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STRONG EMBEDDING OF THE ESTIMATOR OF THE DISTRIBUTION
FUNCTION UNDER RANDOM CENSORSHIP

BY P. MaJOR AND L. REJT6!

Mathematical Institute of the Hungarian Academy of Sciences

In this paper the asymptotic behaviour of the product limit estimator F,
of an unknown distribution is investigated. We give an approximation of the
difference F,(x) — F(x) by a Gaussian process and also by the average of
ii.d. processes. We get almost as good an approximation of the stochastic
process F,(x) — F(x) as one can get for the analogous problem when the
maximum likelihood estimator is approximated by a Gaussian random vari-
able or by the average of i.i.d. random variables in the parametric case.

1. Introduction. The problem of estimating the distribution function under
random censorship has been the subject of intense study over the last 10 years.
Let X,,..., X, and Y},..., Y, be two sequences of i.i.d. random variables with
the corresponding unknown distributions F and G. Let the sequences X; and Y;
be independent of each other. Set §; = I(X; < Y;) and Z;, = min(X,,Y)), i =
1,..., n, where I( A) denotes the indicator function of the set A. If one considers
the situation when only the censored sample (Z;, §;), i = 1,..., n, is observed
(and not the original data X;, Y;), the problem is to give a good estimator F,(x)
of the distribution function F(x) based on (Z,, 6,), i = 1,..., n. Then one would
like to investigate the speed of convergence of F,(x) to F(x). Kaplan and Meier
(1958) proposed the following procedure to determine the product limit (PL)
estimator. Put

(1.1) N(w) = N(u,n) = #{2: 2> u) = ¥ 1(Z,> u).

Jj=1

They gave an estimator for the survival function 1 — F(x) determined for
continuous F and G by the formula

1 - F(u) = F(u)

KZ;su, 8;=1)
n | N(Z) Y .
(1.2) _ _]I;Il[—]-—rN—(ZJ_) s 1fu$max(Zl,...,Zn),
0, if u > max(Z,,...,Z2,),8,=1,
undefined, if u>max(Z,...,2,),8,=0.

Breslow and Crowley (1974) proved that the sequence of PL estimator processes
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Vn (F(u) — F(u)) converges weakly to a Gaussian process with zero mean and a
certain covariance function. Several papers have dealt with the problem of
strong consistency of the PL estimator. Refer in particular to Foldes and Rejt
(1981), Susarla and Van Ryzin (1978) and Csoérgd and Horvath (1983). Burke,
Csorgd and Horvath (1981) proved the first strong approximation result for the
PL estimator process, obtaining O((log n)!/2/n'/3) as their rate. This construc-
tion was based on a result of Komlés, Major and Tusnady (1975), where the
exact rate of O(log n/n'/?) for the strong approximation of the empirical process
by a sequence of Brownian bridges is proved. The question remained open as to
whether one can get as good a rate of strong approximation for the PL estimator
process by a sequence of Gaussian processes as can be obtained in the special case
when there is no censoring. The aim of this paper is to show that the answer is in
the affirmative.

During our investigation it became clear that to solve this problem it was first
necessary to approximate Vn (F,(u) — F(u)) by a certain linear functional of an
empirical process at an appropriate rate. We believe that the result that we
obtained along this line is of separate interest; cf. Theorem 1. A very similar
result is to be found in Lo and Singh (1986); however, their rate of approxima-
tion was not sharp enough for our purposes. In order to formulate our result we
first must introduce some notation.

Put
o AW -PEswa-), AW =Pz su-0),
H(u)=H(u) + H(u),
H,(u) = % i (Z,<u,8=1),
(1.4) ) 1;1
H,(u) = ~ gl I(Z;<u,8=0)
Clearly,
H(u) = EH,(u) = [* (1- G(t)) dF(2),
(1.5) -

H(u) = EH,(u) = [* (1~ F()) da(),
(16) L= H(u) = (1 = F@))(1 - G(w)).

Let the functions F,G, H, F,,G,, H denote 1 — F,1 - G,...,1 - H,. For
the sake of simpler notation we assume that the distribution functions F and G
are continuous although this restriction is not essential, as is shown in Remark 3.

