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GENERALIZATIONS OF ANCILLARITY, COMPLETENESS AND
SUFFICIENCY IN AN INFERENCE FUNCTION SPACE

BY CHRISTOPHER G. SMALL AND D. L. McLEISH
University of Waterloo

In this paper we introduce E-ancillarity and complete E-sufficiency,
natural extensions of the definitions of ancillarity and complete sufficiency to
a space of estimating or inference functions. These are functions of both the
data and the parameter. We begin either with a space of all such functions or
with a subset defined to exploit special features of a model; for example, we
allow restrictions to inference functions that are linear in the observations or
linear in the parameter. Subsequently, a reduction analogous to complete
sufficiency is carried out, and within the complete® E-sufficient space of
inference functions, one is chosen with properties that we deem desirable.

1. Introduction. This paper extends the concepts of ancillarity, sufficiency
and completeness from statistics to inference functions, i.e., functions (6; X) of
both a parameter 6 and the data X. The extensions so obtained will be shown to
be applicable in a wider context than the standard notions based upon distribu-
tional assumptions. The standard statistical concepts of ancillarity and sufficiency
are defined in terms of the distributions or conditional distributions of statistics.
However, they can also be motivated by properties of expectations. For example,
suppose we observe X, a random vector in R¢, where the distribution P of X is
restricted to a class & of probability measures. A statistic T(X) is ancillary if its
distribution does not depend on P. Alternatively, let % be a class of square-inte-
grable functions of X. Let 7 be the class of all g € %, which are functions of X
through 7(X). Then the ancillarity of T implies that E,g(X) is constant
independent of P for all g € &. In fact, this condition is a generalization of
ancillarity [cf. Lehmann (1981)] in the sense that an ancillary statistic generates
such a class ./, whereas the converse is not true.

By Basu’s theorem, if a statistic S is complete sufficient, it is independent of
every ancillary statistic 7. Again, this condition can be written in terms of the
expectations over a class of functions; in particular, for every ancillary T and
functions g(T'), A(S), it follows that Cov,[ A(S), g(T)] = 0.

Without loss of generality we can assume that % is a vector space of
functions. It can be seen in this setting that the class of functions g in %, which
are functions of the ancillary T, is a linear subspace of the vector space %. It
also follows that the subspace of functions of the complete sufficient statistic S
will be elements of the orthogonal complement of this linear vector space. This
relationship is the prime motivation for a definition of ancillarity and sufficiency
in this paper.
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Throughout this paper, we deal with a space of functions of both the data and
a parameter #, which may be used either as an estimating function to determine
a point estimate or as the basis for constructing tests or confidence intervals for
the parameter. Clearly, the score function S(6; x) = d/38log f(x; 6) has a
special role to play in such an inference function space. The score function has
several advantages not enjoyed by alternative generators of the minimal suffi-
cient partition of the sample space. Under regularity, its expectation is zero and
it is square integrable; in fact, its variance, the Fisher information, is related to
the asymptotic variance of the maximum likelihood estimator more closely than '
is the variance of a finite-sample maximum likelihood estimator.

Similar attempts to provide a satisfactory extension of the notions of ancillar-
ity and completeness in terms of expectations have been made before [cf.
Lehmann (1981)]. These attempts have generally met with somewhat mixed
success. Our theory differs in two notable ways from that of Lehmann; we apply
the theory to linear vector spaces of estimating functions or, as we shall call
them inference functions, functions y(8; X) jointly of both the data and the
parameter. The second apparently minor observation, but one that is critical to
the theory, is to note that the generalization of ancillarity to be defined will
require that the class of such inference functions be a closed linear space. The
relevance of this will appear in the next section.

Other theories have been developed in the space of estimating functions [e.g.,
McLeish (1984)]. Godambe (1960) suggests an efficiency criterion eff(y; 0) on a
space of unbiased inference functions ¥ and selects one, y say, so as to
maximize the efficiency. By unbiasedness of ¢ € ¥ we mean that E,¢(8; X) =0
for all §. Whereas 6 may not have an unbiased estimator, unbiased inference
functions exist under fairly general circumstances. Note that provided there is
sufficient regularity to ensure that derivatives and integrals can be exchanged,
then the score function S(8; X) will be unbiased in a one-parameter model.
Similarly, the function ¥(8; X) = f(X) — Ef(X) will be unbiased. The
efficiency eff(y; ) in the sense of Godambe (1960) provides a criterion for
selection among such functions. If ¢*(8) maximizes eff(y; 6) for every parameter
value 6, then an estimator §* could be chosen so that ¥*(6*) = 0. Such an
ordering of the inference function space has some obviously desirable features,
especially if, as in Godambe’s case, it circumvents the need to explicitly obtain
the family of probability density functions. One might also hope that such a
theory would circumvent the regularity requirements of maximum likelihood
estimation and provide a satisfactory theory of inference under more general
circumstances. Unfortunately, this theory has its own difficulties with regularity.

Godambe (1960) has suggested the efficiency criterion

(E,8/8604(8; X))*
E%(6; X)

and has shown that within a wide class of unbiased inference functions, eff is
maximized by inference functions of the form

¥*(0; X) = k(8)S(6; X),

eff(y; 0) =
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where k(6) is arbitrary. However, the following example illustrates that this
efficiency criterion also has problems with nonregular examples.

