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FUNCTIONAL JACKKNIFING: RATIONALITY AND
GENERAL ASYMPTOTICS!

By PraNAB KUMAR SEN

University of North Carolina, Chapel Hill

Though jackknifing serves well the dual purpose of bias reduction and
variance estimation, the pseudovariables it generates may not generally
preserve robustness for general statistical functionals. These pseudovariables
are incorporated in a differentiable functional detour of jackknifing, and
along with its rationality, the related asymptotic theory is studied systemati-

- cally. A two-step jackknifing is considered for the variance estimation.
Second-order asymptotic distributional representations for the classical jack-
knifed estimators are also considered. ’

1. Introduction. The jackknifing, originally conceived for possible reduc-
tion of (smaller-order) bias of an estimator, generates pseudovariables, which
provide a (strongly) consistent estimator of the (asymptotic) variance of the
estimator (as well as its jackknifed version). For some detailed studies of this
dual role of jackknifing, refer to Miller (1974), Sen (1977) and Parr (1985), among
others. To filter robustness under jackknifing, one should start with a robust
initial estimator; otherwise, the pseudovariables (generated by jackknifing) may
lead to a less robust jackknifed version. By their very construction, the pseudo-
variables are more vulnerable to outliers and error contaminations, and hence
the classical jackknifed estimator (being their simple arithmetic mean) may not
be the ideal choice for a robust and adaptive estimator. A

For a general statistical functional § = T(F'), for an estimator 6, based on n
independent and identically distributed random variables (i.i.d.r.v.’s) X;,..., X,,
drawn from the distribution F, the lack of robustness of the classical jackknifed
estimator (say, 6.*) has been noticed by many workers. For this reason, Hinkley
and Wang (1980) and Parr (1985) considered alternative ways of recombining the
pseudovariables for a more robust version. The first paper deals with trimmed
jackknifing, whereas Parr’s suggestion relates to a variant of the L-functional
approach. Incidentally, Parr’s definition of this L-functional jackknifing may run
into difficulties when 6, or 6 is real-valued but the X, are vector-valued (viz.,
the sample correlation coefficient). The main strength of Parr’s paper, of course,
lies in its' unified treatment of jackknifed estimators of general statistical
functionals under a second-order (strong) Fréchet differentiability condition. To
illustrate this point, he has elaborated on the validity of the first-order strong
Fréchet differentiability for some important types of statistical functionals, and
presumably, this analysis may as well be extended to the second-order case. But
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the end product may then look less appealing. Thus there remains some scope for
reexamining these regularity conditions, even in a broader perspective of incorpo-
rating a more general functional of the pseudovariables in the formulation of
jackknifed estimators.

Note that both the works of Hinkley and Wang (1980) and Parr (1985) relate
to some frimming on the pseudovariables to enhance robustness. This may as
well be achieved by incorporating other forms of functionals of these pseudovari-
ables without this explicit trimming. The main objective of the current study is
to focus on such a general class of functional jackknifing and present the related
asymptotic theory in a systematic manner. This class contains the classical and
trimmed jackknifing as special cases. [Technically, Parr’s (1985) estimator may
not generally belong to this class, although a variant form of it does.] For some
simple functionals, the close relationship between bootstrapping and jackknifing
has been studied by various workers [viz., Efron (1982) and Parr (1983), among
others]. A similar picture holds for other functionals too. Thus it seems quite
plausible to propose a functional bootstrapping, although from robustness con-
siderations, bootstrapping is better than jackknifing (as it does not involve the
pseudovariables), and hence we may have a lesser need for functional bootstrap-
ping. Therefore we refrain from the study of functional bootstrapping.

One of the main attractions of the classical jackknifing is that the jackknifed
variance estimator is strongly consistent for the asymptotic variance of the
original estimator (as well as its jackknifed version). However, it has been
observed by Hinkley and Wang (1980) and Parr (1985) that any detour from the
classical jackknifing may distort this feature. Hinkley and Wang (1980) consid-
ered some variance estimators for their trimmed jackknifing, whereas (in view of
the fact that the Fréchet derivative depends on the unknown F'), Parr’s treat-
ment remains a bit incomplete in this respect. In the context of general func-
tional jackknifing, there is thus a genuine need to provide a variance estimator
that not only can be used to draw statistical inference but also can be used to
assess its (asymptotic) efficiency relative to the classical jackknifing. Generally,
to enhance robustness through functional jackknifing, one may entail minor loss
of efficiency relative to the classical jackknifing, and a representative picture of
this relative loss can be drawn from the respective variance estimators. For this
reason, variance estimation in functional jackknifing is also considered here. In
this context, a two-stage jackknifing procedure is considered, which serves this
purpose effectively.