THEOREM 1. Let T be such that 1 — H(T) > & with some 8 > 0. Then the
process F,(u) — F(u), —0 < u < 00,1 — H(u) > 0, can be represented as

F,(u) - F(u) = (1 - F(u))(A(n,u) + B(n,u)) + R(n,u),
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where
‘/’T(ﬁn(u) - ﬁ(u))
wn T “’7(1‘*’(””
v (H,(y) - H(y))
w. a-npy O
: H, H .
@8) B(mu) = / Vn ( (y;( ))gy)) d(5)

are linear functionals of the empmcal processes Vn (H,(u) — H(u)) and
\/_(H (u) — H(w)), and the error term R(n, u) can be bounded for u < T as

c 2
(1.9) P( supn|R(n,u)| > x + —5) < Ke™**®

u<T

for all x > 0, where C > 0, K > 0 and A > 0 are some universal constants.

The following proposition is a relatively simple consequence of Komlos, Major
and Tusnady (1975).

PROPOSITION 1. The stochastic process A(n, u) + B(n, u) defined in (1.7)
and (1.8) can be approximated by an appropriate Gaussian process W(u),
—o0 < u < o0, EW(u) = 0, with covariance function

dF(u)
EW(s)W(t) = EW(s)” = f_w (1 - G(w))(1 - F(u))?

for —0 <s<t< o,

(1.10)

in such a way that

(1.11) P( _;‘j’stW(A(n’ u) + B(n,u)) - W(u)|> %logn + x)

2
< Ke-—)\S x

A sequence of independent identically distributed Gaussian processes
Wi(u), W;(u), W, (u) = 0 with covariance function (1.10) can be con-
structed in such a way that for alln = 1,2,.

P
(1.12)

k(A(k,u) + B(k,u)) — {: W;(u)
j=1

sup sup
k<n —oo<ux<T

> —log?n + xlogn| < Ke ™,

)
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Here C > 0, K > 0 and A > 0 are some universal constants; T and § are the
same as in Theorem 1.

Theorem 1 and Proposition 1 have the following consequence.

THEOREM 2. We have

P s [R(E() - Fw) - W)

(1.13)

2C

> ?logn + x| < 2Ke M=,

where W(u) = (1 — F(uw))W(u) and W(u) is the same as in (1.10), and

k
Plsw s |k(Fw) - Fw) - ¥ W(w)
k<n —oo<ux<T j=1
(1.14)
2C 2
> —‘—S—log2n + x log n) < 2Ke M=,

where ﬁ-’j(u) = (1 — F(u))W(u) and the processes W{u) are the same as in
(1.12).

REMARK 1. In Theorem 1, F,(u) — F(u) is approximated by the average of
bounded independent identically distributed stochastic processes [A(n, u) +
B(n, u) can be written in that way] and in Theorem 2 by a Gaussian process.
The first type of approximation was given earlier by Lo and Singh (1986) and the
second type by Burke, Horvath and Cs6rgé (1981), but with weaker results. Let
us remark that as Proposition 1 shows, one of these approximation results
implies the other with the same rate if this rate is worse than O(log%n/n). Thus
these two kinds of approximation results are very close to each other. They differ
only if we want to prove the optimal rate.

REMARK 2. It is worthwhile to compare our results with the analogous ones
about the behaviour of the maximum likelihood estimate in the parametric case.
Our results can be interpreted in such a way that for the PL estimator F,(x),
F,(x) — F(x) can be approximated by the average of i.i.d. random processes with
the rate O(1/n) and with a Gaussian process with the rate O(log n/n). On the
other hand, if 7,, is the maximum likelihood estimator of a parameter 6 with the
help of a sample of n elements, then under very general conditions 7, — 6 can be
approximated by the average of i.i.d. random variables or by a Gaussian random
variable with the rate O(1/n). Thus our results mean that the PL estimator can
be approximated by the average of i.i.d. processes with as good a rate as the
maximum likelihood estimator by the average of i.i.d. random variables in the
parametric case. If we want to get a Gaussian approximation, then the rate of
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the optimal approximation of the PL estimator is slightly weaker than that in
the parametric case because a logarithmic factor appears.

It is an interesting question whether this property is a peculiarity of the PL
estimator or if a similar result holds for a large class of nonparametric estima-
tors.

