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ASYMPTOTIC EXPANSIONS FOR SUMS OF BLOCK-VARIABLES
UNDER WEAK DEPENDENCE1

BY S. N. LAHIRI

Iowa State University

Let {Xi}∞i=−∞ be a sequence of random vectors and Yin = fin(Xi,�) be
zero mean block-variables where Xi,� = (Xi, . . . ,Xi+�−1), i ≥ 1, are over-
lapping blocks of length � and where fin are Borel measurable functions.
This paper establishes valid joint asymptotic expansions of general orders for
the joint distribution of the sums

∑n
i=1 Xi and

∑n
i=1 Yin under weak depen-

dence conditions on the sequence {Xi}∞i=−∞ when the block length � grows
to infinity. In contrast to the classical Edgeworth expansion results where the
terms in the expansions are given by powers of n−1/2, the expansions de-
rived here are mixtures of two series, one in powers of n−1/2 and the other
in powers of [n

�
]−1/2. Applications of the main results to (i) expansions for

Studentized statistics of time series data and (ii) second order correctness of
the blocks of blocks bootstrap method are given.

1. Introduction. Let {Xi}i∈Z be a sequence of R
d0 -valued (d0 ∈ N) ran-

dom vectors such that EXi = 0 for all i ∈ Z, where Z = {0,±1,±2, . . .}
and N = {1,2, . . .}. The sequence {Xi}i∈Z need not be stationary. Let χi,� ≡
(Xi, . . . ,Xi+�−1)

′, i, � ∈ N, denote (overlapping) blocks of length � for some given
integer � ≡ �n ∈ [1, n] and let

Yin = fin(χi,�), i, n ∈ N,(1.1)

denote the block-variables, where fin : Rd0� → R
d1, d1 ∈ N, are Borel-measurable

functions such that EYin = 0 for all i, n ∈ N. Let b ≡ �n/��, where for any x ∈ R,
�x� denotes the smallest integer not less than x. The main results of the paper give
asymptotic expansions for the scaled sums

Sn =
(

1√
n

n∑
i=1

X′
i ,

1√
n�

n∑
i=1

Y ′
in

)′
≡ (S′

1n, S
′
2n)

′, n ≥ 1,(1.2)

under some weak dependence conditions on {Xi}i∈Z when �n becomes unbounded
as n → ∞. Here and in the following, d ≡ d0 + d1 denotes the dimension of Sn,
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and A′ denotes the transpose of a matrix A. The block-variables Yin serve as ba-
sic building blocks for many important statistical methods used in the analysis of
weakly dependent time series data. Some important examples are given below.

EXAMPLE 1.1 (Spectral density estimation). Suppose that {Xi}i∈Z is a
second-order stationary process with values in R such that

∑∞
k=0 |γ (k)| < ∞,

where γ (k) = Cov(X1,X1+k), k ≥ 0. Then {Xi}i∈Z has a spectral density
f : (−π,π) → [0,∞). A general class of nonparametric estimators of f (cf.
Priestley [26]) is given by

f̂n(λ) = (2π)−1
�∑

k=0

ωknγ̂n(k) cos(kλ), λ ∈ (−π,π),(1.3)

where ωkn ∈ R are nonrandom weights and where for 0 ≤ k ≤ n − 1, γ̂n(k) ≡
n−1 ∑n−k

i=1 XiXi+k − X̄2
n is a version of the sample lag-k autocovariance. The es-

timator f̂n plays a fundamental role in the frequency domain analysis of time
series data; see, for example, Priestley [26]. Note that f̂n of (1.3) can be ex-
pressed as a function of the sum Sn of (1.2) where the block variables Yin are
given by Yin = Xi[∑�

k=0 ω̃iknXi+k cos(kλ)],1 ≤ i ≤ n, for some suitable con-
stants ω̃ikn ∈ R, depending on the ωkn’s.

EXAMPLE 1.2 (Block bootstrap methods). Let θ̂n = tn(X1, . . . ,Xn) be an es-
timator of a parameter of interest θ ∈ R where tn is a symmetric function of its
arguments. For estimating the distribution of θ̂n, Künsch [16] and Liu and Singh
[23] proposed the moving block bootstrap (MBB) method. We now briefly de-
scribe the MBB for later reference. Let � ≡ �n ∈ (1, n) be a given integer such
that (for simplicity) n/� ∈ N, and let χ∗

1,�, . . . , χ
∗
b,� be selected at random, with

replacement from the “observed” blocks {χ1,�, . . . , χN,�}, where b ≡ �n/�� = n/�

and N = n−�+1. Let θ∗
n ≡ tn(X

∗
1, . . . ,X∗

n) denote the MBB version of θ̂n, where
X∗

1, . . . ,X∗
n are elements of the resampled blocks χ∗

i,�,1 ≤ i ≤ b. Then the MBB

estimator of the distribution function Gn(x) ≡ P(θ̂n ≤ x) of θ̂n is given by

Ĝn(x) = P(θ∗
n ≤ x|X1, . . . ,Xn),

the conditional distribution function of θ∗
n , given X1, . . . ,X2, and the MBB es-

timator of a functional of Gn is given by “plugging in” Ĝn for Gn. Since
χ∗

1,�, . . . , χ
∗
b,� are conditionally independent and identically distributed (i.i.d.) with

Pr(χ∗
1,� = χi,�) = N−1, 1 ≤ i ≤ N , it follows that Ĝn(x) and its functionals can

be represented as functions of the block-variables Yin = fin(χi,�),1 ≤ i ≤ N , for
suitable functions fin (with Yin = 0 for N + 1 ≤ i ≤ n). For example, if d0 = 1
and θ̂n = n−1 ∑n

i=1 Xi is the sample mean, then it is easy to check that the MBB
estimator σ̂ 2

n of the variance of θ̂n is given by

σ̂ 2
n = n−1

[
N−1

N∑
i=1

U2
1i −

(
N−1

N∑
i=1

U1i

)2]
,(1.4)
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where U1i ≡ U1in = (Xi + · · · + Xi+�−1)/
√

� is the scaled sum of the ith block
χi,�.

The subsampling method of Politis and Romano [25] and Hall and Jing [13],
and the block empirical likelihood method of Kitamura [15] are other important
examples of resampling methods that naturally lead to sums of block-variables.

EXAMPLE 1.3 (Studentized statistics). Suppose that d0 = 1 and {Xi}i∈Z is
stationary. Let θ̂n = H(X̄n) be an estimator of θ = H(EX1), where H : R → R is
a smooth function. This is a version of the “smooth function” model (cf. Hall [11])
that covers many commonly used estimators. For constructing confidence intervals
for θ , one considers the approximate pivotal statistic

Tn = √
n(θ̂n − θ)/τ̃n,(1.5)

where τ̃ 2
n is an estimator of the asymptotic variance of

√
n(θ̂n − θ). For example,

we may use τ̃ 2
n = h(X̄n)σ̃

2
n where h(·) denotes the derivative of H(·) and σ̃ 2

n is ei-
ther 2πf̂n(0) of Example 1.1 or the scaled bootstrap estimator nσ̂ 2

n of Example 1.2
above. In both cases, Tn is a function of the sum Sn.

The examples above show that the scaled sum Sn of (1.2) plays a fundamen-
tal role in statistical inference for weakly dependent processes. In a seminal pa-
per, Götze and Hipp [8] derived asymptotic expansions for the scaled sum S1n of
weakly dependent random vectors under an exponential mixing condition. This
paper builds upon the work of Götze and Hipp [8] and proves asymptotic expan-
sions for the augmented sum Sn, under a similar general framework. The proofs of
the main results are based on some extensions and refinements of the techniques
developed by Götze and Hipp [8] and Lahiri [17].

To highlight some of the major differences between the present problem and
the case of the regular sum

∑n
i=1 Xi treated by Götze and Hipp [8] and others,

note that even when the Xi’s are strongly mixing at an exponential rate (e.g., as in
[8]), the block-variables {Yin}ni=1, being defined on overlapping blocks of length
�, in general have a strong mixing coefficient equal to one for all lags of order
≤ (� − 1). Since � → ∞ with n [in this paper, � could grow as fast as O(n1−κ)

for a given κ ∈ (0,1)], this leads to a very strong form of dependence among an
unbounded number of neighboring block variables Yin’s, thereby destroying the
weak dependence structure of the original sequence {Xi}i∈Z. The “local strong
dependence” of the Yin’s has a nontrivial effect on the accuracy of approximation
and on the growth rate of the variance of

∑n
i=1 Yin. Indeed, the sum of Yin’s over

a block of size � is of the order OP (�) compared to the order OP (�1/2) for weakly
dependent variables and hence, the componentwise variance terms of

∑n
i=1 Yin

typically grow at the rate O(n�). This leads to the normalizing constant (n�)−1/2

for the sum
∑n

i=1 Yin in (1.2). Intuitively, the “local strong dependence” of the
Yin’s makes the sum

∑n
i=1 Yin essentially behave like a sum of O(n/�)-many “ap-

proximately independent” variables. As a result, the accuracy of an (s − 2)-order
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asymptotic expansion for Sn is only o([n/�]−(s−2)/2), which should be compared
to the order o(n−(s−2)/2) for S1n. Further, in contrast to the case of S1n, asymp-
totic expansions for Sn of (1.2) are now given by a mixture of two series of terms,
one in powers of n−1/2 (corresponding to 1√

n

∑n
i=1 Xi) and the other in powers of

[n/�]−1/2 (corresponding to 1√
n�

∑n
i=1 Yin).

The main results of the paper give an (s − 2)th order expansion for Ef (Sn)

for Borel-measurable functions f : Rd → R for any integer s ≥ 3. For smooth
functions f , expansions for Ef (Sn) are established without requiring any type
of Cramér’s condition. For i.i.d. random vectors, such results were first proved
by Götze and Hipp [7] for the regular sum

∑n
i=1 Xi . Further, moderate deviation

bounds for Sn are also proved in Section 2 below. In each of these results, the
block length variable � is allowed to go to infinity at a rate O(n1−κ) for an arbi-
trarily small κ > 0.

Three important applications of the main results are considered in Section 3. The
first result establishes moderate deviation bounds for the MBB moments. These
bounds are useful for studying accuracy of MBB variance and distribution func-
tion estimators. The second result gives a general order Edgeworth expansion
(EE) for a version of the Studentized sample mean, where the conditional Cramér
condition is verified explicitly. It may be noted that the standard EE theory based
on sums of finite-dimensional random vectors has severe limitations in this prob-
lem, as the Studentizing factor in the dependent case is no longer a smooth function
of finitely many sample means. A second notable feature of this EE result is that
the (s − 2)-order (s ≥ 3) expansion for the Studentized sample mean is proved
here solely under a conditional Cramér condition on the variables Xi’s. This is in
sharp contrast to the i.i.d. case, where some additional conditions, like a Cramér
condition on the joint distribution of (X1,X

2
1)

′, are required (cf. Bhattacharya and
Ghosh [2]). Intuitively, here the block variables become subjected to a central limit
theorem (CLT) effect due to block averaging, and this entails the required condi-
tional Cramér condition for the joint distribution of the linear and quadratic parts.

