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NONPARAMETRIC ESTIMATION WHEN DATA ON
DERIVATIVES ARE AVAILABLE

BY PETER HALL AND ADONIS YATCHEW1

Australian National University and University of Toronto

We consider settings where data are available on a nonparametric func-
tion and various partial derivatives. Such circumstances arise in practice, for
example in the joint estimation of cost and input functions in economics. We
show that when derivative data are available, local averages can be replaced
in certain dimensions by nonlocal averages, thus reducing the nonparamet-
ric dimension of the problem. We derive optimal rates of convergence and
conditions under which dimension reduction is achieved. Kernel estimators
and their properties are analyzed, although other estimators, such as local
polynomial, spline and nonparametric least squares, may also be used. Sim-
ulations and an application to the estimation of electricity distribution costs
are included.

1. Introduction. We consider settings where data are available on a non-
parametric function and various partial derivatives. For example, suppose data
(X1i ,X2i , Yi, Y1i ), i = 1, . . . , n, are available for

y = g(x1, x2) + ε, y1 = ∂g(x1, x2)

∂x1
+ ε1.

Then g can be estimated at rates as though it were a function of a single nonpara-
metric variable, rather than two. Heuristically, the presence of data on the partial
derivative with respect to x1 eliminates the need for local averaging in the x1 di-
rection. This, in turn, results in dimension reduction and suggests the possibility
of estimating g and its derivatives at relatively fast rates.

It is natural to ask whether data on derivatives would be available in practical
settings, or whether this investigation is esoteric. In fact, such data are commonly
available in economics. The underlying reason is that economic models frequently
assume that agents economize, that is, that they implicitly or explicitly solve con-
strained optimization problems. Thus, data may not only be available on an objec-
tive function, but also on first order conditions related to the optimization problem.
An example serves to illustrate the point.
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Consider y = g(Q, r,w)+ ε, where y is the minimum cost of producing output
level Q given r and w, the prices of capital and labor, respectively, and ε is a resid-
ual. By the envelope theorem or, equivalently, Shephard’s Lemma (see, e.g., [17,
23]), the partial derivatives of g with respect to r and w yield the optimal quanti-
ties of capital and labor required to produce Q. Joint estimation of cost functions
and their partial derivatives (i.e., the inputs) using parametric models is routinely
undertaken (see, e.g., [10, 14]). Florens, Ivaldi and Larribeau [7] analyze the be-
havior of parametric approximations of systems such as the ones considered in
this paper. However, nonparametric estimation as proposed here has received little
attention.

Quite different examples of the same type arise in engineering settings, for ex-
ample, in real-time records of certain types of motion sensors and in modeling
problems connected to stochastic control; see, for instance, [16, 19].

Rates of convergence for nonparametric regression (e.g., [20, 21]) often limit
the usefulness of conventional nonparametric models in fields where regression
modeling involves multiple explanatory variables. Several devices are available to
mitigate this curse of dimensionality. They include additive and varying-coefficient
models (see, e.g., [3, 11, 12, 22]), projection-based methods (e.g., [4, 9, 13]),
and recursive partitioning and tree-based methods (e.g., [2, 8, 26]). For the most
part, these approaches fit “abbreviated” models, where components or interactions
among components are dropped in order to reduce the variability of an estimator.
We shall show that incorporating derivative information can yield lower variability
and faster convergence rates for the full underlying regression function, without
any need for abbreviation.

Methodology based on this idea can be expected to reach beyond examples in
economics and engineering such as those given earlier. Particularly with the devel-
opment of new technologies which allow rates of change to be recorded at discrete
times, systems in the physical and biological sciences offer opportunities for di-
mension reduction using derivative data. For example, in meteorology, each of
barometric pressure, wind speed and direction (the latter two being functions of
the pressure gradient) are measured over broad geographic regions. In some fields,
an evolving system is often modeled as a (possibly constrained) optimization prob-
lem, so one might expect data relating to first order conditions to be available there.

This paper is organized as follows. Section 2 outlines our assumptions and pro-
vides results on optimal rates of convergence. The approaches to dimension re-
duction addressed there are nonstandard. Section 3, which shows that suitably
constructed kernel estimators achieve optimal rates of convergence, uses famil-
iar smoothing methods surveyed by, for example, Wand and Jones [25], Fan and
Gijbels [5] and Simonoff [18]. We also note that the idea of combining local and
nonlocal averaging has been used by Linton and Nielsen [15] and Fan, Härdle and
Mammen [6]. Results of Bickel and Ritov [1] on estimators that are constructed by
“plugging in” root-n consistent estimators of functions are more distantly related.
Section 4 describes results of simulations and an empirical application involving
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data on electricity distribution costs. Proofs of propositions are deferred to the Ap-
pendix.

Before proceeding, it may be useful to illustrate our results on rates of conver-
gence. Let g(x1, x2, x3, x4) be a nonparametric function for which we have data
and consider the following hierarchy of functions where superscripts denote mul-
tiple first order partial derivatives:

\\ g(1,1,1,1)

\
g(1,1,1,0) \ g(1,1,0,1) g(1,0,1,1) g(0,1,1,1)

\
g(1,1,0,0) g(1,0,1,0) g(0,1,1,0) \ g(1,0,0,1) g(0,1,0,1) g(0,0,1,1)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
g(1,0,0,0) g(0,1,0,0) g(0,0,1,0) \ g(0,0,0,1)

\
(a) If data are available on the complete hierarchy, then g can be estimated root-n
consistently—that is, the “nonparametric dimension” of the estimation problem is
zero. (b) If data are available on all multiple first order partials for any subset of
p variables, then the nonparametric dimension is 4 − p. For example, if one ob-
serves all partials below the main diagonal, then the nonparametric dimension is
one. (c) If data are available on all multiple first order partials for any subset of
p variables, except those appearing in the bottom �̄ rows, then the nonparametric
dimension is 4 − (p − �̄). For example, if one observes all partials in the north-
west wedge, then the nonparametric dimension is two. (d) For an arbitrary set of
observed partial derivatives, an upper bound on the nonparametric dimension of
the estimation problem may be determined by using (b) and (c) to find the subset
which yields the lowest nonparametric dimension. For example, if one observes
all simple first order partials, that is, all partials in the bottom row, then the non-
parametric dimension does not exceed three. If, in addition, one observes g(1,1,0,0),
then the nonparametric dimension does not exceed two.