It turns out that for a general statistical functional, the classical jackknifing
relates essentially to an adjustment for bias of the original estimator [viz., Parr
(1985)]. Under the same regularity conditions, a second-order asymptotic distri-
butional representation (SOADR) for the classical jackknifing is considered. This
result differs from the parallel SOADR results for M-estimators of location,
studied by Jureckova (1985) and Jureckova and Sen (1987), among others.

We find it more convenient to work with the Hadamard (or compact)
differentiability of statistical functionals [than the strong Fréchet differentiabil-
ity, treated in Parr (1985) and other places]. In this context, the Hadamard
continuity of statistical functionals has also been used. For some general
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equivalence results, refer to Fernholz (1983) and Parr (1985), although Fernholz’s
treatment signals a clear superiority for the Hadamard case. This point will be
elaborated further in subsequent sections.

Along with the preliminary notions, the SOADR results for the classical
jackknifing are considered in Section 2. Section 3 deals with the general formula-
tion and rationality of functional jackknifing. Allied asymptotic theory is pre-
sented in Section 4. Variance estimation in functional jackknifing is considered in
Section 5. Some general remarks are made in the concluding section.

2. Preliminary notions and SOADR results. Let Z(A, B) be the set of
continuous linear transformations from a topological vector space A to another
B, and let € be a class of compact subsets of A, such that every subset
consisting of a single point belongs to €. Also, let A° be an open subset of A. A
function T: A° - B is said to be Hadamard (or compact) differentiable at
F € A, if there exists a T} € £(A, B), such that for any K € €,

(2.1) }i_r)r(l){t_l[T(F-l- tJ) — T(F) — TH(tJ)]} =0,

uniformly for J € K; T} is called the compact derivative of T at F. In the
context of jackknifing, usually, we need the second-order compact differentiabil-
ity of T (at F'), that is, we assume that for any K € %,

T(G) = T(F + (G~ F)) = T(F) + [T,(F; x) d[G(x) — F(x)]

¢2) +3 [[T(F; x, y) d[G(x) — F(x)]
Xd[G(y) — F(y)] + Ry(F; G - F),

where

(2.3) |Ry(F; G — F)|=o(||G — F||?), uniformlyinG € K,

and ||G — F|| refers to the usual sup-norm [i.e., sup,|G(x) — F(x)|]. The func-
tions T\(F; -) and Ty(F; -) are called the first- and second-order compact deriva-
tives of T(-) (at F'), and we can always normalize them in such a way that

(2.4) JT(F;x)dF(x) =0,  Ty(F;x,y) = T(F; x, y),

(2.5) - T(F; %, y) dF(y) = 0 = [Ty(F; y,x) dF(x),
Consider also the functional
(2.6) THG) = / T,(G; x,x) dG(x), G € A.

We say that T,*(-) is Hadamard-continuous at F if
(2.7) |T,*(G) — T,*(F)| - 0, with |G — F||> 0onG € A.

Other regularity conditions will be introduced as and when needed.
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Let now X,,..., X, be n iid.r.v.’s with a distribution function (d.f.) F. For
simplicity, we assume that F is defined on the real line R [= (— o0, )] and
denote by

(2.8) F(x)=n-! i‘,I(Xisx), tER,

where I(A) stands for the indicator function of the set A. Then, corresponding
to the parameter § = T(F'), we consider the estimator

(2.9) T, = T(FE,), n>1.
To introduce the pseudovariables, we denote by
n
(210) FO(x)=(n-1)"" ¥ I(X;<x), «x€R,i=1,...,n
J=1(=*1)
(211) IO, =T(F®,) and T,,=nT,—(n-1T¥,, i=1,..,n
Then the T, ; are the pseudovariables generated by jackkniﬁng, and
n

(212) T*=n'Y T, and V*=(n-1)" Z(T .= T.*)

i=1
are the classical jackknifed estimator of T(F') and the Jackknifed variance

estimator, respectively. To formulate the SOADR results for the classical jack-
knifing, first we denote

(2.13) T, =n"! Z T(F; X,) = le(F x) dF,(x),
and note that [viz., Parr (1985)] whenever

(2.14) 0 <ol = Ep{T(F; X,)} < oo,

the following holds:

(2.15) n¥T,- T(F) - T,,) »,0, asn — oo,
(2.16) nVTx - T(F) - Ty,) 2,0, asn— oo,
(2.17) n'V2T,, —o #(0,02).

Keeping these in mind, we define
Rr,: = (n - 1)(Tn - Tn*)’
Ri*=(n—1)(Tr - T(F) - Ty,).