The third application of the main results of Section 2 is to studying higher-
order properties of the blocks of blocks bootstrap (BOBB) method of Politis and
Romano [24]. It is shown that under some regularity conditions, the BOBB ap-
proximation to a class of Studentized statistics is second-order correct (s.o.c.), that
is, it is more accurate than the limiting normal distribution. This result is partic-
ularly useful for constructing s.o.c. confidence intervals for infinite-dimensional
parameters of the underlying process, such as the spectral density.

The rest of the paper is organized as follows. Section 1 concludes with a brief
literature review. Section 2 gives the main results on expansions for Sn, while
Section 3 gives results on the MBB moments, the Studentized sample mean, and
the BOBB method. Proofs of all the results are given in Section 4.

There is a vast literature on asymptotic expansions for S1n and for statistics
that are smooth functions of S1n. A detailed account of the theory for sums of
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independent random vectors is given in Bhattacharya and Ranga Rao [3]. The the-
ory under the “smooth function model” is treated by Bhattacharya and Ghosh [2],
Skovgaard [27] and Hall [11], among others. For sums of weakly dependent ran-
dom vectors, Götze and Hipp [8] obtained expansions under a very flexible frame-
work. Applicability of [8] results in different time series models has been verified
in [9]. Lahiri [17] relaxes the moment condition used by Götze and Hipp [8] and
settles a conjecture of [8] on the validity of expansions for expectations of smooth
functions of S1n. Expansions for S1n under polynomial mixing rates have been
given by Lahiri [18]. EEs for Studentized statistics under weak dependence are
given by Götze and Künsch [10] and Lahiri [19] to the second order for general
weakly dependent processes, and by Velasco and Robinson [30] to higher orders
for Gaussian processes. EEs of a general order without the Gaussian assumption
have recently been established in Lahiri [21].

2. Main results. Let {Xi}i∈Z be a sequence of (possibly nonstationary) zero
mean R

d0 -valued random vectors (as in Section 1) and let Yin, i ≥ 1, n ≥ 1, be as
defined in (1.1). In this section, we establish asymptotic expansions for the scaled
sum Sn of (1.2) under a framework similar to [8]. Suppose that the Xi’s are defined
on a probability space (�,F ,P ) and that {Dj }∞j=−∞ is a given collection of sub-

σ -fields of F . Let D
q
p ≡ σ 〈{Dj : j ∈ Z,p ≤ j ≤ q}〉,−∞ ≤ p < q ≤ ∞. For

k = 1, . . . , b, define

X̄kn = �−1
k�∧n∑

i=(k−1)�+1

Xi, Ȳkn = �−1
k�∧n∑

i=(k−1)�+1

Yin,

(2.1)
Wkn = (

√
�X̄′

kn; Ȳ ′
kn)

′,
where b ≡ �n/�� and x∧y = min{x, y}, x, y ∈ R. Let ‖x‖ = (x2

1 +· · ·+x2
k )1/2 and

|x| = |x1|+ · · ·+ |xk|, x = (x1, . . . , xk)
′ ∈ R

k and let |B| denote the size of a set B .
Let b̃ = n/�. For notational simplicity, we drop the subscript n in �, b, b̃. Unless
otherwise stated, the limits in the order symbols are taken by letting n → ∞.

CONDITIONS.

C.1. There exists κ ∈ (0,1) such that κ logn < � < κ−1n1−κ for all n > κ−1.
C.2. (i) There exist ρ ∈ (0,∞) and s ∈ {3,4, . . .} such that

max
{
Ehs(‖Ȳkn‖),Ehs

(∥∥√�X̄kn

∥∥)} ≤ ρ for all 1 ≤ k ≤ b,n ≥ 1,(2.2)

where hs(u) ≡ us[log(1 + u)]α(s), u ≥ 0, and α(s) = 2s2.
(ii) For all i ≥ 1, n ≥ 1, EXi = 0 = EYin, and

lim
n→∞ Cov(Sn) = �∞ exists and is nonsingular.(2.3)

Further, there exists a κ ∈ (0,1) such that inf‖t‖=1 t ′ Cov(
∑j0+m

j=j0+1 Wjn)t > κm

for all integers j0,m,n with 0 ≤ j0 ≤ b − m, κ−1 ≤ m ≤ √
b and n ≥ κ−1.
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C.3. There exists κ ∈ (0,1) such that for m,n > κ−1 and for j ≥ 1,1 ≤ i ≤ n,
there exist a D

j+m
j−m -measurable X

†
j,m and a D i+m+�

i−m -measurable Y
†
in,m such

that

max{E‖Xj − X
†
j,m‖, �−1E‖Yin − Y

†
in,m‖} ≤ κ−1 exp(−κm).(2.4)

C.4. There exists a constant κ ∈ (0,1) such that for all m ∈ N,

sup{|P(A∩B)−P(A)P (B)| :A ∈ D i−∞,B ∈ D∞
i+m, i ∈ Z} ≤ κ−1 exp(−κm).

C.5. There exists a constant κ ∈ (0,1) such that for all i, j, k, r,m = 1,2, . . . and
A ∈ D

j
i with i < k < r < j and m > κ−1,

E
∣∣P(A|Dj : j /∈ [k, r]) − P

(
A|Dj : j ∈ [i − m,k) ∪ (r, j + m])∣∣

≤ κ−1 exp(−κm).

C.6. There exist a ∈ (0,∞), κ ∈ (0,1) and sequences {mn} ⊂ N and {dn} ⊂
[1,∞) with m−1

n + mnb
−1/2 = o(1), dn = O(� + ba) and d2

nmn = O(b1−κ)

such that

max
j0∈Jn

sup
t∈An

E

∣∣∣∣∣E
{

exp

(
ιt ′

j0+mn∑
j=j0−mn

Wjn

)∣∣∣D̃j0

}∣∣∣∣∣ ≤ 1−κ for all n ≥ κ−1,(2.5)

where Jn = {mn+1, . . . , b−mn+1},An = {t ∈ R
d :κdn ≤ ‖t‖ ≤ [ba +�]1+κ},

and D̃j0 = σ 〈{Dj : j ∈ Z, j /∈ [(j0 − �mn

2 �)� + 1, (j0 + �mn

2 � + 1)�]}.
Now we comment on the conditions. C.1 is a growth condition on the block

length � and covers optimal block sizes in most applications. For example, for
an exponentially strongly mixing process, the optimal block size for the spectral
density estimation problem (cf. Example 1.1) is O(logn), while for the block boot-
strap estimation of variance and distribution functions (cf. Example 1.2), the opti-
mal block lengths are of the order n1/k for k = 3,4,5 (cf. Hall, Horowitz and Jing
[12]), all of which are covered by C.1. Next consider C.2–C.6. As in [8], here we
formulate the conditions in terms of the auxiliary σ -fields Dj in order to allow for
greater generality. Condition C.2(i) is a moment condition on

√
�X̄kn and Ȳkn that

is optimal up to the logarithmic factor. Since hs(·) is convex and nondecreasing,
Ehs(‖Ȳkn‖) ≤ �−1 ∑k�

i=(k−1)�+1 Ehs(‖Yin‖), and a sufficient condition for (2.2)
is max{Ehs(‖Yin‖) : 1 ≤ i ≤ n,n ≥ 1} ≤ ρ. Equation (2.3) ensures a nondegener-
ate normal limit for Sn with the given scaling constants. If the process {Xi}∞i=−∞
is second-order stationary and if, for each n ≥ 1, the collection {Yin}ni=1 is also
second-order stationary, then the last part of C.2(ii) follows from (2.3). Condi-
tion C.3 connects the variables Xi and Yin to the strong-mixing property C.4 of
the auxiliary σ -fields Dj . For suitably well-behaved functions fin, the bound on
E‖Yin −Y

†
in,m‖ follows from the bounds on the E‖Xi −X

†
i,m‖’s. C.5 is an approx-

imate Markov property.
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Finally, consider the conditional Cramér condition C.6, which is weaker than a
direct analog of the conditional Cramér condition of [8] for the summands in Sn

on two counts. First, the range of values of t in (2.5) has a lower bound, namely,
κdn, that may tend to infinity at a suitable rate. By setting dn ≡ 1 for all n ≥ 1, one
gets the more standard version of the Cramér condition, as formulated by Götze
and Hipp [8]. Second, the conditioning σ -field D̃j0 in (2.5) is only a sub-σ -field
of the standard choice D−j0 ≡ σ 〈{Dj : j ∈ Z, j �= j0}〉 (cf. (2.5) of [8]). Indeed,
if D∗

j0
⊂ F is a σ -field of F containing D̃j0 , then one can show (cf. Lahiri [22])

that a sufficient condition for (2.5) is given by

max
jo∈Jn

sup
t∈An

E

∣∣∣∣∣E
{

exp

(
ιt ′

j0+mn∑
j=j0−mn

Wjn

)∣∣∣∣D∗
j0

}∣∣∣∣∣ ≤ 1 − κ.(2.6)

Indeed, these two refinements allow us to establish valid EEs for the Studentized
sample mean solely under Götze and Hipp’s [8] Cramér condition on the Xi’s (cf.
Section 3.2).

Next define the functions Pr,n(t) for t ∈ R
d by the identity (in u ∈ R)

exp

(
s∑

r=3

(r!)−1ur−2b̃(r−2)/2χr,n(t)

)
= 1 +

∞∑
r=1

urPr,n(t),(2.7)

where χr,n(t) denotes the r th cumulant of t ′Sn [multiplied by (ι)r ], defined by

χr,n(t) = dr

dur
logE exp(ιut ′Sn)

∣∣∣∣
u=0

.(2.8)

Under C.1–C.5, the Pr,n(t)’s are bounded for each t . Define the (s − 2)th order EE
�s,n of Sn through its Fourier transform �̂s,n(t) ≡ ∫

eιt ′xd�s,n(x), t ∈ R
d , by

�̂s,n(t) = exp(χ2,n(t)/2)

[
1 +

s−2∑
r=1

b̃−r/2Pr,n(t)

]
, t ∈ R

d .(2.9)

Next, let s0 = 2�s/2� and for any positive definite matrix A of order k ∈ N, let
�A and �(·;A) both denote the normal distribution on R

k with mean zero and
covariance matrix A. Then we have the following result on expansions for Ef (Sn).