2. Properties underpinning methodology.

2.1. Main theorem about functionals. For simplicity, we shall assume that g

is supported on the unit cube Rk = [0,1]k , although substantially more general
designs are possible. Let A denote the set of all sequences α = (α1, . . . , αk) of
length k consisting solely of zeros and ones. Given α ∈ A and x = (x1, . . . , xk) ∈
Rk , define |α| = ∑

j αj and

gα(x) = ∂ |α|g(x)

∂xi1 · · · ∂xi|α|
,

where i1 < · · · < i|α| denotes the sequence of indices i for which αi = 1.
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Let Bk denote the class of bounded functions on Rk and let Gk denote the class
of functions g on Rk for which gα ∈ Bk for each α ∈ A. Given C > 0, let K(C)

denote the class of functionals ψ that may be represented as

(ψg)(x) =
∫
Rk

χ(u, x)g(u) du for all g ∈ Bk,(2.1)

where the function χ (which determines ψ) satisfies supu,x∈Rk
|χ(u, x)| ≤ C.

THEOREM 1. There exists a set of functionals {ψα,α ∈ A} ⊆ K(1) such that
for all g ∈ Gk ,

g = ∑
α∈A

ψαgα.

A proof of this theorem and explicit formulae for the functionals ψα are given
in Appendix A.1.

To appreciate the implications of Theorem 1 for inference, assume that for each
α ∈ A, that is, for each model yα = gα(x) + εα , we have data pairs (Xαi, Yαi)

generated by

Yαi = gα(Xαi) + εαi, 1 ≤ i ≤ nα,(2.2)

where the Xαi’s are distributed on Rk with a density fα that is bounded away
from zero there and the errors εαi are independent with zero means and bounded
variances, also independent of the Xαi’s. Put n = minα∈A nα . It follows from the
form of the functional ψα [see (2.1)] that from these data, we may construct an
estimator ψ̂αgα of ψαgα that is root-n consistent whenever g ∈ Gk .

For example, if the Xαi’s are uniformly distributed on Rk and if ψ = ψα is
given by (2.1) with χ there denoted by χα , then an unbiased root-n consistent
estimator of ψαgα is given by ψ̂αgα , where

(ψ̂αgα)(x) = 1

nα

nα∑
i=1

Yαiχα(Xαi, x).(2.3)

Theorem 1 now implies that

ĝ ≡ ∑
α∈A

ψ̂αgα(2.4)

is a root-n consistent estimator of g. Properties of estimators such as ψ̂αgα and ĝ

will be discussed in Section 3.2.
The theory that we develop admittedly does not address the “cost” of sampling

data on derivatives. In the examples from economics and engineering discussed
in Section 1, the cost is low, although in some other problems it is prohibitively
high. Moreover, if high order derivative information is absent, then our estimators
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simply do not enjoy fast convergence rates. We characterize convergence rates in
terms of the value of n = minβ∈B nβ and do not dwell on the fact that if there is a
sufficiently large order of magnitude of data on (X,Y ) alone, sufficiently greater
than n, then the convergence rate of a conventional nonparametric estimator based
solely on those data can be faster than the rates given in this paper.

The assumption that errors for measurements of different derivatives are inde-
pendent can be significantly relaxed without affecting the theoretical results that
we shall give in Section 3. The assumption may not be completely plausible in the
setting of capital and labor costs, but it is realistic in the context of engineering
problems, where motion sensor data on functions and their derivatives are esti-
mated by different sensors with different characteristics. Correlations among the
errors for different functions will be permitted in the simulation study in Section 4.

In the following examples, the decomposition of g provided in Theorem 1 is
rearranged to illustrate root-n consistent estimation.

EXAMPLE 1. Suppose k = 1 and that noisy data are available for g(x) and
dg(x)/dx. Write g(x) ≡ g

1
(x) + g

0
(·), where

g
1
(x) ≡

∫ x

0

dg(u)

du
du = g(x) − g(0),

g
0
(·) ≡

∫ 1

0
{g(u) − g

1
(u)}du = g(0).

The function g
1

can be estimated root-n consistently, in which case its integral and
hence g

0
can too.

EXAMPLE 2. Suppose k = 2 and that noisy data are available for g(1,1), g(1,0),
g(0,1) and g(0,0) = g. Write g(x) ≡ g

11
(x1, x2)+g

10
(x1, ·)+g

01
(·, x2)+g

00
(·, ·),

where

g
11

(x1, x2) ≡
∫ x1

0

∫ x2

0
g(1,1)(u1, u2) du1 du2

= g(x1, x2) − g(x1,0) − g(0, x2) + g(0,0),

g
10

(x1, ·) ≡
∫ x1

0

∫ 1

0
g(1,0)(u1, x2) du1 dx2 −

∫ 1

0
g

11
(x1, x2) dx2

= g(x1,0) − g(0,0),

g
01

(·, x2) ≡
∫ 1

0

∫ x2

0
g(0,1)(x1, u2) dx1 du2 −

∫ 1

0
g

11
(x1, x2) dx1

= g(0, x2) − g(0,0),

g
00

(·, ·) ≡
∫ 1

0

∫ 1

0
g(x1, x2) − g

11
(x1, x2) − g

10
(x1, ·) − g

01
(·, x2) dx1 dx2

= g(0,0).
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Sample analogues of all integral expressions can be calculated without local av-
eraging. Thus, g

11
and its integrals can be estimated root-n consistently, in which

case g
10

and g
01

, their respective integrals and g
00

can too.

2.2. Application of Theorem 1 to lower-dimensional structures. Let 1 ≤ p ≤ k

and consider a lower-dimensional “subspace” of A, specifically the set B of all
sequences β = (β1, . . . , βp) of length p consisting solely of zeros and ones. Given
g ∈ Bk , define |β| and gβ analogously to |α| and gα . In particular, gβ is a function
on Rk , not on the lower-dimensional space Rp = [0,1]p and

gβ(x) = ∂ |β|g(x)

∂xi1 · · · ∂xi|β|
,(2.5)

where i1 < · · · < i|β| denotes the sequence of indices i for which βi = 1. Simi-
larly, although the functional ψβ (the p-dimensional analogue of ψα introduced in
Theorem 1) would normally be interpreted as the functional which takes b ∈ Bp

to ψβb, defined by

(ψβb)(x1, . . . , xp) =
∫
Rp

χ(u1, . . . , up, x1, . . . , xp) b(u1, . . . , up) du1 · · · dup,

it can just as easily be interpreted as the functional that takes g ∈ Bk to ψβg,
defined by

(ψβg)(x1, . . . , xk) =
∫
Rp

χ(u1, . . . , up, x1, . . . , xp)

× g(u1, . . . , up, xp+1, . . . , xk) du1 · · · dup.(2.6)

We shall adopt the latter interpretation.
We may, of course, interpret β as a k-vector and an element of A, with its last

k − p components equal to zero. We shall take this view in Section 2.3, where we
shall treat cases that cannot be readily subsumed under a model in which noisy
observations are made of ψβgβ for each β ∈ B .

Let Gkp denote the class of functions g ∈ Bk for which gβ is well defined and
bounded on Rk for each β ∈ B . The following result is an immediate corollary of
Theorem 1. It is derived by applying Theorem 1 to the function that is defined on
Rp and is obtained from g by fixing the last k − p coordinates of x and allowing
the first p coordinates to vary in Rp . However, although Corollary 1 can be proved
from Theorem 1, the theorem is a special case of the corollary.