R* is essentially related to the estimated bias of T, [see Parr (1985)], whereas
R** to the second-order representation for the classical jackknifing. We have
the following.

(2.18)

THEOREM 2.1. If T(F) is second-order Hadamard-differentiable at F and
Ty,*(+) is Hadamard-continuous at F, then

(2.19) R* > 1T,*(F) almostsurely (a.s.) asn — .
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If T(F) is first-order Hadamard-differentiable at F and T**(G) =
JTXG; x) dG(x) is Hadamard-continuous at F, then V,*, defined by (2.12),

converges a.s. to 6% as n > .

REMARKS. (2.19) is comparable to Theorem 2 of Parr (1985). However, his
strong second-order Fréchet differentiability condition seems to be more restric-
tive than the ones assumed here. Particularly, the Hadamard continuity seems
to be very natural and easily verifiable than the extra regularity conditions in
Parr (1985) needed to justify the “strong” part of the second-order Fréchet
differentiability of T(F'). Also, (2.19) suggests that jackknifing in the classical
case essentially amounts to a second-order bias adjustment without inducing any
functional change in T,. This also implies that T,* shares the same lack of
robustness property with the initial estimator 7, when the later is not so robust.
Finally, for the a.s. convergence of V,* to o2, it seems that we may as well
replace the Parr (1985) “strong” first-order Fréchet differentiability by the
ordinary first-order Hadamard differentiability and the Hadamard continuity of
T**(+), and this alternative setup is more easily verifiable.

To present the SOADR result on R}*, we assume that
(220)  Ep{TH(F; X,, X,)} = [[T(F; %, y) dF(x) dF(y) < o0.

Then, from the basic results of Gregory (1977), we conclude that there exists a
set (of finite or infinite collection of) eigenvalues {A,} of T,(-) corresponding to
orthonormal functions {7,(-); k > 0}, such that

(2.21) [ Ty(F; x, y)7(x) dF(x) = \,m(y) ae. (F),VE >0,

Jrix)r(x) dF(x) = 84,
(2.22)

(= 1or 0 according as k£ = q or not), k,q > 0.
Note that the A, and 7,(-) may as well depend on F.

THEOREM 2.2. Under (2.2), (2.3), (2.7) and (2.20),

(2.23) 2RX* >, Y M(22-1),
k>0

where the Z, are i.i.d.r.v.’s with the standard normal d.f.

REMARK. The SOADR result for the classical jackknifing in (2.23) differs
from the parallel result for M-estimators, considered by Jureckova (1985) and
Jureckova and Sen (1987), among others. (2.23) is believed to be a novel and
general SOADR result for classical jackknifing. It clearly reveals the role of the
second-order compact derivative Ty(F;-) (and its eigenvalues {A,}) in the
asymptotic distributional results of second order.
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Proor or THEOREM 2.1. Note that, by (2.8) and (2.10),
(2.24) max |F®, — F,|| = max {supIF,,(i)l(x) - Fn(x)|} =n".
1<i<n l<isn\ ,

Furthermore, by (2.9) and (2.11),
(225) T, ,=T(F,)+ (n—-1){T(F,) - T(FY)}, fori=1,...,n.
Therefore, by (2.2)—(2.5) and (2.24)—(2.25), we have, for every i (= 1,..., n),

Tpi=To+ [Ty(Fy %) d[I(X; < x) = F(x)]

_ .%i__ﬁ [[TFs 2, y) d[I(X; < x) - Fy(2)]

(2.26)
X d[I(X; < y) - F(y)] + o(n™")
1
= YY) .Y X -1
Tn + Tl(Fn’ Xz) 2(n _ 1) TZ('Fn! Xv Xz) + O(n )’
with probability 1. Thus, by (2.4)-(2.5), (2.12) and (2.26), we obtain
1
* — - . -1
(2.27) T*=T, 2n = 1) fT2(F;,, x,x)dE,(x) + o(n?),
with probability 1, so that by (2.6), (2.18) and (2.27), we have
(2.28) R =1T*(F,) + o(1).

