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SINGLE-GENERATOR GENERALIZED CYCLIC FACTORIAL
DESIGNS AS PSEUDOFACTOR DESIGNS

By D. T. Voss

Wright State University

The class of single-generator generalized cyclic designs is shown to be
degrees of freedom equivalent to a subclass of the class of prime-level
pseudofactor designs.

1. Introduction. Voss and Dean (1987) compared the classes of single-repli-
cate factorial designs with one blocking category given in the literature. Defining
two such designs to be df equivalent if each design confounds the same number
of degrees of freedom with respect to each factorial space, they: (i) showed the
class of pseudofactor designs and the class of generalized cyclic designs of Dean
and John (1975) and John and Dean (1975) to be quite rich and sometimes but
not always equivalent, and (ii) gave an example of a pseudofactor design for
which there does not exist a df equivalent generalized cyclic design. Giovagnoli
(1977) and Bailey (1985) each indicate that the use of prime-level pseudofactors,
and hence the structure of an elementary rather than nonelementary Abelian
group, offers more possible confounding patterns.

It is my conjecture that, for each generalized cyclic design, there exists a df
equivalent pseudofactor design. In Section 2, my conjecture is proven by con-
struction for the case of single-generator generalized cyclic designs, that is,
generalized cyclic designs for which the principal block is cyclic. In Section 3, the
construction argument is shown by counterexample not to apply to multiple-gen-
erator generalized cyclic designs.

2. Generalized cyclic designs with principal block cyclic. Consider a
single-replicate s; X s, X -+ Xs, factorial experiment to be conducted in blocks
of size k. For purposes of comparing the classes of generalized cyclic designs with
and without pseudofactors, it is sufficient [see Bailey (1985)] to assume each s; is
a power of the same prime; say s; = p%, i = 1,2,..., n. Denote the cyclic group
of integers under addition modulo r by C(r). Denote the set of treatments by
T={t t=(t, ..., t,), t; € C(s;)}, where ¢; denotes the level of the ith
factor F.. Then |T| = pX, for K = X7 , k,.

In this setting, a design is a partition of T into subsets of size k.

It is well known that useful designs may be constructed by imposing the
structure of an Abelian group of order pX on T, then using the cosets of a
well-chosen subgroup as the partition [see Bailey (1985)]. One such group
structure is the p-group G, which is the direct sum of the cyclic groups C(s;),
namely, G, = (T,+) = C(s,) ® - <+ ®C(s,), where ¢, € C(s)).
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A generalized cyclic design is a partition of T corresponding to the cosets of a
specific subgroup B C G, [see Dean and John (1975) and John and Dean (1975)].
B is called the principal block or initial block of the design.

Bailey (1985) indicates for blocked single replicates that “...design problems
for general finite Abelian groups may be essentially reduced to similar problems
for elementary Abelian groups.”

This reduction is known to be achievable by giving the same set T of
treatments the structure of an elementary Abelian group G, as follows. Replace
the ith factor at s; = p*: levels by k, pseudofactors each at p levels. Explicitly,
replace ¢; an integer (mod s;) by (x;;, X;5,..., x;;, ), where each x,; is an integer
(mod p) such that

(1) ti=ph Tl o hpxy g Xy,

Thus, for X = {x: x = (%, X195+ X1pp Xo1r--5 Xpe )y *i; € C(P)}, G, =
(X,+)=C(p) ® --- 8C(p), where x,; € C(p).

A Dbijection ¢: G,— G, is induced by (1), but the two groups are not
isomorphic unless 7T is elementary Abelian.

A pseudofactor design is a partition of T induced by ¢ and the cosets of a
specific subgroup S, C G,. Explicitly; if S, S,,..., S, are the different cosets of
S,, then the Ath block is B, = {t: t € T, ¢(t) € S,}. B = B, is called the initial
~ block of the design.

REMARK. The choice of bijection between {¢;} and {(x,,..., x; )} utilized
previously to induce ¢ is convenient for proving Lemma 2 but irrelevant to the
number of degrees of freedom confounded in any factorial space.

The rest of this section contains a proof that, for any single-generator
generalized cyclic design, there exists a df equivalent pseudofactor design.

For fixed r and {i,,...,i,} C {1,..., n}, and for any ¢ € T and subset B C T,
define o(t) = (¢;,...,t; ) a subtreatment and B* = {o(¢): ¢ € B}.

LEMMA 1. Let B c T be the initial block of either a generalized cyclic or a
pseudofactor design. Then the number of degrees of freedom for main effects and
interactions of factors F.,F,,...,F, which are confounded with blocks is
(IT*|/1B*)) - L.

