The Annals of Statistics
1988, Vol. 16, No. 2, 587-608

PATHOLOGIES OF SOME MINIMUM DISTANCE ESTIMATORS

By Davip L. DonoHO! AND RicHARD C. Liu
University of California, Berkeley

Minimum distance estimates are studied at the N(8, 1) model. Estimates
based on a non-Hilbertian distance p (p = Kolmogorov-Smirnov, Lévy,
Kuiper, variation and Prohorov) can exhibit very large variances, or even
outright inconsistency, at distributions drbitrarily close to the model in terms
of p-distance. For Hilbertian distances (p = Cramér-von Mises, Hellinger)

" this problem does not seem to occur. Geometric motivation for these results is
provided.

1. Introduction. Folklore has it that minimum distance (MD) estimators
are “automatically” consistent and root-n consistent when the model holds. For
some general results to this effect, see Section 6 of Donoho and Liu (1988). This
paper shows that this “automatic” niceness need not hold when the model is
only approximately true. We will give examples where the asymptotic variance
of some MD estimators is arbitrarily large at distributions arbitrarily near the
normal (6,1) model. We give examples .of other MD estimators which are
actually inconsistent at distributions arbitrarily close to the model, in the sense
of not having an asymptotic limit. The distributions causing these pathologies
are, in each case, symmetric about 6.

These pathologies all involve non-Hilbertian distances, such as the Kolmogorov
and Prohorov distances, for which the minimum distance projection is highly
nonlinear. This nonlinearity can be understood geometrically, by considering the
faceted “shape” of the corresponding neighborhoods. Similar geometric consider-
ations show that these pathologies do not generally occur for MD estimators
based on Hilbertian distances, where the MD projection is generally linear. We
give two examples of Hilbertian MD estimates—the Cramér-von Mises and
Hellinger—where these pathologies do not occur.

It is perhaps worth remarking that for good M-estimators these pathologies
do not occur. For example, the Huber M-estimators are consistent at every
symmetric distribution and have bounded asymptotic variance over various
neighborhoods of the model. Compare Huber (1964) and Bickel (1981). Freedman
and Diaconis (1982) have shown that for some poorly tuned M-estimates, e.g.,
Tukey biweights with ¢ less than the recommended values, a similar incon-
sistency phenomenon will occur. However, even these M-estimators are con-
sistent near the model: The Freedman-Diaconis phenomenon occurs only at
distributions very far from the model.
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588 D. L. DONOHO AND R. C. LIU

Some notation. We use the same notation as in Donoho and Liu (1988). We
observe X, X,,... iid. according to some unknown probability P. We form an
empirical estimate P, of P based on X,, ..., X, (more details follow). P, denotes
the Normal (8,1) model and we form a minimum distance estimate by finding
any solution 4, to

(]-'1) I"(ﬁmpi,,) = n{oin”'(pn’ PI)):

where p is one of the distance functions chosen from the list:

Distance w(P, Q) Weak? Hilbertian?

Kolmogorov sup |P(A) - Q(A)] yes no-
A=(—o00,t]

Cramér-von Mises see (4.12) . yes yes

Kuiper sup |P(A) - Q(A)| yes no

A=(a,b]

Lévy inf(8: P(—o0,t] < @(— 00,2+ 8]+ 8} yes no

Prohorov see (4.8) yes no

Variation sup |P(A) - Q(A)| no no
measurable A

Hellinger see (4.13) no yes

Of course, other choices of p are possible, but we do not study them in this
paper. . .

The form of P, depends on p. If p is a “weak” metric, P, will be just the
empirical measure P, = n~'L}8, . If p is a strong metric, P, will be a smoothed
empirical

(1.2) B =KpP,

where K, denotes a kernel scaled so that it is a density supported on [— A, A],
and the “bandwidth” A, is chosen so that &, — 0 and nh, - co. In either case,
f’n is p-consistent for P if the model holds, and as in Donoho and Liu (1988) this
implies consistency of § when the model holds.

These MD estimators have been discussed in one or another of the following:
Beran (1977), Holm (1976), Kozek (1982), Millar (1981), Parr and Schucany
(1980), Rao, Schuster and Littell (1975).

After Millar, we call the Cramér-von Mises discrepancy and the Hellinger
distance 'Hilbertian and the other metrics non-Hilbertian. Without going into
technicalities, it is clear that there is one major difference between these two
classes of metrics: A Hilbertian neighborhood is round like a sphere in Euclidean
space, while the non-Hilbertian neighborhoods are faceted like a cube or di-
amond.

2. Pathologies of some non-Hilbertian MD estimators. There are two
- kinds of pathologies we shall demonstrate: asymptotic variance unbounded over
any small p-neighborhood of the model and inconsistency at some distributions
in any small p-neighborhood.
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Unbounded variance. Consider the minimum Kolmogorov—-Smirnov distance
(MKSD) estimator of N(6,1) location. At the normal model its asymptotic
distribution involves a nonlinear functional of the Brownian bridge [Rao,
Schuster and Littell (1975)], so the asymptotic distribution is non-Gaussian. It
has a Monte Carlo variance of 1.08 at the standard normal, as reported by Parr
and Schucany (1980), so it is 92% efficient when the model holds, and its
sampling behavior appears quite reasonable.