COROLLARY 1. Assume 1 ≤ p ≤ k and let ψβ , for β ∈ B , denote the func-
tionals introduced in Section 2.1, but interpreted in the sense of (2.6). Then for
each g ∈ Gkp ,

g = ∑
β∈B

ψβgβ.
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The main statistical implication of the corollary is that by observing data on gβ

for each β ∈ B , we reduce the effective dimension of the problem of estimating g

from k to k − p. The manner in which g depends on its first p components can be
estimated root-n consistently and then performance in the estimation problem is
driven by the difficulty of determining the way in which g is influenced by its last
k − p components.

To better appreciate this point, assume that for each β ∈ B , data (Xβi, Yβi) are
generated by an analogue of the model at (2.2),

Yβi = gβ(Xβi) + εβi, 1 ≤ i ≤ nβ,(2.7)

where g ∈ Gkp and the Xβi ’s are distributed on Rk . Suppose, for simplicity, that

the common density of the Xβi’s is uniform on Rk . Let X
[k−p]
βi and x[k−p] rep-

resent the (k − p)-vectors comprised of the last k − p components of Xβi and x,
respectively. Denote by K a (k − p)-dimensional kernel function, let h be a band-

width and in close analogy with (2.3), define ψ̂βgβ by

(
ψ̂βgβ

)
(x) = 1

nβhk−p

nβ∑
i=1

Yβiχβ(Xβi, x)K

(X
[k−p]
βi − x[k−p]

h

)
.(2.8)

Set n = minβ∈B nβ . It is readily proved that if (i) g has d derivatives of its last
k − p components as well as all multiple first derivatives of its first p com-
ponents, (ii) K is a bounded, compactly supported, dth order kernel, (iii) x is
an interior point of Rk , so as to avoid edge effects and, (iv) h = h(n) ∼
const · n1/(2d+k−p), then (ψ̂βgβ)(x) converges to (ψβgβ)(x) at the standard
squared-error rate, n−2d/(2d+k−p), for estimating functions of k −p variables with
d derivatives. This result is a consequence of the fact that the smoothing at (2.8) is
only over the last k − p coordinates of the data Xβi . Therefore, the estimator

ĝ ≡ ∑
β∈B

ψ̂βgβ,(2.9)

analogous to that at (2.4), converges to g at the squared-error rate n−2d/(2d+k−p).

Properties of ψ̂βgβ and ĝ will be discussed in Section 3.2.

EXAMPLE 3. Returning to the example in the introduction, suppose k = 2 and
that noisy data are available for g and g(1,0). Write g(x) ≡ g

11
(x1, x2)+g

10
(·, x2),

where

g
11

(x1, x2) ≡
∫ x1

0
g(1,0)(u1, x2) du1 = g(x1, x2) − g(0, x2),

g
01

(·, x2) ≡
∫ 1

0
{g(x1, x2) − g

11
(x1, x2)}dx1 = g(0, x2).
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Estimates of g
11

and g
01

require local averaging in the x2 direction only. Thus, g
11

can be estimated at one-dimensional optimal rates, in which case its integral and
g

01
can too.

EXAMPLE 4. Suppose k = 3 and that noisy data are available for g(1,1,0),
g(1,0,0), g(0,1,0) and g(0,0,0) = g. Write g(x) ≡ g

111
(x1, x2, x3) + g

101
(x1, ·, x3) +

g
011

(·, x2, x3) + g
001

(·, ·, x3), where

g
111

(x1, x2, x3) ≡
∫ x1

0

∫ x2

0
g(1,1,0)(u1, u2, x3) du1 du2

= g(x1, x2, x3) − g(x1,0, x3) − g(0, x2, x3) + g(0,0, x3),

g
101

(x1, ·, x3) ≡
∫ x1

0

∫ 1

0
g(1,0,0)(u1, x2, x3) du1 dx2 −

∫ 1

0
g

111
(x1, x2, x3) dx2

= g(x1,0, x3) − g(0,0, x3),

g
011

(·, x2, x3) ≡
∫ 1

0

∫ x2

0
g(0,1,0)(x1, u2, x3) dx1 du2 −

∫ 1

0
g

111
(x1, x2, x3) dx1

= g(0, x2, x3) − g(0,0, x3),

g
001

(·, ·, x3) ≡
∫ 1

0

∫ 1

0
{g(x1, x2, x3) − g

111
(x1, x2, x3) − g

101
(x1, ·, x3)

−g
011

(·, x2, x3)}dx1 dx2

= g(0,0, x3).

Estimates of each of the above component functions require local averaging in the
x3 direction only. Thus, g

111
and its integrals can be estimated at one-dimensional

optimal rates, as can g
101

and g
011

, their respective integrals and hence also g
001

.

With a mild abuse of notation, suppose that x3 in Example 4 is of length k − 2.
Then g can be estimated at (k − 2)-dimensional optimal rates.

2.3. More general settings. In Corollary 1, we assumed that we have available
all multiple first derivatives gβ of the first p components of g. Our restriction to
the first p components was made only for notational convenience; they could have
been any p components. In particular, we may alter the definition at (2.5) to

gβ(x) = ∂ |β|g(x)

∂xI (i1) · · · ∂xI (i|β|)
,(2.10)

where I (1) < · · · < I (p) denotes any given subsequence of length p of 1, . . . , k,
without affecting the validity of the corollary. The functional ψβ would be inter-
preted analogously. Taking this view (which we shall in the present section), we
may interpret β as a k-vector.

Low-dimensional cases, such as that treated by Corollary 1, are motivated by
circumstances where multiple first derivatives are observed for a subset of vari-
ables. It may be that one is able to observe data on gα for all α ∈ A such that
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|α| ≥ �, say, but not for any other values of α. This case is not immediately cov-
ered by Theorem 1 or Corollary 1, which can be viewed as treating the contrary
setting |α| ≤ �.

We shall adopt the general setting discussed in the paragraph containing (2.10)
so as to stress the wide applicability of our results. Assume 1 ≤ p ≤ k, 0 ≤ � ≤ k

and 1 ≤ p − � + 1 ≤ k and suppose that we have derivative information from
components in P = {I (1), . . . , I (p)}. Let β and gβ be as in (2.10) and assume
that we have noisy data on gβ for all β ∈ B such that |β| ≥ �, as well as for
β = 0; see (2.7). Then we may construct an estimator of g, closely analogous
to that at (2.9) and enjoying the squared-error convergence rate n−2d/(2d+k−q),
where q = p − �+ 1. That rate is valid under the assumption that g has d bounded
derivatives.