Suppose X has distribution that is uniform on [0, §]. We wish to estimate the
parameter §. Note that the score function S(8; x) = d/d@ log f(8; x) is defined
for x < 6 and equals —1/6 there. Thus there is no version of this derivative that
is unbiased; the usual regularity conditions insuring that E,S(8; X) = 0 fail, in
this case. Consider the unbiased estimating functions defined for all 1 < n < o

by
x r
C(l r 0) ,
x 1\"

( 8 ) o F
where r = n'/2 and with C chosen so that the functions are unbiased. Then v,
are continuous functions of x > 0 such that the efficiencies eff(y,; §) = « as
n — oo. However, estimators corresponding to these estimating functions, ob-
tained from the equations ¥ ,(6; X) =0, satisfy § - oo as n - . A more
reasonable estimator, such as the maximum likelihood estimator X, corresponds
to the case n = 1.

It is quite natural that an attempt to provide an ordering on the space of
inference functions is bound to fail to generate sensible estimators in some
regular and nonregular examples. Godambe’s efficiency criterion fails in the
previous example because the regularity conditions that lead to unbiasedness of
the score function for maximum likelihood estimation do not hold. There are
various possible ways of measuring the sensitivity of an inference function
Y(0; X) under changes in the underlying parameter. For example, in a one-
parameter model we can measure the sensitivity through changes in the expecta-
tion, i.e., through the function m(n, 8) = E,4(0; X). Specific functionals of m,
relevant to such a measure of sensitivity are finite differences such as
my(n, 8)/(n — 8) or the derivatives that these approximate d/dn m(n, 6)|,-s-
More generally, we would expect that a reasonable measure of sensitivity around
6 would be a linear functional of m,, such as

(1.1) Jmy(n,0)dAq(n),

for some signed measure A, on the parameter space. Naturally, since inference
functions define the same estimator when they are multiplied by a nonzero
constant, (1.1) should be applied to a normalized version of ¥ such as
¥(0; X)/E}/*[*(8; X)]. With this substitution we obtain a class of information
measures supplementing that of Godambe, viz.,

2
[JE4(6; X) dAy(n)]
Eqy*(6; X) '
We will return to the problem of maximizing information measures of this form

at the end of Section 2. A reasonable alternative to the use of information
measures of the form (1.2) is a reduction of the data through sufficiency. It is our

R
A

Ny

V,(0; x) =

\%

b

(12) J(6) =
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purpose to explore a theory on the estimating function space, which generalizes
standard concepts of sufficiency.

2. Inference functions: Ancillarity and sufficiency. Let 2 be a sample
space and £ be a class of probability measures P on %. For each P € # we let
Vp be the vector space of real-valued functions f defined on the sample space &
such that Ep[ f(X)]? < co. We introduce the usual inner product defined on Vp,

(fis f)p= EP{ fl(X)fz(X)}-

Let @ be a real-valued function on the class of probability measures £ and
define the parameter space ® = {6(P); P € #}. Note that § need not be a
one-to-one functional. If it is, we call the model a one-parameter model.

The fundamental objects of our analysis will be, inference functions, i.e.,
functions y: ® — UpVp such that ¢(8(P)) € V,, for all P € 2. The function ¢
is said to be unbiased if (Y(6(P)), 1)p =0 for all P € 2.

The particular value of P underlying the value of the parameter § may be
regarded as a nuisance parameter. The data are often such that we obtain little
or no information on its value beyond the value of 6(P). Furthermore, the
inference functions are allowed to depend on P only through (P) and it is
therefore natural to require that the inner products on the space of inference
functions have the same property. Two functions ¢ and ¢ are said to have
constant covariant structure if for all P € & the inner product

(¥(6(P)), 9(8(P)))p

is a function of P only through § = §(P). In this circumstance we write (, ¢ )y
for this quantity as a function of 8. Let ¥ be a set of unbiased inference
functions such that any pair of functions from ¥ have constant covariant
structure. Clearly, ¥ can be made into a vector space by closing it under
pointwise addition: (Y, + ¥,)(0) = ¢(0) + ¢¥,(0), and multiplication:
(RY)(0) = k(0)Y(0), where we allow %k to be a nonrandom function of 8 € .
Henceforth, by a “ vector space” or “linear space” of inference functions, we shall
mean a vector space in this general sense. So ¥ is endowed with a family of inner
products (Y, ¥,), for every § € ©. We now introduce a topology on ¥. The
topology is most easily characterized by convergence; ¢, — ¢ if and only if
(Y, — ¥, ¥, — ¥)e = 0 for all § € O. The topology determined by this notion of
convergence, we call the weak-square topology. For the purposes of subsequent
analysis, an additional closure condition is imposed upon ¥. We require
that if ¢, is a sequence of inference functions in ¥ such that the double
limit lim,,,||¢, — ¥nlle =0, then there exists a function ¢ € ¥ such that
lim ||y, — ¢|lo = 0. We will loosely refer to ¥ as a Hilbert space of inference
functions and mean that the coordinate projections {y(6); ¢ € ¥} form a
Hilbert space in V. The conditions on ¥ can be summarized by stating that

henceforth the inference function space ¥ shall be assumed to
be a Hilbert space of unbiased functions, any pair of which
has constant covariant structure. )

It is worth commenting at this stage that the assumption of constant covariance
ensures that orthogonality between inference functions is well defined for
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nuisance parameter models. In these models it also ensures the existence of a
well-defined concept of convergence, the importance of which is indicated later in
Example 2.5. In the absence of this assumption, Proposition 2.14 (to be stated
later) will not hold and so there will be no guarantee that a canonical inferential
reduction in ¥ will be possible.