THEOREM 1. In a Kolmogorov—Smirnov (KS) neighborhood of the N(8,1)
model, there are many distributions at which the minimum KS estimator is
asymptotically normal. Among these, there are distributions at which the
asymptotic variance is as large as desired. Consequently, the asymptotic vari-
ance of the MKSD estimator is unbounded in every KS neighborhood of the
model. )

All proofs are given in Section 4. The proof shows that the phenomenon is
caused by distributions which agree with the model except in the tails. It
suggests that the variance of the estimator would be adversely affected by
outliers and by clumps of observations located slightly beyond the + 30 points of
the normal curve. Tukey calls such slightly aberrant data “fringeliers.” The
proof is based on the Hadamard differentiability technique developed by Reeds
and explained in Fernholz (1983).

This phenomenon also occurs for MD estimates based on Lévy and Kuiper
distances.

THEOREM 2. In every Lévy (resp. Kuiper) neighborhood of N(6,1) there are
distributions at which the minimum Lévy (resp. Kuiper) distance estimate of
location is asymptotically normal with an arbitrarily large variance.

It is proved in the same way as Theorem 1 so we do not give the proof here.
This phenomenon can be understood via Figure 1. The figure portrays a
situation in R2 analogous to minimum distance estimation. Think of the “em-
pirical distribution” as a random point in R2, the “parameter family” as a
straight line in R2 and the “estimated distribution” as the point on that line

F1G. 1.



590 D. L. DONOHO ANDR. C. LIU

closest to the “observed distribution.” Here closest is measured in terms of a
norm on R?2 which, like the Kolmogorov—Smirnov norm, has a unit ball which is
faceted rather than rotund. The figure shows the level sets of the MD functional
in this case. On one side of the parameter family, the level sets are horizontal
lines; on the other, they are vertical lines. Thus the “MD functional” is
piecewise linear, but with very different linear pieces joining together at the
parameter family. Note that the level sets on the “upper side” of the parameter
family make a very small angle with the family, so that small variations in the
position of the “observed distribution” lead to large variation in the functional’s
value. The proof of Theorem 1 rigorously establishes much of the intuition
fostered by this sketch. It shows that the MD functional is Hadamard differen-
tiable (i.e., nearly linear) near (but not on) the parameter family, that very
different differentials occur near (but not on) the family and that some of these
differentials represent linear approximations to the MD functional which make
arbitrary small angles with the parameter family, i.e., have arbitrarily large
asymptotic variances.

Inconsistency. A second striking phenomenon happens for the MD estima-
tors based on variation distance. As in Donoho and Liu (1988), the estimator is
consistent when P, is a smoothed empirical as described in the introduction and
the model holds.

THEOREM 3. Let p. = variation distance. In every p-neighborhood of N(0,1)
there is a density with a nonunique p-closest member of the N(0,1) family. The
density is symmetric and there are two solutions of the MD equation in the
population. These are situated symmetrically about zero. When f’n is smoothed
as in (1.2), these two solutions are the limit points of the sequence of MD
estimates: The estimates oscillate with increasing sample size and do not
converge in probability or almost surely.

Minimum Prohorov distance estimates exhibit similar behavior.

THEOREM 4. Let p = Prohorov distance. In every p-neighborhood of N(0, 1)
there is a distribution with a nonunique p-closest member of the N(6,1) family.
The distribution is symmetric and there are two solutions of the MD equation in
the population. The solutions are symmetrically placed about zero and are
separated from zero. Thus zero is not a limit point of the MD estimate with
increasing sample size; in fact, the estimate oscillates with increasing sample
size and does not converge either almost surely or in probability.

This phenomenon can be understood from Figure 2, which sketches a curve
portraying the parameter family. The closest point on this family is found with a
norm on R? which has a nonrotund unit ball. Because of the curvature of the
parameter family, the closest points on the curve to the point marked P are
actually closer to P than any points in between the two in terms of parameter
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values. The proofs of Theorems 3 and 4 show that exactly this sort of phenome-
non occurs for the minimum variation and minimum Prohorov estimates.

Interpretation. The practical effect in all these cases is that the estimator
does not converge at a uniform root-n rate to an asymptotic limit over a
neighborhood of the model. There is no constant C such that, for example,

ﬁ’I:lP{lé(pn) —-f(P)|<C/n}=21-a

for all P in a small p neighborhood of the model. Minute variations in the
underlying distributions can cause enormous changes in the length of confidence
intervals.

3. Hilbertian discrepancies. We have shown, then, that all the non-
Hilbertian MD estimates in our list can have terrible sampling behavior quite
near the model. For Hilbertian distances, it appears that better properties hold.
We give two results in this direction.

THEOREM 5. Throughout every small enough Cramér-von Mises (CoM)
neighborhood of the N(0,1) model, the minimum CoM distance functional is
uniquely defined, continuous and Fréchet differentiable. The MD estimate is
root-n consistent and asymptotically. normal at every distribution in such a
neighborhood. The asymptotic variance of the estimator over an e-neighborhood
of the model is bounded by v(e) satisfying
(8.1) Iin})v(e) = v(0)

where v(0) denotes the variance at the model.

We note that the Fréchet differentiability mentioned in the proof is with
respect to the Kolmogorov distance. It turns out to be rather messy to give an
explicit evaluation of v(e) in the CvM case.

‘As for minimum Hellinger distance estimation, we know of no proof that at
each distribution in a small Hellinger neighborhood about the N(6,1) model, the
Hellinger MD is asymptotically normal. However, we can say the following.
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THEOREM 6. Throughout every (small enough) Hellinger neighborhood of
the N(0,1) model, the minimum Hellinger distance functional is uniquely de-
fined, continuous and Fréchet differentiable. The MHDE is consistent at every
density in such a neighborhood of the model. The formal expression for the
asymptotic variance of the MHDE is bounded above over Hellinger e-neighbor-
hoods by a v(e) satisfying (3.1).

