The coefficients b̂1 and b̂2 of the regression line � are determined by the linear
system Ab̂ = c, where

A :=




∑
j∈J

X̃j
2 ∑

j∈J

X̃j

∑
j∈J

X̃j |J |


 ,

b̂ :=
(

b̂1

b̂2

)
,(5.18)

c :=




∑
j∈J

X̃jYj

∑
j∈J

Yj


 .

We introduce the (normalized) difference of the coefficient matrix from its ex-
pected value, (

M5/2�11 M3/2�12

M3/2�21 M1/2�22

)
= 1√

n

(
A − EQn(A)

)
,(5.19)

(
M3/2�1

M1/2�2

)
= 1√

n
(c − EQn[c]).(5.20)
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Our reason to normalize the �ij and �i in this way is the following bound on the
variances (to be read element-wise):

VarQn

[(
�11 �12

�21 �22

)]
≤ EQn

[
1{X̃1 ∈ IM}

(
X̃4

1/M
5 X̃2

1/M
3

X̃2
1/M

3 1/M

)]

≤
(

c7 c7

c7 c7

)
,(5.21)

VarQn

[(
�1

�2

)]
≤ EQn

[
1{X̃1 ∈ IM}

(
X̃2

1Y
2
1 /M3

Y 2
1 /M

)]
≤

(
c7

c7

)
,

with some constant c7 = c7(N ) > 0. We have used the fact that the density fQ of
(Xi, Yi) is uniformly bounded for Q ∈ N .

Here is the definition of the event B:

B(Q,n, a0, S,L) := {|�i,j | ≤ S, |�i | ≤ S (i, j ∈ {1,2})}.(5.22)

Chebyshev’s inequality, (5.21) and the choice (5.11) of S imply the claim (5.14),

Qn[B(Q,n, a0, S,L)c] ≤ 5c7

S2 = δ.(5.23)

The factor 5 arises since there are five random variables involved (recall �12 =
�21).

In the rest of this proof we verify the claim (5.15) for all large n (uniformly in
a0). So assume that the event B(Q,n, a0, S,L) holds.

The system Ab̂ = c is equivalent to


∫
IM

x2f̃ �
Q (x) dx + M5/2�11√

n

∫
IM

xf̃ �
Q (x) dx + M3/2�12√

n∫
IM

xf̃ �
Q (x) dx + M3/2�21√

n

∫
IM

f̃ �
Q (x) dx + M1/2�22√

n


 b̂

(5.24)

= n




∫
IM

x
(
f̃ +

Q (x) − f̃ −
Q (x)

)
dx + M3/2�1√

n∫
IM

(
f̃ +

Q (x) − f̃ −
Q (x)

)
dx + M1/2�2√

n


 .

Let us introduce some notation used in the Taylor approximations below. The vari-
ables ξj = ξj (x, ã,Q,a0) denote some values between x and ã. The variables εj

denote error terms which are bounded by N -dependent constants |εj | ≤ const(N ),
and δj denote error terms which are bounded by |δj | ≤ const ·σ(Q,2M), where

σ(Q, r) := max
y=±1

sup
|x1−x2|≤r

|∂1fQ(x1, y) − ∂1fQ(x2, y)| r→0−→ 0(5.25)
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denotes the modulus of continuity of ∂1fQ; recall that fQ ∈ C1(�). Recall that
|ã| ≤ M . Let us approximate the integrals in (5.24) by Taylor’s formula,

∫
IM

x2f̃ �
Q (x) dx =

∫ M

−M
x2(

sQ + (x − ã)(f̃ �
Q )′(ξ1)

)
dx

(5.26)
= 2

3M3sQ + ε1M
4,∫

IM

xf̃ �
Q (x) dx =

∫ M

−M
x
(
sQ + (x − ã)(f̃ �

Q )′(ξ2)
)
dx = ε2M

3,(5.27)