An ancillary statistic is one whose distribution is insensitive to changes in the
parameter. However, our windows on this distribution are the inference func-
tions y viewed through their expectations and we expect that changes in the
parameter are primarily evident through changes in these expectations. From
this perspective, the following definition is a natural one.

DEFINITION 2.1. An unbiased inference function ¢ € ¥ is said to be E-
ancillary if ¢ can be written as the weak-square limit of functions y such that

(2’1) EQ"I’(H) = 0’
forall Qe 2, 6 € O.

We let 7 be the set of E-ancillary functions in ¥. By construction it is closed
and it is easy to see that it is a linear subspace of ¥. The necessity of closing the
space we will discuss in Example 2.5.

EXAMPLE 2.2. Let 2 be a one-parameter model. Suppose T is an ancillary
statistic in the usual sense that its distribution does not depend on the parame-
ter § € ©. Then for any values of the parameters 6, §’ and inference function
Y € ¥, if ¢(0) is o(T)-measurable for each 6,

Eo'[‘l’(a)] = E,[\l/(0)] =0.

Thus the inference functions in ¥ that are functions of an ancillary statistic
form an E-ancillary class in that they are in .

In a sense, the sufficient statistics contain the orthogonal complement to the
set of ancillary statistics.

DEFINITION 2.3. Let % be a subset of ¥. We say that % is an E-sufficient
subset of inference functions if the condition that (y, ¢), = 0 for all § € © and
for all y € & implies that ¢ is an E-ancillary function.

THEOREM 2.4. Let ¥ be the space of all unbiased inference functions in a
one-parameter model. Suppose T is a sufficient statistic for 6. Let & be the
space of all o(T)-measurable inference functions in ¥. Then & is E-sufficient.

PROOF. Suppose ¢ is any element of ¢ such that (¢, ¢ ), =0 for all § € ©
and for all Yy € #. It will be shown that ¢ €., and therefore that & is
E-sufficient. For each 8 € ©, let supp(#) = supp(6(P)) be the support of the
distribution of P. Note that since T is sufficient, supp(9) is a o(T )-measurable
set. Denote by I, the indicator function of supp(d). Now, by assumption,
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(Y, 0)g = (¥, ¢Iy)g = 0 for all 4, Yy € &. Then setting ¢(0) = E;[d(0)15|T] we
see that

Ey[¢(8)T] =0 a.s.onsupp(8).
But by the definition of sufficiency,
0 =E,[¢(6)IT] = E,[¢(8)IT] a.s.onsupp(8) N supp(n).
So ]
E,[4(8)L] = E,[#(8)1,1,] = E,{LE,[4(8)L,IT]}
=E(LLE,[¢(8)T]} =0,

and, consequently, ¢(8)I, is an E-ancillary function. However, as ||¢ — ¢Iy||s = 0
and &/ is weak-square closed, it follows that ¢ € &7. O

The reader should notice that the proof given previously depends upon the
fact that the conditional expectation of an unbiased inference function is
unbiased, and therefore is an element of ¥. When ¥ is a more restricted space,
the subspace of o(T')-measurable functions can even be empty and not E-suffi-
cient. Fortunately, we shall see that E-sufficient subspaces still exist and remain
appropriate classes for inference in the restricted setting.

Although it is natural to require that a linear subspace &7 of a Hilbert space
be closed, we now also provide a simple example showing the necessity of closing
this space in our definition of E-ancillarity.

ExampPLE 2.5. Let X be a random variate with the location exponential
probability density f(x; 8) = e~ *~%, for x > 8, § € ® = R. Suppose we redefine
& as the set of functions ¢ satisfying (2.1). Then it is easy to see that a function
Y € & if and only if ¢(0; x) = 0 almost everywhere x € R. On the other hand,
there is no set of inference functions %, even = V¥, such that {y, ¢, = 0 for
all Yy € & implies that ¢ € &, since an equation of this form can only control
the values of ¢(8; x) for x > 6. Thus the whole space of all unbiased inference
functions is not E-sufficient. This unsatisfactory result is a direct consequence of
not closing the space % and disappears under Definition 2.1.

Basu’s theorem [Basu (1958)] indicates that the space of functions of a
complete sufficient statistic forms the orthogonal complement of the space of
ancillary statistics. This motivates the following definition.

DEFINITION 2.6. A subset % of ¥ is said to be a complete E-sufficient subset
if the statement ¢ € &7 is equivalent to the statement

(2.2) (V,9) =0, forall@ €O,y .

If a complete E-sufficient subset exists, it must be unique and closed in the
weak-square topology. Henceforth # shall denote the complete E-sufficient
subset. It should also be noted that the subsets &/ and % are linear subspaces
of ¥,
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THEOREM 2.7. Let ¥ be a space of all unbiased inference functions in the
one-parameter model. Let & be a space of all members of ¥ that are o(T )-mea-
surable, where T is a complete sufficient statistic. Then & is complete E-suffi-
cient.

