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ESTIMATING A REAL PARAMETER IN A CLASS OF
SEMIPARAMETRIC MODELS

By A. W. VAN DER VAART
University of Leiden

We study semiparametric models where for a fixed value of the finite-
dimensional parameter there exists a sufficient statistic for the nuisance
parameter. An asymptotically normal sequence of estimators for the para-
metric component is constructed, which is efficient under the assumption that
projecting on the set of nuisance scores is equivalent to taking conditional
expectations given the sufficient statistic. The latter property is checked for a
number of examples, in particular for mixture models. We discuss the relation
of our approach to conditional maximum likelihood estimation.

1. Introduction. Let X, X,,..., X, be independent random elements, X .
having a density p;(-, 8, n) with respect to a o-finite measure p on a measurable
space (£, #). Here the parameter of interest  belongs to an open subset © of
R, and 1 € H is arbitrary. We assume that the pi(-s 8, n) have the following
structure. For every (6,7n) € © X H, there exist measurable functions A (-5 0)
and Y;(-,0):(%,%4) >R, j=12,...,n,and g(-,0,1): R - R and a measure
vy on R with

(1'1) pj(': 0, T’) = hj('? a)g(‘l/_](': 0)707 17) a.e. [I"’]’
(1.2) ¥(X;, 0) has density g(-, 8, n) w.r.t. .

Of course, this means that for every fixed § and j, y(X},0) is sufficient for
n € H (with respect to X;), and the n sufficient statistics are i.i.d. real-valued
random variables by (1.2). These two ways of characterizing the model will be
used interchangeably.

A number of interesting examples have this structure and are described in
Sections 5-7. In Sections 2 and 3 of this paper we aim at the construction of
estimators for 6, based on X,,..., X,, for the general model given by (1.1)—(1.2),
where we are particularly interested in obtaining asymptotically efficient se-
quences of estimators (n — o0). A sufficient condition for asymptotic efficiency is
given in Section 4 and later checked for the examples.

We now give an informal discussion of the paper. As a starting point we take
the score for 6, which in this Introduction is defined as E}_ll {(x;,8,n), where

‘ [j(x,G,n) = 3/80 logpj(x, 07 T’)'

As is well known, Fisher’s information, E,, (X7 A (X}, 0, 7))%, measures how well
0 can be estimated when 7 is known, i.e., when H consists of a single element. In
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the situation that 75 is unknown, we expect the information for 8 to be smaller.
As in Begun, Hall, Huang and Wellner (1983) the loss in information for 8 results
from a loss in the score function. First, score functions in the n-direction are
defined as YX_,b,(x;), where b(x) is the derivative of the log density along a

J
suitable sequence {n,} C H (independent of j = 1,2,..., n) in the sense of

bj(x) = a/at|t=010g p(x7 0’ nt),

no = 1. We remark here that for mathematical rigor, scores can better be defined
as derivatives in quadratic mean of the root density. Scores in that sense are
introduced in Section 2 and underlie the results of the paper.

Having defined the score for # and a set of scores for 7, the efficient (or
“effective”) information for 6 is defined as nl, (6, n), where

n . n 2
(1.3) I,.(0,7) =n"linf E,, Yy lj(Xj, 6,m) - Y bj(Xj) .
Jj=1 J=1
Here the infimum is taken over all n-scores X7_,b;(x;). Informally, asymptoti-
cally efficient estimator sequences {7}, where T, = t,(X,,..., X,), are char-
acterized by the property that 5!’9,,(\/;1_ (T, — 0)) is approximately N(0, I,,'(6, ))
for large n. This statement can be made ptecise in the sense of a convolution and
local asymptotic minimax (LAM) theorem, as is explained for i.i.d. models in
Begun, Hall, Huang and Wellner (1983).
Because of (1.1) it is clear that in the present model scores for n have the form

X b(4,(x,.0))

for some function b not depending on j. Inserting this in (1.3), we obtain

n . n 2

(1'4) Ine(07 77) = n_linonv; Z lj(Xj’0: "7) - Z b(‘Pj(Xj: 0)) )
Jj=1 J=1 .

where the infimum is now taken over a set B(8,n) of functions b. In many
interesting examples having the structure (1.1)—(1.2), this set turns out to be the
set of all functions b for which the expression makes sense. It can be checked
that in the latter case the infimum in (1.4) is taken for b(s) = [,(s, 8, n) given by

(1.5) L(s,0m) =0t ¥ E,[1(X,,0,0)10,(X;,6) = s].

J=1

Of course, under the much weaker condition

(1'6) l-n(s’07 "7) € B(07 "7),
this still goes through.
_ Let
(1°7) inj(°’0’77) =ij("0’n) —in(¢j(-,0),0,n).

Then under (1.6), 7’=1l~n j(x;,0,7) can be considered the efficient score function
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for 6. An estimator sequence {T,} is asymptotically efficient for @ if it satisfies

(1.8) Vn (T, - 0) =n"2 Y I;Y(6, n)fnj(Xj, 6,7n) + oph(l),
j=1
where I:l(0, ) = n_IX;?_lEonl:fj(Xj, 0,7).
One idea to obtain 7,, would be to define it by the estimating equation

(1.9) Y L (X;,T,,m) =0.
j=1

Indeed, the usual arguments invoking a Taylor expansion would imply (1.8).
However, as 7 is unknown, (1.9) cannot serve as an estimating equation defining
T,. A way around this problem is to replace I, ;(»8,m) in (1.9) by an estimated
version [, (-, 6) and to solve for T, from :

n
(1'10) Z inj(Xj’ Tn) =0
J=1

This route will be followed, though with some modifications. First, handling
(1.10) by way of a Taylor expansion requires quite a number of regularity
conditions. Now it is usually possible to obtain an accurate initial estimate 6, for
0. Using 0:, as the starting point for solving (1.10) by the Newton-Raphson
scheme, we obtain as a second estimate

n
(1.11) T,=6,+n' Y I7Y(6,),,(X,,6,).
J=1

Here fn( én) should estimate fn( 0, n). Next we forget about the foregoing motiva-
tion and define T, by (1.11), choosing a convenient estimator fn( §n) for I(8, 7).
It turns out that this one-step method works well if {,%,,(\/;{ (0:, — 0))} is tight, a
property which is usually called vn -consistency. Furthermore, it works particu-
larly well when combined with another trick, discretization. This consists of
using an initial estimator §n for which Vn (0; — 8) has a discrete support, the
number of support points within each interval [ — M, M] being bounded uni-
formly in n. Any Vn -consistent estimator can be discretized without destroying
Vn -consistency, by projecting it on a grid with mesh width n~'/2 There is little
motivation for discretization, except that it is very convenient in the proofs.
Indeed, it is that much convenient that there is ample motivation not to try and
do without'it.