THEOREM 2.1. Assume that conditions C.1–C.6 hold for some a > (s − 2)/2
in C.6. Let f : Rd → R be a Borel measurable function with Mf ≡ sup{(1 +
‖x‖s0)−1|f (x)| :x ∈ R

d} < ∞. Then there exist constants C1 = C1(a),C2 ∈
(0,∞) (neither depending on f ) such that for all n > C2,∣∣∣∣Ef (Sn) −

∫
f d�s,n

∣∣∣∣ ≤ C1ω(f̃ ;b−a) + C2Mf b−(s−2)/2(logn)−2,(2.10)

where f̃ (x) = f (x)/(1 + ‖x‖s0), x ∈ R
d , and ω(f̃ ; ε) = ∫

sup{|f̃ (x + y) −
f̃ (x)| :‖y‖ ≤ ε}�(dx;�∞), ε > 0.
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A direct consequence of Theorem 2.1 is that supA∈C |P(Sn ∈ A) − �s,n(A)| =
O(b−(s−2)/2(logn)−2), where C is the collection of all measurable convex sets
in R

d .
Next consider expansions of Ef (Sn) when f is smooth. When the Xi’s are

i.i.d., Götze and Hipp [7] established an (s − 2)th order expansion of Ef (S1n) for
f ∈ Cs−2(Rd0), without any Cramér type conditions, where Cr(Rk) denotes the
set of all r-times continuously differentiable functions from R

k to R, r ≥ 0, k ∈ N.
For weakly dependent Xi’s, Lahiri [17] proved a similar result for Ef (S1n)

for f ∈ Cs−1(Rd0), settling a conjecture of Götze and Hipp [8]. In the same
spirit, Theorem 2.2 below establishes validity of an (s − 2)th order expansion
for Ef (Sn) for f ∈ Cs−1(Rd), without the conditional Cramér condition C.6. To
state it, let Dα = ∂ |α|/∂t

a1
1 · · · ∂t

ak

k , for α = (α1, . . . , αk)
′ ∈ (Z+)k , k ∈ N, where

Z+ = {0,1, . . .}.
THEOREM 2.2. Assume that conditions C.1–C.5 hold. Let f : Rd → R be

a function such that (i) f ∈ Cs−1(Rd) and (ii) for each α ∈ (Z+)d with 0 ≤
|α| ≤ s − 1, there exists a p(α) ∈ Z+, with p(0) = s0, such that Mf,α ≡
sup{|Dαf (x)|/(1 + ‖x‖p(α)) :x ∈ R

d} < ∞. Then there exists a constant C3 ∈
(0,∞), depending only on s, d, ρ, κ and on {Mf,α : |α| ≤ s − 1}, such that∣∣∣∣Ef (Sn) −

∫
f d�s,n

∣∣∣∣ ≤ C3b
−(s−2)/2(logn)−2 for all n ≥ 2.

The next result is a moderate deviation inequality for Sn and its moments up to
order s0. Let 1(B) denote the indicator of a set B .

THEOREM 2.3. Let λ0 denote the largest eigenvalue of �∞. Then under con-
ditions C.1–C.5, for any λ > λ0, there exists a constant C4 ∈ (0,∞), depending
only on s, d, λ,ρ, κ , such that for all n ≥ 2,

E(1 + ‖Sn‖s0)1
(‖Sn‖ > [(s − 2)λ logn]1/2)

(2.11)
≤ C4b

−(s−2)/2(logn)−2.

For the regular sum S1n, sharper bounds are available (cf. [8, 17]). Let λ1 be
the largest eigenvalue of �1,1 = limn→∞ Cov(S1n). Then Lahiri [17] proved that
E(1 + ‖S1n‖s0)1(‖S1n‖ > [(s − 2)λ logn]1/2) = o(n−(s−2)/2) for λ > λ1. For the
marginal distribution of S2n, the following bound is slightly better than (2.11) (as
λ2 ≤ λ0).

THEOREM 2.4. Suppose that �2,2 ≡ limn→∞ Cov(S2n) exists and is nonsin-
gular, and conditions C.1–C.5 hold for Ȳjn’s only. Then, for any λ > λ2, there
exists a constant C5 ∈ (0,∞), depending only on s, d, λ,ρ, κ , such that for all
n ≥ 2,

E(1 + ‖S2n‖s0)1
(‖S2n‖ > [(s − 2)λ logn]1/2) ≤ C5b

−(s−2)/2(logn)−2,(2.12)

where λ2 is the largest eigenvalue of �2,2.
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REMARK. Analogs of Theorems 2.1–2.4 are known for the sum S[2]
n =

( 1√
n

∑n
i=1 X′

i ,
1√
b

∑b
i=1(Y

[2]
in )′)′, where Y

[2]
jn ≡ Y(j−1)�+1,n, j ∈ N, denote the

block-variables based on nonoverlapping blocks of length �. See [22] for details.

3. Applications.

3.1. Moderate deviation bounds for MBB moments. Let {Xi}i∈Z be an
R

d0 -valued stationary process. As described in Example 1.2, let U1i =
(Xi + · · · + Xi+�−1)/

√
� denote the scaled-sum of the Xi’s in the ith block

χi,� = (Xi, . . . ,Xi+�−1), i ≥ 1. For ν ∈ (Z+)d0 , we define the νth MBB moment
as

µ̂n(ν) ≡ N−1
N∑

j=1

Uν
1j ,(3.1)

where N = n − � + 1. For estimators θ̂n that can be represented as smooth func-
tions of means, the MBB estimators of Var(θ̂n) and the distribution of Studentized
θ̂n can be approximated through functions of the MBB moments. For example,
the MBB variance estimator for the sample mean θ̂n = X̄n for d0 = 1 is given by
σ̂ 2

n = n−1(µ̂n(2) − [µ̂n(1)]2) [cf. (1.4)]. Similarly, the leading terms in the two-
term EEs of the MBB distribution function estimators of the normalized and Stu-
dentized sample means are rational functions of µ̂n(ν),1 ≤ |ν| ≤ 3 (cf. Lahiri [19,
20], Götze and Künsch [10]). As a result, moderate deviation bounds on the MBB
moments are important for investigating accuracy of such MBB estimators. The
following result gives a moderate deviation bound for µ̂n(ν).

THEOREM 3.1. Suppose that ν ∈ N
d0 , EX1 = 0, and that conditions C.1, C.4,

C.5 hold and that condition C.3 holds for the Xi’s only. Also, suppose that λ3(ν) ≡
limn→∞ Var(b1/2µ̂n(ν)) ∈ (0,∞) and that

ρ ≡ E
(‖X1‖2q{log(1 + ‖X1‖)}γ (s)) < ∞(3.2)

for some γ (s) > s2 and q ∈ N with 2q > s|ν|. Then, for any λ > λ3(ν), there exists
a constant C6 = C6(ν, d, s, κ, λ) ∈ (0,∞) such that for all n ≥ 2

E
[{

1 + ∣∣√b
(
µ̂n(ν) − EUν

11
)∣∣s0

}
× 1

(∣∣√b
(
µ̂n(ν) − EUν

11
)∣∣ > [(s − 2)λ logn]1/2)]

(3.3)

≤ C6b
−(s−2)/2(logn)−2.

For an exact expression for λ3(ν), see [22]. The following result is a simple con-
sequence of Theorem 3.1 and serves to illustrate how the bounds on the µ̂n(ν)’s
can be used for deriving similar bounds on the MBB estimators of population pa-
rameters, such as on the MBB estimator σ̂ 2

n = n−1(µ̂n(2) − [µ̂n(1)]2) of Var(X̄n).
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COROLLARY 3.1. Suppose that d0 = 1 and that the conditions of Theorem 3.1
hold with ν = 2. Let �̂n = n[σ̂ 2

n − Eσ̂ 2
n ]. Then for any λ > 2λ3(2), there exists a

constant C7 ≡ C7(s, κ, λ) ∈ (0,∞) such that for any n ≥ 2,

E
[(

1 + [√
b|�̂n|]s0

)
1
(√

b|�̂n| > [(s − 2)λ logn]1/2)] ≤ C7b
−(s−2)/2(logn)−2.

3.2. Expansions for the Studentized sample mean. Let {Xi}i∈Z be a real-
valued (i.e., d0 = 1) stationary process. As an application of the main results of
Section 2, here we establish EEs for a version of the Studentized sample mean,
given by

Tn ≡ n1/2(X̄n − EX1)/σ̃n,(3.4)

where σ̃ 2
n = max{n−1, b−1 ∑b

i=1[U1(i−1)�+1 − (b−1 ∑b
i=1 U1(i−1)�+1)]2} is the

nonoverlapping block bootstrap (NBB) (cf. Carlstein [4]) estimator of nVar(X̄n)

based on blocks of length �, truncated from below at n−1 and where b = n/� (as-
sumed to be an integer, for simplicity). We also assume that

� ∼ β0n
1/3 for some β0 ∈ (0,∞),(3.5)

where, for {un}n≥1, {vn}n≥1 ∈ (0,∞), we write un ∼ vn if limn→∞ un/vn = 1.
Note that (3.5) covers the optimal block size for estimating Var(X̄n) by the NBB
(cf. Hall, Horowitz and Jing [12], Lahiri [20]). Since the block variables in this
problem are smooth functions of the Xi’s, we may impose regularity conditions
on the Xi’s directly, without any reference to the block variables.

CONDITIONS.

S.1. {Xi}i∈Z is stationary, ρ ≡ E|X1|2(s+1){log(1 + |X1|)}γ (s) ∈ (0,∞) for some
s ≥ 3, s ∈ N and γ (s) > s2, EX1 = 0 and σ 2∞ = ∑

i∈Z EX0Xi ∈ (0,∞).
S.2. (i) The σ -fields Dj are generated by a sequence of independent d2-

dimensional (d2 ∈ N) random vectors Zj , that is, Dj = σ 〈Zj 〉, j ∈ Z.
(ii) There exists κ ∈ (0,1) such that for all m > κ−1 and j ≥ 1, there exists

a D
j+m
j−m -measurable X

†
j,m such that E‖Xj − X

†
j,m‖3 ≤ κ−1 exp(−κm).

(iii) There exists κ ∈ (0,1) such that for all m,j0 ∈ N with κ−1 < m < j0,

sup
{
E

∣∣E{exp(ιt[Xj0−m + · · · + Xj0+m])|Dj : j �= j0}
∣∣ : |t | ≥ κ

} ≤ 1 − κ.