The technical components of this result are all present in Beran (1977).
Explicit evaluation of v(&) and comparison with the best possible (among regular
estimators) v(e) behavior is given in Liu (1987).

In both proofs, a key condition is that § — u(P, Py) has a unique global
minimum and nonsingular quadratic behavior at the minimum. As the proofs
show, when this condition holds, the MD functional is continuous and differen-
tiable. )

It would be interesting to have some quantitative idea of the size of the
neighborhoods of the model over which this condition holds. In the case where
p = Hellinger distance, geometric insight into this question is available. Let 6 be
the one-dimensional parameter of the (not necessarily location) parameter family
{P,} and let p, denote the density of P;. We introduce two geometrically derived
quantities: p, the minimum radius of curvature of § — p}/? viewed as a curve in
L, and x, the minimum distance between members Fj, P, of the parameter
family at which the distance p(F;, Fy,) has a critical point (i.e., both partial
derivatives d/36, and 3/30, vanish). It turns out that 6 — u(P, Fj) has a
unique nonsingular quadratic global minimum at 0(P) whenever

(P, By) < min(p, x/2).

This can be motivated by Figures 3 and 4. The first shows that if u(P, Py) < p,
the ball of radius p(P, P;) makes only first-order contact with the parameter
family at 4, and so the distance function has a nonsingular quadratic local
minimum at §. The second shows that P cannot have a nonunique closest

FI1G. 3. The distance function p(P, P)) has a nonsingular quadratic minimum if ¢ < p. The large
circle makes second-order contact to the family at the projection of P. Its radius p is the radius of
curvature. The distance from P to its projection is e. The distance function n(P, Fy) has a
nonsingular quadratic minimum if € < p.
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F1c. 4. The distance function p(Fy,, Py 2) has a critical point at distance x. P, equidistant between
Py, and Fy,, has a nonunique projection.

member of the family P, unless P is farther away from the family than
V2 —y4 - x2 ; so in this case the global minimum is unique.

In short, throughout any tube of radius ¢ < min(p, \/2 ~ Y4 — x% about the

parameter family {F,}, the key condition for continuity and differentiability of
the MHD functional will hold. At the normal location model, we can compute
x=v2 and p=1/V3, so the MHD functional is well-behaved over large
neighborhoods of the model in that case.

We would like to get some idea of the size of the CvM neighborhoods over
which the minimum CvM functional is continuous and differentiable. However,
we have not been able to obtain any geometric insight into this question.

4. Proofs.

ProOF OF THEOREM 1. It will be convenient to state the proof in the
language of distribution functions. Let ® denote the distribution function of
N(8,1). First, note that there are distribution functions in an ¢ KS-neighborhood
of ® equal to ® in the middle of their range, and so that F — ® has a unique
locally quadratic maximum in the left tail and a unique locally quadratic
minimum in the right tail.

For example, let z = ® (¢) and define the distribution F with density f via

€

1-—c¢
f(x) = ¢(x)’ x € [z’ _z]’

€

¢(x - 22)’ x <z,

o(x + 22), x> —z,
— &

where ¢ denotes the N(0,1) density.
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By Lemma 4.1, it makes sense to define §(G) as the unique root of
A(G,0) = 0;
the minimum KS distance estimator is §, = d(F,), where F, is the empirical
distribution function.

We follow the approach of Reeds to prove that 5,, is asymptotically normal;
that is, we prove that § is a Hadamard differentiable functional at the F
introduced previously.

By Lemma 4.2, A is Hadamard differentiable at (F, §,), where 0, = 0 is the
root of A(F, 6,) = 0 and differentiability is in the sense of Fernholz (1983) with
respect to C[0,1]. The Lipschitz bounds established in Lemma 4.3 allow us to
apply the implicit function theorem of Fernholz [(1983), Theorem 6.2.1] to
conclude that 6(G) is Hadamard differentiable at F over C [0,1]. Let F* € C(R)
be the smoothed version of the empirical distribution defined in Lemma 4.4.
Define §* as the root

A(Ex,6x) =o.
The differentiability of § over C[0,1] implies that
(62 - 8) = up(E* = F) + o (|E2 - FI).
Here uj is the linear functional “
(F* = F)(x,) = (B - F)(x,)
f(x0) + f(x,) ’

where x,, is the point near 2z at which the maximum (F — ®)(x) is attained and
x, is the point near —2z at which the minimum (F — ®)(x) is attained. This
means that én* is asymptotically normal. Applying Lemma 4.4, we conclude that
0;* approximates 0; so well that §n is also asymptotically normal. Thus

Vn (6, = 8) »p N(0, )

"“F(Fn* - F) =

with
, (1 —2¢)
4f(x0)2

[using the symmetry f(x,) = f(x,)]. Now as f(x,) < &¢/(1 — €)¢$(0) by construc-
tion, we have

™
02> :(1 - 2¢)(1 — &)’
which is arbitrarily large for small e. O

LEmMMA 4.1. Put
D*(H) = sup H(x), |H|= sup|H(x)|
X X

and
A(F,0) = D*(F - Fy) - D*(F, - F).
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Suppose that {F,} is a location family Fy(x) = Fy(x — ). Then:

(i) A(F, 0) is nondecreasing in 0. It tends from —1 at 6 = —cc to 1 at
0 = oo. It is strictly increasing in 0 if Fy(x) is strictly increasing in x.
(ii) If Fy is uniformly continuous in x, A is a uniformly continuous function
of 4.
(iii) If F, is uniformly continuous and strictly increasing, the minimum KS
distance estimator is the unique root of

A(F,,0) = 0.