The one-step method and discretization are clever devices introduced by
Le Cam to handle maximum likelihood estimators in parametric models. For
semiparametric models they have to be complemented with a method for
estimating [ ;(+» 8, 1), for given 6. In the special model determined by (1.1)—(1.2)
this is usually possible. Suppose that », in (1.2) is Lebesgue measure and that
&(+, 8, n) is smooth. We have that

Zj(x, 0, 17) = i”j/hj(xy 0) + ‘[’j(x, a)gl/g(‘Pj(x, 0)7 0’ T’)

(1.12) +8/8(v,(x,6),0,7).
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Here g’ is the derivative with respect to s of g(s, 8, 7) and A ;» & and ¥ ; are
partial derivatives with respect to 8. Hence [cf. (1.7) and (1.5)]
(113)  T,;(x,0,m) = H,(x,0) + y,,(x,0)g"/g(¥;(x,8),6,n),
where
Hnj(x, 0) = hj/hj(x, 0)

1Y By(hy/hi( Koy O X, 0) = 1,(x, 0)),

i=1

(1.14)

\l;nj(x’ 0) = ‘l;j(x’ 0)

(1.15) & .
-n7! Z Eo(‘Pi(Xi’ 0)|‘Pi(Xi’ 0) = \l/j(x’ 0))
i=1
The key to the construction of an estimate fn (-, 0) for l~n i(+»8,m) is that
(1.13) depends on 5 only through g’/g. Now, for given 0, (X, 0),..., y(X,, 0)
is an i.i.d. sample from the distribution with density g(-,#,n). The kernel
method gives an estimate

(1.16) 8(s,0)=n""1 g:lo,:lw(o,:l(s - (X, 0))),

for g(s, 8, n), where the kernel w is a probability density on R. Then &’/4(s, 0)
should estimate g’/g(s, 0, 1), and substituting this in (1.13), we get a candidate
for fn ;(+»8). In the present paper we restrict ourselves to kernel estimators, but
of course other estimators, perhaps better tuned to the special structure of
8&(+, 8, 1), could perform the same role.

Estimating a location score g’ /g is a problem with a long history and appears
in many constructions of adaptive estimators for the centre of symmetry of a
distribution on R [cf. Stone (1975) and Bickel (1982) and references cited
therein]. In the present model finding a suitable candidate for g’/g is com-
plicated by the factor :ﬂn (-, 0) appearing in (1.13). A construction of such a
candidate is given in Section 4 under weak conditions, which show up as natural
in the examples, but necessitated a long and tedious proof (for which we refer to
a technical report).

We note that the fact that g is the density of the sufficient statistic is of
crucial importance. Thus far we have used the presence of the sufficient statistic
¥ (X}, ) both as a means to ensure a special form of the scores for the nuisance
parameter and to suggest the possibility of estimating [, (-, 8, ). Sufficiency
also plays a most important role to ensure unbiasedness of the scores [, (-, 8, n)
with respect to the nuisance parameter. Indeed, for all (8,71,7) € ® X H X H,

n
(1.17) Ey Y [,,(X;,8,9)=0.
J=1
The importance of (1.17) is clear by reference to the general set-up for construct-

ing one-step estimators with estimated score functions of Klaassen (1987) and
Schick (1986). These authors require an estimator for the score function to be
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both consistent and asymptotically unbiased. Relation (1.17) implies that in our
special model we need only worry about consistency. In fact, exploiting the
sufficiency structure still further, we shall be able to improve upon the general
gonstruction methods and use all (except one) of the observations to obtain
L, (-,0).

JAn important class of examples of the model (1.1)-(1.2) is given by mixtures
over exponential families. In connection to these examples the importance cf the
score function 7, ;(*»0,m) has been noted by Lindsay (1983). The main novelty of
the present paper is the introduction of the estimators ln (-5 8), which allow
adaptation to the underlying distribution, with as a result asymptotically im-
proved, indeed efficient, estimators. In addition, we essentially show compact
differentiability of p,(-,0,m) in (8,n), by means of which we establish the

existence of a least favourable submodel in the direction of I, ;(->0,m) in the
sense of Begun, Hall, Huang and Wellner (1983).

In the case that the sufficient statistics are independent of § we have that
J;n e 8) =0, so that [, (- 0,m) is independent of 7. Clearly, estimation of
8'/8(+,0,7n) is unnecessary. The estimator constructed in Section 2 is now a
one-step version of a conditional maximum likelihood estimator, discussed by
Andersen (1970). Efficiency of conditional maximum likelihood estimators in
mixture models has been shown by Pfanzagl (1982), Chapter 14.

The paper is organized as follows. In Section 2 we introduce score functions in
a more formal manner and give the first part of the construction of an estimator
of #, assuming a suitable estimator for the score function g’/g given. A
construction of such an estimator for g’/g is given in Section 3. Next we
formulate a convolution and local asymptotic minimax (LAM) theorem in
Section 4, together with a sufficient condition for efficiency of the estimator of
Sections 2 and 3. Examples of model (1.1)—(1.2) can be found in Sections 5-7.
Here Section 5 is concerned with mixture models and contains concrete examples
as well as some general results.

The results obtained here can be extended in many directions. For instance
the constructions go through for the parameter # ranging through R* and
sufficient statistics with values in a general Euclidean space. This is shown in
van der Vaart (1988), where also a companion model is discussed where the
marginal distributions of the sufficient statistics are allowed to depend on j,
whereas the conditional distributions are fixed. In the case of mixture models
this leads to adaptively constructed estimators of the structural parameter in
models with infinitely many nuisance parameters (so-called functional models).

For efficiency of our estimator in the case of mixtures over an exponential
family, it makes a difference whether the support of the mixing distribution
contains a limit point or not. In the present paper we limit ourselves mainly to
the first case. However, even for a finite discrete support our estimator is usually
LLAM and a best regular estimator. This result follows from an extension of the
LAM and convolution theorem, established in van der Vaart (1986b), involving
the relaxation of condition (S) in Begun, Hall, Huang and Wellner (1983).

2. Construction of an estimator. Let L,(p;(-, 0, 1)) be the Hilbert space
of measurable functions g: (%, #) » R with [¢*(x)p;(x, 0, 1) du(x) < oo and
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define Ly(g(:,0,7n)) and so on analogously. Furthermore, let the addition of
an asterisk (*) mean zero expectation; thus any b € L,.(g(-,8,7m)) has

]b(s)g(s, 0, "1) dyﬂ(s) =0.

Instead of defining scores as pointwise derivatives as in the Introduction, we
assume from now on that scores for 6 exist as elements / (-5 8,m) of Lou(pi(+, 6, 7))
satisfying for 6, — 8§ = O(n~'/?) and every ¢ > 0,

f[p}/2(x, 0,,m) — p;"*(x,0,n)
(2.1) Jj=1

. 2
- %(0n - a)llj(x, 0, "I)P,l'/z(x, 0, TI)] dﬂ'(x) - 0,

(2.2) I(0,7)=n"t i fl'f(x,ﬁ,n)p,-(x,&n)du(x) =0(1),

(2.3) Rt Y [1Hx, 0, 1)1 0,0, mis o i (%5 0, ) dis(x) > 0.
j=1
Next we define [, and [, ; by (1.5) and (1.7), respectively, and assume that

n '
24)  nT Y [B% 80 )L a0, i e i (%5 ) () =0,
j=1

nt Y [[L(x, 6, 0)p}*(x, 8,,m)
(2.5) =1

- 2
—lnj(x, 0, T’)p/l'/z(x’a’ T’)] dll»(x) - 0,
(2.6) liminff,(6,4) > 0,

n—oo

where (8, 1) = n‘IZ;;lfl?,j(x, 0, Mpi(x, 6,, 1) du(x). We note that if
X,..., X, are iid., then (2.2)-(2.4) are implied by the other assumptions and
(2.1)~(2.6) simplify to (5.3)-(5.5) (where unnecessary indices have been deleted).