∫
IM

f̃ �
Q (x) dx =

∫ M

−M

(
sQ + (x − ã)(f̃ �

Q )′(ξ3)
)
dx

(5.28)
= 2MsQ + ε3M

2,∫
IM

x
(
f̃ +

Q (x) − f̃ −
Q (x)

)
dx =

∫ M

−M
x(x − ã)

(
(f̃ +

Q )′(ξ4) − (f̃ −
Q )′(ξ4)

)
dx

(5.29)
= 2

3M3tQ + δ1M
3 = ε4M

3,∫
IM

(
f̃ +

Q (x) − f̃ −
Q (x)

)
dx =

∫ M

−M
(x − ã)

(
(f̃ +

Q )′(ξ5) − (f̃ −
Q )′(ξ5)

)
dx

(5.30)
= −2ãMtQ + δ2M

2 = ε5M
2.

We rewrite the system (5.24) as




2

3
M3sQ + ε1M

4 + M5/2�11√
n

ε2M
3 + M3/2�12√

n

ε2M
3 + M3/2�21√

n
2MsQ + ε3M

2 + M1/2�22√
n


 b̂

=




2

3
M3tQ + δ1M

3 + M3/2�1√
n

−2ãMtQ + δ2M
2 + M1/2�2√

n


(5.31)

=




ε4M
3 + M3/2�1√

n

ε5M
2 + M1/2�2√

n


 ;

both forms of the right-hand side are useful below. Dividing the first row in
(5.31) by (2/3)M3sQ and the second row by 2MsQ, we get the normalized sys-
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tem 


1 + M

[
3

2

ε1

sQ
+ 3

2sQ

�11

L3/2

]
3

2

ε2

sQ
+ 3

2sQ

�12

L3/2

M2
[
ε6 + 1

2sQ

�21

L3/2

]
1 + M

[
ε7M + 1

2sQ

�22

L3/2

]

 b̂

= tQ

sQ




1 + 3

2

δ1

tQ
+ 3

2tQ

�1

L3/2

−ã + M

(
δ2

2tQ
+ 1

2tQ

�2

L3/2

)

(5.32)

= tQ

sQ


 ε8 + ε9

�1

L3/2

M

[
ε10 + ε11

�2

L3/2

]

 .

Heuristically, one should view (5.32) as a perturbation of the system(
1 0

0 1

)(
b1

b2

)
= tQ

sQ

(
1

−ã

)
,(5.33)

for which one knows −b2/b1 = ã.
By (5.11) and the definition (5.22) of the event B , we know, for i, j ∈ {1,2},

|�i,j |
L3/2 ,

|�i |
L3/2 ≤ S

L3/2 ≤ 1 and | 3
2tQ

�i

L3/2 | ≤ c8
S

L3/2 ≤ T
5L

, when we choose the constant

in (5.11) to be c8 = c8(N ) = supQ∈N |3/(2tQ)| ≤ 3|tP |−1 < ∞; recall the defini-
tion (5.10) of N , and recall that we assume the event B holds.

For M ≤ 1, we rewrite (5.32) in the form

(
1 + Mε12 ε13

M2ε14 1 + Mε15

)
b̂ = tQ

sQ




1 + ε16δ1 + ε17
T

L

−ã + M

[
ε18δ2 + ε19

T

L

]



(5.34)

= tQ

sQ

(
ε20

Mε21

)
,

where |ε19| < 1/5 and |ε17| ≤ 1/5.
Let us consider the asymptotics of b̂2/b̂1 as n → ∞, that is, as M = Ln−1/3→ 0.