Proor. Fix F. Note that for a fixed x, (F — F,)(x) is increasing in 6, strictly
so if Fy(x) is strictly increasing in x.

(i) Note that as (F — F)(x) is increasing in x for each fixed x, the supremum
and infimum over all x are both increasing as well and strictly increasing if F, is
strictly increasing in x. The limits at § = + oo are evident.

(ii) As |F — G| = max(D*(F — G), D*(G - F)),

|D*(F — Fy) - D*(F — Fp,,)| <|Fy — Fy,.,
|A(F,8) — A(F,0 + t)| < 2|F, — Fy,,|.
As F, is a location model, the uniform cohtinuity of F, in x bounds the right
side of these inequalities.

(iii) Note that
(4.1) |F — Fy| = max(D*(F — Fy), D~ (F, — F)).

As D*(F — Fy) is strictly increasing from 0 at § = —o0 to 1 at +oo, and
D*(Fy — F) is strictly decreasing from 1 at —co to 0 at co and both are
continuous in 8, there is exactly one value of 8, §, at which they are equal. §
evidently minimizes (4.1), but it also satisfies

A(F,8) =0

as well. As A is continuous and monotone, this is the unique root of A(F, -). O

LEMMA 4.2. Let F and F, be continuous, and suppose that A = F — F, has
unique maxima and minima (at x, and x, say). Suppose that for small enough
e > 0, there is 6 > 0 with

A(x) > A(xy) —8=|x—x,| <e¢

and similarly for x,. Suppose that Fy is a location family [Fy(x) = Fy(x — 0)]
and that F, has a uniformly continuous density. Then the functionals
D*(H - F,), D~(H — F,) and A(H, ) are Hadamard differentiable at F [resp.
(F, 8,)] in the sense described in Fernholz. That is, the induced functionals on
C[o,1],

™(G) = D*(G*F - Fy),

7 (G) =D (G- F - F,),

6(G,0) =D*(GeF—-F)) — D (G°F—F,),
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are Hadamard differentiable at G = U [G = (U, 6,)], where U denotes the
uniform distribution on [0, 1].

ProoOF. We will reduce all the cases to the Hadamard differentiability of =+
at U. Consider

6*(G,0) =D*(G-F - F,).
This can be written as .
(G, 0) = D*(A(G, 0))
where A(G, §) = G o F — F,. We claim that A: D[0,1] X R — D[0, 1] is Fréchet

differentiable with respect to the sup norm. Indeed, A depends in a bounded
linear fashion on G; for the §-dependence, note that

Sllllplf'b(u) — Fy(u) — (0 - 6,) fo(u)]

(4.2)
=10 — Gy|sup | fo(x + $(x)) — fo(x)],

where |{(x)| < |0 — 6,|. But f, is assumed uniformly continuous, so that
sup| fo(x + §(x)) — fo(x)| < sup sup |fo(x + h) — fo(x)| = o(1)
X x

<|0-6y|

as 0 — 6. Thus (4.2) is o(|0 — 6,|) and so 8 — F, is Fréchet differentiable.

As A is Fréchet differentiable at (U, §,), the chain rule of Fernholz (1983) will
imply that o¢* is Hadamard differentiable at (U, 6,) if D* is at A(U,6,).
Similarly, ¢~ is Hadamard differentiable under a condition on D~. Because of
the symmetry in the hypotheses of the lemma, a proof for D* will apply to D~

as well.
Let u,= F(x,). By hypothesis and continuity of F~! at u,, we have a
modulus w,( k) with

lu — uo| < wp(A(u) — A(u,))

and wy(h) = 0 as A — 0 [where A = A(U,0) = F — F]. Let Ik be a compact set
in C[0, 1], that is, a set of uniformly bounded and equicontinuous functions, with
bound b, and modulus

wi(h) = sup sup|g(u + h) — g(u)|.
g€EK u

Take any g in K and consider D*(A + tg). Now
D*(A + tg) < D*(A) + tby.
Let v, be any maximizer of A + £g, and note
(A + tg)(vy) > (A + tg)(uo) = A(u,) — thg,
(A + 2g)(vo) < A(uy) + b,
A(vy) = A(ug) — 2tbg.

This bound does not depend on g: It is uniform over K.
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Now as g(v,) — 8(ug) < wg(|vy — ue|) we have
(A + tg)(vo) < (A + tg)(u,) + (A(wo) — A(uo)) + g (wa(2tby)).
Using A(v,) < A(u,) and (A + £g8)(v,) = (A + tg)(u,), we get
0 < (A+1tg)(vy) — (A + 1g)(uy) < tog(wy(2tby)).

Again, this bound does not depend on g: It is uniform over K. Using now
D*(A + tg) = (A + tg)(v,), etc., the bound can be written

sup | D*(A + tg) — D*(A) — tg(uo)| = o(2),
g€k

which establishes the Hadamard differentiability of D*(H) at H = A, with
derivative H — (H — A)(u,). O

LEMMA 4.3. (i) Let F, be the Gaussian translation family Fy = ®(- — 0):
(4.3) |A(Gy,0) — A(G,,0)| < 8|G, — G,|.