Condition S.2(iii) is the conditional Cramér condition introduced by [8] for de-
riving valid asymptotic expansions for S1n. Validity of a general order EE for the
Studentized mean Tn under S.2(iii) is somewhat surprising as the validity of a
similar expansion for the Studentized sample mean for i.i.d. variables requires
a stronger version of the Cramér condition that involves both the linear and the
quadratic parts. This phenomenon can be explained by noting that in the dependent
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case, the block variables U1i tend to behave like their limit, that is, like N(0, σ 2∞)

variates as the block size � → ∞ and the (stronger) Cramér condition for the bi-
variate random vector (Z∞,Z2∞)′ holds when Z∞ is a N(0, σ 2∞) variate. We now
describe two important classes of weakly dependent processes for which condi-
tion S.2 holds. See [8] and [9] for more examples.

EXAMPLE 3.1 (Linear processes). Let Xj = ∑
i∈Z aiεj−i , j ∈ Z, where

{εi}i∈Z are i.i.d. random variables with Eε1 = 0 and σ 2 = Eε2
1 ∈ (0,∞),

and where {ai}i∈Z ∈ R is such that
∑

i∈Z ai �= 0 and for some κ ∈ (0,∞),
|ai | = O(exp(−κ|i|)) as |i| → ∞. Then S.2 holds with Dj = σ 〈εj 〉, j ∈ Z,
provided E|ε1|3 < ∞ and ε1 satisfies the usual Cramér condition (cf. [8])
lim sup|t |→∞ |E exp(ιtε1)| < 1.

EXAMPLE 3.2 (m-dependent processes). Let Xi = hε(εi, . . . , εi+m0−1), i ∈
Z, where {εi}i∈Z are i.i.d. random variables with Lebesgue density fε , m0 ∈ N,
and hε ∈ C1(Rm0). Then, {Xi}i∈Z is an m0-dependent process. In this case, con-
dition S.2 holds with Dj = σ 〈εj 〉, and X

†
j,m = Xj for m ≥ m0, j ∈ Z, provided

(cf. [8]) that there exist points y1, . . . , y2m0−1 ∈ R and an open set O ⊂ R such
that yj ∈ O for all 1 ≤ j ≤ 2m0 − 1, the density fε is strictly positive on O and
0 �= ∑m0

j=1
∂

∂xj
hε(x1, . . . , xm0)|(x1,...,xm0 )=(yj ,...,yj+m0−1).

The following is the main result of this section. Write φ(x) and �(x) to denote
the standard normal density and distribution function, respectively.

THEOREM 3.2. Suppose that (3.5) and conditions S.1 and S.2 hold. Then
there exist polynomials prn,1 ≤ r ≤ s − 2, with bounded coefficients such that

sup
x∈R

∣∣∣∣∣P(Tn ≤ x) −
{
�(x) +

s−2∑
r=1

n−r/3prn(x)φ(x)

}∣∣∣∣∣ = O
(
n−(s−2)/3(logn)−2)

.

The coefficients of prn are O(1) as n → ∞ and typically contain smaller-order
terms. For example, the third-order EE for Tn (with s = 5) has the form

P(Tn ≤ x) =
∫ x

−∞
φ(y)[1 + {n−1/3p1(y) + n−1/2p2(y) + n−2/3p3(y)

+ n−5/6p4(y) + n−1p5(y)]dy

+ O(n−1(logn)−2)

uniformly in x ∈ R, where the pj ’s are some polynomials whose coefficients are
rational functions of the moments of the block variables U1i . In particular, for
y ∈ R,

p1(y) = (y2 − 1)

[ ∞∑
k=1

k Cov(X1,Xk+1)

]
[σ−2∞ ][n1/3/�],



EXPANSIONS FOR DEPENDENT SUMS 1335

p2(y) =
[
− �1/2EZnVn

2(EU2
11)

3/2

]
y

+1

6

[
(n1/2EZ3

n)(EU2
11)

−3/2 − 3

(EU2
11)

5/2
(EZ2

n)(�
1/2EZnVn)

]

× (y3 − 3y),

where Zn = n1/2(X̄n − EX1) and Vn = b−1/2 ∑b
i=1[U2

1i − EU2
1i]. As in the inde-

pendent case (cf. Bhattacharya and Ghosh [2]), the terms in the EEs can be derived
by “formally” expanding the cumulant generating function of the polynomial sto-
chastic approximation to the Studentized statistic, and then by Fourier inversion
of the resulting series. See Lahiri [21] for more details. Note that, as mentioned in
Section 1, the expansion for the Studentized sample mean here is a combination of
two series in powers of n−1/3 and n−1/2, the first corresponding to the (cumulants
of the) Studentizing factor and the second coming from the expansion for S1n.

3.3. Second-order correctness of the blocks of blocks bootstrap. For boot-
strapping estimators of infinite-dimensional parameters of a weakly dependent
process, Politis and Romano [24] formulated the BOBB method, (a version of)
which is now described briefly. Given {X1, . . . ,Xn}, let Yin = fin(χi,�), i =
1, . . . ,N , be a set of block variables based on overlapping blocks χi,� of length
�, where N = n − � + 1 and the fin’s are Borel measurable functions [cf. (1.1)].
To approximate L(ŤN), the distribution of ŤN ≡ tN (Y1n, . . . , YNn; θ) using the
BOBB, one defines the blocks of block variables {Bi ≡ (Yin, . . . , Y(i+�1−1)n) : i =
1, . . . ,N −�1 +1}, resamples �N/�1� many blocks from {B1, . . . ,BN−�1+1}, and
uses the first N resampled block variables {Y ∗

in := 1, . . . ,N} (say) to define the
BOBB version of ŤN as Ť ∗

N = tN (Y ∗
1n, . . . , Y

∗
Nn; θ̂ ), where θ̂n is an estimator of

θ based on X1, . . . ,Xn. Then L(Ť ∗
n ) (conditional on X1, . . . ,Xn) is the desired

BOBB estimator of L(ŤN).
Politis and Romano [24] established consistency of the BOBB method for sta-

tistics of the form T̃N ≡ b1/2(ȲN − EȲN), where ȲN = N−1 ∑N
i=1 Yin. We now

show that the BOBB is indeed s.o.c. for a Studentized version of T̃N , given by

TN ≡ √
b(ȲN − EȲN)/σ̂n,(3.6)

where σ̂ 2
n = max{n−1, [γ̂ 0

n (0) + 2
∑2�

k=1(1 − N−1k)γ̂ 0
n (k)]b/N} and γ̂ 0

n (k) =
N−1 ∑N−k

i=1 (Yin − ȲN )(Y(i+k)n − ȲN ), k = 0, . . . ,N − 1. To define the BOBB

version of TN , let Ȳ ∗
in,1 = �−1

1
∑i�1

j=((i−1)�1+1 Y ∗
in, i = 1, . . . , b1, where b1 =

N/�1, which for simplicity of exposition is assumed to be an integer. Then
the BOBB version of ȲN is given by Ȳ ∗

N ≡ b1
−1 ∑b1

i=1 Ȳ ∗
in,1. And for σ̂ 2

n , we
use a truncated version of the sample variance of the Ȳ ∗

in,1’s, namely, [σ ∗
n ]2 ≡
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max{n−1, b1
−1 ∑b1

i=1[Ȳ ∗
in,1 − Ȳ ∗

N ]2}, to define the BOBB version of TN as (cf.
Götze and Künsch [10])

T ∗
N = √

b1(Ȳ
∗
N − E∗Ȳ ∗

N)/σ ∗
n .(3.7)

Since the rate of normal approximation to TN is O(b−1/2), here s.o.c. refers to
an error of approximation that is of smaller order than O(b−1/2). The next result
gives sufficient conditions for the s.o.c. of TN .

THEOREM 3.3. Suppose that {Xi}i∈Z is a sequence of stationary R
d0-valued

random vectors, Yin = fn(χi,�) for some fn : Rd0� → R. Also, suppose that:

(i) for some κ ∈ (0,1) and δ0 ∈ (0,1/5), � < κ−1n1/5 and �1 < κ−1nδ0� for
all n > κ−1, and [logn]/� + �/�1 = o(1) as n → ∞;

(ii) for some κ ∈ (0,1) and for some integer r0 ≥ 12[(1 − 5δ0)(4 − 5δ0)]−1

[where δ0 is as in (i) above], supn≥1 E|Y1n|4r0+κ < ∞;

(iii) σ 2∞ ≡ limn→∞ Var(b1/2ȲN ) exists, σ 2∞ ∈ (0,∞); and
(iv) conditions C.4, C.5 hold and condition C.6 holds with dn = 1 and An re-

placed by A0
n ≡= {(0′, s)′ : s ∈ R, |s| ≥ κ}. Then

sup
x∈R

|P(TN ≤ x) − P∗(T ∗
N ≤ x)| = oP (b−1/2) as n → ∞.(3.8)

Theorem 3.3 shows that for s.o.c. of the BOBB, the BOBB block size �1 must
be of a larger order than �. In addition, we also need an upper bound on the growth
rate of �1/�. Since T ∗

N is defined in terms of b1-many resampled blocks, its EE
has an error of the order o(b1

−1/2), which must be o(b−1/2) for the BOBB to
be s.o.c. A large �1 can make b1 too small compared to b and s.o.c. cannot be
attained. See [22] for more details. We also mention that the Cramér condition (iv)
is only on the sum of the block variables Yin, not on the joint distribution of Yin

and Y(i+k)nYin, 0 ≤ k ≤ �1. Under this setup, the proof heavily depends on the
arguments developed in Lahiri [19], which established a similar s.o.c. result for
the MBB method in the finite-dimensional parameter case.

For a concrete example where Theorem 3.3 can be readily applied, suppose
that the Xi’s are real-valued and that Yin = (2π�)−1|∑i+�−1

j=i Xj exp(−ιjω)|2,

ω ∈ [−π,π ]. Then, ȲN gives an estimator of the spectral density f of {Xi}i∈Z

and it is asymptotically equivalent to the estimator (1.3) of Example 1.1 with
weights ωkn ≡ 1 (cf. Politis and Romano [24]). In this case, σ 2∞ exists and
σ 2∞ = (2/3)f 2(ω) for 0 < |ω| < π and σ 2∞ = (4/3)f 2(ω) for ω = 0,±π . Thus,
condition (iii) of Theorem 3.3 holds if f (ω) ∈ (0,∞). If, in addition, we sup-
pose that {Xi}i∈Z is a linear process as in Example 3.1, then by the arguments
of Janas [14], condition (iv) holds, provided L(ε1) has an absolutely continuous
component. Thus, for this class of linear processes, the BOBB approximation to
the distribution of the Studentized spectral density estimator is s.o.c.
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4. Proofs. For x, y ∈ R, let x ∨ y = max{x, y}, x+ = x ∨ 0, and �x� = k if
k ≤ x < k + 1, k ∈ Z. Let m3 = �(logn) log log(n + 2)�. Let α! = ∏d

j=1 αj ! and

tα = ∏d
j=1 t

αj

j for α = (α1, . . . , αd)′ ∈ (Z+)d , t = (t1, . . . , td)′ ∈ R
d . Let F c

a =
σ 〈Xi : i ∈ Z, a ≤ i ≤ c〉 for −∞ ≤ a ≤ c ≤ ∞. Let Ck,C and C(·) denote generic
constants, depending on their arguments (if any), but not on n and �; dependence
on d0, d1, d , κ,ρ will be often suppressed to ease notation. For c > 0, define the
truncation function g(·; c) : Rk → R

k by g(x; c) = cx
‖x‖ · ψ(

‖x‖
c

)1(x �= 0), where
ψ ∈ C∞(R) is nondecreasing, satisfying ψ(u) = u+ for u ≤ 1 and ψ(u) = 2 for
u ≥ 2. Let

1Wjn = √
�X̄jn, 2Wjn = Ȳjn and Wjn = (1W

′
jn; 2W

′
jn)

′, 1 ≤ j ≤ b.