For all large n (uniformly in a0), the system (5.34) is nonsingular; recall that the
error terms εj are bounded uniformly in a0. We get, for all large n,

b̂2

b̂1
=

∣∣∣∣ 1 + Mε12 ε20

M2ε14 −ã + M[ε18δ2 + ε19T/L]
∣∣∣∣∣∣∣∣ 1 + ε16δ1 + ε17T/L ε13

Mε21 1 + Mε15

∣∣∣∣
.(5.35)

Let d2 and d1 denote the determinants in the numerator and denominator of the
right-hand side in (5.35), respectively. Recall that the error terms δ2, δ1 converge
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to 0 as n → ∞, uniformly in a0; see (5.25). Using |ε19|, |ε17| ≤ 1/5 < 1/4, we get,
for all large n (uniformly in a0),

| −ã − d2| ≤ MT

4L
, |1 − d1| ≤ T

4L
,

∣∣∣∣1 − 1

d1

∣∣∣∣ ≤ T

2L
.(5.36)

We have used T ≤ 2L in the last step.
Using the definition (5.8) of ân,L,a0 and (5.35), we conclude, still for large n

(uniformly in a0),

|ân,L,a0 − a(Q)| =
∣∣∣∣ −ã − b̂2

b̂1

∣∣∣∣ =
∣∣∣∣ −ã − d2

d1

∣∣∣∣
(5.37)

≤ |ã| T

2L
+ MT

4L
+ MT

4L

T

2L
≤ MT

L
= T n−1/3;

recall that |ã| ≤ M and T ≤ 2L. Thus, the claim (5.15) holds for all large n, uni-
formly in a0. �

We now use Lemma 5.1 to obtain the starting approximation a0 required by
Lemma 5.2.

PROOF OF THEOREM 1.3. Let us abbreviate Zj := (Xj ,Yj ). Let n ∈ N,
n ≥ 2, and L > 0. We construct the estimator ân,L by a two-step procedure.
We split the sample Z1, . . . ,Zn into two halves Z1, . . . ,Zm and Zm+1, . . . ,Z2m,
where we abbreviate m = m(n) := �n/2�. (For odd n, we drop one data point
at the end.) We then use the first half of the data to get a rough estimate âm =
âm(Z1, . . . ,Zm) by Lemma 5.1. Using this as a starting estimate, we refine it by
Lemma 5.2, applied to the second half of the data

ân,L := âm,L,âm
(Zm+1, . . . ,Z2m).(5.38)

It is important to split the data into two disjoint pieces, since then âm is independent
of (Zm+1, . . . ,Z2m); thus, we have good control of the distribution of

âm,L,âm
(Zm+1, . . . ,Z2m)

conditioned on âm(Z1, . . . ,Zm). By a slight abuse of notation, we abbreviate

âm,L,a0 := âm,L,a0(Zm+1, . . . ,Z2m).

Let P ∈ P , and let N be the intersection of the two neighborhoods of P that
were constructed in Lemmas 5.1 and 5.2. Let T > 0 and δ > 0. By the same two
lemmas, we know, for all large L,

sup
Q∈N (P )

lim
n→∞Qn[A(Q,n,L)c] <

δ

2
(5.39)
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with the events

A(Q,n,L) := {|âm − a(Q)| ≤ Lm−1/3}(5.40)

and

sup
Q∈N

lim sup
n→∞

sup
a0∈(0,1)

|a0−a(Q)|≤Lm−1/3

Qn

[
m1/3|âm,L,a0 − a(Q)| > T

2

]
<

δ

2
.(5.41)

Note that, for all large n [say, for n ≥ n0(Q,L)], we have âm ∈ (0,1) on the event
A(Q,n,L). Let Q ∈ N , and let n ∈ N be large enough. Using n1/3 ≤ 2m1/3 in the
first step, we get,

Qn[n1/3|ân,L − a(Q)| > T ]
≤ Qn

[
m1/3|ân,L − a(Q)| > T

2

]

≤ EQn

[
Qn

[
m1/3|ân,L − a(Q)| > T

2

∣∣∣âm

]
1(A(Q,n,L))

]
(5.42)

+ Qn[A(Q,n,L)c]
≤ EQn

[
Qn

[
m1/3|âm,L,âm

− a(Q)| > T

2

∣∣∣âm

]
1(A(Q,n,L))

]
+ δ

2
.

Using the independence structure and (5.41), we know for almost all a0 with |a0 −
a(Q)| ≤ Lm−1/3 (almost all with respect to the law of âm)

Qn

[
m1/3|âm,L,âm

− a(Q)| > T

2

∣∣∣âm = a0

]
(5.43)

= Qn

[
m1/3|âm,L,a0 − a(Q)| > T

2

]
≤ δ

2
.