Now [ (-, 0,m) is defined by (2.1), we do no longer have the decomposition
(1.12). However, motivated by (1.12)-(1.15), we assume the existence of measur-
able functions ﬁnj(-, 0) and 117,”-(-, 0):(Z,%) > Rand Q(-,0,71): R » R such
that

(2‘7) [nj(x’ 0’ "I) = ﬁnj(x’ 0) + ‘pnj(x’ 0)Q(¢](x’ 0)’ 0: 7’)’
(28) % E,(4,,(X5,01,(X,,0) = 5) =0,
\ J=1

The one-step method requires an initial estimator 6, = (X, X,,..., X,) which
is Vn -consistent, i.e., -

(2.9) (%, (Vn (6, - 6))} is tight on R.
Finally, we need a suitable estimator for @(-, 8, n). For every fixed § we assume
the existence of measurable functions @,(s, 9, v,,...,v,_,): R X R*"! - R such

that for an i.i.d. sample V,, V,, ..., V, from the distribution with density g(-, 6, 7)
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with respect to v, and 6, — 8 = O(n"'/2),

Eoo [1Qu(3,6, Vs, Vah) = Q(5, 6, 1))
XB(s,6,)&(s,6,,m) dvy(s) - 0.

(2.10)

Here

n . 1/2
(2.11) B.(s,8) = {n_l Y E,(92,(X,,0),(X,,0) = s)} :
J=1

Condition (2.10) will be treated in detail in the next section. As for Vn -con-
sistent estimators, it is usually not too difficult to find candidates in specific
models. General methods that may work are the following. For a fixed, conve-
niently chosen 7’ € H, one may try defining an estimator én as the solution to

Z [nj(Xj: 0’ 7’,) = 0:

which is an unbiased estimating equatlon by (1.17). In the same spirit it may
work to solve for 0 from

n
gf ( J? n) = 0.
The main result of this section is

THEOREM 2.1. Let (1.1)-(1.2) and (2.1)-(2.10) hold. Then there exists an
estimator sequence {T,} satisfying (1.8). Under the assumptions this implies

<, (W IV%(8,7)(T, - 6,)) > N(0,1),

for every sequence {(0,,7,)} in ® X H such that

n~! E f[‘/_ /Z(x’an’ ﬂn) pj/z(x g, 77))

2
- %fnj(x)pjl'/z(x’ 9, "I)] d”(x) -0,
for a triangular array {4,;}, where g, ; € Ly p)(-,0,n)), satisfying
fnj(x) = ‘/’T(on - 0)Zj(x’ 0’ 7’) - bn(‘l’j(x, 0)):

nol ): [7A)p, (5,0, du(x) = 00,

_1 Z ffnj(x)l{uw(x)lZsﬁ}pj(x 0 T’) d""'(x) - 0.
J=1

The last assertion of the theorem implies that {7} is regular. We come back
to this in Section 4, when discussing efficiency.
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A candidate for T), can be constructed as follows. Let Vi(8) = ¢,(X}, §) and
assume without loss of generality that @,(s,8,v,...,v,_;) is symmetric in
V..., U, ;. Let

(2.12)  Qi(s,0) =Q,(5,0,V(8),...,V;_\(6),V;.1(8),...,V,(6)),
(213)  f(x,0) = H,(x,0) + ¥,(x,0)Q4(v,(x,6),8),

(2.14) I(8)=n"v2 Y (B(X;,0 - n'2) - [1(X,,0)).
j=1
Now, let 67,, be a discretized, Vn -consistent estimator for 8 and set
(2.15) T,=§,+n"! zlfgl(én)i;j(xj, g,),
j=

whenever I (6)) is positive, and 0 otherwise.

The proof of Theorem 2.1 is accomplished through a series of lemmas. Here we
shall use that (2.1)-(2.3) imply contiguity of the laws of (X, X,,..., X,,) under
(6,,7m) and (0, n) if 6, — 6 = O(n~'/?), so that convergence to 0 of a function of
(X, X,,..., X,) in P, -probability is equivalent to convergence to 0 in F; ,-
probability.

The first lemma contains the main part of the technical work. Its proof can be
found in Appendix A.2 of van der Vaart (1988).

LEMMA 2.1. Let (2.1)—(2.6) hold. Then for 8, — § = O(n"'/?%),

n_1/2 Z (inj(Xj’ 0n’ 'r’) - [nj(Xj? 0’ 1’)) + fn(0’ 71)‘/'7(0,, - 0) _)Po,, 0.
J=1

The second lemma uses the sufficiency structure of the model in an essential
way.

LEMMA 2.2. Under the conditions of Theorem 2.1, for 6, — 6 = O(n™'/?),

n 2
E,,",,{n—l/‘l Y (8(x,,6,) - z,,j(xj,o,,,n))] - 0.

J=1

ProoF. Write V/(8) and V, (8) for y(X,, 8) and ¥, (X;, 8), respectively. By
(2.12)—(2.13) and (2.7) we must show convergence to 0 of

E[/ 5 7,6,)(84(v/6,,0,) - Q(xfj(an),on,n))]

= n—l Z Z Eonn‘?ru(an)‘?nj(an)[QA;(Vt(an)’ 0n) - Q(‘/t(an)’ 0n’ 7’)]

i=1j=1
x[Q(V(8,),8,) — Q(V;(8,), 6, )]
Taking first the conditional expectation with respect to Vy(6,),...,V,(6,) and
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remembering that [Q/(V(6,), 6,) — Q(V/(6,), 6,,, n)] depends on V,(8,), ..., V,(6,)
only, we see that this equals

(2'16) n_l i i EOnnEﬂn(Vni(an)‘ZLj(on)l‘/i(on)’ V](an))ay(‘/t(an)’ V](on))’

i=1j=1
where
aif(s, t) = Eq, ,([Qi(Vi(6,),6,) — Q(Vi(8,),8,,7)]
x[Qi(Vi(6,),6.) — Q(V(64,), 8, m)]|IVi(8,) = s, Vi(8,) = £).
The sums of the diagonal terms in (2.16) equals

n % [E(VHOIV6,) = 5)at(s, $)8(s,0,, 1) dry(s)

= [BX(s,6,)E, ,[QL(5,9,) — @5, 6,,m)]"&(5, 8, ) dry(s) = 0

by (2.10).
The sum of the off-diagonal terms in (2.16) equals

Y Y [ BV 8VA8,) = )BT (817,06, = 1)

By (2.8) this is equal to

1S [ [ET8IV(6) = 5 BT, (007,(8,) = 1

Xa;2(39 t)g(s, on, ﬂ)g(t, 0n9 71) den(s) dvﬂ,.(t),

which, by using the Cauchy-Schwarz inequality on the double integral, can be
dominated in absolute value by

no! ZEo J[1Qu(5, 6., £, Vi(8,),..., V(8,)) — Q(s, 6,,7)]*
(217) | XEOH(V;Lj(on)I‘/j(on) = S)2g(3, 0n’ "I)g(t’ on’ 77) d”ﬂ,,(s) d”o,,(t)

A 2
< EOnn/:Br?(s’ on)[Q:L(S’ on) - Q(S, orw 71)] g(s, on’ 71) d”0,,(s)’
which converges to 0, again by (2.10). O

- PROOF OF THEOREM 2.1. We show first that for 6, — § = O(n~1/?),
(2.18) L(6.)1;1(6,m) —p, 1.
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Indeed, by (2.14) and Lemma 2.2 the left-hand side of (2.18) equals
n
[n—W Y (L(X,0,—n7V%0) = I, (X,,60,,m)) + Opan(l)]f;l(ﬂ, m)
j=1

=1+ OPBn(l)

by Lemma 2.1.
For T, given by (2.15) we have

P,||Vn(T, - 6) —n~'/? Zn) Y6, ), (X;,60,m)| = e)
s Pon(l‘/;i(én - 0)| = M)
(2.19) n

Vn(6,—0) + n'/2 Z (frfl(an)i;{j(xj» 4,)