REMARK 3. The case in which the distributions F and G may have jumps
can be reduced to the case in which they are continuous. We suppose that the
distribution functions are right continuous. First we must give the right defini-
tion of the PL estimator in the general case. Put

y(u) = il(zj=u’8j= 1), Yi=Y(Zi)y

(1.15) i
p(u) = Ell(zj= u, §=0), p,=p(Z).

Then 1 — F,(x) is defined by

I

( N(Z) + )(I(lex,5;=1))/v.
(1.16)

if u <max(Z,,...,2Z,).

It is easy to verify that if F' and G are continuous, then (1.16) is equal to (1.2).
Now we briefly explain how the general case can be reduced to the case when F
and G are continuous.

Let x,, x,,... be the set of all points where either F or G or both have a
jump. Let us define the function

1
h(x)=x+ Y —, =x€R,
J: xJ<xj
the intervals
1 1 1
Aj,l= [xj+ Z F;xj+ﬁ+ Z ?jl,
ki xp<x; J ki xp<x;

1 1 1 1
Aj,2=(xj+_+ Z ?;xj+j—2+ Z ?jl,

2j2 ki xp<x;
AI = Aj,l U Aj,2

and the sets A = U%_,A, %(A) = R! — A. The function A(x) maps R’ invertibly

Jj=1
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onto #(A). Define the distribution funtions ¥ and G as

F(h™Y(x)), forx € €(4),
1
. 2/ x—x,— Y —
F(x) = ! X <x; k2)
X(F(xj) - F(xj— O)) +F(xj— 0), forxe AL, J=12,...,
F(x;), forxed;,, j=12,...,
G(h™Y(x)), forx € €(4),
G(xj—O), forxed;,, j=12,...,
é(x) = o 1 1
A Y k:qup
X(G(x;) — G(x;—0)) + G(x;-0), forxed;,, j=1,2,....

Obviously F(x) and G(x) are continuous.

Now we explain how a connection can be made between the original random
censorship problem with the pairs F and G and its version where F and G are
replaced by the continuous F and G. Let us consider the random censorship
problem described in the introduction. We observe a sample Z,6),i=1,...,n,
where Z, = min(X,,Y,) and §, = I(X; < Y)). Let ¢, &,,..., &, be a sequence of
iid. r.v.s with uniform dlstrlbutlon on [0;1], whlch is independent of the
sequences X; and Y, i = 1,2,..., n. Define the random variables Xi and Y, by

the formulas

h(‘Xl)’ iin¢xj,j=1,2,...,

i

1
h(xj) + 572_521'—1: if Xi = xj,

h(Y,), if ,#x, j=12,...,

>

i 1 1 .
h(xj) + 2—12 + 2—.],282“ if Y,= Xj.

Then X,,..., X, and 1?1, . are two independent sequences of i.i.d. r.v.s with
dlstnbutlon functlons F and G respectively. Then since F and G are continuous
distribution functlons our results can be applied for the sample (Z,, d;), where
Z mm(X,, I(X < Y) I(X; < Y)) = §,. Denote the estimator by
F’ "(x). Observe that

F(x) = F(h(x)), F(x)=F(h(x)) ifx+x,
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and

F(x; - 0) = F(h(x;)), F(x;) = F(Rh(x; +0)),

F,(x;—0) =F(n(x;)), Fy(x;) = (h(x +O)) forx = x;.
As a consequence, the processes F,(¢) — F(t) and Fn( h(t)) — F(h(t)), —o0 < t <
T, coincide. In such a way we get a representation of F,(¢) — F(t) via the
representation of F(t) — F(¢). Then the representation for F, — F given in
Theorem 1-can be obtained for general (possibly noncontinuous) distribution
functions F and G by first applying it for ¥ and G. Since we want to express
F, — F directly with the help of the original distribution functions and sample,
we have to rewrite the expression A ) + B (1) corresponding to F Wu) — F(u)
By formula (1.3) the expression A(n, u) + B(n, u) can be written as

Vi (Hy(u) - B(w))
V(1 - H(u))

Vr (A7) - A(») x
dH
=l (-do)y )

w(() - A)
o ST

dH(y),
where the functions with carets ( ) correspond to the variables XY, Z .