This result is a consequence of Theorem 2 below, for which we now give no-
tation. Given α ∈ A, u,x ∈ Rk and a function b ∈ Bk , let i1, . . . , i|α| denote the
indices of the components of α that equal 1. Define vα(u, x) to be the k-vector
with uij in position ij for 1 ≤ j ≤ |α| and xj in position j for each j that is not
among i1, . . . , i|α|. Define the operator Mα by

(Mαb)(x) =
∫ 1

0
· · ·

∫ 1

0
b{vα(u, x)}dui1 · · · dui|α| .(2.11)

Consider the functional that takes g to the function of which the value at x is∫
ξα(u, x)gα(u) du,(2.12)

where ξα(u, x) is a function of the 2k variables among the components of u and x.
In Appendix A.2, we shall prove the following result.

THEOREM 2. If g ∈ Gk , 1 ≤ p ≤ k, 0 ≤ � ≤ k and 1 ≤ p − � + 1 ≤ k, then g

can be expressed as a linear form in integrals of the type (2.12), where |α| ≥ �,
all components of α that equal 1 are indexed in P and supu,x∈Rk

|ξα(u, x)| ≤ C,
with C > 0 depending only on k, � and p, and in integrals Mβg, with β ∈ A and
|β| ≥ p − � + 1.

Our derivation of Theorem 2 will provide an inductive argument for calculating
the representation of g in any given case.

To appreciate how the convergence rate given three paragraphs above follows
from Theorem 2, let us consider the case p = k, for simplicity, and express g as
indicated in the theorem: g = g1 + g2, where

g1(x) =
r∑

i=1

∫
Rk

ξα(i)(u, x)gα(i)(u) du, g2(x) =
s∑

i=1

ci (Mβ(i)g)(x).

Here, sup |ξα(i)(u, x)| ≤ const., the ci ’s are constants and α(i), β(i) ∈ A with
|α(i)| ≥ � and |β(i)| ≥ k − � + 1. Assuming, for simplicity, that the design points
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are uniformly distributed, we may construct the following root-n consistent esti-
mator of g1(x) using the approach at (2.3):

ĝ1(x) =
r∑

i=1

1

nα(i)

nα(i)∑
j=1

Yα(i)j ξα(i)(Xα(i)j , x).

We may estimate g2(x), using the method at (2.8), as follows:

ĝ2(x) =
s∑

i=1

ci

nα0 hk−|β(i)|

nα0∑
j=1

Yα0j K

(X∗
β(i)j − x∗

h

)
.

Here X∗
β(i)j and x∗ denote the vectors of those k − |β(i)| components of Xβ(i)j

and x, respectively, for which the corresponding components of β(i) are zero.
Since k − |β(i)| ≤ � − 1 for each i, the squared-error convergence rate of ĝ2 to g2
is n−2d/(2d+�−1). Therefore, the squared-error convergence rate of ĝ = ĝ1 + ĝ2 to
g is also n−2d/(2d+�−1), as claimed three paragraphs above.

EXAMPLE 5. Suppose k = 2 and that noisy data are available for g(1,1) and
g(0,0) = g. Use the root-n consistent estimator of g

11
from Example 2 to write

y(0,0) − ĝ
11

(x1, x2) = g(x1,0) + g(0, x2) − g(0,0) + Op(n−1/2) + ε(0,0),

which is additively separable in x1 and x2 and hence estimable at one-dimensional
optimal rates.

EXAMPLE 6. Suppose k = 3 and that noisy data are available for g(1,1,1),
g(1,1,0), g(1,0,1), g(0,1,1) and g(0,0,0) = g. Define

g
111

(x1, x2, x3) ≡
∫ x1

0

∫ x2

0

∫ x3

0
g(1,1,1)(u1, u2, u3) du1 du2 du3

= g(x1, x2, x3) − g(x1, x2,0) − g(x1,0, x3) − g(0, x2, x3)

+ g(x1,0,0) + g(0, x2,0) + g(0,0, x3) − g(0,0,0),

g
110

(x1, x2, ·) ≡
∫ x1

0

∫ x2

0

∫ 1

0
g(1,1,0)(u1, u2, x3) du1 du2 dx3

−
∫ 1

0
g

111
(x1, x2, x3) dx3

= g(x1, x2,0) − g(x1,0,0) − g(0, x2,0) + g(0,0,0),

g
101

(x1, ·, x3) ≡
∫ x1

0

∫ 1

0

∫ x3

0
g(1,0,1)(u1, x2, u3) du1 dx2 du3

−
∫ 1

0
g

111
(x1, x2, x3) dx2

= g(x1,0, x3) − g(x1,0,0) − g(0,0, x3) + g(0,0,0),
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g
011

(·, x2, x3) ≡
∫ 1

0

∫ x2

0

∫ x3

0
g(0,1,1)(x1, u2, u3) dx1 du2 du3

−
∫ 1

0
g

111
(x1, x2, x3) dx1

= g(0, x2, x3) − g(0, x2,0) − g(0,0, x3) + g(0,0,0).

Sample analogues of all integral expressions may be calculated without local av-
eraging. Thus, g

111
and its integrals can be estimated root-n consistently, as can

g
110

, g
101

and g
011

. Now, write

y(0,0,0) − ĝ
111

(x1, x2, x3) − ĝ
110

(x1, x2, ·) − ĝ
101

(x1, ·, x3) − ĝ
011

(·, x2, x3)

= g(x1,0,0) + g(0, x2,0) + g(0,0, x3) − 2g(0,0,0) + Op(n−1/2) + ε(0,0,0),

which is additively separable in x1, x2 and x3 and hence estimable at one-
dimensional optimal rates.

3. Estimation.

3.1. Smoothing techniques. In Section 2, we gave examples of estimators in
the case where the design points Xαi are uniformly distributed on Rk . More gen-
erally, we should normalize the summands of our estimators, such as those at (2.3)
and (2.8), using estimators of the densities of the distributions of design points.
For simplicity, we shall develop the case of (2.8) in this setting, noting that other
cases are similar.

Suppose we observe the datasets at (2.7) for each β ∈ B , where the latter is the
set of p-vectors of zeros and ones with 1 ≤ p ≤ k. Note that we may also interpret
β as a k-vector, an element of A, in which each of the last k − p components is
zero. Both interpretations will be made below.

The design points Xβi , which are k-vectors, are assumed to be distributed on Rk

with density fβ , say. As in Section 2.2, let X
[k−p]
βi and x[k−p] denote the (k − p)-

vectors consisting of the last k − p components of Xβi and x, respectively, let K

be a (k − p)-variate kernel function, let h denote a bandwidth and redefine

(ψ̂βgβ)(x) = 1

nβ hk−p

nβ∑
i=1

Yβiχβ(Xβi, x)

f̃β,−i(Xβi)
K

(X
[k−p]
βi − x[k−p]

h

)
,(3.1)

where f̃β,−i denotes an estimator of fβ computed from the dataset Xβ,−i = {Xβ1,

. . . ,Xβnβ } \ {Xβi} obtained by dropping the ith observation. Note that χβ(Xβi, x)

depends only on the first p components of Xβi and x, whereas f̃β,−i(x) and fβ(x)

depend nondegenerately on all k components of x.
A degree of interest centers on the definition adopted for f̃β,−i . We shall discuss

an edge-corrected kernel method, but, of course, there are many other techniques
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that can be used—for example, polynomial interpolation, or polynomial smooth-
ing, applied to binned data.