J=1

+2B,

—.ir:l(oa n)[nj(Xj’ 0, 7’)) 2 8) + 0(1),

where the sum is over the set of §, € R in the support of §, with yn |6, — 8] < M.
By Vn -consistency of 0;, M can be chosen such that the first term in (2.19) is
arbitrarily small. Then, as §n is discretized, the number of terms in the sum is
finite and bounded uniformly in n, and it suffices to prove that the maximum
over the terms converges to 0. This would follow if for any sequence of numbers
{6,) in R with 8, — 8 = O(n~1/?),

n
‘/E(on - 0) + n-1/2 Z (ft:l(en)itjzj(xj’ on) - fr:l(o’ n)[nj(Xj’ 0’ 77)) _’Pp" 0.
Jj=1
This is a consequence of Lemmas 2.1 and 2.2, (2.18) and the tightness of
{"?Oq(n_ 1/22‘,;= llnj(Xj) on’ "7))}-
The second assertion is a consequence of local asymptotic normality and thé
third lemma of Le Cam. O

3. Estimation of g’/ g(*,0,m). In this section it is shown that estimators
for g’/g needed for the construction in Section 2, typically exist. More precisely,
we present a set of sufficient conditions for (2.10), where, motivated by (1.13),
Q(-, 0, n) is replaced by g’ /g(-, 8, n) and where it is assumed that », is Lebesgue
measure A on R. The general result presented in the following discussion is
purely asymptotical and should foremost be considered an existence result. For
application of adaptive methods in practice much work remains to be done.

. We assume that g(-,0,7) is a density with respect to Lebesgue measure,
which vanishes outside an interval (a, b) C R [independent of (8, n)]. Moreover
we assume that it is absolutely continuous on (a, b) in the sense that there exists
a measurable function g'(-, 8, ), also vanishing outside (a, b), such that for
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a<c<d<b,
d
(3.1) g(d,0,1) — g(c,0,1) = [“¢'(s,6,7) ds.
We suppose that for every § € © there exists a measurable real function B.(:, )
on R such that for 6, — § = O(n~'/?) and n - oo,
(3.2) B.(s,8,) — B.(s,8) >0 ae.[A],

(3.3) f[g'/gl/z(s,0, 7)B.(s, 0)]2ds < 0,

(34)  [[e'/8"(s,8,,0)8.(5,6,) — &'/g"*(s, 8, m)B.(s,0)]" ds -0,

(3.5) &(s,0,,m1) —g(s,0,7) >0 ae. [A]

In ii.d. models one expects B,(s, 8) = {E,($*(X,, 0)[¢(X »0) = 5)}/2, of course.
In non-i.i.d. models (3.2) may be restrictive. However, usually it is satisfied along
subsequences, which is sufficient for applicability of Theorem 3.1.

Finally, we need that the functions B,(-, 6,) satisfy a Lipschitz condition in
their first argument. For some k > 0 and constants M,
(3.6) [B.(s + h,0,) — B.(s,8,)| < M ae.[A],n=1,2,....

While the first conditions are all natural, condition (3.6) is less transparent. It is
relatively weak, though. Also, the condition can be relaxed in the sense that we
only need that (3.6) holds for all 4 in a neighbourhood of a.a. s, which is implied
for instance by equidifferentiability of {8,(s, 0,):n=12,...})in s ae.

Let w: R > R be any twice continuously differentiable probability density
with respect to Lebesgue measure, with support contained in [—1,1]. Given
0 € (0,00) € R and an i.i.d. sample V,, V,..., V, from g(-, 8, n), define

2,a(5) = 1 T a (0" (s — V,)).

i=1
THEOREM 3.1. Let (3.1)~(3.6) hold. Define
Q.(s,0) = gr’w,,(s)/(gnan(s) + 8n)1c,,(0)($),
where for sequences a,,Y,,9,, €,,0, 0 and b, c, > ©0inR,
Cu(8) = {a+ ey <5 < b~ ey, |81, ()85, 8) | < ca( 805 +8,),
a, < B.(s,0) < b,,sup{|B,(s + 0,7,0) — B,(s,0)|: [y] <1} < y,,}.
If 0,6, > 0, v,a,' = 0, clo,a;' = 0, 8,7 %, *b2n"" > 0 and vy %" — 0, then

Ey,, [1Q(5,6,) — &'/2(s,0,7)]"BX(s,8,)&(s, 6,,m) dA(s) - 0.

The proof of Theorem 3.1 is long and tedious. We refer to van der Vaart
(1988), Section 5.3 or (1986a).
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4. Efficiency. In Sections 2 and 3 it is shown how to construct an estimator
sequence which is asymptotically linear with the influence function of the jth
observation equal to fn (> 8,m) [cf. (1.8)]. Under the appropriate conditions, this
estimator sequence is asymptotically optimal in the sense of the convolution and
local asymptotic minimax (LAM) theorem. Statements of slight extensions of
existing results [cf. Begun, Hall, Huang, and Wellner (1983)] are included in this
section for reference.

The following theorems are based on the assumption that a given least
favourable one-dimensional submodel exists. Begun, Hall, Huang and Wellner
(1983) establish the existence of a least favourable submodel under the condition
of joint differentiability of the underlying densities p;(-, 8, n) with respect to 6
and 7, and a condition (S) on the form of the set of n-scores. Here we rather
choose to assume the existence of a least favourable submodel directly.

It is argued in Section 1 that the one-dimensional submodel in the direction
I, ;(+>0,m) is often least favourable. The existence of this submodel is of course
sufficient to make the estimator sequence of Sections 2 and 3 efficient. Therefore,
we assume

for all A € R there exists {n,(h)}._, C H such that

(41) nt Y [[BY2(x,0,(), ma(h)) — 5}/, 0,m)

—3hd,;(x,8,7)pY(x,8,7)]" du(x) > 0,

n — oo. Here 6,(h) = 8 + n~Y/2h. In Sections 5-7 it is shown by examples that
condition (4.1) is often satisfied.

The LAM and convolution theorem stated in the following discussion are in
their strongest form in the sense that we take the maximum risk and require
regularity of the estimator sequence over the least favourable submodel only.
Using “full” Hellinger neighbourhoods as in Begun, Hall, Huang and Wellner
(1983) is more natural on the one hand, but on the other requires the introduc-
tion of more technical detail and, besides, gives weaker results.

ProPOSITION 4.1 (LAM theorem). Let (1.1)-(1.2), (2.1)-(2.6) and (4.1) hold.
Then for any loss function I: R — [0, c0) with
Ux) =Uxl),  UWal) < Iy ¥ lxl < Iy,
and any estimator sequence {T,}, we have
lim lim int sup Ey yn. il (Vn 17%(8,1)(T, - 6,(R))) = fl(x)dN(O,l)(x).
€C?® npooo |hl<

Moreover, we can have equality for a nonzero loss function | satisfying
fl(x)e™ dN(0,1)(x) < oo for some n > 0, only if {T,} satisfies (1.8).

Suppose that (4.1) holds. Then call an estimator sequence {T},} in the model
(1.1)~(1.2) regular at (8,n) if {%,(Vn(T, — 0))} is tight and for any h € R,
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{3, ), (V1 (T, — 6,(R)))} and {Z,,(Vn (T, — 6))} have the same limit points
for the same subsequences.

PROPOSITION 4.2 (Convolution theorem). Let (1.1)-(1.2), (2.1)-(2.6) and (4.1)
hold. If {T,)} is regular at (8, n) and L a weak limit point of

(L(Vr T2, m)(T, - 9))),
then
L=N(0,1)*M,
for a probability measure M on R.

Propositions 4.1 and 4.2 can be proved by adapting Hajek’s (1970, 1972)
theorems to the present situation. For this the following local asymptotic
normality lemma is of crucial importance.