(ii) Let F be as in Lemma 4.2. Let 6, be the root of A(F,8) = 0. For small
enough 8 > 0, there are A and B > 0 with

(4'4) A|0_71|$|A(G,0)_A(G"'I)lﬁBlo_’”
for all G such that |G — F| < 8 and 8, n such that |60 — 6| < 8, |n — ;| < 8.

ProOOF. (i) Note that D™ is Lipschitz with constant 2. As A is a sum of two
D* terms, the expression (4.3) involves four D* terms and so has a Lipschitz
constant no bigger than 8.

(ii) From the Lipschitz property of D* we have

IA(G,6) - A(G,n)| < 8|F, - F,|.
But
|Fy— F,| < {supo(x)}10 - n,

where ¢ is the density of the Gaussian. It follows that we may take B = 8/ V27
in (4.4).

As for the lower bound, note that if |G — F| <8 and |0 — §,| <, etc.,
|G- Fy— F— Fy| <cd for some c<B+ 1 Put § =cé. As in Lemma 4.2
we have that the maximum D*(G — F;) is attained in some interval I =
[xo — €,x, + '] where & =¢(6'). Now as d/dO(G — Fy)(x) = —¢(x — 6),
we have that for each x € I and each 8 € [, — §, §, + 8],

d
(G- B)) < —a,

where
co=inf{¢p(x):x— €& —8<x<x,+¢&+8}>0.
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For 6 > n we have
D*(G - F,) - D*(G - Fy) > cyln - 0l
We can argue similarly for D*(F, — G), getting
D*(F, - G) - D*(F,~ G) 2 cf — 1
and so concluding that we may take A = ¢y, + ¢;. O
LEMMA 4.4. Let UX* be the distribution which places a uniform distribution
of mass (n+ 1)1 in each of the n + 1 intervals [y,_,, ;] [where y, =0,

Vo1 =1, ¥, = F(Xy) and X,,..., X, are i.i.d. F]. Let F* = U*° F and 0}
be the root A(F.*,8*) = 0. Suppose

V(67 - 8,) ~p N(0,0%).
Then also

\/;L_(én - 00) -p N(0,02),
where é* satisfies A(F*, 5*) =

PROOF. Let 2, ; denote the event that 1] <8, |§*| <8and |F,-F| <§+
1/n. Conditioning on this event, we can apply (4.4) to conclude that

|6, — x| < A7|A(F,,6r) - A(F,,6,)|
=AY A(F,,60r)]
= A7 A(F,,6%) - A(F*,6%)|,

where A is the constant introduced by Lemma 4.3 in connection with (4.4). By
(4.3), we have

8
— * —_— —_ *
|6, = 0x| < 5 1F - Er|
8|U U*
—A n n'
< ’
nA

where U, = F, o F~1,
Since by Glivenko-Cantelli P($, ;} — 1, we have

Vr (8, - ) = o,(1).
The result now follows by Slutzky’s theorem. O
ProoF oF THEOREM 3. We will state this proof in the language of density

functions, and do computations in L, distance, which is proportional to varia-
tion distance. Let ¢ denote the N(0, 1) density.
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Let 8 > 0 and let ¢ < & and x, = x(, ¢) be numbers to determine. Define f;
by _
o(x + 98), xX<xy—8+e,
fs(x) = o(x,), Xo—8+e<x<xy+39,
o(x — 98), X, +8<x<0,

for x < 0 and by symmetry for x > 0. This is a positive integrable function,
actually a density when ¢ and x, are chosen appropriately. Its general ap-
pearance with the values of ¢ and x, we intend is portrayed in Figure 5. Note
that f; is above ¢ in the tails, below ¢ in the center and flat where the two cross.

According to Lemma 4.5, with appropriate choice of ¢ and x,, we can insure
that f; is a density. The lemma also shows that

A9) = [I1:(2) - o(t - 8)|dt

is an even function, is constant on [0,28 — ], is decreasing on (28 — ¢, §) and
increasing on [28, o). Consequently, there are two minimizers of A(8): 8 = 28
and 6 = —248. Thus there are two solutions of the MD equation in the popula-
tion, as claimed.

By Lemma 4.6, the function

A(0) = [IF.— 9]

has, with high probability in large samples, its minima near either one of the two
minimizers in the population. Moreover, in a given large sample, all minimizers
occur (with high probability) near only one of the two population minimizers. By
symmetry of f; and of ¢, the law of A (¢) is invariant under reflection ¢ - —¢,
and so any sample minimizer is equally likely to be close to one population
minimizer as the other. Let (7,, be defined by a rule which selects the sample
minimizer or which in the case of ties selects from among ties in some (measur-
able) way. Then the distribution of (7,, converges to a pair of equal point masses
located at the two population minimizers and § does not converge in probability.
But 6 cannot converge almost surely either, for it would have to converge to 28
with probability { and —28 with probability 3; then the tail field would contain
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events of probability neither zero nor one—contradicting the zero—one law for
independent observations. Thus the sequence of minima alternates between —2§
and 26 and does not converge. O

LEMMA 4.5. For any value of ¢ < 8§ and x,, A is minimized at § = 26 and
0 = —248. For appropriate values of ¢ <8 and x,, fs is a density; as 6 - 0,
fs > oinL,.

Proor. A(8) = (2 — 2A(0))/2 where A(0) is the area under the graph
of min( f, ¢(- — 0)). By inspection of Figure 5, one sees that this area is
constant for @ € [—28 + ¢,28 — €], is decreasing (increasing) on (28 — ¢,26]
([—26, —26 + ¢)) and increasing (decreasing) on (28, o) [(— o0, 28)].