ProoF. We use the notation of Theorem 2.4. By Theorem 2.4 & is E-suffi-
cient. Suppose E,$(6; X) = 0 for all 9. Define a function A(¢) as follows:

h(t) = E,[¢(6; X)|T =t], for (T =t) C supp(n).

It must first be shown that 4 is well defined on U,{¢: (T = ¢) C supp(n)}. Note
that sufficiency implies that I, is o(T')-measurable for all 7. So either (T = ¢) C
supp(n) or (T = t) N supp(n) is empty. Suppose 7 and 7’ are two values such
that (T = t) c supp(n) N supp(n’). Now sufficiency of T implies that
E [¢(0)|T = t] = E [¢(0)]T =t]. So h is well defined. Furthermore,
E,[M(T)] = E,[$(8)] = O for all n. Completeness of T' now implies that A(T') =
0, n-a.s. for all n. Let ¢y € & and 6 € O. Then (y, ¢)y = E,{E [¢(0)9(0)|T1]} =
E,[¢(0)R(T)] = 0. By extension to the closure of the set of such ¢, we see that
(Y, )¢ = 0 for all ¢ €&/ and for all §. O

Theorem 2.7 establishes the existence of a complete E-sufficient subspace for
one-parameter models possessing a complete sufficient statistic. However, it will
be shown in the next section that complete E-sufficient spaces will exist in many
cases even when the model does not have a complete sufficient statistic for the
parameter.

One of the advantages in viewing the data exclusively through the expected
value and covariance structure of a set of inference functions is the ease with
which global definitions extend to local ones. Local definitions of first- and
second-order ancillarity and sufficiency defined through the asymptotic distribu-
tion of the statistics are available in the literature [e.g., McCullagh (1984) and
Cox (1980)].

DEFINITION 2.8. An unbiased inference function y(8) is locally (kth-order)
E-ancillary if it can be written as a weak-square limit of functions ¢ € ¥ such
that
(2.3) Epy(8) = o(8(P) - 8)*, as8(P) -0,
for all @ and all P such that 8(P) — 6.

By analogy with the concept of E-sufficiency, we have

DEFINITION 2.9. A subset % is said to be locally (kth-order) E-sufficient if
for any ¢ € ¥ such that (Y, ), = 0for all y € £ and 8 € O it follows that ¢ is
locally (kth-order) E-ancillary. The subset & is complete locally (kth-order)
E-sufficient if this condition is necessary and sufficient.

Henceforth by a locally E-sufficient set, we will understand a first-order
locally E-sufficient set. Consider the standard one-parameter model. Let L
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denote the likelihood function and suppose

* C[AL(8)  L9G) T
(24) ?RE"[ L(e) ~ L(o) ] =0,

for all 1 <j < k and for all 8, where Ah(0) = e[ h(6 + &) — h(0)]. Suppose ¥
is the space of all inference functions. Then if the following functions are square
integrable (so that they lie inside ¥), the kth-order locally E-sufficient subspace
is spanned by the functions '

L(j)( )
L(8) ’

For example, the complete second-order E-sufficient space is spanned by the
functions S(8) = d/36log L(6) and S%*(§) — I(6), where I(8) is the observed
information —d/360S(9).

We now discuss conditions under which complete E-sufficient subspaces exist,
and under which the space ¥ is closed under projections conducted pointwise in
8. We begin by a discussion of the role played by projection in our space.

Suppose an inference function { has been found to estimate § € ®. For a
variety of reasons, ¥ may not be an appropriate estimating function for the
problem because it may depend on unobserved data, or not lie in the E-sufficient
subspace, or it may lack computational simplicity or robustness as insurance
against misspecification of the model. In general, we might suppose that there is
some subset T in ¥ that contains the candidate inference functions for the
problem. Then we would wish to replace the function y with some ¢y € T.

The method we suggest here is to choose y to be an element of T that is
closest in a sense to be defined to the original inference function y. We can write

= 4l5 = (¥ = §, % =)
It seems reasonable to define ¥(0) pointwise in 8 to be the value that minimizes
Y — ¢||2 for all Y € T. Whereas we can define a function y pointwise in this
way, there is no guarantee that this function will lie in T: i.e,, there will not
always be a ¢ € T that uniformly minimizes the distance for all §. However, we

shall see that there are classes of sets T for which the pointwise minimizing ¥
remains in the set.

(2.5) j=12,... k.

DEFINITION 2.10. Let T Cc ¥ and let ¥* be the space of all unbiased
inference functions (so that ¥ C ¥*). We set Ty = {¢(0); ¢ € T}. Then the set T
is said to be a product set if Ny g{¢ € ¥*; Y(0) € Ty} = T.

Then the standard result follows.

PROPOSITION 2.11. The intersection of product sets is a product set.

When T is a product set we write T = X, _ gTy. The weak-squared topology is
the weakest topology having all coordinate projections continuous. It is well
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known that
ar) =l X 1) = X aity),
@ @

where Cl denotes the appropriate closure in each setting. From this and the
definition of the ancillary subspace, we have

PROPOSITION 2.12. The weak-square closure of a product set is a product set.
COROLLARY 2.13. Suppose ¥ is a product set. Then &/ is a product set.

PROPOSITION 2.14. Suppose V¥ is a product set. Then there exists a complete
E-sufficient space & that is also a product set.