LEMMA 4.1 (LAN). Let (1.1)-(1.2), (2.1)-(2.6) and (4.1) hold. Set
n
An(h) = IOg ].-]lpj( Xj, 0n(h): "In(h))/P,( Xj: 0: "1),
j=
where loga/bis —oifa=0<2b, ¥ooifb=0<aand0ifa=b=0. Then

n
An(h) - n-1/2 Z hinj(Xj:a: "1) + %h2fn(0, "1) —)P," 0.

Jj=1

A final question to be answered is whether the estimator sequence (T}
constructed in the foregoing sections is regular in the sense defined previously.
In Theorem 2.1 we already noted that % , "(\/17 I/%(8, n)(T, — 6,)) converges to
a standard normal distribution along certain sequences {(6,, 1,,)}. All we need to
check is whether the sequences {§ + n~'/2h, 3,(h)} are among these sequences.
We state this without proof.

LEMMA 4.2. Let (1.1)~(12), (2.1)-(2.6) and (4.1) hold. Then the triangular
array {1, (-, 0,m)} satisfies the conditions imposed on {g, )} in Theorem 2.1.
Hence {T,)} satisfying (1.8) is regular.

5. Mixture models. Important examples of models with the structure
(1.1)-(1.2) belong to the class of mixture models. In this section we first derive
scores for mixture models in a rigorous manner, which leads to the establishment
of a property called local completeness, which implies the sufficient condition for
efficiency (4.1) for a large set of mixture models. Next follow several concrete
examples.

The models we consider are all i.i.d. models. For convenience of notation we
drop all unnecessary indices j and n. In particular (1.1)-(1.2) become

(5-1) P(',o,ﬂ) =h(',0)g(\l/(‘,0),9,"7) a'e.[""],
(5.2) ¥(X;, 0) has density g(-,8,7) wur.t.,.
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Furthermore, we set
[¢-,8,m) = I(-,6,m) — Eo[U(X,,0,m)¥(X,,8) = ¥(-,0)].
Relations (2.1)—(2.6) reduce to

[l (2", 8 + t,1) - p/*(x, 6, 7))
~3l(x,8,7)p"*(x, 9, "7)]2 dp(x) -0,

Sl 0+ ¢,)p*(x,8 + t,m)

(5.3)

(5.4)
—[(x,8,7)p"*(x,0,m)]” du(x) >0,

(5.5) 10,m) = [P(x,0,0)p(x, 6,7) du(x) > 0.

Finally, the condition (4.1) on the existence of a least favourable submodel
simplifies to the existence of {n,} C H, || < 1, such that

[le(p2(x, 6 + t,9,) — p/*(x,8,7))

~ 2
—1(x,0,7)p"*(x,0,7)] dp(x) >0

(5.6)

ast— 0.

One way to establish (5.6) is to show that any function of (-, §) occurs as an
n-score (cf. Section 1). This can and will be done for mixture models. The
situation is important enough to give it a name.

DEFINITION 5.1. Let (5.1)-(5.3) hold. Then (X,,8) is called (strongly)
locally complete at (8, 1) if for any b € L,.(g(+, 8, n)) there exists {n,} € H such
that for any & € R,

57 f[t‘l(pl/"‘(x, 0 + th,n,) — p/*(x,0,7))

— 1(hi(x,8,7) + b(¥(x,0)))p"(x, 6, m)] du(x) > 0

as t = 0.

There is no simple relation between ordinary completeness of ¥/(X;, 8) and
local completeness, though under regularity conditions the latter implies the
first.

5.1. Local completeness in mixture models. We now introduce mixture mod-
els. Let ©® be an open subset of R and let H be a collection of probability
measures on a measurable space (2, ). For each (6, z) € ©® X & we have a
probability density p(:, 8, z) with respect to a o-finite measure p on a measur-
able space (%', #); we assume that p(x, 8, z) is measurable as a function of (x, 2)
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and set
(5.8) p(x,0,m) = [p(x,0,2) du(2).
In a mixture model X,, X,, ..., X, are i.i.d. random elements with density given

by (5.8). We shall be concerned with the subclass where there exist measurable
functions A(-,8) and Y(-,0): (¥, %) » R and g(-, 0, z): R —» R with

(5'9) p(':oy Z) =h(',0)g(11/(',0),0,2) a.e. [I"‘]'

Clearly, (5.1)—(5.2) hold with

g(s,0,n) = [g(s,0,2) dn(z2),
and », defined by

”o(B) = flw(x,o)ea)h(x: 0) du(x).

The form taken by scores in mixture models is well known. We now set out to
establish this in a rigorous manner. Begun, Hall, Huang, and Wellner (1983)
require p'/?(-,0,n) to be Fréchet differentiable in 6 and 7. Theorem 5.1
essentially asserts under a weak regularity condition that it is compactly dif-
ferentiable, a weaker form of differentiability, which, however, is sufficient to
obtain the results of Begun, Hall, Huang and Wellner (1983). For later use it is
helpful to introduce a set T(n, H) of directions in which n can be approximated
within H.

DEFINITION 5.2. Given n € H (a class of probability distributions) T(n, H)
is the subset of Ly(n) consisting of all ¢ for which there exists a sequence
{n,} € H and a o-finite measure 7 with 1, < 7, n < 7 and

(5.10) f[t-l((dn,/dr)lf2 — (dn/dr)"?) - %c(dn/df)l/z]:’df -0, tl0.

It is easily shown that T(n, H) = L,«(7n) in the case that H is the set of all
probability measures on (%, «7). Restrictions on the set of n, which may be
needed in examples, such as finite moments or absolute continuity, typically do
not affect this conclusion.

THEOREM 5.1. Let (5.8)-(5.10) hold and suppose that for measurable func-
tions I(x,0,2): (FXZ, ZXZ)—>R andt - 0,

[ [le (5,6 + ¢, 2) - 8/%(x, 6, 2))

(5.11)
- éi(x’ 0’ z)pl/2(x: 0: z)]2 d#(x) dn(z) - 0.

. Define
#(x) =p~X(x,8,m) [(i(=, 8, 2) + c(2))p(=, 8, 2) dn(2).
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Then
[l (02,8 + t,m,) - p*(x,6,7))
— 15(x)p"2(x, 6,1)]" du(x) - 0.

PRrROOF. See van der Vaart (1988), Theorem 5.13, or van der Vaart (1986a).
' O

(5.12)

It is important to note that Theorem 5.1 does not always give an exhaustive
set of n-scores. This is because we allow only sequences {7,} which satisfy (5.10).
Since (5.10) implies that the part of m, which is singular with respect to 7,
disappears at rate o(t?), this is especially restrictive when 7 has discrete
support. Indeed, in two examples which follow it turns out that a least favour-
able one-dimensional submodel as in (5.6) cannot be obtained for a sequence {7,}
satisfying (5.10), but still does exist.

Using Theorem 5.1, we shall derive a result relating in the case of mixture
models, ordinary completeness of ¥(X,, §) in the model given by the g(-, 8, z),
to local completeness of (X, ). In view of the applications to follow, we need
to work with a slightly weaker form of completeness than ordinary completeness,
which we call L,-completeness.

DEFINITION 5.3. A set of probability distributions & on a measurable space
(%, &) is called Ly-complete if b € Ly(P) and [bdP = 0 for all P € &, implies
that b = 0 P-ae. for all P € #.

THEOREM 5.2. For the mixture model (5.8)-(5.9), let (5.11) hold. Assume
that T(n, H) = L,«(7) and

(5.13) {g(-,0,2)dy,: z € A} is Ly-complete for every A € o with / dn=1.
A
Then (X, 0) is locally complete at (8, 7).