The integral of f; may be calculated as .

1+ 2(28 — e)o(x,) + 2 f:°”¢(t)dt - f_s;p(t) dt.

Fixing 8 and ¢ < §, this integral is a continuous function of x, which is greater
than 1 for x, > — ylog(4) and is less than 1 for x, large. It follows that at some
x = x4(e, 8) it is 1. To see that as § — 0, f; =, ¢, note that

f|fs—¢|=4L0¢“fs

= (4 — ®(xy) — ((x0)8 + ®(8) — ®(x,))) by calculation,
which is O(8) as § — 0.0

LEMMA 4.6. A, converges uniformly to A with probability 1. For large
enough n, any minimizer of A, is close to either 26 or —24. For large n, the
global minimizers of A, all occur near 28 with probability approaching };
similarly, they all occur near —28 with probability approaching ;.

Proor. Two applications of the triangle inequality give
(4.5) |A(0) = A®)| s &= [I £~ Fo-

Inspection of A shows that there is a modulus w, with
(4.6) dist(x,{—28,28}) = min(|x — 28], |x + 28]) < w\(A(x) — A(28))

and w,(0*) = 0. From (45) we have A(f,) < A(28) + 2¢,. Therefore
dist(f,, {28, —26}) < w,(2¢,). By Theorem 3.1 of Devroye and Gyorfi (1984),
e, » 0 almost surely and in probability; this proves the first and second
statements.

For the third statement, we only give a sketch. Similar arguments occur in
Freedman and Diaconis (1982). From the last paragraph, any sample minimum
of A, will happen to be near either 28 or —28. Pick a small neighborhood I* of
28 and let M} be any minimum of A, on I*; let M, be the analogous quantity
for a neighborhood I~ of —28. We wish to show that P{A ,(M,[) # A (M)} -
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1. This will establish that all global minimizers of A, occur only in one of I* or
I". Using Hadamard differentiability of the functional min, _,A(0) at f; and
stochastic equicontinuity of the (suitably normed) sequence of processes
{Au(2) — Ay28),t eI} and {A(¢) — A, (—28),t < I} one can justify the
following. There exists a sequence of normalizing constants a, (depending on fss
on the bandwidth %, and on the kernel k) so that:

(i) The behavior of A, (M) — A (M) tracks that of A ,(28) — A ,(—26) to
within o,(a,; 1/?). ‘

(ii) We have the limit theorem

a2 (A, (28) — A, (—28)} - N(0,1).

Using these two claims, we have that for any 5 > 0,

liminf P(A,,(M;}) # A,(M;)} > limint P{|A,,(28) — A(~28)]| > na;'/?)
n n

= P{|Z| > n},
where Z is distributed N(0,1). But as n - 0, P{|Z| > 5} — 1 and so
lim P(A, (M) # A, (M) = 1.
n—oo
The verification of the two claims is routine but tedious. The key idea is to
establish an analog of Lemma 4.2 for the functional A,(8) showing that

A ,(8) — A(9) is approximately a linear functional of fn — fs and to invoke
central limit theorem for the smoothed density estimate. O

PROOF OF THEOREM 4. Let p denote Prohorov distance (4.8b). Fix ¢ > 0 and
put

®(x + ¢), x< —ec,
F(x) =1, x€[-¢cl,
®(x - o), x>c,

where ¢ = c(¢) is chosen so that p(F, ®) = e.

We claim that any p-closest points to F among the normal distributions ®, are
at t = —c and +c, even though F is symmetric about 0. Also, we claim that any
p-closest point to the empirical distribution F, in a sample of size n is very near
either ¢ or —c. These claims are established by Lemmas 4.7 and 4.8. From this
point on the argument is the same as that of Theorem 3. O

- LEMMA 4.7. Put A(t) = p(F, ®,). The minimizers of A(t) are at —c and
+ec.
PrOOF. Define
(47 A(t,8) = ing[As] -9,[A],

where the infimum is over all measurable sets A and A® = {x: dist(x, A) < §8}.
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We claim that Prohorov distance p(F, ®,) is given by

(4.8a) 8* = inf{6: A(¢,8) < —6}.

This can be seen by comparing (4.7) with the definition of Prohorov distance
(4.8b) p(F,®,) =inf{8: ®[A] < F[A®] + 6 for all A measurable}.

Note that —A(¢,0) is the variation distance between F and ®, and that A(¢, 8) is
monotone increasing in & for ¢ fixed. Moreover, as § - o0, A = 0 (with this
choice of F and ®,) for ¢ fixed, so (4.8) makes sense.

To compute A(t, §) note that the densities f and ¢, compare as
(4.9) f(x) = ¢,(x) onsupp(f),te[-c,c].

Let A be a set and let B be the largest subset of A with B? disjoint from
supp( f ). We claim that ’

(4.10) F[A%’] - ®[A] = F[B®] - o[ B].
To see this, let C be a subset of [¢ — 8, c0) and use (4.9) to get
F[C’]l =z [C]l=z9,[C], t<ec

Now let C = (A — B) N R™* and conclude

F[(A-B)’|29,[a-B], te[-ccl
But

F[A’-B’]=F[A’] = F[(A - B)’],

where the equality follows because F[B®] = 0 [i.e. B’ N supp(f)= @]. Com-
bining the last two displays we have

F[A’-B’]>&,[A-B], te[-cc],
which gives (4.10). Comparing (4.10) with (4.8), we see that in computing A(t, §)

it suffices to consider the infimum over only sets B of the form F[B®] = 0. The
infimum will be attained by any B solving

mg.xtbt[B] subject to F[B®] =0.

