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STATISTICAL INFERENCES FOR
FUNCTIONAL DATA

BY JIN-TING ZHANG1 AND JIANWEI CHEN

National University of Singapore and University of Rochester

With modern technology development, functional data are being ob-
served frequently in many scientific fields. A popular method for analyzing
such functional data is “smoothing first, then estimation.” That is, statistical
inference such as estimation and hypothesis testing about functional data is
conducted based on the substitution of the underlying individual functions by
their reconstructions obtained by one smoothing technique or another. How-
ever, little is known about this substitution effect on functional data analysis.
In this paper this problem is investigated when the local polynomial kernel
(LPK) smoothing technique is used for individual function reconstructions.
We find that under some mild conditions, the substitution effect can be ig-
nored asymptotically. Based on this, we construct LPK reconstruction-based
estimators for the mean, covariance and noise variance functions of a func-
tional data set and derive their asymptotics. We also propose a GCV rule for
selecting good bandwidths for the LPK reconstructions. When the mean func-
tion also depends on some time-independent covariates, we consider a func-
tional linear model where the mean function is linearly related to the covari-
ates but the covariate effects are functions of time. The LPK reconstruction-
based estimators for the covariate effects and the covariance function are also
constructed and their asymptotics are derived. Moreover, we propose a L2-
norm-based global test statistic for a general hypothesis testing problem about
the covariate effects and derive its asymptotic random expression. The effect
of the bandwidths selected by the proposed GCV rule on the accuracy of the
LPK reconstructions and the mean function estimator is investigated via a
simulation study. The proposed methodologies are illustrated via an applica-
tion to a real functional data set collected in climatology.

1. Introduction. Functional data consist of functions which are often smooth
but usually corrupted with noise. With modern technology development, such
functional data are being observed frequently in many scientific fields; see Besse
and Ramsay [3], Ramsay [20] and Ramsay and Dalzell [21], among others, for
good examples and analyses. Comprehensive surveys about functional data analy-
sis (FDA) can be found in [23, 24].
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Mathematically, the above-mentioned functional data may be modeled as inde-
pendent realizations of an underlying stochastic process,

yi(t) = η(t) + vi(t) + εi(t), i = 1,2, . . . , n,(1.1)

where η(t) models the population mean function of the stochastic process, vi(t)

is the ith individual variation (subject-effect) from η(t), εi(t) is the ith mea-
surement error process and yi(t) is the ith response process. Without loss of
generality, throughout this paper we assume the stochastic process has finite
support, that is, t ∈ T = [a, b], −∞ < a < b < ∞. Moreover, we assume
vi(t) and εi(t) are independent, and are independent copies of v(t) ∼ SP(0, γ )

and ε(t) ∼ SP(0, γε), γε(s, t) = σ 2(t)1{s=t}, respectively, where and throughout
SP(η, γ ) denotes a stochastic process with mean function η(t) and covariance
function γ (s, t). It follows that the underlying individual functions (trajectories)
fi(t) = E{yi(t)|vi(t)} = η(t) + vi(t) are i.i.d. copies of the underlying stochastic
process, f (t) = η(t) + v(t) ∼ SP(η, γ ). In practice, functional data are observed
discretely. Let tij , j = 1,2, . . . , ni , be the design time points of the ith subject.
Then by (1.1) and letting yij = yi(tij ) and εij = εi(tij ), we have

yij = η(tij ) + vi(tij ) + εij , j = 1,2, . . . , ni; i = 1,2, . . . , n.(1.2)

In many practical situations, the above discrete functional data (1.2) have to be first
registered before any statistical inference can be conducted. Methods for curve reg-
istration can be found in Kneip and Gasser [19], Kneip and Engel [18], Silverman
[26], Ramsay and Silverman ([23], Chapter 5), Ramsay and Li [22] and Ramsay
and Silverman ([24], Chapter 7), among others. In this paper, for convenience, we
assume that the functional data (1.2) do not need registration or have been regis-
tered.

Estimation of the population characteristics η(t), γ (s, t) and σ 2(t) of the model
(1.1) has been the focus of FDA in the literature. Most of the existing approaches
involve one smoothing method or another. For example, Besse and Ramsay [3],
Ramsay [20] and Ramsay and Dalzell [21] made use of reproducing kernel Hilbert
space decomposition; Rice and Silverman [25] and Brumback and Rice [4] em-
ployed smoothing splines; Besse, Cardot and Ferraty [2] used B-splines; Hart
and Wehrly [16] employed kernel smoothing; and Kneip [17] studied a princi-
pal components-based approach. Development of significance tests about η(t) and
other population characteristics of the model (1.1) is more important and challeng-
ing. Faraway [13] discussed the difficulties in extending some multivariate hypoth-
esis testing procedures to FDA. Ramsay and Silverman [23] suggested a pointwise
t-test or F -test but they did not discuss global tests. For curve data from stationary
Gaussian processes, Fan and Lin [11] developed an adaptive Neyman test.

In this paper we adopt the method of “smoothing first, then estimation” for func-
tional data. That is, we construct the estimators for η(t), γ (s, t) and σ 2(t) using
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the reconstructed individual functions f̂i(t), i = 1,2, . . . , n, obtained using one
smoothing method or another; in particular, in this paper we use the local polyno-
mial kernel (LPK) smoothing technique as described in [10], among others. The
idea of “smoothing first, then estimation” itself is hardly new since it has been
used in the literature; see [23, 24] and the references therein. What is new here
is that we investigate the effect of the substitution of the underlying individual
functions fi(t), i = 1,2, . . . , n, by their LPK reconstructions in FDA. We show
that, under some mild conditions, the effect of such a substitution is asymptoti-
cally ignorable in FDA. Based on this, we derive the asymptotics of the estimators
η̂(t), γ̂ (s, t) and σ̂ 2(t). In particular, under some mild conditions, we show that:
(1) η̂(t) and γ̂ (s, t) are

√
n-consistent and asymptotically Gaussian; (2) the as-

ymptotic efficiency of η̂(t) will not be affected by better choice of the bandwidth
than the bandwidth selected by a GCV rule; and (3) the convergence rate of σ̂ 2(t)

is affected by the convergence rate of the LPK reconstructions. More details about
these results are given in Section 2.

In the model (1.1) the only covariate for the mean function η(t) is time. In many
applications η(t) may also depend on some time-independent covariates and can
be written as η(t;x) = xT β(t), where the covariate vector x = [x1, . . . , xq]T and
the unknown but smooth coefficient function vector β(t) = [β1(t), . . . , βq(t)]T .
A replacement of η(t) by η(t;xi ) = xT

i β(t) in (1.1) leads to the so-called func-
tional linear model

yi(t) = xT
i β(t) + vi(t) + εi(t), i = 1,2, . . . , n,(1.3)

where yi(t), vi(t) and εi(t) are the same as those defined in (1.1). The ignorability
of the substitution effect is also applied to the LPK reconstructions f̂i(t) of the
individual functions fi(t) = xT

i β(t) + vi(t) of the above model. Based on this,
we construct the estimators β̂(t) and γ̂ (s, t) and investigate their asymptotics;
in particular, we show that β̂(t) is

√
n-consistent and asymptotically Gaussian.

Moreover, we propose a global L2-norm-based test statistic Tn to test a general
hypothesis testing problem about the covariate effects β(t); its asymptotic random
expression is derived. More details about these results are given in Section 3.

The rest of the paper is organized as follows. In Section 4 we present a simu-
lation study which aims to investigate the effect of the bandwidth choice on the
accuracy of the LPK reconstructions f̂i(t) and the mean function estimator η̂(t).
In Section 5 we illustrate the proposed methodologies by applying them to a real
functional data set collected in climatology. Finally, in Section 6 technical proofs
of some asymptotic results are outlined.

