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GENERALIZED BAYES MINIMAX ESTIMATORS OF THE
MULTIVARIATE NORMAL MEAN WITH UNKNOWN
COVARIANCE MATRIX

By P1-ErH LIN! AND HUI-LIANG TSAI
The Florida State University

Let X be a p-variate (p = 3) vector normally distributed with mean 8
and covariance matrix 3, positive definite but unknown. Let 4bea p x p
Wishart matrix with parameters (n, ¥), independent of X. To estimate 6
relative to quadratic loss function (5 — 0)’2—1(5 — @), we obtain a family
of minimax estimators (X, 4) based on X and 4 through X and X’4-1X.
It is shown that there are minimax estimators of the form 3(X, 4) which
are also generalized Bayes. A special case where X = ¢/ is also considered.

1. Introduction and summary. Let X be a p-variate random vector normally
distributed with mean @ and covariance matrix X, positive definite but unknown.
Let 4 be a p X p Wishart random matrix with parameters (n, Z), n > p — 3,
and is independent of X. Based on X and A, we estimate 8 by (X, A4) relative
to the quadratic loss function
(1.1) L3(X, A); 6, Z) = (3(X, 4) — 8YZ-13(X, A) — 6) .

In this paper we obtain a family of minimax estimators for p > 3. We also
produce a class of prior distributions for the parameters @ and X, from which a
family of generalized Bayes minimax estimators is derived for p > 3.

Recently, Baranchik [1] has obtained a family of minimax estimators with the
covariance matrix ¢/ and Strawderman [6] the Bayes minimax estimators for
the case of known covariance matrix with p > 5. We show how their results
may be extended to include the case of unknown X and also, in Section 4, to the
case where X = ¢*B, B being a known positive definite matrix.

2. A family of minimax estimators. James and Stein [5] have obtained a minimax
estimator [1 — ¢/(X'47'X)]X, where ¢ = (p — 2)/(n — p + 3). Let ¢ be a func-
tion of X'4~'X satisfying certain conditions, we derive a family of minimax
estimators.

THEOREM 2.1. For p = 3, an estimator of the form
2.1) X, 4) =[1 — r(y)yIX, where y = X'4A7'X,
is a minimax estimator of 8, relative to the loss function (1.1), if r(y) is a nonnegative,
non-decreasing function of y less than or equal to 2(p — 2)/(n — p + 3).

Proor. Observe that the conditional distribution of X’4~'X given X is that of
X'X/S, where S is chi-square distributed with n — p + 1 degrees of freedom and
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is independent of X (see e.g. Wijsman [9]). The risk function of 3(X, A) is given
by

E{{[1 — r()yX — 0YZ7{[1 — r(y)/y]X — 6}]6, 2}
(2.2) = E({[1 — rO)yX — 0*F{[1 — r())y]X — 6+}| 6%, 1}

= E{{[1 — r(X'X/S)/(X'X/S)]X — 0*}
X A1 — rX’X/8)/(X'X[S)X — 6*}| 6%, I},

where 6* = [(6'2-'0)}, 0, - - -, 0]. The first equality is obtained by making the
transformation X — PDX, where D is a p X p nonsingular matrix such that
DXID’ =T and Pisa p X p orthogonal matrix with its first row proportional to
D@. The final expression of (2.2) is less than or equal to p, by an application
of Baranchik’s [1] result where n is replaced by n — p + 1. Since as is well
known, relative to the loss function (1.1), X is minimax with constant risk p, the
conclusion follows.

3. Generalized Bayes minimax estimators. A class of generalized prior distri-
butions 7,(8, Z~') of # and X, conditional on 2 is given by the densities

73(0, Z7) = [0 Z7) - 9(Z7)

where
f1(0]31) = [_2_}”@-4 exp {__‘__ 0'2—10} ,  0<asgl,
27(1 — 2) 2(1 — 2) =
and
3.1) g(ZY) o |Z)P, —oo < v < n, van integer.