Let H > 0 denote a bandwidth and let L1 represent a bounded function of a real
variable t , supported on the interval [−1,1] and satisfying

∫
tj K1(t) dt = δj0 (the

Kronecker delta), for 0 ≤ j ≤ d1 − 1. (The positive integer d1 may differ from the
order d of the kernel K .) Construct a k-variate product kernel L,

L(u1, . . . , uk) = L1(u1) · · ·L1(uk).(3.2)

The density estimator

f̂β,−i(x) = 1

nβ − 1

∑
j : j �=i

L

(
x − Xβj

H

)
(3.3)

does not suffer edge effects provided xi ∈ [h,1 − h] for 1 ≤ i ≤ k. However, if for
one or more values of i, xi lies outside [h,1 − h] and, more particularly, if 0 <

xi < h, then edge effects may be averted by replacing L1(ui) with Ledge(ui) in the
definition of L at (3.2). Here, Ledge is a bounded, univariate edge kernel, supported
on [0,1] and satisfying

∫
tjLedge(t) dt = δj0 for 0 ≤ j ≤ d1 − 1. Similarly, if 1 −

h < xi < 1, then we would replace L1, applied to the ith component in (3.2), by
an edge kernel supported on [−1,0].

With these modifications, the density estimator f̂β,−i defined at (3.3) is of d1th
order and does not suffer edge effects in Rk .

Our definition of f̃β,−i ensures that the estimator at (3.1) is protected from edge
effects in the first p coordinates of x. However, we should modify K in the same

way as we did L; otherwise, ψ̂βgβ will suffer from edge effects in the last k − p

coordinates of x. We shall assume that this has been done so that the (k−p)-variate
kernel K is, analogously to L, a product of k − p bounded, compactly supported,
dth order univariate kernels that are switched to appropriate edge kernels if one or
more components of x[k−p] are within h of the boundary. The univariate kernels,
K1 and Kedge, say, will each be taken to be of dth order.

Rather than employ special kernels to overcome edge effects, we may use lo-

cal polynomial methods to construct ψ̂βgβ , obtaining an alternative estimator to
that at (3.1). In this approach, we would run a (k − p)-variate local polynomial
smoother of degree d − 1 through the data pairs

(
X

[k−p]
βi , Yβiχβ(Xβi)/f̃β,−i(Xβi)

)
, 1 ≤ i ≤ nβ.(3.4)

This technique is also able to correct for a nonuniform joint distribution of the
last k − p components, so we could normalize the “response variable” a little
differently than by dividing by f̃β,−i (Xβi), as at (3.4). However, the normalization
at (3.4) causes no problems for the local polynomial smoother.
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3.2. Limit theory for estimators. For the sake of simplicity, we shall give the-
ory only for edge-corrected kernel approaches to estimation. In particular, we as-
sume f̃β,−i is constructed using the methods described in Section 3.1, that the
univariate kernel L1 and its two edge-correcting forms Ledge are bounded and
compactly supported and that the same is true of the univariate kernels K1 and
Kedge that are multiplied together to give the (k − p)-variate kernel K . To this, we
add the assumption that

K1,Kedge,L1 and Ledge are Hölder
(3.5)

continuous as functions on the real line.

Recall that the estimator f̃β,−i is constructed using a d1th order kernel L and
a bandwidth H and that the kernel K used in (3.1) is of order d and employs a
bandwidth h. Of these quantities, we assume the following conditions:

d > 1
2(k + p) and d1 > k,(3.6)

for constants 0 < C1 < C2 < ∞ and η > 0,

C1n
−1/(2d+k−p)
β ≤ h ≤ C2n

−1/(2d+k−p)
β and

C1n
{−1/(2k)}+η
β ≤ H ≤ C2 min{n−1/(2d1)

β , n
−1/(2d+k−p)
β }n−η

β

for all sufficiently large nβ .

(3.7)

Provided (3.6) holds, we may choose h and H satisfying (3.7). We also suppose
that

gβ is bounded, the last k − p components of g have d continuous deriv-
atives and fβ has d1 bounded derivatives and is bounded away from zero
on Rk .

(3.8)

We also make the following basic “structural” assumptions:

data pairs (Xβi, Yβi) are generated by the model at (2.7), in which the
design variables Xβi are independent and identically distributed on Rk

with density fβ , the errors εβi are independent and identically distributed
with zero mean and the errors are independent of the design points.

(3.9)

From these data, construct the estimator ψ̂βgβ defined at (3.1). Recall that u[k−p]
denotes the (k − p)-vector consisting of the last k − p components of the k-
vector u. Let w(u,x | h) represent the k-vector with uj in position j for 1 ≤ j ≤ p

and xj + hjuj in position j for p + 1 ≤ j ≤ k.

THEOREM 3. Assume 1 ≤ p ≤ k, that conditions (3.5)–(3.9) hold and that
the distribution of the errors εβi has zero mean and all moments finite. Then
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(ψ̂βgβ)(x) =
∫
Rk

g{w(u,x | h)}χβ{w(u,x |h), x}K(u[k−p]) du

+ 1

nβ

nβ∑
i=1

εβiχβ(Xβi, x)

fβ(Xβi) hk−p
K

(X
[k−p]
βi − x[k−p]

h

)
(3.10)

+ op(n
−d/(2d+k−p)
β ),

uniformly in x ∈ Rk .

We shall discuss the implications of Theorem 3 in the two main cases, p = k and
p < k. In the first setting, the contribution of the kernel K to (3.10) is degenerate
and the integral on the right-hand side is identical to (ψβgβ)(x). (Here, β is a
k-vector.) Therefore, when p = k, (3.10) is equivalent to

(ψ̂βgβ)(x) = (ψβgβ)(x) + Znβ (x) + op(n
−1/2
β ),(3.11)

uniformly in x ∈ Rk , where

Znβ (x) = 1

nβ

nβ∑
i=1

εβiχβ(Xβi, x)

fβ(Xβi)

is a zero-mean stochastic process defined on Rk . As nβ increases, n
1/2
β Znβ con-

verges weakly to the Gaussian process Z0, say, with zero mean and covariance
function

cov{Z0(x1),Z0(x2)} = σ 2
β

∫
Rk

χβ(u, x1)χβ(u, x2) fβ(u)−1 du,(3.12)

where σ 2
β = var(εβi). This property and (3.11) together imply that ψ̂βgβ converges

uniformly to ψβgβ at rate n−1/2:

sup
x∈Rk

|(ψ̂βgβ)(x) − (ψβgβ)(x)| = Op(n
−1/2
β ).