2. Basic methodologies.

2.1. LPK reconstruction of individual functions. First of all, we describe
how to reconstruct the individual functions fi(t), i = 1,2, . . . , n, using the LPK
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smoothing technique based on the standard nonparametric regression model

yij = fi(tij ) + εij , j = 1,2, . . . , ni; i = 1,2, . . . , n.(2.1)

For any fixed time point t , assume fi(t) has a (p + 1)th continuous derivative in a
neighborhood of t for some positive integer p. Then by Taylor’s expansion, fi(tij )

can be locally approximated by a p-order polynomial, that is,

fi(tij ) ≈ fi(t) + (tij − t)f
(1)
i (t) + · · · + (tij − t)pf

(p)
i (t)/p! = zT

ijαi ,

in the neighborhood of t , where αi = [αi0, αi1, . . . , αip]T with αir = f
(r)
i (t)/r!,

and zij = [1, tij − t, . . . , (tij − t)p]T . Then the p-order LPK reconstructions of
fi(t) are defined as f̂i(t) = α̂i0 = eT

1,p+1α̂i , where and throughout er,s denotes the
s-dimensional unit vector whose r th component is 1 and others are 0, and α̂i are
the minimizers of the weighted least squares criterion

n∑
i=1

ni∑
j=1

[yij − zT
ijαi]2Kh(tij − t)

(2.2)

=
n∑

i=1

(yi − Ziαi )
T Kih(yi − Ziαi ),

where yi = [yi1, . . . ,yini
]T ,Zi = [zi1, . . . , zini

]T and Kih = diag(Kh(ti1 − t), . . . ,

Kh(tini
− t)), with Kh(·) = K(·/h)/h, obtained by rescaling a kernel function

K(·) (often a symmetric p.d.f.) with bandwidth h > 0 that controls the size of the
associated neighborhood. Minimizing (2.2) with respect to αi , i = 1,2, . . . , n, is
equivalent to minimizing the ith term in the summation on the right-hand side of
(2.2) with respect to αi for each i = 1,2, . . . , n. It follows that for i = 1,2, . . . , n,

f̂i(t) = eT
1,p+1(Z

T
i KihZi )

−1ZT
i Kihyi

(2.3)

=
ni∑

j=1

K
ni

h (tij − t)yij ,

where Kni (t) are known as the empirical equivalent kernels for the p-order LPK;
see Fan and Gijbels [10].

In (2.2) different bandwidths may be used for different individual functions.
However, the individual functions in a functional data set are i.i.d. realizations
of a stochastic process, and hence, often admit similar smoothness properties and
sometimes similar shapes [17, 18]; it is then reasonable to treat them in the same
way, for example, using a common bandwidth for all of them. The advantages in
using a common bandwidth at least include the following: (a) reduce the computa-
tional effort for bandwidth selection; and (b) simplify the asymptotic results of the
estimators.
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For convenience, we define the following widely-used functionals of a kernel K :

Br(K) =
∫

K(t)tr dt,

V (K) =
∫

K(t)2 dt,(2.4)

K(1)(t) =
∫

K(s)K(s + t) ds.

For estimating a function instead of derivatives, Fan and Gijbels [10] pointed out
that even orders are not appealing. Therefore, throughout this paper, we assume p

is an odd integer; moreover, we denote γk,l(s, t) as the (k, l)-times partial deriv-

ative of γ (s, t), that is, γk,l(s, t) = ∂k+lγ (s,t)

∂ks ∂l t
, and denote D as the set of all the

design time points tij , j = 1,2, . . . , ni; i = 1,2, . . . , n. In addition, we denote
OUP(1) [resp. oUP(1)] as “bounded (resp. tends to 0) in probability uniformly for
any t within the interior of T and all i = 1,2, . . . , n.” Finally, the following regular
conditions are imposed.

CONDITION A.

1. The design time points tij , j = 1,2, . . . , ni; i = 1,2, . . . , n, are i.i.d. with
p.d.f. π(·) which has the bounded support T = [a, b]. For any given t within
the interior of T , π ′(t) exists and is continuous over T .

2. Let s and t be any two interior time points of T . The individual functions
fi(t), i = 1,2, . . . , n, and their mean function η(t) have up to (p + 1)-times
continuous derivatives. Their covariance function γ (s, t) has up to (p + 1)-
times continuous derivatives for both s and t . The variance function of the
measurement errors, σ 2(t), is continuous at t .

3. The kernel K is a bounded symmetrical p.d.f. with bounded support [−1,1].
4. There are two positive constants C and δ such that ni ≥ Cnδ , for all i =

1,2, . . . , n. As n → ∞, we have h → 0 and nδh → ∞.

REMARK 1. For some practical functional data sets, Condition A4 may be
too restrictive. For example, a functional data set with a few individual functions
having ni < Cnδ does not satisfy Condition A4. However, such a functional data
set can often be slightly modified to satisfy Condition A4. A simple way of doing
so is to drop those individual functions having ni < Cnδ so that the remaining
individual functions form a new functional data set which satisfies Condition A4.
This procedure will not result in less efficient estimators when ñ/n → 0 and will
not affect the consistency of the estimators when (n − ñ) → ∞, where ñ is the
number of dropped individual functions, which may be bounded or tend to ∞ as
n → ∞.
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Using Lemma 3 in Section 6, it is easy to show the following.

THEOREM 1. Assume Condition A is satisfied. Then the average condi-
tional MSE (mean squared errors) of the p-order LPK reconstructions f̂i(t), i =
1,2, . . . , n, is

E

{
n−1

n∑
i=1

[f̂i(t) − fi(t)]2|D
}

=
{B2

p+1(K
∗)[(η(p+1)(t))2 + γp+1,p+1(t, t)]

(p + 1)!2 h2(p+1)(2.5)

+ V (K∗)σ 2(t)

π(t)
(m̃h)−1

}
[1 + oP (1)],

where K∗ is the equivalent kernel of the p-order LPK ([10], page 64), and m̃ =
(n−1 ∑n

i=1 n−1
i )−1.

REMARK 2. On the left-hand side of (2.5) the notation E{·|D} denotes the
conditional expectation when all the design time points tij , j = 1,2, . . . , ni; i =
1,2, . . . , n, are given. Nevertheless, the leading term on the right-hand side of (2.5)
is independent of D and hence, the left-hand side is nearly unconditional. For tech-
nical convenience and following the literature tradition (e.g., [10]), we keep using
the “conditional expectation” notation E{·|D} here and throughout. This remark
applies to all other statistical operations conditional to D given in this paper.

Theorem 1 indicates that the optimal bandwidth of the p-order LPK reconstruc-
tions f̂i(t) is h = OP (m̃−1/(2p+3)) = OP (n−δ/(2p+3)). Using Lemma 3 again, we
can show the following.

THEOREM 2. Assume Condition A is satisfied. Then for the p-order LPK re-
constructions f̂i(t) using the bandwidth h = O(n−δ/(2p+3)), we have

f̂i(t) = fi(t) + n−(p+1)δ/(2p+3)OUP(1), i = 1,2, . . . , n.(2.6)

Theorem 2 implies that, under the given conditions, the LPK reconstructions
f̂i(t) are asymptotically uniformly little different from the underlying individual
functions fi(t). We expect that this is true not only for LPK but also for any other
linear smoothers, for example, smoothing splines [14, 27], regression splines or
orthogonal series [7], among others.

2.2. Estimation of the mean and covariance functions. It is then natural to
estimate the mean function η(t) and the covariance function γ (s, t) by the sample
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mean and sample covariance functions of the p-order LPK reconstructions f̂i(t),

η̂(t) = n−1
n∑

i=1

f̂i(t),

(2.7)

γ̂ (s, t) = (n − 1)−1
n∑

i=1

{f̂i(s) − η̂(s)}{f̂i(t) − η̂(t)}.

The asymptotic conditional bias, covariance and variance for η̂(t) are given below.