ProOF. Let & be the space of all functions ¢ € ¥ such that {(y, ¢)y = 0 for
every § € O and every ¢ € . It can be seen that the space % is nonempty
because the zero-function is in %. As defined, % is a closed linear product set
such that %, is the orthogonal complement of %7, in ¥,. The equivalence in the
definition of complete E-sufficiency now follows. O

The following proposition now tells us that we can find an element of a closed
product set that is closest to a given inference function in V.

PROPOSITION 2.15. Let T be a closed product set in ¥. Let y € ¥. Then
there exists a Y € T such that for every § € O,

_in2 = a2
¥ = ¥lig ;22"41 oll5-

ProoF. For each § € O, let §’ € ¥ be chosen so that §*(8) lies in ¥, and
minimizes E,{[¢(f) — 0v]?} among all v € T,. As T is closed, ¥*(#) can be
chosen to lie in T,. The inference function y defined by

¥(8) = 4°(9)
will then be in T because T is a product set. O
PROPOSITION 2.16. Suppose T is a linear subspace of ¥ that is a closed

product set. Let P, < P, for all P, and P, in P. Then { is P-a.s. unique for
all P. '

PROOF. As T, is closed and convex in Vj, it follows that J?(8) is 6-a.s. unique
for each § € ©. Absolute continuity of P, and P, now implies that {?(8) is P-as.
| unique for all P. O

We now provide two common examples of linear subspaces that are also closed
product sets.
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ExaMpLE 2.17. Let T be the set of functions of ¥ that are ¢(T')-measurable,
where T is a measurable function on the sample space . Then, provided ¥ is a
product set, it follows that T is a closed linear product space.

ExampLE 2.18. Suppose X = (X, X,,..., X,) is a vector of random vari-
ables. Let T be the set of all functions in ¥ that are linear in the data for each
value of § € ©. Then if ¥ is a product set it follows that T is a closed linear
product space. Note that we allow the coefficients of the linear functions to
depend themselves nonlinearly upon the parameter 6.

In the remainder of this section we shall assume that we are working with a
one-parameter model in which all distributions are absolutely continuous with
respect to each other so that likelihood ratios exist.

Let A be a reference measure such that P << A and A < P for all P € . We
define the likelihood

L(0) = dP/dA,
where 6 = 6(P). Finally, when ¥ is a product space we shall let &/ and &
denote the space of E-ancillary functions and the complete E-sufficient space,
respectively. Both spaces will be closed linear product subspaces of ¥. Projec-
tions into &7 and % will exist and be A-almost surely unique. If ¢ is any element
of ¥, then there is a A-almost sure decomposition of y into y =y, + ¢, where
Y, € and §, € L.

Proposition 2.14 shows that when ¥ is a product space, there exists a complete

E-sufficient subspace. We now show how this space can be constructed. Define
¥, , to be the set of Z € ¥, such that E,|Z| < co. Suppose ¥, , = ¥, for all §
and 1. For each n and 6 we define a linear functlonal 8(Z)=E, Z Let us assume
that these functionals are bounded. In terms of the original mference functions,
this requires that
(2.6) sup{|E4(0); ¥ € ¥, [[¥lly < 1} < oo.
In this case the self-duality of Hilbert space implies that there exists an element
of Z* of ¥, such that EyZ*Z) = g(Z) for all Z € ¥,. Of course, the particular
Z* will depend on the values of 1 and 6. Let us make this dependence explicit
with the subscript Z*,. When ¥ is a closed product space, there is a function
¥, € ¥ such that \p,,(ﬂ) Zj, almost surely. These functions, for all n € © are
the generators of the complete E-sufficient subspace. Note that when the
function L(n)/L(0) — 1 is in ¥ it equals ¢,(8). In particular, we have the
following result.

PROPOSITION 2.19. Assuming ¥ is a product space and assuming (2.6), the
complete E-sufficient subspace is the weak-square closure of linear combinations
of the form ~

2.7) L #a(8) dAo(n),

where, for each 0, A, is a signed measure on © with finite support.
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We shall now consider the functions given in Proposition 2.19 in the context of
the information measures of (1.2). Assume the conditions of Proposition 2.19
hold. Suppose that A, has finite support and that ¢ maximizes Jy of (1.2). Let ¢
be such that E,¢(6) = 0 for all n. We define a function of a real variable ¢ by
k(t) = Jy, ,4(0). As ¥ maximizes (1.2) the function « is seen to be maximised at
t = 0. Then «’(0) = 0, which implies that (i, ¢), = 0. As this holds for all such
¢, we conclude that ¢ lies within the complete E-sufficient subspace. To show
that the functions (2.7) are those maximizing (1.2), first note that (1.2) is
unbounded unless (2.6) holds for all  in the support of A,. Then for ¢ an
arbitrary such function and for y* defined by (2.7),

JEW(8)Ag(dn) = [Eq[4,(8)4(8)] Ao(dn) = E,[4*(8)4(0)].

By the Cauchy-Schwarz inequality, this expectation is less than or equal to
{Eo[¥*(0)1°E4y2(8)}/2, and therefore Jy, < Eg[4*(0))? = J,..