Next, we treat the case p < k. Although χβ(u, x) is discontinuous as a func-
tion of the first p components of u, if g has d continuous derivatives of its last
k − p components, then so too does χβ(·, x); see the definition of χα given in
Appendix A.1 and recall that definition has a minor adaptation to the case of χβ .
Therefore, standard Taylor expansion methods may be used to prove that for a
continuous function a,∫

g{w(u,x |h)}χβ{w(u,x |h), x}K(u[k−p]) du

=
∫

g{w(u,x), x}χβ{w(u,x), x}du1 · · · dup + hd a(x) + o(hd)

(3.13)
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as h → 0, where w(u,x) = w(u,x |0) is the k-vector with uj in position j for
1 ≤ j ≤ k and xj in position j for p + 1 ≤ j ≤ k. The series on the right-hand
side of (3.10) is asymptotically normally distributed with zero mean and variance
(nβhk−p)−1σ 2

βτ(x)2κ , where

τ(x)2 =
∫

χβ{w(u,x), x}2fβ{w(u,x)}−1 du1 · · · dup

and κ = ∫
K2. This result, (3.10) and (3.13) collectively imply that for the choice

of h given in (3.7), (ψ̂βgβ)(x) converges to (ψβgβ)(x) at the pointwise squared-

error rate n
−2d/(2d+k−p)
β , as claimed in Section 2.2. The uniform convergence rate

is slower only by a logarithmic factor.
It is straightforward to prove that the pointwise rate is minimax optimal. Indeed,

that property follows from conventional minimaxity results in nonparametric re-
gression on taking g to be a function of which the dependence on the first p coor-
dinates is degenerate. Likewise, the uniform convergence rate can be shown to be
optimal, provided we use a slightly larger bandwidth h, increased by a logarithmic
factor relative to that asserted in (3.7).

We close by formally stating the main results discussed above.

COROLLARY 2. Assume the conditions of Theorem 3. If p = k, then

n
1/2
β {ψ̂βgβ(x) − ψβgβ(x)}, viewed as a stochastic process indexed by x ∈ Rk ,

converges weakly, as nβ → ∞, to a zero-mean Gaussian process Z0 with covari-
ance function given at (3.12). If p < k and if h ∼ const · n−1/(2d+k−p), then for

each x ∈ Rk , n
d/(2d+k−p)
β {ψ̂βgβ(x) − ψβgβ(x)} is asymptotically normally dis-

tributed with finite mean and variance.

Of course, in order to construct an estimator ĝ of g, we must add ψ̂βgβ over
all β; see (2.9). The resulting limit theory for ĝ is the superposition of that for

each ψ̂βgβ . However, provided the sets of design points Xβi and errors εβi are
independent for different β’s, properties of the superposition are readily derived
from the results that we have already obtained for a single β .

Indeed, under this assumption of row-wise independence, it follows directly
from Corollary 2 that if, for a sequence of integers n diverging to infinity, nβ/n

converges to a strictly positive constant cβ for each β ∈ B , then (a) if p = k,
n1/2(ĝ − g) converges weakly to a zero-mean Gaussian process defined on Rk

and (b) if p < k, then for each x ∈ Rk , nd/(2d+k−p){ĝ(x) − g(x)} is asymptoti-
cally normally distributed with finite mean and variance.

Correlation among residuals in different equations can also be accommodated.
Let B = {β1, . . . , βs}. Suppose

(
Xi,Yβ1i , . . . , Yβsi

)
i=1,...,n are independent and

identically distributed, where Yβj i = gβj (Xi) + εβj i , j = 1, . . . , s and σjj ′ ≡
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cov(εβj i, εβj ′ i ). Let f (x) denote the design density of the Xi which are distrib-
uted independently of the residuals. Then conclusions (a) and (b) of the previous
paragraph continue to hold with the covariance function of the limiting Gaussian
process in (a), say Z0, given by

cov{Z0(x1),Z0(x2)} = ∑
jj ′

σjj ′
∫
Rk

χβj
(u, x1)χβj ′ (u, x2)f (u)−1 du.

4. Numerical results.

4.1. Simulation of cost function and input factor estimation. We return to the
cost function estimation problem discussed in Section 1. Since doubling of input
prices at a given level of output doubles costs, the cost function is homogeneous
of degree one in input prices. Thus, we may write average costs, that is, costs per
unit of output Q, as AC = r g(Q,w/r), where r and w are the prices of capi-
tal and labor, respectively. Applying Shephard’s Lemma yields the average labor
function, AL = ∂AC/∂w = ∂g(Q,w/r)/∂(w/r). If noisy data are available for
AC and AL, then this application is analogous to Example 3 above, except that
the nonparametric function g is multiplied by r , a feature which arises from the
degree-one homogeneity of cost functions in their factor prices.

We calibrate our simulations using the Cobb–Douglas production function Q =
cKc1Lc2 (see, e.g., [23]). The data-generating mechanism for average costs is

y(0,0) = AC + ε(0,0) = rc̃Q
1−c1−c2
c1+c1

(
w

r

) c2
c1+c2 + ε(0,0),(4.1)

where c̃ = ((c1/c2)
c2/(c1+c2) + (c1/c2)

−c1/(c1+c2))c
−1

c1+c2 . For average labor, we use

y(0,1) = AL + ε(0,1) = c2

c1 + c2
c̃Q

1−c1−c2
c1+c2

(
w

r

) −c1
c1+c2 + ε(0,1).(4.2)

In the simulations below, we set c1 = 0.8 and c2 = 0.7. Data for Q and for the
ratio of factor prices w/r are generated from independent uniform distributions on
[0.5,1.5]. We assume that ε(0,0) and ε(0,1) are normal residuals with zero means,
standard deviations 0.35 and correlation ρ set to 0.0, 0.4 or 0.9. The R2 is ap-
proximately 0.75 for the AC equation and 0.15 for the AL equation. Our reference
estimator of average costs consists of applying bivariate kernel smoothing to the
triples (y(0,0)/r,Q,w/r) to obtain ĝ(Q,w/r), which is then multiplied by r .

To incorporate the labor data, define

ĝ
a
(r,Q,w/r) = r

1

nh

∑
|Qj−Q|≤h/2
wj/rj≤w/r

Y(0,1)j ,(4.3)

ĝ
b
(r,Q, ·) = r

1

nh

∑
|Qj−Q|≤h/2

Y(0,0)j − ĝ
a
(rj ,Qj ,wj/rj )

rj
.(4.4)
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TABLE 1
MSEs of derivative-based AC estimator relative to bivariate

kernel smoothing

n ρ = 0.0 ρ = 0.4 ρ = 0.9

100 0.384 0.384 0.374
200 0.277 0.274 0.272
500 0.233 0.230 0.228

1000 0.185 0.187 0.186

Then ÂC = ĝ
a
+ ĝ

b
. Table 1 summarizes our results for various sample sizes n and

residual correlations. There, we report the mean squared errors of this estimator
relative to the bivariate kernel estimator described above. There are substantial
efficiency gains, which increase with sample size, as would be expected given the
faster convergence rates of derivative-based estimators.