THEOREM 3. Assume Condition A is satisfied. Then as n → ∞, the asymp-
totic conditional bias, covariance and variance of η̂(t) are

Bias{η̂(t)|D}

= Bp+1(K
∗)η(p+1)(t)

(p + 1)! hp+1[1 + oP (1)],
Cov{η̂(s), η̂(t)|D}

=
{
γ (s, t)/n + K∗(1)[(s − t)/h]σ 2(s)

π(t)
(nm̃h)−1

+ Bp+1(K
∗)[γp+1,0(s, t) + γ0,p+1(s, t)]

(p + 1)! n−1hp+1
}
[1 + oP (1)],

Var{η̂(t)|D}

=
{
γ (t, t)/n + V (K∗)σ 2(t)

π(t)
(nm̃h)−1

+ Bp+1(K
∗)[γp+1,0(t, t) + γ0,p+1(t, t)]

(p + 1)! n−1hp+1
}
[1 + oP (1)].

REMARK 3. Under Condition A and by Theorem 3, we have

MSE{η̂(t)|D} = γ (t, t)/n + OUP
{
h2(p+1) + (nm̃h)−1 + n−1hp+1}

.(2.8)

We then always have MSE{η̂(t)|D} = γ (t, t)/n + oUP(1/n), provided that

m̃h → ∞, nh2(p+1) → 0.(2.9)

REMARK 4. Condition (2.9) is satisfied by any bandwidth h = O(n−δ∗
) with

1/[2(p + 1)] < δ∗ < δ. In particular, it is satisfied by the optimal bandwidth, h =
O(n−δ/(2p+3)), for the p-order LPK reconstructions f̂i(t) when δ > 1 + 1/[2(p +
1)]. In this case, the p-order LPK reconstruction optimal bandwidth is sufficiently
small to guarantee the

√
n-consistency of η̂(t). Condition (2.9) is also satisfied

by the optimal bandwidth, h = O(n−(1+δ)/(2p+3)) (when 1 + 1/[2(p + 1)] < δ <

1 + 1/(p + 1)) or h = O(n−δ/(p+2)) [when δ > 1 + 1/(p + 1)], for η̂(t). It follows
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that, in both cases, the optimal bandwidth admits the same asymptotic efficiency
for estimating η(t) because MSE{√nη̂(t)|D} → γ (t, t) as n → ∞.

By pretending all the underlying individual functions fi(t) were observed, the
“ideal” estimators of η(t) and γ (s, t) are

η̃(t) = n−1
n∑

i=1

fi(t),

(2.10)

γ̃ (s, t) = (n − 1)−1
n∑

i=1

{fi(s) − η̃(s)}{fi(t) − η̃(t)}.

THEOREM 4. Assume Condition A is satisfied, and the bandwidth h =
O(n−δ/(2p+3)) is used for the p-order LPK reconstructions f̂i(t). Then as n → ∞,
we have

η̂(t) = η̃(t) + n−(p+1)δ/(2p+3)OUP(1),
(2.11)

γ̂ (s, t) = γ̃ (s, t) + n−(p+1)δ/(2p+3)OUP(1).

In addition, assume δ > 1 + 1/[2(p + 1)]. Then as n → ∞, we have

√
n{η̂(t) − η(t)} ∼ AGP(0, γ ),

(2.12) √
n{γ̂ (s, t) − γ (s, t)} ∼ AGP(0, γ ∗),

where AGP(η, γ ) denotes an asymptotic Gaussian process with mean function
η(t) and covariance function γ (s, t), and

γ ∗{(s1, t1), (s2, t2)} = E{v1(s1)v1(t1)v1(s2)v1(t2)} − γ (s1, t1)γ (s2, t2),(2.13)

with v1(t) denoting the subject effect of the first individual function f1(t) as defined
in (1.1). When the subject effect process v(t) is Gaussian,

γ ∗{(s1, t1), (s2, t2)} = γ (s1, t2)γ (s2, t1) + γ (s1, s2)γ (t1, t2).

Theorem 4 indicates that, under some mild conditions, the proposed estimators
(2.7) are asymptotically identical to the “ideal” estimators (2.10). The required key
condition is δ > 1 + 1/[2(p + 1)]. It follows that, to make the measurement errors
ignorable via LPK smoothing, we need the number of measurements, ni , for all
the subjects (or a large number of subjects; see Remark 1 for discussion) to tend
to infinity slightly faster than the number of subjects, n.
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2.3. Estimation of the noise variance function. The noise variance function
σ 2(t) measures the variation of the measurement errors εij of the model (1.2).
Following Hall and Marron [15] and Fan and Yao [12], we can construct a p̃-order
LPK estimator of σ 2(t) based on the p-order LPK residuals ε̂ij = yij − f̂i(tij ),
although our setting is more complicated. As expected, the resulting p̃-order LPK
estimator of σ 2(t) will be consistent, but its convergence rate will be affected by
that of the p-order LPK reconstructions f̂i(t), i = 1,2, . . . , n.

As an illustration, let us consider the simplest LPK estimator, that is, the kernel
estimator for σ 2(t) based on ε̂ij ,

σ̂ 2(t) =
∑n

i=1
∑ni

j=1 Hb(tij − t)ε̂2
ij∑n

i=1
∑ni

j=1 Hb(tij − t)
,(2.14)

where Hb(·) = H(·/b)/b with the kernel function H and the bandwidth b.
Pretending ε̂ij ≡ εij , by standard kernel estimation theory (Wand and Jones [28]

and Fan and Gijbels [10], among others), the optimal bandwidth for σ̂ 2(t) is b =
OP (N−1/5), where N = ∑n

i=1 ni denotes the total number of measurements for all
the subjects, and the associated convergence rate of σ̂ 2(t) is OP (N−2/5). However,
for the current setup, this convergence rate will be affected by the convergence rate
of the p-order LPK reconstructions f̂i(t), i = 1,2, . . . , n, since under Condition A
and by Theorem 2, we actually only have ε̂ij = εij + n−(p+1)δ/(2p+3)OUP(1). For
convenience, let ν1(t) = E[ε2

i (t)] = σ 2(t) and ν2(t) = Var[ε2
i (t)].

THEOREM 5. Assume Condition A is satisfied and the p-order LPK recon-
structions f̂i(t) use a bandwidth h = O(n−δ/(2p+3)). In addition, assume ν′

1(t)

and ν2(t) exist and are continuous at t ∈ T , and the kernel estimator σ̂ 2(t) uses a
bandwidth b = O(N−1/5). Then we have

σ̂ 2(t) = σ 2(t) + OUP
(
n−2(1+δ)/5 + n−(p+1)δ/(2p+3)).(2.15)

By the above theorem, it is seen that when δ < 2(2p + 3)/(p − 1), the second
order term dominates the first order term; and in particular, when p = 1, we have
σ̂ 2(t) = σ 2(t) + OUP(n−2δ/5). In this case the optimal convergence rate of σ̂ 2(t)

is not attainable. It is attainable only when δ > 2(2p + 3)/(p − 1), so that the
first order term in (2.15) dominates the second order term. This is the case only
when p ≥ 3. When p = 3, δ > 9 is required; and when p = 2k + 1 → ∞, δ > 4
is required. Therefore, it is usually difficult to make the convergence rate of σ̂ 2(t)

unaffected by the convergence rate of the p-order LPK reconstructions f̂i(t).