With cn = b1/2(logn)−2, define the truncated and the centered versions of
kW̌jn by kW̌jn = g([kW̌jn]; cn), kW̃jn = [kW̌jn] − E[kW̌jn] and set kŠn =
b̃−1/2 ∑b

j=1[kW̌jn] and kS̃n = b̃−1/2 ∑b
j=1[kW̃jn], k = 1,2. Let W̌jn = ([1W̌jn]′,

[2W̌jn]′)′ and similarly, define W̃jn, Šn and S̃n. For any random variable (r.v.) Z

on (�,F ,P ), let

EtZ = E[Z exp(ιt ′S̃n)]/Hn(t), t ∈ R
d,

where Hn(t) = E exp(ιt ′S̃n). Define the semiinvariants of the r.v.s V1, . . . , Vp by

Kt (V1, . . . , Vp)
(4.1)

= ∂

∂ε1
· · · ∂

∂εp

∣∣∣∣
ε1=···=εp=0

logE exp(ιt ′S̃n + ε1V1 + · · · + εpVp),

t ∈ R
d . Write Kt (V

p
1 ,V

q
2 ) = Kt (V1, . . . , V1,V2, . . . , V2) where, on the right-hand

side, V1 appears p times and V2 appears q times. Then, by Taylor’s expansion, we
get

logHn(t) =
s∑

r=2

K0(t
′S̃r

n) + R∗
n(t),(4.2)

where R∗
n(t) = [∫ 1

0 (1 − η)sKηt (t
′S̃(s+1)

n )dη]/s!.
LEMMA 4.1. Let conditions C.1–C.4 hold. Then there exists C = C(ρ, s, κ)

such that for any a1, . . . , ar ∈ R
d with ‖ai‖ = 1, 2 ≤ r ≤ s, and for all n ≥ κ−1,

(i) |K0(a
′
1Sn, . . . , a

′
rSn) − K0(a

′
1S̃n, . . . , a

′
r S̃n)| ≤ Cb−(s−2)/2 ×

(logn)2s−2−[α(s)/s],
(ii) |K0(a

′
1S̃n, . . . , a

′
r S̃n)| ≤ Cb−(r−2)/2.

PROOF. The left-hand side of the inequality in part (i) is bounded above by

b̃−r/2
b−1∑
i=0

(i,r)∑ |K0(Vj1, . . . , Vjr ) − K0(Ṽj1, . . . , Ṽjr )|,(4.3)
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where the summation
∑(i,r) extends over all 1 ≤ j1 ≤ · · · ≤ jr ≤ b with maxi-

mal gap i, and where Vjp = a′
pWjpn and Ṽjp = a′

pW̃jpn,1 ≤ p ≤ r . Since Win ∈
F (i+1)�

(i−1)�+1, Wi+j,n ∈ F ∞
(i+j−1)�+1 and [(i + j − 1)� − (i + 1)�] = (j − 2)�, by C.3

and C.4 above and by (3.13) and (3.14) of [8], we have (see [22])

∑
i≥C(κ)

(i,r)∑ |K0(Ṽj1, . . . , Ṽjr )| ≤ C(κ, r)|J2|brcr
n� exp(−3s logn).(4.4)

Truncating the Wjn’s at ei = exp(κi) and using C.3 and C.4, we get (cf. [22])

∑
i≥i0

(i,r)∑ |K0(Vj1, . . . , Vjr )|

≤ ∑
i≥i0

(i,r)∑ |K0(a
′
1g(Wj1n; ei), . . . , a

′
rg(Wjrn; ei))|

+
∞∑

i=i0

(i,r)∑
C(r,ρ)max

{
E

(∏
p∈I

‖Wjpn‖1(‖Wjkn‖ > ei)

)
:k ∈ I,(4.5)

1 ≤ |I | ≤ r

}

≤ C(ρ, κ, r, s)i
r−α(s)/s
0 b

for all 2 ≤ r ≤ s, where i0 = �logn�. Also, by similar arguments, for 2 ≤ r ≤ s,

∑
i<i0

(i,r)∑ |K0(Vj1, . . . , Vjr ) − K0(Ṽj1, . . . , Ṽjr )|
(4.6)

≤ Cb(logn)r/
{
c(s−r)
n [logn]α(s)/s}.

Hence, part (i) follows from (4.3)–(4.6). Proof of part (ii) is similar; see [22]. �

For the next lemma, let W̃n(I ) ≡ ∏
j∈I

∏rj
p=1 a′

jpW̃jn and S
(r)
I ≡ S

(r)
I (m) =

ιb̃−1/2t ′ ∑∗r W̃jn, I ⊂ {1, . . . , b}, r ≥ 0, m ≥ 3, where ajp ∈ R
d with ‖ajp‖ = 1,

rj ∈ N, and where
∑∗r extends over all 1 ≤ j ≤ b with |j − k| > mr for all k ∈ I .

LEMMA 4.2. Let conditions C.1–C.4 hold. Then, for any η ∈ (0, 1
4), there

exists C(η,ρ) > 0 such that for every 3 ≤ m ≤ ηb/|I | and 1 ≤ K ≤ ηb/(m|I |),
|Hn(t)||EtW̃n(I )| ≤ |EW̃n(I )|[max

{∣∣E exp
(
S

(r)
I

)∣∣ : 1 ≤ r ≤ K
} + ηK ]

(4.7)
+ C(|I |)bcγ

n K2K� exp(−C(κ)m�)

for all ‖t‖ < C(η,ρ)[b/m]1/2, where γ = ∑
j∈I rj .
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PROOF. Let �1,r = [exp(S
(r−1)
I − S

(r)
I ) − 1] and W̃1,I = W̃n(I ) exp(ιb̃−1/2 ×∑

j∈I t ′W̃jn), r ≥ 1. Using Tikhomirov’s [29] iterative method, one can show

that the left-hand side of (4.7) ≤ ∑K
r=1 |EW̃1,I (

∏r−1
j=1 �1,j ) exp(S

(r)
I )| +

|EW̃1,I (
∏K

j=1 �1,j ) exp(S
(K)
I )|. Now, approximating �1,j ’s and S

(r)
I ’s using

X
†
j,m0

’s and Y
†
jn,m0

’s (with m0 = �m�/12�), and using conditions C.3, C.4 and

the bound “max{E(
∑j0+m

j=j0+1 W̃jn)
2 : 1 ≤ j0 ≤ b − m} ≤ C(ρ)m, m ≥ 3”, one can

complete the proof. See [22] for details. �

LEMMA 4.3. Let C.1–C.4 hold and let I1, I2 ⊂ {1, . . . , b} with min{I2} −
max{I1} ≥ m1 for some 3 ≤ m1 ≤ b − |I1| − |I2|. Then, given η ∈ (0, 1

4) and an
integer m ∈ [3,m1/3], there exists C1 = C(ρ, κ, η) ∈ (0,∞) such that∣∣EtW̃n(I1)W̃n(I2) − EtW̃n(I1)EtW̃n(I2)

∣∣
(4.8)

≤ C(r, k, η)bcγ
n

[
K2K� exp(−C(κ)m�) + ηK]|Hn(t)|−2

for all ‖t‖ < C1[b/m]1/2, 1 ≤ K ≤ m1/m, and n ≥ 1, where γ = ∑2
p=1

∑
j∈Ip

rj .

PROOF. One can prove (4.8) by using Tikhomirov’s [29] method and argu-
ments in the proofs of Lemma 3.1 of [17] and Lemma 4.2 above. See [22] for
details. �

LEMMA 4.4. Let conditions C.1–C.4 hold. Given η ∈ (0, 1
4) and q ∈ Z+,

∣∣∣∣ ∂q

∂uq
R∗

n(t + x0u)
∣∣∣
u=0

∣∣∣∣ ≤ C(s, q, ρ, κ, η)(1 + βn(t)
p)(1 + ‖t‖p)

b(s−2)/2(logn)[α(s)−2s−1](4.9)

for all ‖x0‖ ≤ 1 and for all t ∈ An ≡ {x ∈ R
d :‖x‖ < C(η,ρ, κ)b(1−η)/2, βn(x) <

∞}, where βn(t) = |Hn(t)|−1[sup{|E exp(S
(r)
I )| : 1 ≤ r ≤ C(p0)b

1−η, |I | ≤ p0} +
exp(−C(η, κ,p0)m3�)], p0 = s + 1 + q , and S

(r)
I is as in Lemma 4.2.

PROOF. It is enough to consider b−r/2 ∑b−1
i=0

∑(i,r) |Kut (Vj1, . . . , Vjr )| for
s + 1 ≤ r ≤ p0 and 0 ≤ u ≤ 1 [cf. (4.2)], where Vj = ιt ′W̃jn and

∑(i,r) is as
in (4.3). By Lemma 4.1, for any s +1 ≤ r ≤ p0, E‖W̃jn‖r ≤ cr−s−1

n E‖W̃jn‖s+1 ≤
C(ρ, s)cr−s

n (logn)−α(s), uniformly in 1 ≤ j ≤ b. Next, define �1 = {i ∈ Z : 1 ≤
i ≤ an},�2 = {i ∈ Z :an < i ≤ bη} and �3 = {i ∈ Z :bη < i ≤ b − 1}, where
an = m2

3. Now using Lemma 4.2 (with m = �bη� and K = m) for i ∈ �1,
Lemma 4.3 (with m = K = �√i� + 1) for i ∈ �2 and again Lemma 4.3 (with
m = K = �bη� + 1) for i ∈ �3, one can complete the proof of the lemma. See [22]
for more details. �
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LEMMA 4.5. Suppose that conditions C.1–C.5 hold. Then, for any I ⊂
{1, . . . , b} with |I | ≡ r ≤ C, and for any t ∈ R

d , 3 ≤ m ≤ b/C,

|Hn(t)EtW̃n(I )| ≤ Ccγ
n [β1n(t)]K + C(κ, r)Kcγ

n [1 + ‖t‖�m] exp(−C(κ)m�)

for some K ≥ C[b/m], where β1n(t) = max{E|E(exp(ιb̃−1/2t ′ ∑|j−j0|≤m W̃jn)|
D̃j0)| :m < j0 < b−m}, γ = ∑

j∈I rj and D̃j0 is as in condition C.6.