Since ||F,, — F|| — 0 as. as n — oo, invoking (2.7) on (2.28), we arrive at (2.19).
Note that by using the first-order Hadamard differentiability of T(F') along with
(2.24), we readily obtain that with probability 1,

(2.29) T,.— TX=T(F,; X;) +o(1), fori=1,...,n.
Thus defining T}**(-) as in Theorem 2.1, we have
(2.30) * = (n—1)"'nT¥*(F,) + o(1) and o2 = T**(F),

and hence the assumed Hadamard continuity of 7**(-) ensures the a.s. conver-
gence of V.* to 0.0

ProOF oF THEOREM 2.2. By (2.2)-(2.5) and the fact that ||F, — F| =
0,(n~'/?), we obtain

T,= T(F) + [T(F;x)d[F(x) - F(x)]

@31) 4} [[T(F; %, ) d[F(x) - F)] d[F3) = F(5)] + 0,(n"")

=T(F)+T,+ (2n)_172n +(2n) Y (n- DUD + o,(n7),
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where T, is defined by (2.13), and

(2.32) Tyn= [Ty(F; x,x) dF(x) = n™' ¥ Ty(F; X,, X)),
i=1

(2.33) U = (’2‘)_1 Y T(F X, X,).

{1<i<j<n)}
Therefore, by (2.18), (2.27) and (2.31), we have
R¥*=(n-1){T*-T,+T,- T(F) - T,)
= —R*+ (n- 1)(2n)_1’.l_;n +(1- n‘1)2(n/2)U(2) +0,(1).

Now T,,, by (2.32), is an average over ii.d.r.v.’s with finite first mean T,*(F),
and hence, by the Khintchine strong law of large-numbers, T,, — Ty*(F) a.s. as
n — oo. Consequently, by (2.19), (n — 1)2n)"'T,, — R* > 0 as. as n - o.
Furthermore, U® is a Hoeffding (1948) U-statistic with mean 0 [by (2.5)] and is
stationary of order 1 [by (2.5) and (2.20)]. Hence |nU®| = O,(1). Thus, from
(2.34), we have

(2.34)

(2.35) Rx* = (n/2)U® + 0,(1).

Using the results of Gregory (1977) and Hall (1979), we have

(2.36) P{nU® < x} - P{ Y Alz-1) < x}, x€R,
k>0

so that (2.23) follows directly from (2.35) and (2.36). O

3. Functional jackknifing: Rationality. To motivate functional jack-
knifing, first, we denote the empirical d.f. of the pseudovariables by G,, i.e., we
let

n
(3.1) G(x)=n1'YIT,;<x), x€R,n>1.
Then, by (2.12) and (3.1),

T = [xdG,(x),

(3.2) “(n- i)“n{fxz dG,(x) — (fxdGn(x))2}.

For the particular case of 7, = X, we have G, = F,, so that T,* = T, = X, and

% =52 =(n-1)"'T2 (X, - X,)%. However, for a general statistical func-
tional T(F'), F, and G, are not generally equivalent, and, moreover, the T, ; are
not independent. In fact, looking at (2.11), we may gather that because of the
coefficients n and n — 1 attached to 7, and T,,, the T}, ; are more vulnerable to
error contaminations (on the original X ;) and outliers. In such a case, though the
appropriateness of the linear functional in (3.2) may be justified on the basis of
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the inherent reverse martingale structure of the resampling scheme in jack-
knifing [viz., Sen (1977)], on the ground of robustness and other considerations,
other functionals of G,, appear to be more appealing. Indeed, Hinkley and Wang
(1980) advocated the use of trimmed mean of the 7, ;, whereas Parr (1985),
keeping in mind the equivalence of F, and G, for linear functionals, considered
an L-functional of G, (with a slight modification to achieve an n~!/? rate for
the residual term, under more stringent conditions on the score function). Thus
one may raise the issue in favor of a general functional

(3.3) T = T%G,), for asuitable 7°(-) defined on D[0,1].

We term 7,0 a functional jackknifed estimator (FJE) of 6 = T(F).
Granted the existence of some G (= Gg), such that |G, — G| —p0 (as
n — o0), a minimal requirement for the rationality of 7,0 as a suitable estimator
of T(F) is that

(3.4) T°Gp) = T(F), forall F belonging to a class % .

In view of (3.2), we may as well set
(3.5) T(F) = fxdGF(x), for every F € &#,

so that T%-) may be taken as some conventional functional related to the
location model in the usual case. Thus functionals relating to R-, M- and
L-estimators may be used. For any d.f. G, defined on R, we let G(x; a) = G(x —
a), for a,x € R. Then a statistical functional 7(G) is said to be translation-
equivariant (T.E.), if for every a € R and G € %,

(3.6) 7(G(:; a)) = a+ 7(G(:;0)).

It is clear that the functional 7,* in (3.2) is T.E., and so are the other functionals
considered by Hinkley and Wang (1980) and Parr (1985). We intend to retain this
T.E. for our T, as well. For this, we define

(3.7) Tn’:‘l = Tn,i - Tn*, fOI‘ i = 1,..., n,

(38)  GFx)=n"' L ITr <x)=G(x+Tr), zeR.

i=1
Thus ||G, — Ggl| =p 0 = |G} — G| —=p 0, where
(3.9) G¥(x) = Gp(x + T(F)), =x€<R.
Note that by (2.4), E;Ty(F; X,) = 0, and, by (2.29), we may identify G#(x) =
P(T\(F; X,) < x}, x € R. Thus we may consider the following class of FJE:
(3.10) T(-) is translation-equivariant with T°(G}) = 0.