2.4. Bandwidth selection. Theorem 1 suggests that we can choose a good
bandwidth for the p-order LPK reconstructions f̂i(t), i = 1,2, . . . , n, using the
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generalized cross-validation (GCV) score

GCV(h) = n−1
n∑

i=1

GCVi(h),(2.16)

where GCVi (h) is the GCV score of the ith p-order LPK reconstruction f̂i(t).
Let Ai be the smoother matrix of the ith subject constructed using (2.3). Then
we have ŷi = Aiyi and GCVi (h) = yT

i (Ini
− Ai )

T (Ini
− Ai)yi/[1 − tr(Ai)/ni]2,

where yi = [yi1, . . . , yini
]T , ŷi = [ŷi1, . . . , ŷini

]T and tr(S) denotes the trace of the
matrix S. In practice, the optimal bandwidth h∗ can be obtained via minimizing
GCV(h) over a number of bandwidth candidates of interest. Theoretically, it is
expected that h∗ = OP (n−δ/(2p+3)).

Remark 4 states that, under the required conditions, the optimal bandwidth for
η̂(t) and the optimal bandwidth for the p-order LPK reconstructions f̂i(t) admit
the same asymptotic efficiency for estimating η(t). Therefore, it is generally suf-
ficient to use h∗ for estimating η(t) although, for finite samples, better bandwidth
choices for η̂(t) are possible.

3. Functional linear models. Notice that Theorem 2 is also applied to the
p-order LPK reconstructions f̂i(t) of the underlying individual functions fi(t) =
xT
i β(t) + vi(t), i = 1,2, . . . , n, of the functional linear model (1.3). This property

can be used to do inference about the model (1.3). In this section we focus on
the estimation and significance tests of the coefficient function vector (covariate
effects) β(t) of the model.

3.1. Coefficient function estimation. Let f̂(t) = [f̂1(t), . . . , f̂n(t)]T and X =
[x1, . . . ,xn]T . Throughout this paper we assume X has full rank. Then the least-
squares estimator of β(t) is

β̂(t) =
{

n∑
i=1

xixT
i

}−1 n∑
i=1

xi f̂i (t) = (XT X)−1XT f̂(t),(3.1)

which minimizes Q(β) = n−1 ∑n
i=1

∫ [f̂i(t) − xT
i β(t)]2 dt . It follows that the

subject-effects vi(t) can be estimated by v̂i(t) = f̂i(t) − xT
i β̂(t) and their covari-

ance function γ (s, t) can be estimated by

γ̂ (s, t) = (n − q)−1
n∑

i=1

v̂i (s)v̂i(t)

(3.2)
= (n − q)−1v̂(s)T v̂(t),

where v̂(t) = [v̂1(t), v̂2(t), . . . , v̂n(t)]T = f̂(t) − X(XT X)−1XT f̂(t) = (In − P)f̂(t)
and P = X(XT X)−1XT is a projection matrix with PT = P,P2 = P and tr(P) = q .
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Pretending fi(t), i = 1,2, . . . , n, is known, the “ideal” estimators of β(t) and
γ (s, t) are

β̃(t) = (XT X)−1XT f(t),
(3.3)

γ̃ (s, t) = (n − q)−1ṽ(s)T ṽ(t),

where f(t) = [f1(t), . . . , fn(t)]T and ṽ(t) = (In − P)f(t). It is easy to show that
Eβ̃(t) = β(t) and Eγ̃ (s, t) = γ (s, t). For further investigation, we impose the fol-
lowing conditions.

CONDITION B.

1. The covariate vectors xi , i = 1,2, . . . , n, are i.i.d. with finite and invertible sec-
ond moment Ex1xT

1 = �; moreover, they are uniformly bounded in probability;
that is, xi = OUP(1).

2. The subject-effects vi(t) are uniformly bounded in probability; that is, vi (t) =
OUP(1).

THEOREM 6. Assume Conditions A and B are satisfied, and the p-order LPK
reconstructions f̂i(t) use a bandwidth h = O(n−δ/(2p+3)). Then as n → ∞, we
have

β̂(t) = β̃(t) + n−(p+1)δ/(2p+3)OUP(1),
(3.4)

γ̂ (s, t) = γ̃ (s, t) + n−(p+1)δ/(2p+3)OUP(1).

In addition, assume δ > 1 + 1/[2(p + 1)]. Then as n → ∞, we have
√

n{β̂(t) − β(t)} ∼ AGP(0, γβ),(3.5)

where γβ(s, t) = γ (s, t)�−1.

Theorem 6 implies that, under the given conditions, the proposed estimators
β̂(t) and γ̂ (s, t) are asymptotically identical to the “ideal” estimators β̃(t) and
γ̃ (s, t), respectively. Therefore, in FDA it seems reasonable to directly assume the
underlying individual functions are “observed” as is done in [23, 24]. The asymp-
totic result stated in (3.5) is a foundation for significance tests of the covariate
effects.

3.2. Significance tests of the covariate effects. Consider the general hypothe-
sis testing problem

H0 : Cβ(t) = c(t), vs. H1 : Cβ(t) �= c(t),(3.6)

where t ∈ T = [a, b], C is a given k × q full rank matrix, and c(t) = [c1(t), . . . ,

ck(t)]T is a given vector of functions. In order to check the significance of the r th
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covariate effect, one takes C = eT
r,q = [0, . . . ,0,1,0, . . . ,0] and c(t) = 0; in order

to check if the first two coefficient functions are the same, that is, β1(t) = β2(t),
one takes C = (e1,q − e2,q)T = [1,−1,0, . . . ,0] and c(t) = 0.

It is natural to estimate Cβ(t) by Cβ̂(t). By Theorem 6, we have
√

n[Cβ̂(t) − c(t)] ∼ AGP(ηc,γ c),(3.7)

where ηc(t) = √
n[Cβ(t) − c(t)] and γ c(s, t) = γ (s, t)C�−1CT . Let

w(t) = {C(XT X)−1CT }−1/2[Cβ̂(t) − c(t)]
(3.8)

= [w1(t), . . . ,wk(t)]T .

Since XT X/n → � as n → ∞, using (3.7), we can show that w(t) ∼ AGP(ηw,

γ w), where

ηw(t) = √
n(C�−1CT )−1/2[Cβ(t) − c(t)]

= [ηw1(t), . . . , ηwk(t)]T ,(3.9)

γ w(s, t) = γ (s, t)Ik,

where Ik denotes the identity matrix of size k. It follows that the components
w1(t), . . . ,wk(t) are independent asymptotic Gaussian processes with mean func-
tions ηw1(t), . . . , ηwk(t), respectively, and a common covariance function γ (s, t).
That is,

wl(t) ∼ AGP(ηwl, γ ), l = 1,2, . . . , k.(3.10)

Based on these results and with C and c(t) properly specified, pointwise t and
F -tests for the coefficient functions β1(t), . . . , βq(t) can easily be conducted ([23],
Chapter 9). We here propose the following global test statistic for the general hy-
pothesis testing problem (3.6):

Tn =
∫ b

a
‖w(t)‖2 dt =

k∑
l=1

∫ b

a
w2

l (t) dt,(3.11)

where ‖ · ‖ denotes the usual L2-norm. Let T̃n be the associated “ideal” global
test statistic, obtained by replacing β̂(t) by the “ideal” estimator β̃(t) as defined
in (3.3).

To derive the asymptotic random expression of Tn, we assume that γ (s, t) has
finite trace, that is, tr(γ ) = ∫ b

a γ (t, t) dt < ∞. Let λ1, λ2, . . . be the eigenvalues,
in decreasing order, and φ1(t), φ2(t), . . . be the associated orthonormal eigenfunc-
tions of γ (s, t). Let m denote the number of positive eigenvalues. When all the
eigenvalues are positive, we let m = ∞. Then λr > 0 for r ≤ m and λr = 0 for all
r > m. Since tr(γ ) < ∞ implies

∫ b
a

∫ b
a γ 2(s, t) ds dt < ∞ by the Cauchy–Schwarz
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inequality, the covariance function γ (s, t) has the singular value decomposition
([27], page 3)

γ (s, t) =
m∑

r=1

λrφr(s)φr(t), s, t ∈ T = [a, b].(3.12)

THEOREM 7. Assume the conditions of Theorem 6 are satisfied. Then as
n → ∞, we have

Tn = T̃n + n1/2−(p+1)δ/(2p+3)OP (1).(3.13)

In addition, assume δ > 1 + 1/[2(p + 1)] and γ (s, t) has finite trace so that it has
the singular value decomposition (3.12). Then as n → ∞, we have

Tn
d=

m∑
r=1

λrAr + oP (1), Ar ∼ χ2
k (u2

r ),(3.14)

where X
d=Y means the random variables X and Y have the same distribution,

χ2
k denotes a χ2-distribution with k degrees of freedom and the noncentral para-

meters

u2
r = λ−1

r

∥∥∥∥
∫ b

a
ηw(t)φr(t) dt

∥∥∥∥
2
.(3.15)

Under H0, ηw(t) ≡ 0 so that all the u2
r are 0.