ProOF. Given ¢ € L,«(n), we choose {n,} C H, ¢t > 0, such that (5.10) holds.
By Theorem 5.1 we conclude that

12,0+ thyn,) - p2(x,0,7))

— 1(hi(x,8,71) + Ac(¥(x,8)))p(x, 6, )] du(x)

converges to 0, where
i(x,0,n) = p~'(x,0,7) [i(x, 8, 2)p(x, 6, 2) dn(2),

Ac(s) =g7X(s,0,m) [c(2)8(s, 0, 2) dn(2).



1466 A.W. VAN DER VAART

Next we prove that the linear space {Ac(-): ¢ € L,(n)} is dense in
L,.(g(+, 0, n)). Indeed, suppose that b € L,.(g(-,0,7)) and b L Ac for all c €
Ly«(n). Then

J 0()140,6,m)> 0)8(5, 8, 2) dvg(s) () dn(2) = 0.

Hence

/b(s)l{g(s,o,npo)g(s, 8,2)dv(s) =0, n—aa.z.

By L,-completeness
b(s)ligs 0,m>0) =0, 8(-,0,2) — ae, naa.z.
Hence b = 0, g(-, 6, n)-a.e.
Finally, let b € L,.(g(-, 8, n)), arbitrary. Then by the preceding argument
there exists {b,} C L,.(&(-, 0, 1)) (of the form Ac,) with b, —» b and such for
every n = 1,2,... thereis {5,,} C H such that

Ty = f[t‘l(pl/z(x, 0+ th, nnt) - p1/2(x7 0’ "I))

. 2
—1(Rl(x,8,7) + b,(¥(x,0)))p"*(x,0,n)] dp(x) -0

as ¢ | 0. Choose a sequence {t,} with ¢, | 0 such that r,, < n~!if ¢ < ¢,. Next let

n, be n,, if t,., < t < t, Then {n,} satisfies (5.7). O

5.2. Mixtures over an exponential family. Before giving concrete examples
of mixture models we specialize to mixtures over an exponential family. Suppose
that g(-, 6, z) in (5.9) takes the form
(5.14) g(s,0,2) =c(2,0)d(s,0)e*®, s,z€R.

Let Z(6) be the set of z-values for which the family is defined, i.e.,

Z(0) = {z € R: fd(s,a)exp(sze(ﬂ)) dyy(s) < oo}.

Next let H be a set of probability distributions on &= N{Z(9): 6 € 6}.

It is well known that an exponential family is complete if the parameter set
contains an open interval. In the following lemma this result is adapted to our
purposes. Recall that the support of a probability distribution on 2 C R is the
smallest closed set with probability 1.

LEMMA 5.1. Let (5.14) hold with e(8) # 0 and suppose that the support of 7
contains a limit point within the interior of %. Then {g(-,0, 2)dvs: z € A} is
Ly-complete for every A € &/ with [,dn = 1.

Proor. Let [,dn(z) =1 and let b: R - R be measurable and satisfy

' fb2(s)g(s,0,z) dvy(s) < 0, allz€A,
(5.15)
fb(s)g(s, 0,2z)dry(s) =0, allze€A.
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Set
Z,(0) = {z EZ: f]b(s)|g(s, 0, z) dry(s) < oo}.

Since support(n) C A, we are guaranteed an infinite sequence {2z i} C A converg-
ing to a point z, € Int 2 and hence a sequence {z;} C A with z; - z,. We first
show that z, € Int Z(). For any z and 2,

[16(s)le™ (2, 8) d(s, 0) dny(s)
/4

< [sz(s)g(s, 0,z) dllo(s)]1/2[fe4s(z—zo)e(0)g(s, 8, 2,) dvy(s) '

1/4 N
X [fe“s(%‘zj)e(")g(s, 0,z;) dv,,(s)] c(2,0)/c(z;,9).

But, as z, € Int £, this is finite for sufficiently large j and small |z — 2.

It is well known that the function { — [b(s)g(s, 0, {)dwy(s), is analytic on
¥ = {{ € C: Re{ € Int Z,(0)}. Since it is identically 0 at the sequence {z;}
which has a limit point in Int 2,(8), we see by analytic continuation that

[o(s)e(s,8,8) dny(s) =0, all{eq.
Hence there exists u € Int 2,(8)e(0) such that for all v € R,
fe““’b*(s)e““‘ d(s,0) dry(s) = fe““’b‘(s)esu d(s,0) dry(s).

By uniqueness of Fourier transforms the finite measures given by 7%(B) =
Jb*(s)e*  d(s, 0)dvy(s) and 77 (B) = [b™(s)e** d(s, 8) dvy(s), respectively, are
equal. Hence

b*=>b" ae.[g(-,0,2)dy]. O

Thus in the case of a mixture over an exponential family, we have been able to
show the existence of a least favourable submodel as in (4.1) and (5.6) provided
that the support of the mixing distribution contains a limit point in Int £. In
fact, we have established the much stronger property of local completeness. In
general, local completeness of Y(X;, ) will fail if the support of the mixing
distribution is finitely discrete or countable without limit point. However, as is
shown in the following two examples, a least favourable submodel as in (4.1) and
(5.6) may still exist.

We also note that it can be proved, that irrespective of the support of the
mixing distribution, the estimator constructed in Sections 2 and 3 is typically
LAM and best regular (in a more general sense than in Section 4 [cf. van der
Vaart (1986b)]. However, in such situations there may exist estimators which
behave strictly better than the estimator constructed in Sections 2 and 3. These
improved estimators will not be regular, but, of course, will be LAM. In the case
that a least favourable submodel as in (4.1) and (5.6) exists, a LAM estimator is
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necessarily asymptotically linear, according to the second statement of Proposi-
tion 4.1. Thus in this case the estimator constructed in Sections 2 and 3 is the
essentially unique LAM estimator. In this sense it is interesting to know whether
(4.1) and (5.6) is satisfied or not; i.e., in the case of mixture models, whether the
support of the mixing distribution contains a limit point or not.

ExamPpLE 5.1 (Errors in variables). Let H be a class of probability distribu-
tions on R and let p(-, 8, z) be the density of the bivariate normal distribution
with mean (z, 8z)" and covariance matrix equal to the identity matrix I. Let the
observations be pairs (X}, Y;) having the distribution with density p(-, 8, 7)
given by (5.8). This model may be structurally written

()= (ez) + (7

where Z;, e; and f; are independent, Z; has distribution # and (e;, f;)’ is
bivariate standard normal. Thus an independent variable Z; is observed with
error and a dependent variable Y, is a regression on Z; with slope 6. This model
can be enlarged with more parameters, but we restrict ourselves in this paper to
one-dimensional 6.

As a sufficient statistic we choose Y(X,Y;, §) = X; + 0Y; which conditionally
on Z; =z has a N(z(1 + 6%),1 + 6?) distribution. Under the condition that
nE H has 0 < [z2dn(z) < oo, the conditions of both Theorems 2.1 and 3.1 are
satisfied, and Sections 2 and 3 thus yield a construction of an estimator
satisfying (1.8). Here we have i(x, y, 0, z) = —2¢'/¢(y — 6z), so that
[f1¥(x, 8, 2)p(x, ¥, 8, z) dedydn(z) = [z®dn(z). Theorem 5.1 may be used to
obtain the score for # and we find that the partition (2.7) holds with

H,/(x,,0) =1+ 6% *(x + 6y)(y - 6x)

’

and
¥ (%, 3,0) = (1+62) 7' (y — bx).
Furthermore,
Bi(s,0) = (1 +6%)
A Vn -consistent estimator can be obtained from the estimating equation

Y A,/(X,Y,,0) - o.