For trimmed jackknifing, Hinkley and Wang (1980) assumed that T,(F; X)) has
a symmetric d.f. and this ensures (3.10), whereas for the classical jackknifing,
(3.10) holds trivially as E,Ty(F; X,) = 0 [by (2.4)]. The symmetry of the d.f. of
T,(F; X,) (and its continuity) also suffice for an L-functional for T°(-) [very
close to what Parr (1985) suggested]; Parr’s statistic may end up with estimating
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other forms of parameters if T,(F; X,) does not have a symmetric and continu-
ous d.f. In general, under this symmetry and continuity of the d.f. of T\(F; X)),
general (von Mises) functionals relating to R-, M- and L-estimators (of location)
may be considered for 7'°(-), and the specific choice of T°(-) within this broad
class may then be made on the ground of specific aspects of robustness, asymp-
totic minimaxity and other considerations. Our main contention is to present the
general asymptotic theory of FJE [without restricting ourselves to specific
subclasses of T'°(-)], and, in the light of this theory, to make general comments
on the scope as well as merits and demerits of FJE.

4. FJE: General asymptotics. Note that the consistency (in a weak or
strong sense) of T%(G,*) (to 0) would ensure the same for T)? (to 6). Similarly,
the asymptotic behavior of n'/2T°(G*) dictates the asymptotic normality and
other related results on T)2. Since, by construction, for every n > 2, T%,..., T,*,
are exchangeable r.v.’s w1th Z,_l = 0, we have [xdG*(x) = 0 a.e., so that for
the classical jackknifing, there is no need to study the asymptotic behav10r of
n'/2T%G,*) (it is equal to 0 a.e.). For the trimmed jackknifing and general FJE,
n'/?T%G;*) has a nondegenerate asymptotic distribution, and we intend to
study the same. Toward this, we may find it convenient to incorporate the weak
convergence of n'/%(G* — G}) (to an appropriate Gaussian function) along with
plausible (first-order) Hadamard differentiability of 7'%(-) in the formulation of
the main results. However, as the 7, * are (generally) not independent, this weak
convergence may not follow from the classical results (on empirical processes)
and may need some extra regularity conditions.

We define a stochastic process w, = {w,(t), t € [0,1]} by letting

(41)  w,(t) = n¥T\(F,; F;Yt)) - T\(F; F;Y(¢))}, telo,1],

where F;%(t) =inf{x: F(x)>t¢}, t€ [O 1] is the sample quantile function.
Note that for the special case of T, = w,(t) = n"/*(X, — EX,), for every
t € [0,1] and is asymptotically normally dlstrlbuted with ‘0 mean and variance

= Var(X;). We assume that there exists a Gaussian function & = {w(%),
t € [0,1]}, such that

(4.2) w, converges in law to w, as n = co.
We also assume that there exists an n, such that
(4.3) TZ(F,; X,, X,) is uniformly integrable, for n > n,.

In practice, both (4.2) and (4.3) can be verified by invoking standard techniques
[when Ty(-) and Ty(-) are given], and these conditions appear to be less restric-
tive than Parr’s (1985) strong second-order Fréchet differentiability of T(F').

LemMA 4.1. Under (4.3), as n — oo,

(4.4) n~1/2{ max |T(F,; Xk7Xk)|> —p0
1<k<n
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Proor. For every ¢ > 0,
P max |T(F; X, X,)| > el )
1<k<n

n

Y P{|Ty(F,; X,, X,)| > eV}

k=1

(nez)_l kZ E{Tzz(Fn§ X Xk)I(T22(Fn; Xy, Xp) > Ezn)}
=1 .

IA

(4.5)

IA

= 3_2E{Tz2(F;z§ X, X)I(TH(F,; Xy, X,) > 82”)}
-0, by (4.3). O

Next, we note that by (2.26), (2.27), (3.7) and Lemma 4.1,
(4.6) Jmax [T — Ty(F,; X;)| = o(n7'7%), asn - oo.