Theorem 7 suggests that the distribution of Tn is asymptotically the same as
that of a χ2-type mixture. There are three possible methods that can be used to
approximate the null distribution of Tn: χ2-approximation, simulation and boot-
strapping. In the first two methods, we approximate the null distribution of Tn

by that of the χ2-type mixture S = ∑m̂
r=1 λ̂rAr , where Ar ∼ χ2

k , λ̂r are the
eigenvalues of γ̂ (s, t) and m̂ is some well-chosen integer such that the eigen-
values λ̂r , r = 1,2, . . . , m̂, explain a sufficiently large portion of the total varia-
tion tr(γ̂ ) = ∑∞

r=1 λ̂r and λ̂r , r = m̂ + 1, m̂ + 2, . . . , are essentially 0. Besse [1]
proposed a simple method for selecting such an m̂. A simple and natural choice
of m̂ is the number of positive eigenvalues of γ̂ (s, t). We found that the second
method worked well in our simulation study and in the real data application pre-
sented in the next two sections. In the χ2-approximation method, the distribution
of S is approximated by that of a random variable R = αχ2

d + β via matching the
first three cumulants of R and S to determine the unknown parameters α,d and
β [5, 29]. In the simulation method, the sampling distribution of S is computed
based on a sample of S obtained via repeatedly generating (A1,A2, . . . ,Am̂). The
bootstrap method is slightly more complicated. In the bootstrap method, we gen-
erate a sample of subject effects v∗

i (t), i = 1,2, . . . , n, from the estimated subject



STATISTICAL INFERENCES IN FDA 1065

effects v̂i,1(t), i = 1,2, . . . , n, under H1 and then construct a bootstrap sample,
f ∗

i (t) = xT
i β̂0(t) + v∗

i (t), i = 1,2, . . . , n, where β̂0(t) is the estimator of β(t) un-

der H0 so that Cβ̂0(t) = c(t). Let β̂
∗
(t) be the bootstrap estimator of β(t) based

on the above bootstrap sample. We then use it to compute

T ∗
n =

∫ b

a
‖w∗(t)‖2 dt =

k∑
l=1

∫ b

a
w∗2

l (t) dt,

where w∗(t) can be obtained by replacing β̂(t) with β̂
∗
(t) in the definition (3.8) of

w(t). The bootstrap null distribution of Tn is obtained by the sampling distribution
of T ∗

n via B replications of the above bootstrap process for some large B , for
example, B = 10,000.

4. A simulation study. In this section we aim to investigate the effect of
the bandwidth selected by the GCV rule (2.16) on the average MSE (2.5) of the
p-order LPK reconstructions f̂i(t), i = 1,2, . . . , n, and the MSE of the mean func-
tion estimator η̂(t) via a simulation study. We generated simulation samples from
the model

yi(t) = η(t) + vi(t) + εi(t),

η(t) = a0 + a1φ1(t) + a2φ2(t),

vi(t) = bi0 + bi1ψ1(t) + bi2ψ2(t),

bi = [bi0, bi1, bi2]T ∼ N[0,diag(σ 2
0 , σ 2

1 , σ 2
2 )],

εi(t) ∼ N[0, σ 2
ε (1 + t)], i = 1,2, . . . , n,

where n is the number of subjects and bi and εi(t) are independent. The sched-
uled design time points are tj = j/(m + 1), j = 1,2, . . . ,m. To obtain an un-
balanced design which is more realistic, we randomly removed some responses
on a subject at a rate rmiss so that on average there are about m(1 − rmiss)

measurements on a subject, and nm(1 − rmiss) measurements in a whole simu-
lated sample. For simplicity, in this simulation the parameters we actually used
are [a0, a1, a2] = [1.2,2.3,4.2], [σ 2

0 , σ 2
1 , σ 2

2 , σ 2
ε ] = [1,2,3,0.1], φ1(t) = ψ1(t) =

cos(2πt),φ2(t) = ψ2(t) = sin(2πt), rmiss = 10%, m = 40 and n = 20,30 and 40.
For a simulated sample, the p-order LPK reconstructions f̂i(t) were obtained

using a local linear (i.e., p = 1) smoother [8, 9] with the well-known Gaussian
kernel. We considered five bandwidth choices, 0.5h∗,0.8h∗, h∗,1.25h∗ and 2h∗,
where h∗ is the bandwidth selected by the GCV rule (2.16). For a simulated sam-
ple, the average MSE for f̂i(t) and the MSE for the mean function estimator η̂(t)

were computed respectively as MSEf = (nM)−1 ∑n
i=1

∑M
j=1{f̂i(τj ) − fi(τj )}2

and MSEη = M−1 ∑M
j=1{η̂(τj ) − η(τj )}2, where τ1, . . . , τM are M time points

equally-spaced in [0,1], for some large M , for example, M = 400.
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FIG. 1. Simulation results. From left to right, panels are, respectively, for GCV, MSEf and MSEη ;
from top to bottom, panels are, respectively, for n = 20,30 and 40. In each of the panels, the first
five boxplots are associated with the five bandwidth choices 0.5h∗,0.8h∗, h∗,1.25h∗ and 2h∗, where
h∗ is the GCV bandwidth; the sixth boxplot in a MSEη panel is associated with the “ideal” estima-
tor η̃(t).

Figure 1 presents the simulation results. The boxplots were based on 200 sim-
ulated samples. From left to right, panels are respectively for GCV,MSEf and
MSEη; from top to bottom, panels are respectively for n = 20,30 and 40. In each
of the panels, the first five boxplots are associated with the five bandwidth choices:
0.5h∗,0.8h∗, h∗,1.25h∗ and 2h∗, respectively; the sixth boxplot in each of the
MSEη panels is associated with the “ideal” estimator η̃(t); see (2.10) for its defin-
ition.

From Figure 1, we may conclude that (a) overall, the GCV rule (2.16) performed
well in the sense of choosing proper bandwidths to minimize the average MSE
(2.5); (b) bandwidths smaller than h∗ help reduce the MSEη but do not by much,
while bandwidths larger than h∗ do enlarge MSEη substantially; and (c) the MSEη

based on η̂(t) and those based on the “ideal” estimator η̃(t) are nearly the same
unless the bandwidths are substantially larger than h∗.
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5. Application to the Canadian temperature data. The Canadian tempera-
ture data (Canadian Climate Program [6]) were downloaded from ftp://ego.psych.
mcgill.ca/pub/ramsay/FDAfuns/Matlab/ at the book website of Ramsay and Silver-
man [23, 24]. The data are the daily temperature records of 35 Canadian weather
stations over a year (365 days), among which 15 are in Eastern, another 15 in West-
ern and the remaining five in Northern Canada. This is a typical functional data set
with the number of measurements per subject (ni = 365) being much larger than
the number of subjects (n = 35). We shall use this functional data set only to il-
lustrate the methodologies developed in this paper. For a more formal analysis,
this functional data set should be first registered using either a parametric curve
registration method proposed by Silverman [26] or a more flexible nonparametric
curve registration method developed by Ramsay and Li [22]. Our methodologies
can then be applied similarly to the resulting registered functional data set.