J=1
Indeed, it can be checked that one of the solutions,

j = (2 X,Y})_l > (v - x7)

~.
ity

+{(él(y;z - ij))z + (212}(%)2}1/2 1{Z7_,X,Y; # 0},

is such that .?,,,,(\/rT (ﬁn — 8)) converges to a normal distribution as n - .
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Finally, consider efficiency of the estimator sequence {7} satisfying (1.8). In
the case that T(n, H) = L,(n) for all n € H, we obtain immediately from
Theorem 5.2 and Lemma 5.1 that {T),} is efficient at all (8, n) for which the
support of n contains a limit point. We now show independently that in this
special case {T,} is in fact efﬁcient at all (6,m) € ® X H as long as for every
n € H the scale family {o"'n(¢™! - ): ¢ > 0} belongs to H too.

Let i (x, 5,0, 2) = 9/dzlogp(x, ¥, 0, 2). Then

E@(I(XD le’a, 2)|Xl + OY'I =x+ 0y) = 20(1 + 02)_liz(x’ Y, 0, Z).
By Theorem 5.1

i(x,5,6,n) =p~(x,5,0,1) [i(x, 5,0, 2)p(x, 3,0, 2) dn(2).

Thus we see that
EO(i(X17 Y, 0,m)X; +0Y, =x+ 03’)

(5.16)
=p7X(x,5,6,m) [26(1 +6%) 1.(x, 5,6, 2)p(x, .0, 2) dn(2).

Informally this is

~3/dt,_log jp(x, 7,6, 2(1 - t8(1 - 02)“)) dn(2)

= —3/9t,_log fp(x, ¥,0,2)dn,(z2),

where 7, is the measure defined by 1,(B) = n((1 — t8(1 + %))~ 'B).

This argument shows that the left-hand side of (5.16) is an n-score, the
condition needed for efficiency of {T,} [cf. (1.6)]. It is straightforward to make
this argument precise by checking (5.6) for the sequence {7,} given previously.
The same argument implies that estimating 6 in the model where (X, Y;),
(X5, Y,),...,(X,,Y,) are ii.d. and distributed according to a bivariate normal
distribution with mean (z,0z) and covariance I, z unknown and fixed, is
asymptotically not easier than estimating 6 in our present model (of which the
former is a submodel if H contains the point masses).

A more detailed study of this model can be found in Bickel and Ritov (1987).

EXAMPLE 5.2 [Paired exponentials, cf. Lindsay (1985)]. Let H be a class of
probability distributions on (0, c0) € R and let p(-, 8, 'q) satisfy (5.8) with the
following density with respect to Lebesgue measure on R2,

p(x: 5,0, Z) = ze *fze ™" 1{x>0, y>0}°

Since the parameter in an exponential distribution equals the (constant) hazard
rate, this means that we estimate 6, the ratio of the hazard rates within pairs,
common to a sample of paired observations.

Write the pairs of observations as (X;,Y;). As a sufficient statistic we can
choose Y(X,,Y,,0) =X, + 0Y,. It has dens1ty g(s,m) = [z%se T*1(e> 0y d1(2)
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with respect to Lebesgue measure. Theorems 2.1 and 3.1 apply without further
conditions. We have

i(x,y,0,2) =071 — 2y, ffi“’(x, ¥,0,2)p(x, y,0,z)dcdy =072

and

I(x, 5,0,7) = (20(x + 67))"'(x — 6y) + Q(x + 8y, m)(26) " (0y - x),

where Q(s, 1) = g'(s,n)/8(s, n). Furthermore, #(X — 0Y|X + 6Y = s) is the
uniform distribution on [—s, s] € R, so that

B%(s, 0) = Ey(¥3(X,, Yy, 0)IX, + 8Y; = s) = (1262) s

A Vn -consistent estimator é;, can be defined as the unique solution to
Y H(X;,Y,0) =0,
j=1

where H(x, y,0) = (20) Xx + 0y)~Y(x — 0y).

Suppose that H is the class of all probability measures on R, or more
generally that T(n, H) = L,.«(n) for all » € H. From Theorem 5.2 and Lemma
5.1 we immediately conclude that the resulting estimator sequence {T,} is
efficient at all (8, n) for which the support of 1 contains a limit point in (0, o).
An argument analogous to that in Example 5.1 shows that {T},} is in fact efficient
at all (8, 7) € (0, o0) provided that for every n € H we have that {c"'n(c~ "' - ):
>0} cH.

van der Vaart (1988) contains a more extensive discussion of this model, where
also the non-i.i.d. case in which n may differ from observation to observation is
considered. It turns out that the estimator sequence remains asymptotically
normal as long as the averages n‘lE;L 1M,,; do not let mass escape to either 0
or oo.

6. Conditional likelihood. In this section we give an informal discussion of
the situation that (-, 8) is independent of 8. We consider the i.i.d. version of
our model given by (5.1)-(5.2) and write y(x) for {(x, 9).

We suppose that (5.3) holds and identify the derivative {(x, 8, ) with the
pointwise derivative d/d6 log p(x, 8, n). Clearly,

(6.1) © U(x,0,m) = h/h(x,0) + 8/8(¥(x),0,7)
and
[(x,0,m) = h/h(x,0) — Ey(h/R(X,, 0)1¥(X,) = ¥(x)).
Here one usually finds that
(6:2) Eo(h/h(X,, 0)¥(X,)) =0,

a fact which can be explained by reference to the conditional distribution of X,
given y(X,). Indeed, one expects the function A(x, 8) to be the density of X, in
x, given that ¢(X,) = ¢(x). Then by the usual change in order of differentiation
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and integration

Ey(h/h( Xy, 0)9(X,) = t) = [8/00pxyx,-e(x) dr(x) = 0.

We do not try to formalize the preceding argument in general, but from now on
assume that (6.2) holds true.

In the present situation we have that B,(s, 6) = 0, so that (2.10) is trivially
satisfied: Estimation of g’/g(+, 8, n) is unnecessary. The construction of Section
2 is valid and the resulting estimator may be considered a one-step version of a
conditional maximum likelihood estimator, discussed (in a different setup) by
Andersen (1970). Indeed, under (6.1)-(6.2) the estimator of Section 2 takes the
form

n
T,=6,+n' Y I;%(6,)h/h(X;,6,),
J=1
while a conditional maximum likelihood estimator is defined as the value of 6
that maximizes /., h( X}, ).

Condition (4.1) is of course still sufficient to render this estimator efficient,
and in particular we may apply the results of Section 5 to obtain efficiency of the
conditional maximum likelihood estimator in mixtures over an exponential
family, when the support of the mixing distribution contains a limit point. For
the present case, where the sufficient statistic is independent of 6, this result was
essentially obtained for mixture models by Pfanzagl (1982), Section 14.

Alternatively, one would expect that an estimator for 6 based on the condi-
tional distribution of X, given (X)) is efficient if and only if the marginal
distribution of /(X;) does not contain information about 6. Here, for informa-
tion one should of course read efficient information, which in analogy with
(1.3)—(1.4), is defined as

18, 1) = inf B, (2/g(¥(X,), 6,n) — b(¢(X,)))~

Here the infimum is taken over the same set B(8, 1) of functions b as in (1.4), i.e.,
the set of b such that b({/(+)) is an n-score. As explained in Section 1 one expects
the estimator of Section 2 to be efficient at (6, ) if (1.6) is satisfied. Under the
assumptions made so far the latter is true if and only if 1,(6, n) = 0.

LEMMA 6.1. Let (5.1)-(5.3) and (6.1)~(6.2) hold with (-, 0) = ¥(-), vy = ».
Then (1.6) holds if and only if 1,(8, n) = 0.