PROOF. Let I = {j1, . . . , jr}, J0n = {1, . . . , b} and J1n = {j ∈ J0n : |j − jk| ≥
2m + 1 for all 1 ≤ k ≤ r}. Define j0

1 = infJ1n and j0
p+1 = inf{j ∈ J1n : j ≥ j0

p +
7m}, p = 1,2, . . . ,K − 1, where K is the first integer p for which the infimum is
over an empty set. Also, define the variables Ap = exp(ιb̃−1/2t ′ ∑|j−j0

p|≤m W̃jn),

Bp = exp(ιb̃−1/2t ′ ∑j0
p+m+1≤j≤j0

p+1−m−1 W̃jn) and R = W̃n(I ) exp(ιb̃−1/2t ′ ×∑
j∈J2n

W̃jn), where J2n = {j ∈ J0n : j < j0
1 − m or j ≥ j0

K − m}. Then it follows
that

Hn(t)EtW̃n(I ) = E

[(
K−1∏
p=2

ApBp

)
R

]
.

Let A†
p,B†

p and R† be defined by replacing Xj ’s and Yjn’s by X
†
j,q, Y

†
jn,q in

Ap,Bp and R with q = m� for A†
p and with q = m�/12 for B†

p and R†. Then,
by C.2, ∣∣∣∣∣ER

K−1∏
p=2

ApBp − ER†
K−1∏
p=2

A†
pB†

p

∣∣∣∣∣
(4.10)

≤ C(κ, |I |)Kcγ
n ‖t‖�m exp(−c(κ)m�).

Next, let D̃p = σ 〈{Dj : j ∈ Z, j /∈ [cp, dp]}〉 and D∗
p = σ 〈{Dj : j ∈ [ap −

m�, cp)∪ (dp, bp +m�]}〉, where ap = (j0
p −m)�+1−m�, bp = (j0

p +m+1)�+
m�, cp = (j0

p − �m/2�)� + 1 and dp = (j0
p + �m/2� + 1)�, 2 ≤ p ≤ K − 1. Then,

by condition C.5, maxp=2,...,K−1 |E(A†
p|D̃p) − E(A†

p|D∗
p)| ≤ C(κ) exp(−κm�)

and hence,∣∣∣∣∣ER†
K−1∏
p=2

A†
pB†

p − ER†
K−1∏
p=2

B†
pE(A†

p|D∗
p)

∣∣∣∣∣
≤

K−1∑
q=2

∣∣∣∣∣ER†

(q−1∏
p=2

A†
pB†

p

)
B†

q [A†
q − E(A†

q |D̃q)]
K−1∏

p=q+1

B†
pE(A†

p|D∗
p)

∣∣∣∣∣
(4.11)

+ Ccγ
n

K−1∑
q=2

E
∣∣E(Aq |D̃q) − E(A†

q |D∗
q )

∣∣
≤ C(κ)cγ

n K exp(−κm�),
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since by construction, R†(
∏q−1

p=2 A†
pB†

p),B†
q and

∏K−1
p=q+1 B†

pE(A†
p|D∗

p) are mea-

surable w.r.t. D̃q for every 2 ≤ q ≤ K − 1, making the first term vanish.
Now using (4.10), (4.11) and the fact that D∗

p and D∗
p+1 are separated by

a distance ≥ Cm� for all p, one can retrace the arguments in [8] to con-
clude that |Hn(t)EtW̃n(I )| ≤ Cc

γ
n

∏K−1
p=2 E|E(Ap|D̃p)| + C(κ, |I |)Kc

γ
n (1 +

‖t‖�m) exp(−C(κ)m�). Lemma 4.5 follows from this. �

LEMMA 4.6. Let C.1–C.5 hold and η ∈ (0,1). Then, for any α ∈ Z
d+,

|DαHn(t)| ≤ C(α,η, k)b|α|[exp(−C(κ)‖t‖2) + exp(−C(κ)mn�)]
for all ‖t‖ ≤ C(κ,ρ, s)b(1−η)/2, where mn = �bη/2�.

PROOF. For any R
d -valued zero mean r.v. Z on (�,F ,P ) with E‖Z‖3 <

∞ and sub-σ -field C ⊂ F , one can show (cf. [22]) that |E exp(ιt ′Z|C)|2 ≤ 1 −
E((t ′Z)2|C) + 2E(|t ′Z|3|C) for all t ∈ R

d . Taking Z = b̃−1/2 ∑j0+m0
j=j0+1 W̃jn and

using C.2 and Hölder’s inequality, one can show (cf. [22]) that[
E

∣∣∣∣∣E
{

exp

(
ιt ′

[
b̃−1/2

j0+m0∑
j=j0+1

W̃jn

])∣∣∣C
}∣∣∣∣∣

]2

≤ exp
(
−κ

4
b−1m0‖t‖2

)
(4.12)

for all ‖t‖ ≤ C(κ,ρ, s)b1/2/m2
0, provided n > κ−1. Now applying Lemma 4.5

with m = �bη/2� and using (4.12) to estimate β1n(t) of Lemma 4.4, one can com-
plete the proof of Lemma 4.6. See [22] for more details. �

LEMMA 4.7. Let conditions C.1–C.4 hold. Let f : Rd → R be a Borel mea-
surable function with sup{ |f (x)|

(1+‖x‖s0 )
:x ∈ R

d} ≡ Mf < ∞. Then, for any γ > 0,∣∣∣∣Ef (Sn) −
∫

f d�n,s

∣∣∣∣
≤ C(ρ, s, γ,�∞,Mf )

×
[
b−(s−2)/2(logn)2s−2−[α(s)/s]

+ sup
|α|≤p1

∫ ∣∣Dα[(
Hn(t) − �̂s,n(t)

)
Kn(t)

]∣∣dt + ω(f̃ ;b−γ )

]
,

where p1 = d + s0 + 1, f̃ (x) = f (x)
1+‖x‖s0 , x ∈ R

d , Kn(t) = K0(
t

bγ ) and K0 ∈
Cp1(Rd) is a characteristic function that vanishes outside a compact set.

PROOF. Let A1 = {‖Sn‖ > logn},A2 = {‖Šn‖ > logn} and A3 = {2‖S̃n‖ >

logn}, n ≥ 3. Then, it can be shown (cf. [22]) that
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I1 ≡ |Ef (Sn) − Ef (Šn)|
≤ 12Mf

[
(logn)s0P(Sn �= Šn)(4.13)

+ E‖Šn‖s01A2 + ∣∣E‖Sn‖s0 − E‖Šn‖s0
∣∣].

By Markov’s inequality and Jensen’s inequality, for all n with cn > 1, one gets

P(Sn �= Šn) ≤
b∑

j=1

P
(∥∥√�X̄jn

∥∥ > cn

) +
b∑

j=1

P(‖Ȳjn‖ > cn)

≤ ρb[hs(cn)]−1 + [hs(cn)]−1
b∑

j=1

E

{
�−1

j�∑
i=(j−1)�+1

hs(‖Yin‖)
}

(4.14)

≤ C(ρ, s)b−(s−2)/2(logn)−[α(s)−2s];
‖EŠn‖ ≤ C(ρ, s)b−(s−2)/2(logn)2(s−1)−α(s).(4.15)

Let gn(x) = ‖x‖s01(2‖x‖ > logn) and g̃n(x) = gn(x)(1 + ‖x‖s0)−1, x ∈ R
d ,

n ≥ 2. Then, for any a > 0, ω(g̃;b−a) + ∫
gn(x) d�s,n(x) ≤ C(ρ,�∞, a)n−a ;

see [22] for details. Hence, by Lemma 4.1 and by (4.13)–(4.15), for all n > C,

I1 ≤ C(ρ,�∞, s)Mf

[
(logn)2s−2−[α(s)/s]b−(s−2)/2 +

∣∣∣∣Egn(S̃n) −
∫

gn d�s,n

∣∣∣∣
]
.

Lemma 4.7 now follows by two applications of the smoothing inequality of Sweet-
ing [28] and Lemma 11.6 of Bhattacharya and Ranga Rao [3]. �

PROOF OF THEOREM 2.1. By Lemma 4.7, it is enough to show that for 0 ≤
|α| ≤ p1, ∫ ∣∣Dα[(

Hn(t) − ψ̂s,n(t)
)
K̂0(b

−at)
]∣∣dt

(4.16)
≤ C(d, s, ρ, κ)b−(s−2)/2(logn)−2.

Suppose that K̂0(t) = 0 for all ‖t‖ > C0. Then partition the set {‖t‖ < C0b
a}

by {‖t‖ ≤ an}, {an < ‖t‖ < C(κ,ρ, s)b1−η} and {C(κ,ρ, s)b1−η ≤ ‖t‖ < C0b
a},

where an = m
1/2
3 , C(κ,ρ, s) is as in Lemma 4.6 and η ∈ (0, κ/2). Then, using

Lemma 4.4, one can show (cf. Lemma 3.33 of [8]) that for all α ∈ Z
d+,∫

‖t‖<an

∣∣[Dα(
Hn(t) − �̂s,n(t)

)
K̂0(b

−at)
]∣∣dt ≤ C(s, |α|, ρ, κ)

b(s−2)/2(logn)[α(s)−s−1] .(4.17)

By condition C.2 and Lemma 4.6, for all α ∈ Z
d+,∫

‖t‖>an

|Dα�̂s,n(t)|dt +
∫
an<‖t‖<C(κ,ρ,s)b1−η

|DαHn(t)|dt

(4.18)
≤ C(|α|, η, κ)n−s.
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Next, using condition C.6, one can show (cf. [22]) that for n > C(κ),

β1n(t) ≤
{

exp(−C(κ)(dnb̃
1/2)−2‖t‖2), for all ‖t‖ < κb̃1/2dn,

exp(−C(κ)b̃κ/2), for all b(1−η)/2 ≤ ‖t‖ < κb̃1/2dn.