Combining (5.42) and (5.43), we conclude Qn[n1/3|ân,L − a(Q)| > T ] ≤ δ. This
finishes the proof of the claim (1.7). �

Let us finally describe a simple counterexample, showing that the lim supn→∞
in the claim (1.6) of Theorem 1.2 cannot be replaced by lim infn→∞.

Let us take ân to be constant estimators in the following way. For all k ∈ N0
and n ∈ [2k,2k+1[∩N, set ân := (n − 2k)2−k . Then, whatever the value a(P ) ∈
[0,1] is, we have the following: For all k ∈ N0, there is n ∈ [2k,2k+1[∩N with
|ân − a(P )| ≤ 2−k ≤ 2/n. But then

lim inf
n→∞ P n[βn|ân − a(P )| > 1] = 0(5.44)

whenever βn = o(n) as n → ∞.
Intuitively speaking, the counterexample uses the following idea. If you have

many nonrunning clocks, one for every minute of the day, all showing different
times, then one of them will show the correct time, up to 1 minute.
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6. Asymptotic bounds for the classification error. In this section we present
the proofs of Corollaries 1.4, 1.5 and 1.6. The proofs depend on the following
lemma, which is based on a Taylor expansion.

LEMMA 6.1. For all Q ∈ P , there is a neighborhood U of Q in P , and there
are positive constants c9 = c9(U), c3 = c3(U) and c10 = c10(U), such that, for
all P ∈ U and for all α ∈ R

min
{
c9, c3

(
a(P ) − α

)2} ≤ LP (α) − LP (a(P )) ≤ c10
(
a(P ) − α

)2
.(6.1)

PROOF. For P ∈ P , we set mP := f +
P − f −

P . Note that mP (a(P )) = 0. Fur-
thermore, for all α ∈ (0,1),

LP (α) − LP (a(P )) =
∫ α

a(P )
mP (x) dx =

∫ α

a(P )
m′

P (x)(α − x)dx.(6.2)

Since m′
P (in the ‖ · ‖∞-norm) and a(P ) depend continuously on P , the fact

m′
Q(a(Q)) > 0 implies the following for some neighborhood U of Q and some

ε = ε(U) > 0. For all P ∈ U, one has [a(P ) − ε, a(P ) + ε] ⊂ (0,1),

c3 := 1
2 inf

P∈U
inf

x∈[a(P )−ε,a(P )+ε]m
′
P (x) > 0 and

(6.3)
c10 := 1

2 sup
P∈U

‖m′
P ‖∞ < ∞.

Thus, we get the upper bound in (6.1). Moreover, for all α ∈ (0,1) and P ∈ U
with |α − a(P )| ≤ ε, we have c3(a(P ) − α)2 ≤ LP (α) − LP (a(P )). Since
sign(mP (x)) = sign(x − a(P )) holds for all x ∈ [0,1], we have LP (α) ≥
LP (a(P ) − ε) for α < a(P ) − ε, and LP (α) ≥ LP (a(P ) + ε) for α > a(P ) + ε.
Hence, we get the lower bound in (6.1) with c9 := c3ε

2. �

PROOF OF COROLLARIES 1.4 AND 1.5. Consider an arbitrary sequence γn

with γn
n→∞−→ ∞. Then, it follows from the lower bound in (6.1) that, for c3T

2 <

c9γ
2
n , that is, for all large n, we have

{γn|ân − a(P )| > T } ⊆ {γ 2
n

(
LP (ân) − LP (a(P ))

)
> c3T

2}(6.4)

for all P ∈ P . Take any U and set T := (U/c3)
1/2. In view of (6.4),

lim inf
n→∞ sup

P∈U
P n[

γ 2
n

(
LP (ân) − LP (a(P ))

)
> U

]
≥ lim inf

n→∞ sup
P∈U

P n[γn|ân − a(P )| > T ].