Proor. We have
L(-,8,m) = E,[i(X;,0,m)¥(X,) = -] =8/2(-,8,7). o

Following Andersen (1970), call y(X,) weakly ancillary if {g(-,0,7): n € H}
is the same for each § € ©. Weak ancillarity implies that for any ¢ there exists
n, € H such that g(-,0 + ¢,1) = g(-, 0, n,). Thus it implies that I,(6,7) =0,
and we therefore expect it to be sufficient to render the conditional maximum
likelihood estimator efficient.
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This statement can be made precise under regularity conditions, or alterna-
tively in concrete examples by checking condition (4.1). In the latter case the
preceding discussion may reveal the least favourable one-dimensional submodel.

ExAMPLE 6.1 (Neyman and Scott). Let H be a set of probability distribu-
tions on R, § € ® = (0, c0) and let p(-, 8, n) satisfy (5.8) with p(-, 8, z) equal to
the density of a Ny((z, 2)’, 6I) distribution. The model satisfies (5.1)—(5.2) with
sufficient statistic ¢(X;, Y}, ) = X, + Y. The conditional distribution of (X, Y;)
given X, + Y, = s is restricted to straight lines in R? and can be related to a
N(3s, 30) distribution on R. Indeed, we can factorize p(-, 8, ) as in (5.1) with

g(s,0,m) = [(20)7"5((26)""*(s - 22)) dn(2),

h(x, 7,8) = (36) "o((10) " *(x - 3= + ),

where ¢ is the standard normal density. The conditional likelihood estimator is
the2 solution to ¥7_,h/h(X,,Y;,0) = 0 and is given by T, = 2n) 'T7_(X; -
Y)2

! This example became famous because the direct maximum likelihood estima-
tor émn for the functional version of the model, obtained by maximizing
Mr,n(X,,Y,0, z;) over all (0, 2, 2,,..., 2,) € R**}, is inconsistent. (Indeed,
6 =14 - 30.) In contrast to this, 7T, is not only consistent, but also efficient

mn 2%n

in the ii.d. mixture model, for instance if H is the set of all distributions on R
for which the support contains a limit point.

ExaMPLE 6.2 (Paired Poisson variables). Let p be counting measure on the
points {(x, y) € R% x,y=0,1,2,...}, let H be a set of probability distribu-
tions on R and let the observations (X}, Y;) be i.i.d. distributed according to a
density given by (5.8), where

p(x, 7,0, 2) = (6e7) e~ "{x!) ""(e) e () .

We can choose Y( X, Y}, ) = X, + Y, which has a density g(-, 8, n) with respect
to counting measure on {0,1,2,...} given by

g(s,0,m) = [[(6+ 1)e]"e= @ Ves1) " dn(2).

As is easily checked ¢(X], Y, 8) is weakly ancillary if for any n € H the location
family {n(- — p): p € R} belongs to H. The conditional maximum likelihood
estimator is given by Z’}, X /X le. If H is the set of all probability distribu-
tions on R it can be checked that it is efficient at all (4, n) € ® X H. Note that
this example differs from the foregoing one in that the least favourable submodel
as in (4.1) always exists, irrespective of the support of 7.

7. Other examples. Mixture models are not the only source of examples for
the structure given by (1.1)-(1.2). In this section we discuss the problem of
estimating a centre of symmetry, regression models and two-sample problems,
where the two samples differ by a transformation depending on 8.
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EXAMPLE 7.1 (Symmetric location). Let H be a set of probability densities
n with respect to Lebesgue measure A on R, absolutely continuous,
symmetric about 0 and with finite and positive Fisher information for
location I,(n) = f(n'/n)’nd\. Let o0,,0,... be known positive numbers
such that max{s;%: j=1,2,...,n} = o(/n) and 0 < liminf n™'E?_j0;% <
lim sup n"IZ}ﬂoj —2% < 0. Set pi(x,0,m) = o; 'n(o; (x — §)). Then (1.1)-(1.3)
are satisfied with the sufficient statistics ¢ (X, 0) = o;'|X; — 0|, which
have density g(-, 0, 1) = 21(-)1 ,)(:) with respect to A. We have
[(x,0,m) = —o; "' /n(s; '(x — 0)) and [,(s, 6, 1) = 0. The decomposition (2.7)
holds with ¥, (x,8) = —o; 'sgn(x — 0), so that B2(s,0) = n™'L7_,0; % A Vn-
consistent estimator can be found by the M-method with 5’ equal to the logistic
density. It can be checked that Theorems 2.1 and 3.1 apply and, as is well
known, the estimator is efficient even if H equals {n}: Of course, the i.i.d. version
of this model has been treated by many authors and our only contribution is to
analyse the model in terms of sufficient statistics. Note here that the usual
symmetrization of the kernel estimator for the density 7, has now been taken
care of automatically, as we estimate the density of the sufficient statistic.

EXAMPLE 7.2 (Regression). Let ® = R and p Lebesgue measure on R. Let
£1,€5,...,§, be known constants, satisfying max{|{]: j=1,2,...,n} = o(Vn)
and liminf n™'T%_ (¢, — £,)? < limsup n7'T%_(§, — £,)* < o0, where §,=
n~'Lr_ ¢, Given unobservable iid. error terms e, e,,...,e,, distributed
according to an absolutely continuous density n with I,(n) = [(7'/1)?ndA < o,
we set X;=0¢;+ e; In other words p/(x,0,n) = n(x — 0¢), j=1,2,...,n.
Consider two cases:

7.2.1. n is symmetric about 0. A sufficient statistic is |X; — 6¢|. The further
analysis resembles Example 7.1.

7.2.2. H is an arbitrary set of densities with finite Fisher information. A
sufficient statistic is X; — 6¢;. We have [,(s,0,n) = =&’ /n(s), l,ix,0,m) =
—(&; — £ /n(x — 6,) and BX(s,0) = n"'T7_ (¢, — £,)". The conditions of
Theorems 2.1 and 3.1 are satisfied and thus Sections 2 and 3 yield an asymptoti-
cally linear estimator. Because /,(-, 8, 1) is proportional to 7'/7(+), this estima-
tor is efficient if for each n € H the location family {n(-— p): p € R} is also
contained ih H. More formally, one can choose n,(h)(:) = n(- + £,n"'/?h) to
obtain the least favourable one-dimensional submodel as in (4.1).

ExaMPLE 7.3 (Two-sample problems). Let H consist of probability densities
with respect to Lebesgue measure on R and let p be Lebesgue measure. Let a
first sample X,..., X,, be iid. with density p/(-,8,m) =2(-), j=1,2,..., m,
and let a second sample X, ,,,..., X, be iid. with density p(-,8,7) =
n(Ay - )A(-,8), j=m+1,m+2,...,n,where A;: R > R is a sufficiently regu-
lar transformation and m = m,. Clearly, as sufficient statistics can be chosen
Yi(X;,0)=X;, j=12,...,m,and y(X,,0) = A, X, Jj=m+1,...,n.

In particular, consider the transformation Ayx = §~'x, § > 0, which leads to
the two-sample scale model. Let n be absolutely continuous with finite and
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positive Fisher information for scale, I(n) = (1 + x9'/7(x))?n(x) dA(x) and
assume that 0 < liminf n~'m < limsupn~'m < 1. We have [ (s, 0,7) =
=07 (n — m)n"X(L + sn'/n(s)), B(s, 0) = (m(n — m))”*n"'0"Ys| and
&(s, 8, 1) = n(s). It is easily checked that the conditions of Theorems 2.1 and 3.1
are satisfied. The resulting estimator is efficient if for each n € H we have that
{67 (67 -): 6 >0} C H.
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