(Note that the prior (3.1) was considered by Geisser and Cornfield [4] for —c0 <
v < n, and it was used by Tiao and Zeller [7] and Geisser [3] for v = p + 1.
Villegas [8] also gave a fiducial argument in support of this prior.) Since
E@0|X, 4, Z71, 2) does not depend on X%, it readily follows that

E@|X, 4,2) = (1 — )X.
If, in addition, we assume 2 has density
(3.2) h(R)oci—e, —o<a<ip+1,
it follows that the generalized Bayes estimator with respect to the generalized
prior with density
(3.3) (2, 0, Z7Y) = (0, Z7Y) - h(2),
relative to the loss in (1.1), is 8(X, 4) = [1 — E(4|X, 4)]X. Observe that
E(2|X, A) is a function of y = X’4-'X alone, say s(y). In fact, if y = X'47'X,
s‘l) 25p—a+1(1 + ly)—i(n—v+p+2) dA

(3.4) EQA|X, 4) =
Sé Z}p—a(l + Zy)—i(n—v+p+2) dl

or, as it is easily shown on integrating by parts the numerator of (3.4),

(3.5)  EQ@IX, A) =[(p— 2a +2) = 20)]/[(n — v + 2a — 2)y],



144 PI-ERH LIN AND HUI-LIANG TSAI

where
(3:6)  [QO)I = (14 p)ioms+n i dbee(l 4 Zy) et di

LemMA 3.1. Letr(y) = ys(y). Thenr(y)is a nonnegative, non-decreasing function
of y z 0.

Proor. From (3.4), we have

(3'7) r( ) = Y Scly ]ip—a+1(1 + Zy)—i(n—v+p+2) da
g 5 Atr—o(1 + Ay)-tn—vietd) g

b

which is clearly nonnegative for all y > 0. Let t = 2y and take derivative of
r(y) + 1 with respect to y, we have r'(y) = d/k?, where k is the denominator of
the right-hand side of (3.7) and

(3.8)  d = yirreny(l 4 y)hmvrsn p phrme( ) Hme(y — g dt.

It is clear that d > O for all y > 0. Thus, r’(y) = 0 for all y > 0. This proves

the lemma.

Using the above lemma and Theorem 2.1, the proof of Theorem 3.1 is
immediate.

THEOREM 3.1. For p > 3 with
(i) —co <v<min(n+ 1,n4 2a—2),

(i) 2p—Df(n—p+3) = (p— 20 +2)/(n — v +2a—2),

(il) —co<a<ip+1,and

(iv) n > p — 3, the estimators of the form
3.9 X, 4) =[1 — r(y)yIX, y=X47X,
are generalized Bayes minimax estimators with respect to the priors (3.3), where
(3.10) r(y) =[(p—2a+2)—20)]/(n — v + 2a = 2)
and Q(y) is defined by (3.6).

4. A special case. Consider the case X = ¢2B, where B is a p X p symmetric
positive definite known matrix, and ¢* is an unknown positive quantity. Since
B is known, there exists a p X p nonsingular matrix C such that CBC' = I. If
we let Z = CX, then Z|2, 8, ¢ ~ Mg, o*I) with g = C8, and the problem is
reduced to that of estimating g relative to the quadratic loss function

(4.1) L(ft; p, 0*) = (22 — o) (8 — p)]"
where £ is an estimator of g. Without loss of generality, we may thus assume

Consider that X|2, 8, ¢* ~ N(@, ¢*) and S|2, ¢* ~ a™y,’, independent of X.
If we assume further that the joint generalized prior density of 8, ¢~* and 1 is

(4.2) 22, 0, 07 = (8|2, 07 - gy(o7?) - (),
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where A(2) is given by (3.2),

4.3) 91(67%) o< (a%)*2, —oo < v < n, v an integer,
and
2 »/2 2
4.4 6|20 S S - 00},
4 (014 7 o <(1 - zw) CXP{ 20 — ) }

then by the same argument as in the proof of Theorem 3.1 and the result of
Baranchik [1], we obtain the following theorem, which is stated without proof.

THEOREM 4.1. For p = 3, with

(I) —co < v < min(n+ L,n+ 2a —2),
(i) 2(p —2)/(n +2) = (p — 2a + 2)/(n — v + 2a — 2), and
(iii) —oo < a < 4p + 1, relative to the loss function (4.1) with g replaced by
0, the estimators of the form

(4.5) 3(X, S) = [1 — H(F)/FIX

are generalized Bayes minimax with respect to the priors (4.2), where F = X'X/S and
r(F) is defined by (3.10) with Q(F) given by (3.6).

Here, we note that the set of values of n, v, @ and P, which satisfies conditions
(i)—(iii) of Theorem 4.1, is nonempty.
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