3. Selecting inference functions in one-parameter models. Throughout
this section we shall assume a one-parameter model in which all distributions are
absolutely continuous with respect to each other. Furthermore, we shall assume
that ¥ is the space of all unbiased square-integrable inference functions ¢(6; X).
It can be seen that ¥ is a product Hilbert space with the constant covariance
condition trivially satisfied.

For the special case where the model is a linear one-parameter exponential
family with complete sufficient statistic T, one natural parametrization is the
expected value of T. In this case, the score function can be written in the form
S(0) = c(8)[T — 8]. Useful features of this parametrization are that E,S(0) is
then seen to be linear in  and ¢(#) is the Fisher information.

Here, we consider the problem of choosing ¢ in the complete E-sufficient
subspace so as to have E, y(8) linear in 7. It is easy to see that if such a function
exists, it must be unique (up to an arbitrary multiple that can depend on 6 but
not on the data). Suppose that ¢, and y, are two such functions both lying in
. Then we can write

(3.1) Ey:(8) = ky(6)[n - 6]
and
(3-2) ‘ En‘Pz(o) = kz(ﬁ)[n - 0]~

It follows that k., — k,¢, is an element of 7. But as a linear combination of
elements of & it must itself be in &, which requires that k,y, — By, = 0. If
the complete E-sufficient subspace is generated by a complete sufficient statistic,
we have seen that such a linearization is possible in the appropriate parametriza-
tion. However, the existence of such a linearized function for a given parametri-
zation in a general setting needs to be considered.

Projection turns out to be a useful tool for this question because we need only
find any linearized inference function and then project it into the complete
E-sufficient subspace. For example, suppose X,,..., X, are ii.d. random vari-
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ables from a location model with density f(x — @). If each X; has mean 6 and
finite variance, then {(8) = X — 6 is an element of ¥ with the required linear-
ity, although it will not always lie within the complete E-sufficient subspace.
However, we can write y =, + {,, where ¢, € ¥ and ¢, € . Then ¢, will
also have expectation linear in n because E, y(0) = E, ¢ () for all 9, § € ©. Of
course, if a complete sufficient statistic exists, then this construction is equiv-
alent to calculating the conditional expectation of X on the complete sufficient
statistic, and so is Rao-Blackwellization of X. The root of the resulting inference
function will therefore be the unique UMVUE for 6.

The procedure can also be applied in cases where no complete sufficient
statistic or UMVUE exists, because Proposition 2.14 guarantees the existence of
a complete E-sufficient subspace under quite general conditions. To study
projection in this more general setting, note first that we can project ¢ = X — 8
into the space of inference functions that are measurable with respect to a
minimal sufficient statistic. Minimal sufficient statistics exist under fairly general
conditions and projection in this step amounts to calculating the conditional
expectation of X given a minimal sufficient statisticc Now the E-ancillary
component ofthis function can be seen to be an unbiased estimator of zero.
Suppose we let T be the minimal sufficient statistic for the model. Then the
o(T )-measurable image of y under projection will be

(3.3) ¥r(8) = E(X|T) - 6,

which can be written as the sum of an E-sufficient component and an E-ancillary
component. We select the former.

ExaMPLE 3.1. Suppose that f(x) = (1/2)e ™. Let T be the vector of order
statistics X,y,..., X,). Then T is minimal sufficient. So y(8) = X — 6 already
lies in the E-sufficient space generated by the minimal sufficient statistic. Does it
lie in the complete E-sufficient subspace? For n = 1 we can write

(3.4) X-0= ff:[% - 1] dA,(n),

where dAy(n) = exp(d — ) for n > 8 and dA, = exp(d + n) for n < 6. So ¢,
lies within the complete E-sufficient subspace. In fact, for n = 1, X = X is the
unique uniformly minimum variance unbiased estimator. However, for n > 2, ¢
is not in the E-sufficient subspace. To see this, let n = 3 and let ¢(8) = X;, —
2X ) + X3 Then ¢ is E-ancillary and positively correlated with y. Larger
values of n are similar.

Secondarily to our stated purpose, this example gives some idea of the
difficulty of searching for a UMVUE in models that are not exponential families.
This is especially interesting in location models because, with the exception of
normal models and the logarithm of gamma variates, they are never exponential
families. Bondesson (1975) has investigated the existence of UMVUE’s for
location models and has used harmonic analysis to obtain some limited results.
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He was able to show that UMVUE’s usually do not exist in such models.
Fortunately, complete E-sufficient functions that are linear in 5 can be found in
more generality. All that is necessary to prove their existence is the existence of a
function, linear in %, which does not lie within the space .7 of E-ancillary
inference functions. The argument in the example is capable of generalization,
which we summarize with earlier ideas in the following proposition. First we
introduce a formal definition.

DEFINITION 3.2. An inference function y(0) is said to be E-linear if we can
write E,y(0) = c(8)(n — ) for some function ¢(8).

PROPOSITION 3.3. If there exists an E-linear inference function  lying
within the complete E-sufficient subspace, then it is the unique such function
within that subspace up to a multiple k£(6). Furthermore, if T is a UMVUE for
0, then ¢(8) = k(9)[T — 0] for some choice of k(8).