Now, Corollary 1.4 follows from Theorem 1.1, taking U := S, c2 := c2
1c3 and

γn := n1/3.
Similarly, Corollary 1.5 is a consequence of Theorem 1.2, by taking U := c3

and γn := βn. �
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PROOF OF COROLLARY 1.6. From the upper bound in (6.1), it follows that{
n2/3(

LP (ân) − LP (a(P ))
)
> T

} ⊆ {
n1/3|ân − a(P )| > √

T/c10
}
.(6.5)

Now, we have

lim
L→∞ sup

Q∈N
lim sup
n→∞

Qn[
n2/3(

LQ(ân) − LQ(a(Q))
)
> T

]
(6.6)

≤ lim
L→∞ sup

Q∈N
lim sup
n→∞

Qn[
n1/3|ân − a(P )| > √

T/c10
] = 0,

where we have used the claim (1.7) of Theorem 1.3 in the last step. �

7. General theory for higher dimensions. In this section we explain briefly
how one can generalize our theory to higher dimensions. The full discussion of
the generalization is beyond the scope of this paper. Consider a statistical model
P , that is, a class of probability measures over a measurable space (�,A). As an
example, one could think of the law of a sample drawn according to two unknown
smooth densities over a higher dimensional space, intersecting each other transver-
sally in a hypersurface. Consider another measurable space (H ,B(H)) and a loss
function

L :P × H → R, (P,h) �→ LP (h).(7.1)

Assume that, for each P ∈ P , there exists a minimizer hP ∈ H , that is,

LP (hP ) ≤ LP (h) for all h ∈ H .(7.2)

Set �P (h) := LP (h) − LP (hP ). For γ > 0, set �
γ
P (h) := min{γ,�P (h)}. The

following lemma generalizes Lemma 2.2.

LEMMA 7.1. Let P,Q ∈ P and γ > 0 such that �P (h) + �Q(h) ≥ γ,

∀h ∈ H . Then for any δ ∈ (0,1/2) and for any estimator ĥn :�n → H , at least
one of the following two statements holds:

EP n(�
γ
P (ĥn)) ≥ δγ(7.3)

or

EQn(�
γ
Q(ĥn)) ≥ (1

2 − δ
)
γ exp

(−2nH(P,Q) − 1
)
.(7.4)

PROOF. Note that �
γ
P and �

γ
Q take values in [0, γ ]. It is easily seen that

�
γ
P (h) + �

γ
Q(h) ≥ γ , for all h ∈ H . Hence, EP n(�

γ
P (ĥn) + �

γ
Q(ĥn)) ≥ γ, and

for any δ ∈ (0,1/2), we have EP n(�
γ
P (ĥn)) ≥ δγ or EP n(�

γ
Q(ĥn)) ≥ (1 − δ)γ .

By Lemma 2.1, we know that

1

γ
EQn(�

γ
Q(ĥn)) ≥

(
1

γ
EP n(�

γ
Q(ĥn)) − 1

2

)
exp

(−2nH(P,Q) − 1
)

(7.5)

= 1

γ

(
EP n(�

γ
Q(ĥn)) − γ

2

)
exp

(−2nH(P,Q) − 1
)
.
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So, if EP n(�
γ
Q(ĥn)) ≥ (1 − δ)γ , then

EQn(�
γ
Q(ĥn)) ≥

(
(1 − δ)γ − γ

2

)
exp

(−2nH(P,Q) − 1
)

(7.6)
= (1/2 − δ)γ exp

(−2nH(P,Q) − 1
)
. �

In a higher dimensional setup, beyond the scope of this paper, Lemma 7.1 can
be used as a replacement for Lemma 2.2. The assumption βn|a(P ) − a(Qn)| > 4
then becomes infh(�

γn

P (h) + �
γn

Qn
(h)) ≥ γn, where γn depends on the problem.

The lower bounds are obtained for the probability of �
γn

P (ĥn) being large, where
ĥn is an estimator.
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