Proor. Lemma 1 follows directly from Theorem 4.2 of Bailey (1977). O

LEMMA 2. If t € T generates a subgroup B C G, of order p?, then for
x = ¢(t)

(i) x;, # 0 for some i;
(i) x;;=0forj=q+1,q+2,...,k;,i=12,...,n.

PROOF. Assume ¢ = (¢, 1,,...,t,) generates a subgroup of G, of order p?.
Then for each i, ¢; generates a cyclic subgroup A; ¢ C(p*) such that |4, < p¥,
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with equality holding for some i. If |4;| = pY, then ¢, is a multiple of p*~7 but
not of p*i~9*1, 50 (i) follows from (1). If |A;| < pY, then ¢, is a multiple of p*~9,
so (ii) follows from (1). O

Let B, denote a cyclic subgroup of G, Then B, determines a generalized
cyclic design, |B, = p™ for some integer m, and B, is generated by a single
element, ¢,,, say. Let ¢,, = p™™"t,,, where ¢,,, = p™ "t ,); (mod s;) for ¢, =
tgn *°° tgms @ =T1,m. Then ¢, generates a cyclic subgroup T, C B, with
IT|=p,r=1,2,...,mand TyCc T, --- cT,=B,.

Now, let x(,, = ¢(¢,)), r = 1,2,..., m. Let S be the subgroup of G, generated
by {x) Xy ---» X(m)} and X, the subgroup of S generated by x,,.

LEMmMAa 3. S=X, + X, + --- +X,, is a direct suin and |S| = |B,| = p™.

Proor. Fix r,1 <r < m. Then ¢,, # 0 implies x,, # 0, so |X,| = p. Also,
|T,| > |T;) for i=1,...,r =1, so x € X, implies x & (X; + X, + -+ +X,_)),
by Lemma 2. Hence, by induction on r, X, + --- +X,, is a direct sum, and the
lemma follows. O

REMARK. X, and T are isomorphic, but not X, and T, for any r > 1.
THEOREM 1. The designs with initial blocks B, and S are df equivalent.

Proor. Let {i},...,i,} € {1,...,n}. For ¢,, = (¢,..., ¢,) the generator of
B, define ¢, = (¢;,...,¢; ). Then t%, generates a cyclic subgroup T,* with
|T,*| = p? for some g < m. Following the lines of the proof of Lemma 3: Define
subgroups T* ¢ T)* C --- C T,*, where T,* is generated by ¢}, = p? "t%,.
Consider S* generated by {x%),..., x{,)}, where xf}) = (x;,..., ;) for x,) =
(%154, %,) = ¢(¢,y)- Then x%,,..., x*, generate directly summable subgroups
of order p with direct sum S* so |S*| = |T *| = p? Hence, df equivalence
follows from Lemma 1. O

3. Generalized cyclic designs with noncyclic principal blocks. The
construction used in this article to identify a pseudofactor design df equivalent
to an arbitrary single-generator generalized cyclic design does not generalize to
the case when the principal block is not a cyclic subgroup. If the gener-
alized cyclic design subgroup B C G, is not cyclic, then it is the direct sum
B'® --- ®B* of u cyclic subgroups. By Theorem 1, for each subgroup
B* c G,, a subgroup S* C G, can be constructed as before such that B* and {¢:
te T, ¢(t) € S} are the initial blocks of df equivalent designs; v = 1,..., u.
Furthermore, one can show that S%,..., S* are directly summable so that the
generalized cyclic design with principal block B and the pseudofactor design
with principal block {t: t€ T, ¢(¢) €S, S=S'@® --- ®S*} have blocks the
same size, that is, |B| = |S|. However, direct summability is lost when attention
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is restricted to a subset of the factors. Hence, df equivalence of such designs does
not follow in general, as illustrated in the following example.

ExXAMPLE. Consider a 9* single replicate factorial experiment to be con-
ducted in blocks of size 81. One such generalized cyclic design has subgroup
B = B' ® B?, where B' is generated by £ = 1212 and B? by ¢ = 1224. Then
thy = 3 X (1212) = 3636 and t(zl) = 3 X (1224) = 3663; ¢,(1212) = 01020102 and
$,(3636) = 10201020, generating S'; and ¢,(1224) = 01020211 and ¢,(3663) =
10202010, generating S2. Also, S! and S? are directly summable, S = S! & S2
say, so |B| = |S|. However, while the generalized cyclic design with principal
block B confounds 8 df for the interaction between the third and fourth factors,
the pseudofactor design with initial block determined by S confounds only 2.
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