For later use, we denote the ordered values of the T, ; by Ty 1=1,...,n.
Also, if X,., < --- < X,,., are the order statistics correspondmg to X,,..., X,
then in (2.11) and (2.26), replacmg the X; by X,,.;, we denote the correspondmg
pseudovariables by T, 4, j=1,...,n. Parr (1985) considered a version of the
pseudovarzable quantile functzon based on the T, 7, j=1,..., n, whereas the
natural version of the pseudovariable quantile function [i.e., G 1( t)] is based on

the T, ;), i = 1,..., n. Then, from (4.6), we arrive at the followmg

LEMMA 4.2. Whenever T\(F,; x) is monotone in x € R, under (4.3), the two
Dpseudovariable quantile functzons are Vn -equivalent in probability i.e.,

(4.7) lrsnka;:n{nl/l k) — n[kll} -,0, asn— oo.

Note that for a regular L-functional T'°(-), whenever T,(F; x) is monotone in
x (otherwise, the L-functional may lose its rationality too), the results to follow
would remain applicable to the jackknifed L-functional of Parr (1985), although
his strong second-order Fréchet differentiability of 7T(F) may not be that
necessary.

We denote the true and empirical d.f’s of the T\(F; X,) by G# and G},
respectively, so that

n

GX(x)=n"1Y I(T(F;X;)<x), x€R,n>1.

Also, we define {¢,; y € R} by letting y = T\(F; F(¢,)), ¥ € R, where, for an
unessential simplification, we assume that 7',(F; x) is monotone in x.

LEMMA 4.3. If T(F) is second-order Hadamard-differentiable at F, G is
continuous a.e. and (4.2) and (4.3) hold, then

(4.8) sup {nl/zlGn*(y) - Gn";)(y - n'l/zwn(ty))l} -,0, asn - .
Y
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ProOF. By virtue of (4.1), (4.2) and (4.6), writing w,; = nV*(T(F,; X;) —
T(F; X,)}, i=1,...,n, we have

(49)  max (R T - T|(F; X;) — n7w,|} »,0, asn - co.

Furthermore, by virtue of (4.2), for every ¢ > 0 and 5 > 0, there exist positive
constants K, n, and §, (0 < §, < 1) such that for every n > n,,

(4.10) P{ max |w,;| > K} <e,

1<i<n

(4.11) P{sup{|w,(t) —w,(s)[:0<s<t<s+8<1)} >} <e,

V8 <,

Also, nY?(G% — G} converges weakly to a Gaussian function (reducible to a
Brownian bridge), so that for every n > n,,

P{sup{n1/2|G,,*0(x) - GX(y) — GE(x) + GE(y)|:

lx -y <8} >} <k,

(4.12)

where 8’ (> 0) converges to 0 as 8 | 0.

For any given y € R, consider a partition of R into (—o0, y — 2Kn~1/2),
[y —2Kn 2,y + 2Kn"'/?] and (y + 2Kn"'/%, ). By (4.9) and (4.10), with
probability > 1 — ¢, we have (a) for all i such that T\(F; X;) <y — 2Kn~ /%,
TX <y—Kn 2 <y+n"'2uy(t), (b) for all i such that T\(F; X,) >y +
2Kn‘1/2 Tr>y+n "’K>y+ n 2y (2,), and (c) [by (4.9) and (4.11)], for
all i such that y—2n"V2K > T(F; X;) <y + 2n" 2K, we have

(4.13) T* =T(F; X;)+n YV n(ty) + o(n~1/%).

Note that this picture holds uniformly in y € R, and hence the rest of the proof
of (4.8) follows by some standard arguments. O

LEmMma 44. If (i) T(F ) satisfies the hypothesis of Lemma 4.3 and (i) T°(+)
is T.E. [see (3.10)] and is first-order Hadamard-differentiable (at G}) with the
compact derivative TX(G; y), then

(414)  mVATP— T2) = 0,(1) = n72 ¥ TGH ) = 0,(1).

i=1

ProOF. Note that by (4.2) and Lemma 4.3, n'/2||G* — G| = O,(1), whereas
TO(-) is assumed to be first-order Hadamard-differentiable. Thus by using
(3.10), we have

nVY T2 — T,*) = n'/*T%G}) = n'2[T%G}) — TG¥)]

(4.15) =2 [TO(GE; ) d[Gr(y) — GA(2)] + 0,(1)

= n 12 Y TG TR + o)1),

i=1

as [T(G#; y) dG#(y) = 0 [by (2.4)]. O
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Note that for the classical jackknifing, the left-hand side of (4.15) is exactly
equal to 0, so is the leading term on the right-hand side. In general, this may not
be true, and to establish the asymptotic vn -equivalence (in probability) of the
classical jackknife and the FJE, it may be easier to verify that the right-hand
side relation in (4.14) holds. Note that for every n (> 2), T(G}; T,*),1 <i <n,
are interchangeable r.v.’s and Y ,T* = 0 with probability 1. Hence we shall
find it convenient to rewrite the leading term on the right-hand side of (4.15) as