i L

We define A(n,u) + B(n,u) in the general case as A(n,u) + B(n,u) =
A(n, h(u)) + B(n, h(w)). Thus for the explicit expression we have to compute
the integrals over all the intervals A ; for which x; < u. After a simple computa-
tion, A(n, u) + B(n, u) is given as

Vn (H,(u) — H(u))
\/Y_L(l — H(u))
f Vn (H,(y) — H(y)) dG(y)
" (1 — H(y))1-G(y-0)
f Vr(B(y - 0) - H(y - 0)) dF(y)
(1-H(y-0)Q-F(») °

where the functions H and H can be written as

Hw) = P(Z<u,8,=1) = [ (1-G(y-0)dF(),

A(n,u) + B(n,u) =

A(n,u) + B(n,u) =

(1.17)

(1.18) - u
H(u) = P(Z;<u,8,=0) = [ (1= F()dG(»).
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In this way we give a representation of the process F(u) — F(u) when both
distributions ¥ and G may have jumps. The statement is given as follows.

COROLLARY 1. Suppose that the distribution functions F and G may have
Jumps and let T be such that 1 — H(T) > 8 with some & > 0. Then the process
F(u) — F(u) for —o0 <u < +o0,1 — H(u) > 0, can be represented as

Vn(H,(u) - H(u)) (H(y) — H(y)) dG(»)

Fulw) = F(u) =\ 0~ H(w) fw(l—Hu))(l—G(y 0)
n(y 0) - B:f(y—O))

(1.19) =)t - Fz) )

X(1 - F(u)) + R(n, u),
where R(n, u) can be bounded for u < T by (1.9).

In a similar way, we obtain the embedding theorem, i.e., Proposition 1, for the
noncontinuous case. The general form of the proposition is given as follows.

COROLLARY 2. Suppose that the distribution functions F and G may have
Jjumps. Then the stochastic process A(n, u) + B(n, u) defined by (1.17) can be
approximated by an appropriate Gaussian process W(u), —oo < u < + 00,
EW(u) = 0, with covariance function

E(W(s)W(1)) = [ il
—o0 (1= F(u))(1 = F(u - 0))(1 - G(u - 0))

for —0 <s<t< +o0,

(1.20)

in such a way that

C
P( sup |Vn(A(n,u) + B(n,u)) — W(u)|> <logn +x
(1.21) —oco<u<T 8
< Ke—)\Bzx’

where C > 0, K > 0 and A > 0 are some universal constants; T and & are the
same as in Corollary 1.

In Section 2 of our paper we prove the theorems with the help of some
lemmas, whose proofs are given in Section 3.

2. Proof of the theorems. The function F,(u) is defined in (1.2), but its
asymptotic behaviour cannot be seen directly from this formula. Hence we
approximate it with another expression which has a simpler structure.

Let us introduce the functions

T(u) = —log(1 - F,(u)),  T(u)= —log(1 - F(u)).
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A simple Taylor expansion yields
F(u) — F(u) = exp(—T(u))[1 — exp(T(u) — Ty(u))]
= exp(—T(w))[T(v) - T(u)] + O((T,(u) - T(w))?),

or more precisely

(21) Fy(u) = F(u) = (1 = F(u))(T,() - T(x)) + Ry(x)
with
2.1) |Ry(u)| <|T(u) = T(w)[* if |T,(u) — T(u)| < 1.

As we shall see, T(u) — T(u) is rather small [typically O(1/ Vn)]; therefore,
R (u) is negligibly small. We shall also see that the probability of the event
|T,(u) — T(u)| <1 is exponentially close to 1; therefore, this is not a serious
restriction in the applicability of (2.1). Thus it is enough to investigate the term
Tn(u) - T(u) By (1'2),

T(u)=—- gn: I(Z;<u,s = 1)log(1 - IT—;I(T))

Let us define the set
n )
A, = { ZI(Z,.> T) < gn}
i=1

The relation —log(l — x) ~ x for small x suggests approximating the process
T (u) by the process

Tn(u = Z = E " .
) i=1 N(Zl) i=1 ZJ=II(Z] > Zl)
In Section 3 we prove
LEMMA 1.
Tn(u) = Tn(u) + R2(u)’
where

2
P| sup |[nR,(u)| > 3 < exp(—Aén).
u<T

(The constants A, &, etc., denote some universal constants. The same letter may
denote different constants in different formulas.)