PrROOF. Uniqueness has already been demonstrated. As noted by Lehmann
and Scheffé (1950) and Rao (1952), if T is a UMVUE, then it is uncorrelated
with every E-ancillary function. Therefore it must lie in %. As T is unbiased,
T — 0 is E-linear, and from uniqueness, the result is proved. Note that the
existence of an E-linear function in &% does not imply the existence of a
UMVUE. O

The analytical difficulty of projection into the complete E-sufficient subspace
when the model does not admit a complete sufficient statistic or is not a location
model can be seen. We now consider a linearization similar to the previous one
but only in a local sense of the second-order properties of the expectation
function. This will have the advantage of being easier to calculate for many
models.

Consider for a moment a general unbiased inference function y(8). Differenti-
ating twice the unbiasedness condition,

d2
(3.5) Wﬁ(e)l,(a) dA\=A+2B+C=0,
where
2
A= E«;WIPW),
B d E d (0
- d11 'qdo‘P )l'f)-o
and

d2
C= WE,,¢(0)|,,=,,.

A local linearity condition that we now consider is to require that (I) A = 0,
(II) B =0 and (III) C = 0. Note that “global” E-linearity defined earlier does
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not imply condition (I). In view of the identity given previously, equations
(I)—(III) form two constraints. Thus the three conditions (I)-(III) are naturally
linked to inference functions iy, which are approximately linear both pointwise
and in expectation in the parameter §. When this approximate linearity is
desirable, for example, when we wish a one-step estimator based on a linear
approximation that is close to the root, we may choose from the second-order
locally E-sufficient subspace of inference functions, of the form £,S + ky(S% — I)
one which satisfies the conditions (I)-(III).

In general, in order to find &,(8), k,(9) it is convenient to find k,(8) in terms
of k,(8) using (III) and then to use condition (II) to construct a first-order linear
differential equation in %,(9).

ExamPLE 34. Let X, X,,..., X, be independent, identically distributed
variates with score function S(6) = ¢(6)[L".,X; — n6]. Then there is a unique
(up to multiplication by a factor constant in X, ) function ¢ in the second-order
E-sufficient subspace satisfying (I)-(11I), namely,

n
(3.6) v(0) = Y X; - né.
i=1
Somewhat more generally than the previous example, it is easy to see that
k,(8) can be chosen equal to 0 in any model for which the unbiased inference
functions spanning the second-order E-sufficient subspace, S(6) and
S2(8) — I(9), are orthogonal, since in this case,

2

(3.7) d—an,,kl(a)S(a)l,,=0 = (k,S,S2—-I)=0

and we may choose

(3.8) k,(0) = exp{—% E%(g:)ﬂdﬂ}.

so that condition (I) holds with ¢ = &,S.

Thus, under the orthogonality of the functions S and S? — I, there is a simple
nonrandom multiple of the score function that satisfies the conditions (I)—(III).
Whereas members of the one-parameter exponential family parametrized by the
mean as in Example 3.4 are clearly included among such functions, they are by
no means the only distributions with these properties. The following is a
standard mixture model, which we show also admits a multiple of the score
function satisfying conditions (I)—(III).

ExampPLE 3.5. Let f and g be two probability density functions with
common support and suppose we observe X,, X,,..., X,,, independent, identi-
cally distributed random variates from the mixture probability density 0f(x) +
(1 — 0)g(x), where 0 < 6 <1 is the mixture parameter. In this case the score
function and information function can be written S(8) = X? ,S;(6) and I(8) =
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" ,S2(9), where
f-&
o+ @ 0)g
In this case, E(S%) = E(SI) and solving (3.8),
(3.10) k,(8) = [E,I(0)] .

However, it should be remarked that even within the one-parameter exponential
family, the linearized element of the second-order E-sufficient subspace is not
always just a multiple of the score function.

(3.9) S5,(0) =

4. Nuisance parameter models. Suppose X,,..., X, come from a
location-scale model with p.d.f. given by ¢~ "f[(x, — 8)/0,...,(x, — 0)/0]. We
treat the two parameters separately.

(a) Location parameter. Let a(8) = [Z7 (x; — 6)*]'/2? and define ¥, to be
the space of all unbiased square-integrable functions of the vector

(4.1) o= [(x, - 0)/a(0),...,(x, — 6)/a(6)].

This vector will lie on an n-dimensional unit sphere with distribution dependent
only on f. ,

(b) Scale parameter. Let ¥, be the space of all unbiased square-integrable
inference functions of the vector w = (x;, — %,..., x, — X).

ExaMPLE 4.1. Consider, for example, the case where f is the standard
normal product density. Then the t-statistic ¢ = n'/%(X — 8)/s lies within the
complete E-sufficient subspace because it is complete for fixed @ over the normal
family with mean 7 and fixed variance 6% and the conditional distribution of v
given ¢t is parameter free. We will show that the student t-statistic is the unique
E-linear function lying in the complete E-sufficient subspace of ¥,.

We have that v will be uniformly distributed on the n-dimensional sphere
(4.2) S”={v=(vl,...,vn): Zv?=1}.
N i=1
Define latitudes on S™ by setting

: n
(4.3) A, = {veS: Zoi=s},
i=1
for —n'/2 < s < +n'2 Then for any value 7 of the location parameter, the
density of v on the sphere defined by centering at 6 will be constant on the
* latitudes A, for all s. Therefore any function ¢(8) = ¢(; t) with the property
that its average value on every latitude A, is zero will be E-ancillary. In view of
this, every E-sufficient function for # will be a function of the data through



INFERENCE FUNCTION SPACE 549

Y2 ,v; and therefore a function of the usual student ¢-statistic. It is interesting
to note that although the #-statistic is the E-linear element up to a multiple in
the complete E-sufficient subspace, it is not the local E-sufficient function that
can be shown to be a multiple of v.