Figure 2 presents the individual curve reconstructions of the Canadian tempera-
ture data. These reconstructions were obtained by applying the local linear (p = 1)
kernel fit [8, 9] with the well-known Gaussian kernel to the individual tempera-
ture records of each of the 35 weather stations, but with a common bandwidth
h∗ = 2.79, selected by the GCV rule (2.16). It can be seen that the Eastern weather
station temperature curves (solid) mix up with the Western weather station tem-
perature curves (dot-dashed), but most of the Eastern and Western weather sta-
tion temperature curves stay higher than the Northern weather station temperature
curves (dashed). This is reasonable since the Eastern and Western weather stations
are located at about the same latitudes, while the Northern weather stations are
located at higher latitudes.

We then modeled the Canadian temperature data set by the functional linear
model (1.3) with the covariates

xi =




[1,0,0]T , if weather station i is located in Eastern Canada,
[0,1,0]T , if weather station i is located in Western Canada,
[0,0,1]T , if weather station i is located in Northern Canada,

i = 1,2, . . . ,35,

and the coefficient function vector β(t) = [β1(t), β2(t), β3(t)]T , where β1(t),

β2(t) and β3(t) are the covariate effect (mean temperature) functions of the East-
ern, Western and Northern weather stations, respectively.

Figure 3 superimposes the estimated mean temperature functions of the East-
ern, Western and Northern weather stations, together with their 95% standard de-
viation bands. Based on the 95% standard deviation bands, some informal con-
clusions can be made. First of all, over the whole year ([a, b] = [1,365]), the dif-
ferences between the mean temperature functions of the Eastern and the Western
weather stations are much less significant than the differences between the mean
temperature functions of the Eastern and the Northern weather stations, or between
the Western and the Northern weather stations. This is because the 95% standard
deviation band of the Eastern weather station mean temperature function covers

ftp://ego.psych.mcgill.ca/pub/ramsay/FDAfuns/Matlab/
ftp://ego.psych.mcgill.ca/pub/ramsay/FDAfuns/Matlab/
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FIG. 2. Local linear (p = 1) individual curve reconstructions of the Canadian temperature data
with the bandwidth h∗ = 2.79, selected by GCV. Eastern weather stations: solid curves; Western
weather stations: dot-dashed curves; and Northern weather stations: dashed curves.

(before Day 151) or stays close (after Day 151) to the mean temperature func-
tion of the Western weather stations; however, the 95% standard deviation bands
of the Eastern and Western weather station mean temperature functions are far
away from the mean temperature function of the Northern weather stations. Sec-
ond, the significances of the differences between the mean temperature functions
of the Eastern and the Western weather stations for different seasons are differ-
ent. During the Spring (usually defined as the months of March, April and May or
[a, b] = [60,151]), the mean temperature functions are nearly the same, but this
is not the case during the Summer (June, July and August or [a, b] = [152,243])
or during the Autumn (September, October and November or [a, b] = [244,334]).
These conclusions can be made more clear via the hypothesis testing problem (3.6)
with t ∈ T = [a, b] using the global testing statistic Tn (3.11) and with a, b, c and
C properly specified. For example, to test if the mean temperature functions of
the Eastern and Western weather stations during the Spring are the same, we take
a = 60, b = 151, c = 0 and C = [1,−1,0]; and to test if the mean temperature
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FIG. 3. Estimated mean temperature functions of the Eastern, Western and Northern weather sta-
tions with 95% standard deviation bands (Eastern weather stations, solid; Western weather stations,
dot-dashed; and Northern weather stations, dashed).

functions of the Eastern, Western and Northern weather stations during the Au-
tumn are the same, we take a = 244, b = 334, c = [0,0]T and

C =
[

1, 0, −1
0, 1, −1

]
.

We first tested the differences of the mean temperature functions of the Eastern
and Western Canadian weather stations for the whole year, and during the Spring,
Summer and Autumn. Table 1 shows the significance test results, where the simula-
tion and bootstrap P-values were computed based on 10,000 replications. For each
choice of the seasonal period [a, b], we used three different bandwidth choices,
h∗/2, h∗ and 2h∗, where h∗ = 2.79 was selected by the GCV rule (2.16). For each
bandwidth choice, the associated test statistics Tn were computed using (3.11).
For each Tn, we computed its P-value using the χ2-approximation, simulation and
bootstrap methods which were described briefly in Section 3.2. Figure 4 displays
the null probability density function (p.d.f.) approximations obtained using the
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TABLE 1
Significance test results for the differences of the mean temperature functions of the Eastern and

Western weather stations based on 10,000 replications

P-values

[a, b] h T n χ2-approximation Simulation Bootstrapping

[1,365] h∗/2 59954 0.179 0.179 0.166
(Whole year) h∗ 58248 0.185 0.181 0.180

2h∗ 56868 0.189 0.185 0.184

[60,151] h∗/2 945 0.842 0.836 0.834
(Spring) h∗ 656 0.940 0.874 0.877

2h∗ 378 1.000 0.923 0.922

[152,243] h∗/2 6625 0.078 0.075 0.068
(Summer) h∗ 6432 0.082 0.084 0.083

2h∗ 6322 0.085 0.086 0.075

[244,334] h∗/2 28748 0.011 0.011 0.009
(Autumn) h∗ 28303 0.012 0.013 0.008

2h∗ 27526 0.014 0.015 0.010

three methods. It seems that all three approximations perform reasonably well ex-
cept at the left boundary where the χ2-approximations seem problematic. Never-
theless, from the table, we can see that the significance test results are not strongly
affected by the bandwidths used; moreover, we can see that the differences be-
tween the mean temperature functions of the Eastern and Western weather stations
over the whole year (P-value ≥ 0.166) are larger than their differences during the
Spring (P-value ≥ 0.834), but much smaller than their differences during the Sum-
mer (P-value < 0.068) or during the Autumn (P-value < 0.015). These results are
consistent with those observed from Figure 3.

Following the same procedure, we also tested the following null hypotheses: the
mean temperature functions are the same between (1) the Eastern and Northern;
(2) the Western and Northern; and (3) the Eastern, Western and Northern weather
stations for the following periods: (1) the whole year; (2) the Spring; (3) the Sum-
mer; and (4) the Autumn. As expected, we rejected all these null hypotheses with
P-value 0. These results are also consistent with those observed from Figure 3.

6. Technical proofs. In this section we outline the technical proofs of some
of the asymptotic results. Before we proceed, we list the following useful lem-
mas. Proof of the first lemma can be found in [10], page 64. Notice that, under
Condition A4, “n → ∞” implies that “ni → ∞.”
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FIG. 4. Null p.d.f. approximations (χ2-approximation, solid; simulation, dashed; bootstrap, dot-
ted) of the global test statistic Tn (3.11) when h∗ = 2.79. (a) [a, b] = [1,365]; (b) [a, b] = [60,151];
(c) [a, b] = [152,243]; and (d) [a, b] = [244,334].

LEMMA 1. Assume Condition A is satisfied. Then as n → ∞, we have

K
ni

h (tij − t) = 1

niπ(t)
K∗

h(tij − t)[1 + oP (1)],

where K∗(·) is the LPK equivalent kernel ([10], page 64).

LEMMA 2. We always have

ni∑
j=1

K
ni

h (tij − t)(tij − t)r =
{

1, when r = 0,
0, otherwise.

Assume Condition A is satisfied. Then as n → ∞, we have

ni∑
j=1

K
ni

h (tij − t)(tij − t)p+1 = Bp+1(K
∗)hp+1

π(t)
[1 + oP (1)],
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ni∑
j=1

{Kni

h (tij − t)}2 = V (K∗)
π(t)

(nih)−1[1 + oP (1)],

ni∑
j=1

K
ni

h (tij − s)K
ni

h (tij − t) = K∗(1)((s − t)/h)

π(t)
(nih)−1[1 + oP (1)],

where Br(·) and V (·) are defined in (2.4).