(4'16) n——l/2 Z {TIO(GI’?*; Tn’ft) - chnfi}f
i=1

where c,, is a suitable constant. For the classical jackknifing, ¢, = 1 and (4.16) is
equal to 0. For the FJE, keeping in mind the T.E. location functionals, we would
have generally TX(G}; T, ,) a monotone function of T,*;, and hence c, may be
chosen as the usual regressmn coefficient of the T2(Gj; Tn*,) on the T*; (when
the regression line is taken to have 0 intercept, because of the T.E.). Thus for
the trimmed jackknifing treated by Hlnkley and Wang (1980), when we have (at
each end) a-trimming, for some a: 0 < a < 1, then we have ¢, = (1 — 2a) ! and
(4.16) converges to 0 (in probability) when a is small. Note that the T,*; are
interchangeable with an intraclass correlation of ——(n — 1)~L Also, whenever
T Gg; x) is nondecreasing in x € R, TXGx; T, i) and T’j‘ are positively
associated. Furthermore, the T(G#; T.*;) are also interchangeable r.v.’s, al-
though their intraclass correlation may not be negative. It follows therefore that
for any arbitrary c,, the T(G#; T,*,) — c,T,*; are interchangeable r.v.’s, and we
may exploit this in the characterization of the stochastic equivalence of the
classical and FJE.

LeEMMA 4.5. If there exists a sequence {c,} such that (i) the intra-
class correlation of the TX(Gp#; T*) — c,T,*, is nonpositive, and (ii)
E[TXGp; Tx) — ¢,T,X,]1? converges to 0 as n - oo, then n'/*(T,) — T,*) con-
verges to 0 in probability as n — .

Proor. Note that for nonpositive intraclass correlation, the second moment
of the statistic in (4.16) is bounded from above by E[T(G#; T.*) — ¢,T,51%
and hence the desired result follows by using the Chebyshev inequality. O

If our basic goal is to choose a FJE such that some robustness is achieved
without compromising on the asymptotic equivalence to the classical jackknifing,
then Lemma 4.4 or 4.5 can be used with advantage to construct such 7°(-). In
such a case, the asymptotic normality of the FJE also follows from that of the
classical jackknifed estimator, and there is no need to consider variance estima-
tors other than V * in (2.12). However, in a general FJE, this picture may not
hold and we need to carry out a more elaborate analysis.

Let us write Y, = T(F; X,) + TXGg; T(F; X,)), i > 1, and for every n > 1,
we let

= 12 . Y. O( (1. T *,
(417) Y, =n"2[Ty(F; X,) + TX(G#: T,
Uy = TIO(GI?"; Tnfi) - TIO(GI:'"; TI(F; Xi))’
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for i=1,...,n, so that Y,, = n V%Y, + v,;), for i=1,...,n; n > 1. Next,
recall that

nY(T? — T(F)) = n*[T%(G,) - T(F)] = n'/2[T,* - T(F) + T°(G})]

(4.18) =n'? T, + n™2 L, TYGE; T,.,) + o,(1)

i=1
=Y, + - +Y,+0,1).

Note that for each n (> 1), Y,,,...,Y,, are interchangeable (but not necessarily

iid.) r.v’s; we denote by %, , the o-field generated by Y, ; i < %, for k=
0,..., n (where %, , is the trivial o-field). We assume that as n — oo,

n
(4.19) Y E[Y,i%, 1] ~p0,
i=1
(4.20) Z Val'[YniV’;,i—l] —>pY
i=1
(4.21) Y E[YZI(Y,) > eY)I%, ;1] »p0, foreverye >0,
i=1

where y? is a finite positive constant. Then, by the Dvoretzky (1972) central
limit theorem (for a triangular scheme of possibly dependent r.v.’s), from
(4.18)—(4.21), we arrive at the following.

THEOREM 4.6. Suppose that the hypothesis of Lemma 4.3 holds and the Y,;
defined by (4.17) satisfy conditions (4.19)-(4.21). Then as n — o,

(4.22) RATP ~ T(F)) > #(0,7?).