4.2. Estimating costs of electricity distribution. To further illustrate the proce-
dure, we use data on 81 electricity distributors in Ontario. (For additional details,
see [24].) We have data on output, Q, which is the number of customers served
and which varies from about 500 to over 200,000. Average labor, AL, equals the
number of employees divided by Q. In addition, we have data on hourly wages,
w, and the cost of capital, r .

Figure 1 illustrates the estimated average cost function using only AC data and
a bivariate loess smoother available in S-PLUS. Next, we use both the AC and
AL data and apply equations (4.3) and (4.4), suitably modified for the nonuniform
distribution of w/r . Figure 2 illustrates the resulting estimate.

APPENDIX: TECHNICAL ARGUMENT

A.1. PROOF OF THEOREM 1. It is readily seen that when k = 1,

g(x) =
1∑

j=0

∫ 1

0
χj (u, x), g(j)(u) du,(A.1)

where χ0(u, x) ≡ 1, χ1(u, x) ≡ u − 1 + I (u ≤ x), I (u ≤ x) = 1 if u ≤ x and
equals 0 otherwise and g(j)(x) = (∂/∂x)j g(x). Repeating identity (A.1) for each
component of a function g of k ≥ 1 variables, we deduce that Theorem 1 holds
with ψα defined by (ψαg)(x) = ∫

Rk
χα(u, x)g(u)du, where

χα(u1, . . . , uk, x1, . . . , xk) =
k∏

j=1

χαj
(uj , xj )

and α = (α1, . . . , αk). Note, particularly, that |χα| ≤ 1 and so ψα ∈ K(1), where
K(C) is defined as in Section 2.1.
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FIG. 1. Function estimate using data on function only.

FIG. 2. Function estimate using data on function and partial derivative.
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A.2. PROOF OF THEOREM 2. In proving the theorem, we may assume that
P = {1, . . . , k}, since the contrary case can be treated by fixing components of
which the index does not lie in P . In the notation at (2.11), define

(Nαb)(x) =
∫ xi1

0
· · ·

∫ xi|α|

0
b{vα(u, x)}dui1 · · · dui|α| .

Given α ∈ A, let A(α) denote the set of vectors β = (β1, . . . , βk) ∈ A for which
each index j with βj = 1 is also an index with αj = 1. Put α0 = (0, . . . ,0) and
A1(α) = A(α) \ {α0}. We shall prove shortly that for all α ∈ A and b ∈ Bk ,∑

β∈A(α)

(−1)|β|MβNαbα = ∑
β∈A(α)

(−1)|β|Mβb(A.2)

or, equivalently,

b = ∑
β∈A(α)

(−1)|β|MβNαbα − ∑
β∈A1(α)

(−1)|β|Mβb.(A.3)

Substituting b = g and α = (1, . . . ,1) into (A.3), we obtain

g = ∑
β∈A

(−1)|β|MβNαgα − ∑
β∈A1(α)

(−1)|β|Mβg,(A.4)

where A1 = A1(1, . . . ,1) = A \ {α0}. The first series on the right-hand side is a
linear expression in integrals of the form at (2.12). If |β| ≥ k − � + 1, then Mβg is
also of the form claimed in the theorem. It remains only to treat terms Mβg with
|β| ≤ k − �, which we do using an iterative argument. [Note that, since β ∈ A1(α),
we have |β| ≥ 1, so we have already finished if � = k.]

Write S(β) for the set of indices i such that βi = 1 and define α1 = α1(β) ∈ A

by S(α1) = S(α) \ S(β). Apply (A.3) again, this time with α = α1 and b = Mβg,
obtaining

Mβg = ∑
β1∈A(α1)

(−1)|β1|Mβ1Nα1(Mβ1g)α
1 − ∑

β1∈A1(α
1)

(−1)|β1|Mβ1Mβg.

By definition of α1, (Mβg)α
1 = (Mβ)(gα1

), and so Nα1(Mβg)α
1 = (Nα1Mβ)(gα1

),

which is a k-fold integral of gα1
, where |α1| = k − |β| ≥ k − (k − �) = �. Also,

Mβ1Mβ = Mβ2g, where β2 ∈ A and |β2| ≥ 2. (The superscript 2 is an index, not
an exponent.) If |β2| ≥ k − � + 1, we are done; if |β2| ≤ k − �, we continue the
process of iteration.

Finally, we derive (A.2). Again, it suffices to treat the case α = (1, . . . ,1), since
other contexts may be addressed by fixing components xj for j such that αj = 0.
In the case α = (1, . . . ,1),

(Nαbα)(x) =
∫ x1

0
· · ·

∫ xk

0
b(1,...,1)(u1, . . . , uk) du1 · · · duk

= ∑
γ∈A

(−1)|γ |b{vγ (0, x)},
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whence∑
β∈A

(−1)|β|(MβNαbα)(x) = ∑
γ∈A

(−1)|γ | ∑
β∈A

(−1)|β|[Mβb{vγ (0, ·)}](x).(A.5)

If γi = 1 and β = (β1, . . . , βk) ∈ A then, if we switch βi from 0 to 1, we do not
alter the value of [Mβb{vγ (0, ·)}](x). Therefore, by virtue of the factor (−1)|β|
below, ∑

β∈A

(−1)|β|[Mβb{vγ (0, ·)}] ≡ 0

unless γ = α0. However, va0(0, u) = u, so by (A.5),∑
β∈A

(−1)|β|(MβNαbα)(x) = ∑
β∈A

(−1)|β|(Mβb)(x),

which, in the case α = (1, . . . ,1), is equivalent to (A.2).

A.3. PROOF OF THEOREM 3. The estimators f̂β,−i have biases and variances
that are uniformly of orders Hd1 and (nβHk)−1, respectively, and, in particular,

sup
x∈Rk,1≤i≤nβ

|E{f̂β,−i (x)} − f (x)| = O(Hd1).(A.6)

Arguments based on Markov’s inequality show that for each c, C > 0,

sup
x∈Rk,1≤i≤nβ

P {|f̂β,−i (x) − Ef̂β,−i (x)| > (nc−1
β H−k)1/2} = O(n−C

β ).(A.7)

The Hölder continuity assumed of L may be used to prove that if C1 > 0 is chosen
sufficiently large, then for all C2 > 0,

E
{

sup
|x1−x2|≤n

−C1
β ,1≤i≤nβ

|f̂β,−i(x1) − f̂β,−i(x2)|C2
}

= O(n
−C2
β ).