The expression Tn(u) is still not appropriate for our purposes. Since the
denominators N(Z;) = £*_\[(Z; > Z;) are dependent on different i — s, we can-
not see directly the limit behaviour of T,(u). On the other hand, by exploiting
the fact that the conditional distribution of N(Z;) given Z; fixed is a binomial

distribution with parameters n — 1 and 1 — H(Z;), we can rewrite T'(x) in a
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more appropriate form. Indeed, by writing
2512, > Z;) - nH(Z)
nH(Z)

f (Z,>2)= nH(Z,.)[l +

and noting that [1/(1 + 2) — 1 + 2| < 222 for |2| < 1, we get that

" I(Z;<u,d,=1) Z;?=II(ZJ.> Z,) - nH(Z,)
-gl nH(Z,) [ B nH(Z,) } s(®)

with

n [(Z; <u,d=1) [zy=ll(zj > Z,) — nH(Z) r

(2.2) |R3(u)ls2§1 nH(Z) nH(Z,)

on the set

= B,(u) =I( <inH(Z)orZ,> u

Y I(Zj> Z)
j=1

(2.2)
foralll <i < n).

In Section 3 we prove

LEMMA 2.

2n
P(sup|nR3(u)|>x) <Kexp(—A0%) if0<x< —.
usT &

Thus we get that
(2.3) T.(u) = 24(u) - B(u) + Ry(u)
with
— — " I(Z;<u,d,=1
A(u) =A(n’ u) = Z ( lnH(Z) )

i=1

and
I(Z; <u,b,=1)I(Z> Z)
n*H*(Z))

B(u) = B(n,u) = E y
i=1j=1
In another form,

(2.4 Aw) - |7 F2E8 )
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and

o I(y<u X ~
B - 7 " TEEOE i ) o)

Put
B(u) = By(u) + By(u) + By(u) + By(u)

A r

fm I(y =W > ) i yya v (B (x) - H(x))]

(2.5) - H)Y

I o Sl (8,0) - A)]

xd|[Vn(H, (x) ~ H(x))]
o I(y<uw)I(x>y) .

T oHG) ) ().
Clearly
(2.6) B,(u) + By(u) = A(u).
Put
(2.7) R (u) = —Bj(u).

Since both processes Vn (ﬁn( y) — H(y)) and Vn (H,(x) — H(x)) have a limit as
n — oo, and there is a multiplier 1/n in the definition of R (u), it is natural to
expect that R ,(u) is negligibly small. However, the hardest part of our proof is
to bound the term R ,(u). To solve this problem Major (1988) proved a more
general inequality. We prove Lemma 3 with its help.

LEMMA 3.

P( sup |nR (u)| > x) < Kexp(—A82%x) forx > 0.

u<T

The term B,(u) can be rewritten as

fu Vn(H(y) — H,())
(1 - H(y))’

Formulas (2.3), (2.6) and (2.7) imply that

(2.9) T~n(u) = /T(u) — By(u) + Ry(u) + Ry(u).

(2.8) B,(u) =

dH(y).
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Put
A(u) = Ay(u) + Ay(u)
(2.10) _ e _dHO) 1 e d[Ve(H() - H(y))]
Lo Wl

By (1.5) and (1.6),

u dF(u
(2.11) Ay(u) = f 001_—17% = —log(1 — F(u)) = T(u)

and integration by parts yields that

Vn (H,(u) - H(u))

Al = i)

(2.12)

Vn (H,(y) - H(»)) dH(5)
( :

1 [u

_ﬁf—w 1 - H(y))’
Relations (2.9), (2.10), (2.11) and Lemma 1 imply that
(2.13) T,(u) — T(u) = Ay(u) — By(u) + Ry(u) + Ry(u) + R (u)
and this formula together with (2.1) yields that
(2.14)  F(u) - F(u) = (1 - F())(A(x) — By(u)) + R(n, u)
with
(2.14)  R(n,u) =(1- F(u))(Ry(u) + Ry(u) + R,(u)) + R,(u).

Define A(n, u) = A((u) and B(n, u) = — By(u). First we prove Theorem 1 in the
case 0 <x < 2n. We can assume without violating the generality that x >
50,/(n8?). Indeed, we can choose the constant K so large in (1.9) that for
x < 50/(nd?), K exp(—A82%x) > 1 and for such x — s relation, (1.9) holds auto-
matically.