To estimate location parameters for nonnormal densities f(x), we can show
that functions of the form

(4.4) JEo" Y [o(x, — 0) + &,...,0(x, — 0) + €] dv
) f J&o" i [o(x, — 8),...,0(x, — 8)] dv
lie inside the complete E-sufficient subspace provided the second moment is

finite. So a locally E-sufficient function found by dividing by ¢ and letting ¢ — 0
will have a root satlsfymg

(4.5) j(; v”_lggf [o(x, = 8) +¢,...,0(x, - é) +€]|,codv =0

Consider now the case of the scale parameter of the normal model. In this
case, it is easy to establish that functions in the complete E-sufficient subspace
in ¥, will be functions of the data through the sample variance. It can also be
seen that the inference function

—1|dAy(e)

(4.6) ¥(o) = (x—lx) o2
is both E-linear in 62 and locally E-sufficient. The resulting estimator for o2 will
therefore be the bias corrected sample variance. In the more general setting,
where the distribution is not assumed to be normal, we note that a locally
E-sufficient function for o can be found as the score function for ¢ based upon
the marginal distribution of the maximal location invariant statistic.

We end this section by examining the elimination of nuisance parameters by
conditioning on statistics. Suppose there exists a family of statistics T} for every
0 € O such that:

(I) For every 6, and for every 6, the statistic T} is a complete statistic for the
nuisance parameters £,,...,§, in the model {P; 0(P) = 0,}. By this we mean
that if a function 2 satlsﬁes Eph(Ty)) = 0 for all P such that 6(P) =4, it
follows that P[h(Ty ) = 0] =1 for all such P.

Consider an inference function ¢ € V. It follows from the unbiasedness of { and
condition (I that E,[y(8)|T,] =0 almost surely. Thus ¢ is conditionally
unbiased given T. It also follows immediately from condition (I) and the
assumption that ¥ has constant covariance structure that conditionally on T
any two functions ¢, and ¢, have constant covariance structure. By this we
mean that Ep[y,(6(P))y,(0(P))|T,] depends upon P only through §(P). Thus
the space of functions ¥ is then seen to be a space of inference functions
condltlonally on the family of statistics 7,. Furthermore, if ¢ is E-ancillary in ¥
with finite expectation, it follows from the completeness condition (I) that
¢(8; X) will be conditionally E-ancillary in the sense that E[¢(0; X)|Ty] =
T-a.s.
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Suppose that a conditional complete E-sufficient subspace exists in the
conditional model given T. Consider now an inference function y that lies within
the conditional complete E-sufficient subspace for every realization of T, and
consider a function ¢, which in the unconditional sense, is E-ancillary. From the
previous remarks, the function ¢ will be conditionally E-ancillary given T and
therefore conditionally orthogonal to ¥,

(4.7) Ep[4(8(P))s(6(P))Tyr)] =0,

for all P. Taking the expectation of (4.7), we observe that ¢y and ¢ are
unconditionally orthogonal. As ¢ is an arbitrary E-ancillary function it follows
that ¢ lies within the complete E-sufficient subspace of ¥. Thus we have proved
the following. .

ProPoSITION 4.2. If  lies within the conditional complete E-sufficient
subspace of ¥ given T, then it follows that y also lies unconditionally within the
complete E-sufficient subspace.

The relevance of this result to the consideration of nuisance parameters is
that in a number of cases by conditioning upon an appropriate statistic, a
nuisance parameter can be eliminated. In such conditional models, it becomes
fairly easy to construct elements of the complete E-sufficient subspace using the
methods of Section 2. Proposition 4.2 then shows that such a function is also an
element of the complete E-sufficient subspace in the unconditional model. A
condition that guarantees the elimination of nuisance parameters is the follow-
ing.

(IT) For every §, € O, the statistic T is sufficient for the nuisance parame-
ters §,,..., §, in the model {P: 0(P) = 6,}.

Henceforth assume that both (I) and (II) hold. Consider all functions of the form

(4.8) TORYI [M -1

where 6(P) = 0 and A is a signed measure of finite support defined on subsets of
2. Note that although this appears superficially to depend on the value of P, the
sufficiency condition (II) indicates that the function is dependent only on 8(P).
We wish to show that if functions of the form (4.8) are square integrable, then
they lie in the complete E-sufficient space of inference functions. It is enough to
note that by construction (4.8) lies within the conditional complete E-sufficient
subspace. By Proposition 4.2 the result that ¢ is within the unconditional
complete E-sufficient subspace follows.

We conclude with a few remarks about cases where ¥ is not a product space
and so a complete E-sufficient subspace is not guaranteed to exist. In such cases,
the program suggested in this paper of E-sufficiency reduction cannot be carried
out in the straightforward approach of Section 2. Nevertheless, there may exist

dAo,T,(Q),
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functions ¢ that are orthogonal to all E-ancillary functions, and one of these
may be an appropriate function for inference in the context. The situation differs
mainly in the more restrictive choices available and in the failure to decompose
any inference function cleanly into an E-sufficient and an E-ancillary compo-
nent orthogonal to each other.
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