Therefore, again by Markov’s inequality and for each c,C > 0,

P
{

sup
|x1−x2|≤n

−C1
β ,1≤i≤nβ

|f̂β,−i(x1) − f̂β,−i(x2)| > nc−1
}

= O(n−C
β ).(A.8)

Applying (A.7) on a lattice of values x ∈ Rk of edge width n
−C1
β and using (A.8)

to bound |f̂β,−i(x1) − f̂β,−i(x2)| when x1 is off the lattice and x2 is the nearest
grid point to x1, we may prove that for each c, C > 0,

P
{

sup
x∈Rk,1≤i≤nβ

|f̂β,−i(x) − Ef̂β,−i (x)|(nc−1
β H−k)1/2

}
= O(n−C

β ).(A.9)

Below, we shall refer to this as the “lattice argument”; it employs the Hölder-
continuity condition (3.5).
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Taylor expanding f̂ −1
β,−i as f̂ −1

β,−i = f −1
β − (f̂β,−i −fβ)f −2

β +· · ·, we may show
that

f̃β,−i(Xβi)
−1 − fβ(Xβi)

−1 = − f̂β,−i(Xβi) − fβ(Xβi)

fβ(Xβi)2 + �βi,(A.10)

where, by (A.6) and (A.9), we have for each c > 0,

max
1≤i≤nβ

|�βi | = Op(nc−1
β H−k + Hd1).(A.11)

Substituting (A.10) into the definition (3.1) of the estimator ψ̂βgβ , we deduce that

(ψ̂βgβ)(x) = S1(x) − S2(x) − S3(x) − S4(x) + S5(x),(A.12)

where

S1(x) = 1

nβ

nβ∑
i=1

Yβiχβ(Xβi, x)

fβ(Xβi)
Kβi(x),

S2(x) = 1

nβ

nβ∑
i=1

g(Xβi)χβ(Xβi, x){f̂β,−i(Xβi) − κβ(Xβi)}
fβ(Xβi)2 Kβi(x),

S3(x) = 1

nβ

nβ∑
i=1

εβiχβ(Xβi, x){f̂β,−i(Xβi) − κβ(Xβi)}
fβ(Xβi)2 Kβi(x),

S4(x) = 1

nβ

nβ∑
i=1

Yβiχβ(Xβi, x){κβ(Xβi) − fβ(Xβi)}
fβ(Xβi)2 Kβi(x),

S5(x) = 1

nβ

nβ∑
i=1

Yβiχβ(Xβi, x)�βiKβi(x),

Kβi(x) = h−(k−p)K{(X[k−p]
βi − x[k−p])/h} and κβ(x) = E{f̂β,−i (x)}.

Noting that the errors εβi are independent of the design points Xβi , it may be
shown using moment methods that for � = 3,∑

x∈Rk

|S�(x)| = op(n
−1/2
β ).(A.13)

Property (3.7) implies that the bias of f̂βi is of order Hd1 = O(n
−(1/2)−η
β ) for some

η > 0, whence it may be proved that (A.13) holds with � = 4. Result (A.11) and
the property nc−1

β H−k + H 2d1 = O(n
−(1/2)−η
β ) for some c, η > 0, which follows

from (3.7), together imply (A.13) with � = 5. The lattice argument is used in the
cases � = 3,4,5.
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Next, we develop approximations to S2(x). Note that defining a(v, x) =
H−kL{(x − v)/H }, we have

f̂β,−i(x) = 1

nβ − 1

∑
j : j �=i

a(Xβj , x).

Given 1 ≤ i, j ≤ nβ with i �= j , define

A(u, v, x) = g(u)χβ(u, x){a(v,u) − κβ(u)}
fβ(u)2hk−p

K

(
u[k−p] − x[k−p]

h

)
.

We shall construct a U -statistic-type projection of A(Xβi,Xβj , x) using
D1(v, x) = E{A(Xβi, v, x)}, D2(u, x)=E{A(u,Xβj , x)} and D3(x)=E{A(Xβj ,

Xβi, x)}. However, D2 ≡ 0 and therefore D3 ≡ 0, whence S2 = T1 + T2, where

T1(x) = 1

nβ

nβ∑
i=1

D1(Xβi, x),

T2(x) = 1

nβ(nβ − 1)

nβ∑
i=1

∑
j : j �=i

{A(Xβi,Xβj , x) − D1(Xβj , x)}.

Now, D1(v, x) = D3(v, x) − E{D3(Xβj , x)}, where

D3(v, x) = E

[
g(Xβi)χβ(Xβi, x)a(v,Xβi)

fβ(Xβi)2hk−p
K

(X
[k−p]
βi − x[k−p]

h

)]

= E

[
g(Xβi)χβ(Xβi, x)

fβ(Xβi)2hk−p
K

(X
[k−p]
βi − x[k−p]

h

)
L

(
Xβi − v

H

)]
.

Let ξ(v, x) = g(v)χβ(v, x)fβ(v)−1. Then with the O(n
−η
β ) remainders below be-

ing of that form uniformly in v, x ∈ Rk , for some η > 0, we have

D3(v, x) = ξ(v,x)f (v)−1+O(n
−η
β )

hk−pHk E

[
K

(
X

[k−p]
βi −x[k−p]

h

)
L

(
Xβi−v

H

)]

= ξ(v,x)+O(n
−η
β )

hk−p

∫
K

(
v[k−p]−x[k−p]

h
+ Hh−1w[k−p]

)
L(w)dw.

(A.14)

Noting that by (3.7), Hh−1 = O(n
−η
β ) for some η > 0 and using the lattice argu-

ment, it can be proved from (A.14) that, uniformly in x ∈ Rk ,

T1(x) = 1

nβ

nβ∑
i=1

(1 − E)
ξ(Xβi, x)

hk−p
K

(X
[k−p]
βi − x[k−p]

h

)
(A.15)

+ op{(nβhk−p)−1/2},
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where E denotes the expectation operator. More simply, moment methods and the
lattice argument can together be used to show that T2(x) = op{(nβhk−p)−1/2},
uniformly in x. This result and (A.15) together imply that, uniformly in x ∈ Rk ,

S2(x) = 1

nβ

nβ∑
i=1

(1 − E)
ξ(Xβi, x)

hk−p
K

(X
[k−p]
βi − x[k−p]

h

)
(A.16)

+ op{(nβhk−p)−1/2}.
Combining (A.12), (A.13) for � = 3,4,5 and (A.16), we find that, uniformly in

x ∈ Rk , (
ψ̂βgβ

)
(x) = S1(x) − S2(x) + op{(nβhk−p)−1/2}

= 1

nβ

nβ∑
i=1

εβiχβ(Xβi, x)

fβ(Xβi)hk−p
K

(X
[k−p]
βi − x[k−p]

h

)
+ E{S1(x)}(A.17)

+ op{(nβhk−p)−1/2}.
[Note that S2(x) cancels, up to terms of order op{(nβhk−p)−1/2}, with S1(x) −
E{S1(x)}, except for the part of the latter that involves the errors εβi .] Result (3.10)
follows directly from (A.17).
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