By Lemmas 1-3,

2
_ ‘ _ IRYY
(2.15) P( :‘;{;"le(u” > 8) <'exp(—Adn) < exp(—Ad%)

for0 < x < 2n,

x
(2.16) P( sup |nR,(u)| > Z) < Kexp(—A6%) for0<x <2n
u<T

and

x
(2.17) P( sup [nR,(u)| > Z) < Kexp(—A8%) for0 < x < 2n.
u<T



STRONG EMBEDDING UNDER RANDOM CENSORSHIP 1125

We claim that

P( sup n|T,(u) — T(u)|2 > x) < K exp(—A8%x)
u<T

(2.18)

50
for — < x < 2n.

né?
First we show that (2.14) and (2.14") together with (2.15)—(2.18) imply Theo-
rem 1 for 0 < x < 2n. Indeed, relation (2.18) implies that

P( sup |T,(u) — T(u)| > 1) < K exp(—A&%n)

u<sT
and by (2.18) and (2.1'),

X
g 1 -5

50
) < Kexp(—A8%x) for —5 < x < 2n.
u<T 2 )

n 2

The estimates obtained for nR ;(u) imply that

50
< Kexp(—A8%) for —; < x < 2n,

C
P(supn|R(n,u)|>x+ 3 5

u<sT

which together with (2.14) implies Theorem 1 for 0 < x < 2n. To prove (2.18) we
write

P( ?g;ann(u) - T(u)l2 > x)
< P( sup n|A,(u)| > é\/a)
(2.19) vt
+P(sup | By(u)| > hinx ) + P supn|Ry(u)| > 4 )
u<T usT

+P( sup n|R4(u)| > é\/n_x) + P(supn|R4(u)| > %\/n—x)

u<T u<T
Because of the relations 1 — H(u) > § and

fu dH(y) _  H(w) L
~w(1-H(y))> 1-H(u) "8

(2.20) foru<T,

(2.12) implies that

2 . ~
sup |A,(u)| < < su;;lH,,(u) - H(u)|.

u<T
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Therefore,
fu -—E{{%s/u ———-(—ifl(y—)2s% foru<T,
(2.21) _°°(1_H(y1)) _°°(1_H(y)) .
P( sgl;n|A1(u)| > gv/r—zx—) < P(supnlﬁn(u) - H(u)| > ES\/ﬁx— .

Lemma 2 of Dvoretzky, Kiefer and Wolfowitz (1956) gives that
P( sup n|A,(u)| > é‘/rg) < Kexp(—A8%nx).

u<T
Similarly we get from (2.8) the relation
P( sup n| By(u)| > %v/;x_) < K exp(—A8%nx).
u<T

Applying Lemmas 1-3 we can estimate the next three terms in (2.19) as

P( sup n|R,(u)| > %\/n?) < exp(—Adn) if x > 50/(né?),

u<T

P( sup n|Ry(u)| > é‘/—nx_) < K exp(—A\6%/nx),

u<T
P( supn|R,(u)| > é‘/rg) < K exp(—A6%/nx).
u<T
Since
A§2
K exp(—A8%/nx) < K exp| — Tx)

and
2

exp(—Adn) < exp(— ——2—x) for x < 2n,

the preceding estimates imply (2.18).

To prove Theorem 1 for x > 2n, observe that |F,(u) — F(u)| < 1; hence
by (2.14) the relation |nR(n, u)| > x implies that n|A,(u) — By(u)| > x/2 for
x > 2n. Thus in this case,

x x
P( sup |[nR(n,u)| > x) < P( supn|A,(u)| > —) + P( sup n| By(u)| > —)
u<T u<T 4 u<T 4

< p( sup A, (u) - H(u)| > ﬁ)

8/n
x4
+P(§21;|Hn(u) — H(u)| > g)
8%x?