Clearly this maximum is attained when B’= R — supp(f), ie., by B =
[—c+ 8,c — 8] Then

(4.11) - A(t,8) = -®,[-c+8,c— 8]

for t€[—c,c]. For a fixed value of 8, A(¢, 8) is maximized at ¢ =0 and
minimized at ¢ = +c. It follows that §* defined by (4.6) is largest at ¢ = 0 and
smallest at ¢ = +c. Consequently, A is minimized on [—¢, ¢] at + ¢ rather than
at 0. The argument that + ¢ are global minimizers of A is routine and we omit it.

m}

LEMMA 4.8. Put A,(t) = u(F,, ®,). A, converges uniformly to A, almost
surely and in probability. Any minimizer of A, is, for all large enough sample
sizes, close to either c or —c. As n — o, the chance that all minimizers occur
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near c approaches 0.5, and the chance that they all occur near — c approaches
0.5 as well.

ProoF. With two applications of the triangle inequality we get

I“(Fn’q)t) - "'(F’ q)t)l = I-"(Fm F)
so that |A,(¢) — A(?)| < u(F,, F). By Glivenko-Cantelli, u(F,, F) — 0 almost
surely and in probability, so the first statement is proved. Inspection of A shows
that there is a modulus w, with

dist(x, {c, —¢}) < w,(A(x) — A(c)).

Combining the two, we get that any minimizer §,,* of A, satisfies

diSt(én’ {c’ _c}) = ""A(zl"'(Fn’ F))

As u(FE,, F') = 0 as. this completes the proof of the second statement.
For the third statement, we only indicate the idea of proof. Let 8 > 0;
suppose we could show that

min A,(¢) — min A,(2)
(A) |t—c|l<d lt+c|<8

= An(c) - An(_c) + OP(IAn(c) - An(_c)l)
and
(B) P{A,(c) # A, (-c)} = 1.
Then it would follow that for M,’, any minimizer of A, on |t — ¢| < § and M,,,
any minimizer of A, on |+ ¢| < §,
P(A(M) # A (M) - 1.
Thus only one of M} and M, can be a global minimizer.

Now assertion (A) is a form of stochastic equicontinuity of A, at +c¢; the
second assertion is a weak form of “limit theorem” for (A ,(c), A ,(—c)). Unlike
the case in Lemma 4.6, no central limit theorem will be available here. Rather, as
we have approached it, one compares A,(c) — A, (c + ¢) (¢ < 8) with A ,(¢c) —

A(—-c) by explicit computations. These however are tedious and unenlightening.
Compare also Kersting (1978). O

PrOOF OF THEOREM 5. Our proof will actually show that the minimum CvM
distance estimator has the indicated properties over Kolmogorov neighborhoods
of the model. However, we have the inequalities

|F - G|”*/32 < u(F,G) <|F - G|,

where |F — G| = sup,|/F(¢) — G(t)| and p denotes the Cramér-von Mises dis-
crepancy

(4.12) w(F,G) = [(F(¢) - G(¢)) dG.

This inequality is valid whenever G is continuous; see Choi and Bulgren (1968).
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Putting G = @, we see that a Kolmogorov neighborhood of size ¢ about ®
contains a Cramér-von Mises neighborhood of size ¢>/2/ 3.

Lemma 4.9 states that the minimum CvM functional is | - |-continuous and
differentiable, and the minimum CvM estimator is asymptotically normal,
throughout a | - |-open set about any F satisfying the “key condition” referred
to in the text, with asymptotic variance given by

Var(d, F) = EgIC} ,.

Lemma 4.10 shows that the mapping F' — ICy . is a continuous mapping from
the set of distributions on R equipped with | - |-norm, to (L (R), | - |). But if two
influence curves are closer than ¢ in the uniform metric, their corresponding
L,(F) norms (i.e., the asymptotic standard deviations of their respective func-
tionals) are closer than e, no matter what F is. Consequently, the asymptotic
variance of § is | - |-continuous at the model.

The relation between CvM and Kolmogorov distance implies that Var( 6, F)is
CvM-continuous at the model, and the theorem is established. O

LEMMA 4.9. Suppose that F has a unique p-closest point 0(F) on {®} and
that A(0) = p(F, ®,) has a nonsingular quadratic minimum at 0. Then:

(i) These conditions continue to hold in a | - |-open set about F.
(ii) 0 is continuous and Fréchet differentiable at F.
(iii) 6( E,) is asymptotically normal at F with asymptotic variance E FIC; 7

PrOOF. Put A(F,0) = u(F,®,), NF,0)=(3/d0)A(F,0) and IF,0)=
(8/36)\(F, 0). Explicit computations [of the same kind as underlying the
analysis of L(f) = I(F, 6(F)) in Lemma 4.10] imply that all these functions are
jointly continuous in F and 6, where the | - | topology on F is used. Conse-
quently for G in a small neighborhood N around F, on a small interval I
containing §(F'), we have that I(G, t) is bounded away from zero and that
A(G, -) has one zero crossing on I. Thus A(G,-) has a single nonsingular
quadratic minimum on I for all G € N.