Let ri(t) = f̂i(t) − fi(t), i = 1,2, . . . , n, where f̂i(t) are the p-order LPK re-
constructions of fi(t) given in Section 2.1. Let r̄(t) = n−1 ∑n

i=1 ri(t) and f̄ (t) =
n−1 ∑n

i=1 fi(t). Using Lemmas 1 and 2, we can prove the following useful lemma.

LEMMA 3. Assume Condition A is satisfied. Then as n → ∞, we have

E{ri(t)|D} = Bp+1(K
∗)η(p+1)(t)

(p + 1)! hp+1[1 + oP (1)],

Cov{ri(s), ri(t)|D} =
{
K∗(1)((s − t)/h)

π(t)
(nih)−1

+ B2
p+1(K

∗)γp+1,p+1(s, t)

(p + 1)!2 h2(p+1)

}
[1 + oP (1)],

Cov{ri(s), fi(t)|D} = Bp+1(K
∗)γp+1,0(s, t)

(p + 1)! hp+1[1 + oP (1)].

PROOF. By (2.3) and Lemma 1, we have

ri(t) =
ni∑

j=1

K
ni

h (tij − t)εij +
ni∑

j=1

K
ni

h (tij − t){fi(tij ) − fi(t)}.

It follows that

E(ri(t)|D) =
ni∑

j=1

K
ni

h (tij − t){η(tij ) − η(t)}.

Applying Taylor’s expansion and Lemmas 1 and 2, we have

E(ri(t)|D) =
ni∑

j=1

K
ni

h (tij − t)

{p+1∑
l=1

η(l)(t)
(tij − t)l

l! + o[(tij − t)p+1]
}

(6.1)

= Bp+1(K
∗)η(p+1)(t)

(p + 1)! hp+1[1 + oP (1)].
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Similarly, by the independence of fi(t) and εi(t), we have

Cov(ri(s), ri(t)|D)

=
ni∑

j=1

K
ni

h (tij − s)K
ni

h (tij − t)σ 2(tij )

+
ni∑

j=1

ni∑
l=1

K
ni

h (tij − s)K
ni

h (til − t)

(6.2)
× {γ (tij , til) − γ (tij , t) − γ (s, til) + γ (s, t)}

=
{
K∗(1)[(s − t)/h]σ 2(s)

π(t)
(nih)−1

+ B2
p+1(K

∗)γp+1,p+1(s, t)

(p + 1)!2 h2(p+1)

}
[1 + oP (1)].

In particular, letting s = t , we obtain

Var(ri(t)|D) =
{
V (K∗)σ 2(t)

π(t)
(nih)−1

(6.3)

+ B2
p+1(K

∗)γp+1,p+1(t, t)

(p + 1)!2 h2(p+1)

}
[1 + oP (1)],

as desired. Lemma 3 is proved. �

Direct application of Lemma 3 leads to the following.

LEMMA 4. Assume Condition A is satisfied. Then as n → ∞, we have

E(r̄(t)|D) = Bp+1(K
∗)η(p+1)(t)

(p + 1)! hp+1[1 + oP (1)],

Cov(r̄(s), r̄(t)|D) = n−1
{
K∗(1)((s − t)/h)

π(t)
(m̃h)−1

+ B2
p+1(K

∗)γp+1,p+1(s, t)

(p + 1)!2 h2(p+1)

}
[1 + oP (1)],

Cov(r̄(s), f̄ (t)|D) = Bp+1(K
∗)γp+1,0(s, t)

(p + 1)! n−1hp+1[1 + oP (1)],

where m̃ = (n−1 ∑n
i=1 n−1

i )−1, as defined in Theorem 2.
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PROOF OF THEOREM 1. For each i = 1,2, . . . , n, by (6.1) and (6.3), we have

E{[f̂i(t) − fi(t)]2|D}
= E{r2

i (t)|D} = {E(ri(t)|D)}2 + Var(ri(t)|D)
(6.4)

=
{B2

p+1(K
∗)[(η(p+1)(t))2 + γp+1,p+1(t, t)]

(p + 1)!2 h2(p+1)

+ V (K∗)σ 2(t)

π(t)
(nih)−1

}
[1 + oP (1)].

Theorem 1, that is, the expression (2.5), then follows directly. �

PROOF OF THEOREM 2. Under Condition A, the coefficients of h2(p+1)

and (nih)−1 in the expression (6.4) are uniformly bounded over the finite
interval T = [a, b]. Moreover, since ni ≥ Cnδ and h = O(n−δ/(2p+3)), we
have O(h2(p+1)) = O((nih)−1) = O(n−2(p+1)δ/(2p+3)) = n−2(p+1)δ/(2p+3)O(1).
Thus, E{r2

i (t)|D} = OUP[h2(p+1) + (nih)−1] = n−2(p+1)δ/(2p+3)OUP(1). There-
fore, f̂i(t) = fi(t) + n−(p+1)δ/(2p+3)OUP(1). Theorem 2 is then proved. �

PROOF OF THEOREM 3. First of all, notice that η̂(t) = n−1 ∑n
i=1 f̂i(t) =

f̄ (t) + r̄(t). It follows that Bias(η̂(t)|D) = E(r̄(t)|D), Cov(η̂(s), η̂(t)|D) =
Cov(f̄ (s), f̄ (t)) + Cov(f̄ (s), r̄(t)) + Cov(r̄(s), f̄ (t)) + Cov(r̄(s), r̄(t)). The re-
sults of Theorem 3 follow directly from Lemma 4. �

PROOF OF THEOREM 4. Since η̂(t) = f̄ (t) + r̄(t) = η̃(t) + r̄(t), in order
to show the first expression in (2.11), it is sufficient to prove that E{r̄2(t)|D} =
n−2(p+1)δ/(2p+3)OUP(1). This result follows directly from E{r̄2(t)|D} = {E(r̄(t)|
D)}2 +Var(r̄(t)|D) and Lemma 4. To show the second expression in (2.11), notice
that the covariance estimator γ̂ (s, t) can be expressed as

γ̂ (s, t) = 1

n

n∑
i=1

{fi(s) − f̄ (s)}{fi(t) − f̄ (t)}

+ 1

n

n∑
i=1

{fi(s) − f̄ (s)}{ri(t) − r̄(t)}

+ 1

n

n∑
i=1

{ri(s) − r̄(s)}{fi(t) − f̄ (t)}

+ 1

n

n∑
i=1

{ri(s) − r̄(s)}{ri(t) − r̄(t)}

≡ γ̃ (s, t) + I1 + I2 + I3,
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where ri(t) = f̂i(t) − fi(t), i = 1,2, . . . , n, are independent and asymptotically
have the same variance. By the law of large numbers and by Lemma 3, we have

I1 = E

{
n−1

n∑
i=1

E
[(

fi(s) − f̄ (s)
)(

ri(t) − r̄(t)
)∣∣D)]}

OP (1)

= E{Cov(f1(s), r1(t)|D)}OP (1)

= n−(p+1)δ/(2p+3)OUP(1).

Similarly, we can show that

I2 = n−(p+1)δ/(2p+3)OUP(1) and I3 = n−2(p+1)δ/(2p+3)OUP(1).

The second expression in (2.11) then follows. When δ > 1+1/[2(p+1)], we have

n1/2{η̃(t) − η̂(t)} = oUP(1), n1/2{γ̃ (s, t) − γ̂ (s, t)} = oUP(1).

By the definition of η̃(t) and γ̃ (s, t), we have

η̃(t) = η(t) + v̄(t), γ̃ (s, t) = n−1
n∑

i=1

vi(s)vi(t) − v̄(s)v̄(t).