SKexp(—}\ ) < K exp(—A8%).
n

Theorem 1 is proved.
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PRrROOF OF PrROPOSITION 1. In Section 3 we shall prove with the help of the
Komlés—-Major-Tusnady approximation

LEMMA 4. A Brownian bridge S(t), 0 < t < 1, can be constructed in such a
way that

P( sup \/ﬂS(I-T(u)) - Vn(H,(u) - ﬁ(u))l > (Clogn + z)) < Ke™*2

—oo<u<oo

and

P( sup \/;\S(l - ﬁ(u)) - \/E(Ii(u) - ﬁn(u))‘ > (Clogn + z)) < Ke™**
for all z > 0.

A sequence of independent Brownian bridges S, (t), n =1,2,..., 0 <t <1,
can be constructed in such a way that

P| sup sup

O<k<n —oo<u<oo

k
)y Sj(H(u)) - k(Hk(u) - H(u))

Jj=1 |

> (Clogn + z)log n) < Ke™*?
and

P| sup sup

O0<k<n —oo<u<ow

k ~ ~ ~
Y 81 - H(u)) - k(H(u) - Hyu))

Jj=1

> (Clogn + z)log n) < Ke ™2,

Define the Gaussian processes W(«) and W, (u), n = 1,2,..., as

_ S(H(u)) [ S(H())

)= T mw LT HO)

dH(y)
(2.22)

L S(H(y)) - S(1 - A(y))
—o0 (1 - H(y))

and W,(u) is defined in the same way with S replaced by S,. Here S and S, are
the same Brownian bridges which appear in Lemma 4. Then a comparison of

(2.22) with (2.8) and (2.12) together with (2.20) and (2.21) and the application of
Lemma 4 with z = 8x yields relations (1.11) and (1.12). Then Lemma 5 [proved

dH(y)
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in the Appendix of Breslow and Crowley (1974)] completes the proof of the
proposition. O

LEMMA 5. The Gaussian process defined in (2.22) has the covariance func-
tion given in (1.10).

Theorem 2 is a straightforward consequence of Theorem 1 and Proposition 1.
To prove (1.13), it is enough to observe that

' _ C
P( sup |Vn(F(u) — F(u)) - W(u)|> %logn + x

—oo<u<T

C x
< P( sup |Vn(A(n,u) + B(n,u)) - W(u)|> Elogn + —)

—oo<u<T 2

x C
+P( sup |R(n,u)|> 3t 3

—oco<ux<T )

and to apply Theorem 1 and Proposition 1. The proof of (1.14) is the same.
3. Proof of the lemmas.

PROOF OF LEMMA 1. Since |log(1 — x) — x| < x? if |x| < %, hence

n I(Z,<T)
jgl;l&(u)l <X NYZ)

i=1

if N(Z;) > 1 for all Z; < T. On the other hand, we claim that

(3.1) pP(A,)="P i I(Z,>T) < gn < exp(—Aén).

i=1

Since P(Z;,> T) > 8, P(A,) is less than the probability of the event that a
random variable with binomial distribution with parameters n and 8 takes a
value less than 18n. The probability of this event can be bounded by exp(—Adn);
hence, (3.1) holds. Since N(Z;) are different integers for different i, we see that
on the complement of the set A, .

<

1
2

| o

o0
sup [nRy(u)| <n X
usT j=isnJ

o

Thus

2
P| sup |nRy(u)| > 3 < P(A))

u<T

and this implies Lemma 1. O
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Proor oF LEMMA 2. Because of (2.2),

P( sup |nR,(u)| > x) < (1 - P(B,(T)))

u<T
n I(Zl < u, 6i= 1)
(3.2) P :21;‘2ni§1 nI_{(Zi)
— 2
n (Z,>2Z)— H(Z,
¢ 12> 2)-Hz)] )
j=1 nH(Z;)
By (2.2),

(2> Z,) - n(1 - H(Z,))
n(l - H(Zl))

(33) 1-P(B,T)) < nP( >2,Z < T).

We estimate the right-hand side of (3.3) by first conditioning on Z,. Applying a -
general form of the Bernstein inequality [see, e.g., Rényi (1970)], we get that

1-d(Z,> Z) - n(1 - H(Z)))
( n(1 - H(Z,))
< exp(—Cn(1 — H(t))), ift<T,
=0, ift>T.
Integrating this relation we get that

1- P(B,(T)) < nf_Twexp(—Cn(l — H(u))) dH(u)

>9,2 <T|Z = t)

(3.4) c

< Kexp(— —nS).
2

On the other hand,

n I(Z;<u,d;=1) ( (z,>z;) - HZ)

P nH(Z)

>

j=1

sup 2 =
022 T z)

2
>x)
2
>x)

@5  =F

» Z,<T, 8=1) 2 IZ,>2) - H(Z)
2,;‘:-:1 ﬁ(Zz)n (ng V/;H(Zl)
2 (ﬁ (H,(x) = H(u)) ) N )

8 1- H(z)

< K exp(—A8%x).