Hence, by Lemma 4.5 (cf. the proof of Lemma 3.43 of [8]), one gets∫
C(κ,sρ)b1−η<‖t‖<C0b

a
|DαHn(t)|dt ≤ C(ρ, a, κ)n−s .(4.19)

Theorem 2.1 now follows from (4.16)–(4.19). �

PROOF OF THEOREM 2.2. Let fn(x) = f (x + EŠn) and η ∈ (0,1/s). Then
a proof of Theorem 2.1 can be constructed by using the arguments in [7] and the
expansion

fn(x) = ∑
0≤|α|≤s−2

(−ε)|α|tαDαfn(x + εt)
/(

d∏
i=1

αi !
)

+ (−ε)s−1(s − 1)
∑

|α|=s−1

∫ 1

0
(1 − u)s−2Dαfn(x + uεt) du

/(
d∏

i=1

αi !
)
,

with ε = C({p(α) : |α| ≤ s − 1}, κ, ρ) · b(η−1)/2. See [22] for details. �

PROOF OF THEOREMS 2.3 AND 2.4. Use (4.17)–(4.18), Lemma 4.7, and the
arguments in the proof of Theorem 2.11 of [8]. See [22] for more details. �

PROOF OF THEOREM 3.1. Let Yjn = (Uν
1j − EUν

1j ),1 ≤ j ≤ N and Yjn = 0
for N + 1 ≤ j ≤ n. Then, by Theorem 2.4 and the stationarity of {Xi}i∈Z, it is
enough to show that (i) lim supn→∞ max1≤j≤b Ehs(Ȳjn) < ∞, (ii) condition C.3
holds and (iii) limn→∞ Var(S2n) exists and lies in (0,∞).

By Lemma 3.3 of [17], Ehs(U
ν
11) ≤ C(|ν|)(1 +E‖U11‖2q) = O(1), and hence,

(i) holds. Next consider (ii). Let Y
†
jn,m = Uν

1j,m1(‖U1j,m‖ ≤ c1m)−EUν
11,1 ≤ j ≤

N and Y
†
jn,m = 0 for N + 1 ≤ j ≤ n, where U1j,m = (X

†
j,m + · · · + X

†
j+�−m)/

√
�

and c1m = exp(κm/2|ν|),m ≥ 1. Then, using the bound E‖U11‖2|ν| = O(1) (cf.
Lemma 3.3 of [17]) and truncation arguments, one can show that

E|Y †
jn,m − Yjn|
≤ E|Uν

1j,m − Uν
1j |1(‖U1j,m‖ ≤ c1m) + E‖U1j‖r1(‖U1j‖ > c1m)

+ E|Uν
1j |

∣∣1(‖U1j,m‖ ≤ c1m) − 1(‖U1j‖ ≤ c1m)
∣∣

≤ C(ν)
[
c
|ν|−1
1m E‖U1j,m − U1j‖ + E‖U1j‖|ν|1(‖U1j‖ > c1m/2)

]
≤ C(ν, κ)

√
� exp

(
−κm

2

)
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for all 1 ≤ j ≤ N , n ≥ 1,m ≥ 1; see [22] for details. Hence, (ii) holds.
Finally, consider (iii). Using (3.2), C.3 and C.4, one can show that∑N−1
j=�+3m |Cov(Uν

11,U
ν
1(j+1))| = o(1), where m = �C(κ, s) logn�. Next let

S(i, j) = Xi + · · · + Xj, i ≤ j , r = |ν|, and for I ⊂ {1, . . . , r}, let Si(I ) =∏
k∈I t ′kS(1, i), where t1, . . . , tr are unit vectors such that Uν

1j = ∏r
k=1 t ′kU1j . Then

the stationarity of the Xi’s, (3.2), C.3 and C.4 yield (cf. [22])

EUν
11U

ν
1(j+1) = �−r

∑
I

∑
J

ESj−�1/4(I
c)ESj−�1/4(J

c)ES�−j (I )S�−j (J )+Q�(j)

for �1/2 ≤ j ≤ � − �1/2, where
∑

I and
∑

J run over I, J ⊂ {1, . . . , r} and where
max{|Q�(j)| :�1/2 ≤ j ≤ � − �1/2} = o(1). Next using the CLT, uniform integra-
bility of S2r

1n under (3.2), and the above expansion for EUν
11U

ν
1(j+1), one can show

that Var(S2n) = (n�)−1 ∑�−�1/2

j=�1/2(N − j)Cov(Uν
11,U

ν
1(j+1)) + o(1) = λ3(ν) + o(1)

for some λ3(ν) ∈ (0,∞); see [22] for details. This completes the proof of (iii).
�

PROOF OF COROLLARY 3.1. Without loss of generality (w.l.g.), we may set
µ = 0. Then, b1/2�̂n = b1/2[µ̂n(2) − EU2

11] − b1/2[µ̂n(2)]2 + b1/2[E(µ̂n(2)]2 ≡
T1n + T2n + b1/2[E(µ̂n(2)]2, say. Monotonicity of hc(x) = (1 + xs0)1(x > c), x ∈
[0,∞) [for fixed c ∈ (0,∞)] implies Ehc(|T1n + T2n|) ≤ Ehc(2 max{|T1n|,
|T2n|}) ≤ Ehc(2|T1n|) + Ehc(2|T2n|). Let ε0 = (2λ3(2) − λ)/4. Then using the
bound [E(µ̂n(1)]2 = O(n−1) (cf. Lahiri [20]) and applying Theorem 3.1 to
Ehc(|Tkn|) with c = [2{λ3(2) + ε0}(s − 2) logn]1/2 for k = 1,2, one can prove
the result. �

PROOF OF THEOREM 3.2. Let σ 2
� = E(

√
�X̄2)

2, Y
[2]
in = (U

[2]
1j )2 −E(U

([2]
11 )2,

1 ≤ j ≤ b, S
[2]
2n = b−1/2 ∑b

j=1 Y
[2]
jn and S[2]

n = (n1/2X̄n, S
[2]
2n )′, where U

[2]
1j =

(X(j−1)�+1 + · · · + Xj�)/
√

�. Then Tn = √
nX̄n/[σ 2

� + b−1/2S
[2]
2n − b−1(

√
nX̄n)

2]
is a smooth function of S[2]

n and hence, the EE for Tn can be derived from that of
S[2]

n (cf. Bhattacharya and Ghosh [2]). To derive an (s−2)th order EE for S[2]
n , note

that by (3.5) and the independence of {Dj : j ∈ Z}, it is enough to verify (cf. [22])

lim
n→∞ Cov

(
S[2]

n

) = �[2]∞ exists and is nonsingular;(4.20)

max
j0∈Jn

sup
t∈An

E

∣∣∣∣∣E
{

exp

(
ιt ′

j0+mn∑
j=j0−mn

W
[2]
jn

)∣∣∣D̃j0

}∣∣∣∣∣ ≤ 1 − κ,(4.21)

for some κ ∈ (0,1), where Jn, D̃j0 are as in C.6, mn = �C(κ, s) logn�, An = {t ∈
R

2 :κ ≤ ‖t‖ ≤ b(s−2)} and W
[2]
jn is defined by replacing the Yin’s in Wjn with

Y
[2]
in ’s. Using S.1 and S.2(i)–(ii), one can show (cf. [22]) that (4.20) holds with

�
[2]∞ = Diag(σ 2∞,2σ 4∞).
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Next consider (4.21). Set mn = m for notational simplicity. Let U
†
2j,m =

(X
†
(j−1)�+1,m + · · · + X

†
j�,m)/

√
� and c1m = exp(κm/4). Then it can be shown

that uniformly over t ∈ An and j0 ∈ Jn,

sup
t∈An

E

∣∣∣∣∣E
{

exp

(
ιt ′

j0+m∑
j=j0−m

W
[2]
jn

)∣∣∣D̃j0

}∣∣∣∣∣
(4.22)

≤ E
∣∣E{exp(ι(U

†
2j0,m

, [U†
2j0,m

]2)t)|D∗
j0

}∣∣ + 2P(‖U†
2j0,m

‖ > c1m),

where D∗
j0

≡ σ 〈{Dj : j ∈ Z, j /∈ [(j0 − 1)� + m + 1, j0� − m]}〉 ⊂ D̃j0 . Next us-

ing the independence of the Dj ’s, one gets E|E{exp(ι(U
†
2j,m, [U†

2j,m]2)t)|D∗
j }| =

E|ξj,m(t;Z(I2j ))| for some function ξj,m(t; z), where for I ⊂ Z, Z(I) =
{Z(i) : i ∈ I } and where I2j = {i ∈ Z : (j − 1)�−m+ 1 ≤ i ≤ (j − 1)�+m}∪ {i ∈
Z : j� − m + 1 ≤ i ≤ j� + m}. Let Z∞ ∼ N(0, σ 2∞). Then, for any ε > 0, there
exists C(ε) ∈ (0,∞) such that

sup{|E exp(ι(Z∞,Z2∞)t)| :‖t‖ > ε} < e−C(ε).(4.23)

Now using (4.23) and the EE results of [8], one can show that for any ε > 0,
sup{E|ξj,m(t;Z(I2j ))| : ε ≤ ‖t‖ ≤ b(s−2), j ∈ Jn} ≤ exp(−C(ε)) + o(1); see [22]
for details. Condition (4.21) now follows from (4.22), (4.23) and the above bound.

�

PROOF OF THEOREM 3.3. W.l.g., let EY1n = 0 for all n ∈ N. For
k = 0, . . . ,N − 1, let g̃0

n(k) = N−1 ∑N−k
i=1 YinY(i+k)n. Define σ̃ 2

n = [g̃0
n(0) +

2
∑2�

k=1(1 − N−1k)g̃0
n(k)]b/N and σ 2

n = Eσ̃ 2
n , where we let ZN = b1/2(ȲN −

EȲN)/σn. Then by Taylor’s expansion,

TN = ZN − ZN [σ̃ 2
n − σ 2

n ]/[2σ 2
n ] + R1N ≡ T1N + R1N, say,(4.24)

where, on the set {|σ̂ 2
n − σ 2

n | < σ 2
n /2}, |R1N | ≤ 3√

2
σ−5

n [σ̂ 2
n − σ 2

n ]2 + |Zn(σ̂
2
n −

σ̃ 2
n )|/[2σ 2

n ]. Next let η1in = Yin[Yin + 2
∑[2�]∧[N−i]

k=1 (1 − N−1k)Y(i+k)n], ηin =
η1in − Eη1in, i = 1, . . . ,N and Vi(4�) ≡ S̃([(i − 1)4� + 1], [i4� ∧ N]), where
S̃(p, q) = ∑q

i=p ηin for any 1 ≤ p ≤ q ≤ N . Then, using the weak dependence of

alternate Vi(4�)’s and Markov’s inequality, with εn = b−1/4(logn)−2, one gets

P(|σ̃ 2
n − σ 2

n | > 2εn)

≤ P

(∣∣∣∣∣
∑

1≤2i≤N/[4�]
V2i (4�)

∣∣∣∣∣ > εnN
2/b

)

(4.25)

+ P

(∣∣∣∣∣
∑

1≤2i−1≤N/[4�]
V2i−1(4�)