Actually, for all G near enough F, A(G, t) has its global minimum on I.
Define

A,(t) = A(G,t) — A(F,4(F)).
Now for each 5 > 0 there is a K = [— &, k] with
Ap>1- A(F,6(F)) -8, tekK.
Note that
|A(G’ t) - A(G’ t+ h)l Slq)t - (I>t+h|
so that A, is uniformly continuous. Now by assumption, A(F, ﬁ(F)) < A(F, t),
t & I; as A is uniformly continuous this implies that
AF(t)2p>07 tEK—I,
so we have
Ap(t)=p, te&l
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Now let |G — F| < p/2. Then from
|A(G,t) — A(F, t)| <|F - G|
we have
Ag(t) = p/2, tel.
However
|A(G,6(F)) — A(F,0(F))| < p/2

so min, A(G, t) is attained only in I. This, combined with remarks of the
preceding paragraph show that A(G, -) has a unique global minimum which is a
nonsingular quadratic, at least over
Ny,={G:G€ Nand |G - F| <p/2}.

This establishes part (i) of the lemma.

Now we have that for G € N, 6(G) is the unique solution to

A(G,t) =0, tel
Straightforward calculations as in Lemma 4.10 will give the Lipschitz bounds
Al6 -] <NG,8) — \(G,n) < B|§ — |

for GEN,, §>7 and 0,y € I. [Here A =infs.y ,c;UG,t) will do, for
example.] And NG, 8) — N\(F, 6) < C|F - G|.

Combining these bounds with Fréchet differentiability of A(G, t) at G = F,
t = 0(F), we can apply the implicit function theorem of Fernholz [(1983),

Theorem 6.1.2] to conclude part (ii) of the lemma.
[The argument that A(G, t) is Fréchet differentiable goes as follows:

MG, 6) =2[(G - ®)¢; - 2[(G - @)°%;.

This expression is made up out of elementary parts which are easily seen to be
Fréchet differentiable. In detail

MG, t) = (A(G, t), ¢}) — (A(G, t)*, ¢}),

where A(G, t) = (G — ®,) and (H, f ) denotes the linear pairing [Hf. Now A and
A? are obviously Fréchet differentiable mappings between L (R) and itself. The
functionals

(H,t) > (H,¢,), (H,t)>(H, ¢)
are Fréchet differentiable at (H, ¢) for all H € L, and in particular for H =
A(F, (F)) (vesp. H = A(F, (F))*)]
Part (iii) of the lemma is an automatic consequence of part (ii), as explained
in Fernholz (1983). O

"LEMMA 4.10. Suppose the same conditions on F as in Lemma 4.9. For each
e > 0, there is a 8 > 0 so that if

|F-G|<8,
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then
IIC&F— IC§,G| < E.

PROOF. By calculation, the Gateaux derivative of § is
I1Cy x(t) = ¥(F, t)/L(F),
where
¥(F,0) = [ 6 -2F- o),
6 = 6(F) and
L(F)=1(F,¥§)
= 2[4}~ 6[(F— @)ag05 + [(F~ 05)6;.

Now F — L(F)is | - |-continuous. Write it as L(F) = 2/¢> — 6L ,(F) + Ly(F).
Then

Ly(F) = Lo(G) = [(Fyr) = Goe)) %
[where F, denotes the translate F(- — ¢)]

= f (Fi(F) - Gé(F))¢¢' + / (Gé(p') - Gé(a))¢¢'

<|F =G| [lo¢'| +|6(F) - 6(G)| [|(#)" + 99"].

As 4§ is continuous at F, this establishes the continuity of L,. Ly is continuous
by a similar argument.
As for ¥, we have

[¥(F, ) = ¥(6, 8)| < 4 sup|¢/(x)])|6(F) - 6(G)]

+4{ [161)(16 - F1+16(F) - 6(6) | supe(x)

so that F —» W¥(F,-) is a continuous mapping from distribution functions
equipped with | - | to C(R), also equipped with that norm.

By hypothesis, L(F) # 0 [i.e., A(F, -) has a nonsingular quadratic minimum
at 4], so

is likewise a continuous mapping at G = F. O

PRrOOF OoF THEOREM 6. A proof can be given paralleling that of Theorem 5
practically line-by-line. Let p = Hellinger distance

(413) W(P, @) =2 - 2 [,
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where p is the density of the absolutely continuous part of P. Put A(P,0) =
p(P, P,). The first part of the theorem follows by noting that A(®,-) has a
unique global minimum at 0 at which the behavior is nonsingular quadratic.
Applying Lemma 4.11, § is continuous and differentiable in a neighborhood of ®.

For the second part, note that if P has a density, p( f’n, P) - 0. Indeed, by
Theorem 3.1 of Devroye and Gyorfi (1984), the empirical density estimate
converges in variation norm to P. Together with the relation p? < variation and
the continuity of 6, this establishes the second part.

The formal expression for the asymptotic variance of § in the N(6,1) model is
[see Beran (1977), Theorem 4]

vat0.7) = (o))

which is obviously continuous in the Hellinger topology at the model. This
establishes the last part of the theorem.

LEMMA 4.11. Suppose that A(P,0) has a unique global minimum at 6 at
which A(P, t) is locally quadratic in t. Then:

(i) This condition continues to hold in a Hellinger open set about P.
(ii) § is continuous and Fréchet differentiable at P.

A proof of (i) can be given, paralleling that in Lemma 4.9 line-by-line. As for
(ii), we note that the result is essentially contained already in Theorems 1 and 2
of Beran (1977), so we omit the argument.
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