The last inequality follows, e.g., from Lemma 3 of Wellner (1978). Lemma 2
follows from (3.3)—(3.5). O

<P
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ProoF orF LEMMA 3. We shall deduce Lemma 3 from

LEMMA 6. Let F, be the empirical distribution function of a sample with the
uniform distribution and h(x, y) a measurable function on R? such that
|A(x, ¥)| < K for all x € R and y € R. Define

u 1
B(u) = [ ["a(x, y)d(Vn (F(x) - ) d(n (E(5) - ).

Then

A
P( sup |B(u)|>x)sCexp(—Ex) forallx > 0.

O<ux<l1

Lemma 6 is a special case of Theorem 1 in Major (1988).
Define the transformations T, and T, from R to [0,1] by the formulas

(3.6) T(x) = H(x), Ty(x)=1- H(x)

and the random wvariables U, ..., U, with the help of the sample
(Zla 81)’ L] (Zn’ 8n) as

T(Z,), if§, =1,
3.7 U={,' ‘
( ) : { T2(Zi)7 if 8,‘ = 0.
Then U,,...,U, is a sequence of independent random variables with uniform

distribution on [0, 1]. Let us denote its empirical distribution function by F,(x).
Define

Ty Y(x) = H (x) = min{y, H(y) = x}
and
= -1 =
T, Y(x) = [1 - H(x)] = max{y,l —H(y) = x}
Observe that T, ! is a measure preserving transformation from

([0, H()], d[Va (F(x) - x)]) to (R, d[Vn(H,(x) - H(x))])

‘

and T, ! from

([H(e0),1], [V (F(z) = 2)]) to (R d|Vi(H(x) - H(x))]).
Clearly
(3.8) Vr(H,(x) - H(x)) = Vn (H,(x) - H(x)) + Vr (A, (x) - H(x)).

By exploiting the measure preserving property of 7, ' and T, ! and by decom-
posing d[vVn (H,(x) — H(x))] with the help of (3.8), we get from (2.5) and (2.7)
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that
—nR,(u) = nBy(u)

j‘H(oo)/‘ T Yy) <u) (Tfl(x) > Ty (y),x < ﬁ(w))
(1 - BH(T ()’
N (T Y(y) < w)I(Ty Y(x) > TTY(y), 2 > H())
(1 - B(T7 ()’
xd[Vn (F(x) - x)]d[Vr (F(y) - »)]
rp I(y < Hw)I(y <z <1- HH\()))
ot (1 - H(A())’
xd[Vr (F(x) — x)]d[Vn(F(y) - ¥)].

This implies that
sup [nR ,(u)]

(39) u<T )
[ [ 1, )l (Fx) = D] d ] (B - 5)]

= sup
u<T

with

I(y<x<1-B(HY())I(y< HT))

(1 - H(H ()’

Observe that |f(x, ¥)| < 1/82 since y < H(T) implies that 1 — H(H Y(y)) >
1 — H(T) = §. We get Lemma 3 by applying Lemma 6 for the expression (3.9). O

f(x,y) =

Proor oF LEMMA 4. Let U,...,U, be defined by formulas (3.6) and (3.7)
and let F(t) be its empirical distribution function just as in Lemma 3. By
Theorem 3 [Komlés, Major and Tusnady (1975)] a Brownian bridge S(¢) can be
constructed in such a way that

(Osgplx/_|S(t) Vn(F(t) - t)| >Clogn+z) < Ke ™2,
Since
Vn (B, (u) - H(u)) = Vn (F,(H(x)) - H(u))
and

v (B,(w) - B(w)) = Vo ((1 - H(w)) - F(1 - B())),

this relation implies the first statement of Lemma 4. The proof of the second
statement is the same, only Theorem 4 of Komlos, Major and Tusnady (1975)
must be applied instead of Theorem 3. O
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