∣∣∣∣∣ > εnN
2/b

)

≤ C[εnN
2/b]−4[

�4(N/[4�])2] = O(b−1(logn)8).
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Also, by moderate deviation bounds for ȲN and Markov’s inequality, P(|σ̂ 2
n −

σ̃ 2
n | > Cb−1/2(logn)−2) = O(b−1/2(logn)−2) and hence, by (4.24)–(4.25), TN

and T1N have identical EEs up to order o(b1/2). With a ≡ an = �b1/2/m3�, write
ZN = Z

(1)
N + Z

(2)
N and σ̃ 2

n − σ 2
n = s

(1)
n + s

(2)
n , where Z

(1)
N denotes the sum over

Yinb
−1/2 for i = 1, . . . ,2a� and s

(1)
n over N−2bηin, i = 1, . . . ,2a�. Then it can be

shown that

T1N = ZN − Z
(2)
N s(2)

n /[2σ 2
n ] + R2N ≡ T2N + R2N, say,(4.26)

where P(|R2N | > b−1/2m
−1/4
3 ) = O(am

1/2
3 /b) = o(b−/2). Thus, TN and T2N

have identical EEs up to order o(b−1/2).
Next define the EE �n(x) for T2N by its Fourier transform,

�̂n(t) ≡
∫ ∞
−∞

exp(ιtx) d�n(x)

= exp(−t2/2)

[
1 + E(ιtZn)

3/6(4.27)

+ b−3/2
b0∑

i=a+1

b0∑
j=a+1

(ιt)EZinVjn�n(i, j)

]
,

where b0 = �N/(2�)� and for 1 ≤ i, j ≤ b0, Zin = �−1/2 ∑2�
k=1 Y(i−1)2�+k ,

Vjn = −N−2b2S̃([(i − 1)2�+ 1], [2i�∧N])/[2σ 2
n ] and �n(i, j) = ∑2

r=1(r!)−1 ×
[ιtGn(i, j)]r , with Gn(i, j) denoting the sum over all {Zknb

−1/2 : |i − k| ≤ 1,
|j − k| ≤ 1,1 ≤ k ≤ b0}. Also, let QN = −Z

(2)
N s

(2)
n /[2σ 2

n ], the quadratic part of
T2N . Using arguments in the proofs of Lemma 4.5 above and Lemma 3.5 of Lahiri
[19], one can show that∣∣∣∣∣EBN(t) exp

(
ιt

a∑
j=1

Zjn/
√

b

)∣∣∣∣∣
≤ C1

[
exp(−C2a/m3)1(|t | > κb1/2)(4.28)

+ exp(−C3t
2a2/[bm3])1(|t | ≤ κb1/2)

]
for some constants Ci ≡ Ci(σ

2∞, κ), where BN(t) = ∏b0
j=a+1{

∏rj
k=1(1 + αkjZjn +

βkjVjn)} exp(ιtZjn) for some αkj , βkj ∈ [−1,1] and rj ∈ Z+ with
∑b0

j=a+1
∑rj

k=1[|αkj + |βkj |] ≤ 4. By Taylor’s expansion, for t ∈ R,

E exp(ιtT2N) = E exp(ιtZN)

[
1 + ιtQN

+ 2−1(ιtQN)2
∫ 1

0
exp(ιutQN)du

]
(4.29)

= �̂n(t) + R3n(t),
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where, using (4.28) and Lemma (3.30) of [8], one can show that |R3n(t)| ≤
C(|t |2 + |t |4)b−1/2−δ for some δ ∈ (0,1/2).

Now using Esseen’s smoothing inequality (cf. Chapter 15, Feller [5]) over the
interval {|t | < b1/2 logn} and using (4.29) for |t | ≤ (logn)4, the second term on
the right-hand side of (4.28) for |t | ∈ ((logn)4, κb1/2], and the first term on the
right-hand side of (4.28) for |t | > κb1/2, one can conclude that

sup
x∈R

|P(TN ≤ x) − �n(x)| = o(b−1/2).(4.30)

Next we derive an EE for the bootstrapped Studentized statistic. Let Z̃∗
in =

(�1/�)
1/2[Ȳ ∗

in,1 − µ̂n,1], Z∗
in = Z̃∗

in/σ̌n and Z∗
N = b1

−1/2 ∑b1
i=1 Z∗

in, where Ȳ ∗
in,1

is the average of the ith resampled BOBB block (of size �1), µ̂n,1 = E∗Ȳ ∗
1n,1 and

σ̌ 2
n = Var∗(Z̃∗

in). Using Taylor’s expansion and moderate deviation inequalities for
sums of independent random variables, one can show that

T ∗
N = Z∗

N − Z∗
N

[
b1

−1
b1∑

j=1

{(Z̃∗
jn)

2 − σ̌ 2
n }

]/
(2σ̌ 2

n ) + R∗
1N

≡ T ∗
1N + R∗

1N, say,

where An ≡ {σ̌ 2
n > σ 2∞/2} ∩ {E∗|Z∗

N |r0 < C} and P∗(|R∗
1N | > b−1/2(logn)−1) ≤

Cb−1/2(log logn)−1. Next define T ∗
2N by deleting the first a1 ≡ �b1

(1−2α)�-many
Z∗

in’s from the quadratic term in T ∗
1N , where α = 1

2 − (1−5δ0)
6 . Let R∗

2N = T ∗
1N −

T ∗
2N . Then, with εn =

√
b1√

b logn
, using arguments similar to the unbootstrapped case,

one can show that on the set An,

P∗(|R∗
2N | > 3εnb1

−1/2) ≤ 3a1{ε2
nb1}−1.(4.31)

Here the choices of a1 and εn ensure that [εnb1
−1/2]∨[ a1

ε2
nb1

] = O(b−1/2(logn)−1).

Next define the EE �̌n(x) for T ∗
2N (and also for T ∗

N ) by its Fourier transform,

�̂∗
n(t) ≡

∫ ∞
−∞

exp(ιtx) d�̌n(x)

= exp(−t2/2)

[
1 + E∗(ιtZ∗

1n)
3/

[
6
√

b1
]

(4.32)

+ b1
−3/2

b1∑
i=a1+1

b1∑
j=a1+1

(ιt)E
(
Z̃∗

in[(Z̃∗
in)

2 − σ̌ 2
n ]

× {−2σ̌ 3
n }−1�∗

n(i, j)
)]

,
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where �∗
n(i, j) = ∑2

r=1(r!)−1[ιtG∗
n(i, j)]r , with Gn(i, j) denoting the sum over

all {Z∗
knb

−1/2 :k ∈ {i, j}}. Using the independence of the Z∗
in’s, the moment con-

dition and Taylor’s expansion, one can show (cf. Götze [6]) that on the set An,∫
|t |≤m3

|E∗ exp(ιtT ∗
2N) − �̂∗

n(t)|
|t | dt ≤ Cb1

−1
∫
|t |≤m3

[t2 + t4]
|t | dt

(4.33)
≤ Cb1

−1m4
3.

Since the integral of |�̂∗
n(t)||t |−1 over {|t | > m3} is O(exp(−Cm2

3)), in view of
Esseen’s lemma, it is enough to consider the integral of |E∗ exp(ιtT ∗

2N)||t |−1 over
{t :m3 < |t | < b1} (say). Let Q∗

N denote the quadratic part in T ∗
2N . Then

|E∗ exp(ιtT ∗
2N)|

= E∗
[

exp(ιtZ∗
N)

{
r0−1∑
r=0

[ιtQ∗
N ]r

r!(4.34)

+ [ιtQ∗
N ]r0

r0!
∫ 1

0
E∗ exp(ιutQ∗

N)du

}]
.

Note that by the independence of the Z̃∗
kn’s, the r th summand above for

r ∈ {0, . . . , r0 − 1} is bounded above by C1(r)(b1)
r |t |r exp(−C2(r)t

2), while the
last term is bounded above by C1|t |r0 exp(−C2a1t

2/b1). Hence∫
m3<|t |≤b1

αm3

|E∗ exp(ιtT ∗
2N)|dt

|t | ≤ C[b1]−(1/2−α)r0[m3]r0 = o(b−1/2).(4.35)

Next, using the independence of {Z∗
kn :k = 1, . . . , a1} and Q∗

N , one can show that
|E∗ exp(ιtT ∗

2N)| ≤ exp(−Ct2a1/b1) for all |t | ≤ κb1
1/2, for some κ > 0, so that∫

b1
αm3<|t |<κb1

1/2
|t |−1|E∗ exp(ιtT ∗

2N)|dt

(4.36)

≤ C1
[b1]1−2α

a1[m3]2 exp(−C2m
2
3a1[b1]2α−1) ≤ C3m

−2
3 exp(−C4m

2
3).

Finally, consider |t | ∈ [κb1
1/2, b1/2 logn]. For any ε > 0,

sup{|E exp(ιtZ̃∗
in)| : ε < |t | < b1}

≤ sup

{∣∣∣∣∣N−1
1

N1∑
i=1

[
exp

(
ιt Ȳin,1(�1/�)

1/2)

− E exp
(
ιt Ȳin,1(�1/�)

1/2)]∣∣∣∣∣ : ε < |t | < b1

}
(4.37)

+ sup
{∣∣E exp

(
ιt Ȳ1n,1(�1/�)

1/2)∣∣ : ε < |t | < b1
}

≡ I1N + I2N, say.
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Using a discretizing argument as in Lemma 4.2 of Babu and Singh [1], one can
show (cf. Lahiri [19]) that

P
(
I1N > (log[n + 1])−1) → 0 as n → ∞.(4.38)

Note that Ȳ1n,1(�1/�)
1/2 = (�1/�)

−1/2 ∑�1/�
i=1 Ȳin, where Ȳin = �−1 ∑i+�−1

j=i Yjn [cf.

(2.1)]. Next, using Theorem 4.1 [with f (·) = exp(ιt (·))] for κ ≤ |t | ≤ (�1/�)
1/2

and Lemma 4.5 and condition (iv) for |t | ≥ (�1/�)
1/2, one can show that there

exists a κ ∈ (0,1) such that

I2N ≤ (1 − κ)(4.39)

for all n > κ−1. Hence, by (4.31)–(4.39), it follows that

sup
x∈R

|P∗(T ∗
N ≤ x) − �̌n(x)| = oP (b−1/2).(4.40)

Next comparing the EEs for TN and T ∗
N , using the blocking arguments as in deriva-

tion of (4.25) and observing that b1
−1/2E{(�1/�)

1/2Ȳ1n,1}3 = [b1
−1/2�1/�)

−1/2]×
[(�1/�)

−1E{∑�1/�
i=1 Yin}3] = b−1/2[b−1E{∑b

i=1 Yin}3](1+o(1)), one can complete
the proof of (3.8). �
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