By the law of large numbers and the central limit theorem, it is easy to show that

n1/2{η̃(t) − η(t)} ∼ AGP(0, γ ), n1/2{γ̃ (s, t) − γ (s, t)} ∼ AGP(0, γ ∗),

where

γ ∗{(s1, t1), (s2, t2)} = Cov{v1(s1)v1(t1), v1(s2)v1(t2)}
= E{v1(s1)v1(t1)v1(s2)v1(t2)} − γ (s1, t1)γ (s2, t2).

In particular, when v(t) is a Gaussian process, we have

E{v1(s1)v1(t1)v1(s2)v1(t2)}
= γ (s1, t1)γ (s2, t2) + γ (s1, t2)γ (s2, t1) + γ (s1, s2)γ (t1, t2).

Thus, γ ∗{(s1, t1), (s2, t2)} = γ (s1, t2)γ (s2, t1) + γ (s1, s2)γ (t1, t2). The proof of
Theorem 4 is finished. �

PROOF OF THEOREM 5. Under Condition A and by Theorem 2, we have
f̂i(tij ) = fi(tij ) + n−(p+1)δ/(2p+3)OUP(1). It follows that

ε̂2
ij = {yij − f̂i(tij )}2 = {

εij + n−(p+1)δ/(2p+3)OUP(1))
}2

= ε2
ij + 2n−(p+1)δ/(2p+3)εijOUP(1) + n−2(p+1)δ/(2p+3)OUP(1).
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Plugging this into (2.14) with b = O(N−1/5), we have σ̂ 2(t) = I1 + I2 + I3, where
under the given conditions and by standard kernel estimation theory,

I1 =
∑n

i=1
∑ni

j=1 Hb(tij − t)ε2
ij∑n

i=1
∑ni

j=1 Hb(tij − t)
= σ 2(t) + N−2/5OUP(1),

I2 = 2

∑n
i=1

∑ni

j=1 Hb(tij − t)n−(p+1)δ/(2p+3)εijOUP(1)∑n
i=1

∑ni

j=1 Hb(tij − t)

= n−(p+1)δ/(2p+3)OUP(1),

I3 =
∑n

i=1
∑ni

j=1 Hb(tij − t)n−2(p+1)δ/(2p+3)OUP(1)∑n
i=1

∑ni

j=1 Hb(tij − t)

= n−2(p+1)δ/(2p+3)OUP(1).

Under Condition A4, ni ≥ Cnδ . This implies that N = ∑n
i=1 ni > Cn1+δ . Thus,

N−2/5 = O(n−2(1+δ)/5). It follows that σ̂ 2(t) = σ 2(t) + OUP(n−2(1+δ)/5 +
n−(p+1)δ/(2p+3)), as desired. The proof of the theorem is completed. �

PROOF OF THEOREM 6. Under the conditions of Theorem 2, we have
|ri(t)| = |f̂i(t) − fi(t)| ≤ n−(p+1)δ/(2p+3)C for some C > 0 for all i and t . Let
�(t) = [�1(t), . . . ,�q(t)]T = (XT X)−1XT (f̂(t) − f(t)). Then for r = 1,2, . . . , q ,
we have

|�r(t)| =
∣∣∣∣∣n−1

n∑
i=1

eT
r,q

(
n−1

n∑
j=1

xj xT
j

)−1

xiri(t)

∣∣∣∣∣
≤ n−1

n∑
i=1

∣∣∣∣∣eT
r,q

(
n−1

n∑
j=1

xj xT
j

)−1

xi

∣∣∣∣∣|ri(t)|
≤ Cn−(p+1)δ/(2p+3)E|eT

r,q�
−1x1|[1 + op(1)].

It follows that �(t) = n−(p+1)δ/(2p+3)OUP(1). The first expression in (3.4) follows
directly from the fact β̂(t) − β̃(t) = �(t).

To show the second expression in (3.4), notice that v̂i(t) = ṽi (t) + ri(t) +
xT
i [β̂(t) − β̃(t)] = ṽi (t) + n−(p+1)δ/(2p+3)OUP(1) because under the given con-

ditions, we have xi = OUP(1), ri(t) = n−(p+1)δ/(2p+3)OUP(1), and β̂(t) − β̃(t) =
n−(p+1)δ/(2p+3)OUP(1). Further, by Condition B, we have vi(t) = OUP(1), there-
fore, v̂i (s)v̂i(t) = ṽi (s)ṽi(t) + n−(p+1)δ/(2p+3)OUP(1). The second expression in
(3.4) follows immediately.

When δ > 1 + 1/[2(p + 1)], we have (p + 1)δ/(2p + 3) > 1/2. Therefore,√
n[β̂(t) − β̃(t)] = n1/2−(p+1)δ/(2p+3)OUP(1) = oUP(1). Moreover, it is easy to
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show that
√

n[β̃(t) − β(t)] ∼ AGP(0, γβ),(6.5)

where γβ(s, t) = γ (s, t)�−1. The result in (3.5) follows immediately. The proof
of the theorem is completed. �

PROOF OF THEOREM 7. Recall that w(t) = [C(XT X)−1CT ]−1/2[Cβ̂(t) −
c(t)], as defined in (3.8). Define w̃(t) similarly by replacing β̂(t) with β̃(t). Then
by (3.11), we have Tn = ∫ b

a ‖w(t)‖2 dt and similarly, T̃n = ∫ b
a ‖w̃(t)‖2 dt .

Let �(t) = w(t) − w̃(t) = [C(XT X)−1CT ]−1/2C[β̂(t) − β̃(t)]. Then under the
given conditions and by Theorem 6, we can show that �(t) = n1/2−(p+1)δ/(2p+3)×
OUP(1). It follows that w(t) = w̃(t) + n1/2−(p+1)δ/(2p+3)OUP(1) and, hence,
Tn = T̃n + 2

∫ b
a w̃(t)T �(t) dt + ∫ b

a ‖�(t)‖2 dt = T̃n + n1/2−(p+1)δ/(2p+3)Op(1),
as desired.

When δ > 1 + 1/[2(p + 1)], we have Tn = T̃n + oP (1) as n → ∞. Thus, to

show (3.14), it is sufficient to show T̃n
d=∑m

r=1 λrAr + oP (1). Using (6.5) in the
proof of Theorem 6 above, it is easy to show that w̃(t) ∼ AGP(ηw,γ w), where
ηw(t) = √

n(C�−1CT )−1/2[Cβ(t) − c(t)] and γ w(s, t) = γ (s, t)Ik , as defined in
(3.9). It follows that the k components of w̃(t) are independent of each other,
and the lth component w̃l(t) ∼ AGP(ηwl, γ ), where ηwl(t) is the lth component
of ηw(t) as defined in (3.9). Since γ (s, t) has the singular value decomposition
(3.12), we have w̃l(t) = ∑m

r=1 ξlrφr(t), where

ξlr =
∫ b

a
w̃l(t)φr(t) dt ∼ AN(µlr , λr),(6.6)

with µlr = ∫ b
a ηwl(t)φr(t) dt . It follows that

T̃n =
∫ b

a
‖w̃(t)‖2 dt =

k∑
l=1

∫ b

a
w̃2

l (t) dt

=
k∑

l=1

m∑
r=1

ξ2
lr =

m∑
r=1

k∑
l=1

ξ2
lr

because the eigenfunctions φr(t) are orthonormal over T = [a, b] and the sum-
mation is exchangeable due to the nonnegativity of ξ2

lr . By (6.6), we have∑k
l=1 ξ2

lr

d=λrAr , where Ar ∼ χ2
k (u2

r ) with u2
r = λ−1

r

∑k
l=1 µ2

lr = λ−1
r ‖ ∫ b

a ηw(t) ×
φr(t) dt‖2, as given in (3.15). It follows that T̃n

d=∑m
r=1 λrAr + oP (1), as desired.

The proof of the theorem is completed. �
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