The above theorem, formulated in a general fashion, rests on the verification
of the three conditions in (4.19)-(4.21). In this context, note that the Y, are
iid.rwv.’s, and note that EY; = 0 whenever the compact derivatives T)(F; X;)
and TXGg; Ty(F; X,)) are integrable. Under similar square integrability condi-
tions, we may assume that

o} = EY? = [[T\(F; x) + TY(G#; Ty(F; 2))]” dF(=)

exists and is positive. Furthermore, by (4.6) and (4.9), we may write
Upi = [TIO(GI’;; TI(F; Xz) + n_l/zwni + éni) - TIO(GI""‘; TI(F; Xl))]’
i=1,...,n,
where w* = max{|w,;|: 1<i< n} = Op(l) and £* =max{|{,;|: 1<i<n}=
0,(1). Consequently, if TX(G%; y) is equicontinuous (in y a.e.), then the v,; are
umformly (in i) O, (n‘l/ 2), so that (4.19)-(4.21) may easily be verified by
reference to the Y, and for this the finiteness of y2 and the stochastic conver-
gence of n~12L"  v,. to 0 suffice. For the trimmed jackknifing of Hinkley and

Wang (1980) as well as the trimmed L-functional jackknifing, this equicontinuity
condition is easy to verify, and hence Theorem 4.6 applies directly under the

(4.23)
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usual Lindeberg-Feller condition on the Y, However, in general, for an un-
bounded functional, this equicontinuity condition may not hold, and, moreover,
in general, n='/2L" |v,. may not converge to 0 (in probability), but may have a
nondegenerate asymptotic distribution. In such a case, the verification of the
three conditions in (4.19)-(4.21) may require more elaborate analysis. This
additional complication can be avoided by an alternative approach wherein we
impose some other (natural) regularity conditions on the compact derivative
T,(-). Toward this, we assume that T’(-) admits the expansion

TY(G#; Ty(F; X;) + n™'/t)
(4.24) = T(G#; Tu(F; X,)) + n~VA*TH(GE; Ty(F; X))

+ 0,(n"?), uniformlyin ¢ | <T < oo,

where T)3(-) stands for the first derivative of T'%(-). Exploiting (4.9) and (4.10),
we may then write the penultimate step in (4.22) as

Tno - T(F) = Tln +n7! Z TIO(GI?; TI(F; Xi))

i=1
(4.25) +n32 Z w,, T3(GE; T(F; X))
i=1
+o,(n"172).

We note that by (2.4)-(2.5), the Hadamard derivative of T,(F; x) is given by
T, (F; x, y) = Ty(F; x, y) — Ty(F; y), so that for every i (= 1,..., n), we have

T(Fyi X) = T(F; X) + [T0,(F; X,y 9) d[E(3) = F(5)] + o(IE, - FI)

(426) = T(FX)+n7 X T(F; X, X))
j
nt S T(F X)) + o(n-12),
Jj=1
Using (4.26) for the w,;, the right-hand side of (4.25) can be expressed as

Tln{l -n7t Z Tl(i(GI:‘k; TI(F; Xj))} +n7t E Tlo(Gi'“; T\(F; Xi))
(4.27) o =l
+n72 Y ¥ Ty(F; X;, X;)T(G#; Ty(F; X;)) + 0,(n™V2).
i=1j=1

Next, we may note that by the Khintchine strong law of large numbers,

nt Y T(G# T F; X)) —, [T8(G#; T(F; %)) dF(=)
(4.28) i=1 a.s.

= v* say.

Note that by virtue of (3.10), for every real a, T(G#(:; a)) = a + T%(GE) = a,
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so that we have
a=T%GA(:; a))

= T%(G#) + [T2(G#; ¥) d[GH(y - a) - GE()] + o(a)

= [[T2(G#; 5 + @) — TGE; »)] dGE(3) + o(a),

and hence dividing both sides by a and allowing a — 0, we immediately obtain
JTYGE; y) dGE(y) = 1. This implies that v* = 1. Furthermore,

n n

n? E E Tz(F; X, Xj)qu(GF*; TI(F; Xi))

i=1j=1

=n"? Y Ty(F; X;, X,)T\(G#; T\(F; X))
(4.29) i=1

AN
+(n—-1n 1{(2) Y e(x, X,.)}
{l<i<j<n}

=n U,y + (n = 1)n" ',y say,
where
(4.30) U,y = v** = ExTy(F; X;, X;)T(G#; Ty(F; X;)) almost surely,
whenever the expectation exits, and U, is a Hoeffding (1948) U-statistic of
degree 2 corresponding to the kernel

o(X;, X;) = T,(F; X, Xj)[Tl(i(GF§ T(F; X;)) + Tﬁ(GF; T,(F; Xj))]/2-

Thus if we assume that
(4.31) Ep{[6(X., X))} < o,

and denote by

(4.32) $i(*) = Eps(x, X,) = § [T(F; =, y)T(GE; Tu(F; ) dF (),

X €ER,
then, by the classical results of Hoeffding (1948), we have
(4.33) nl/z{Un(z) -2n7' ) qsl(Xi)} —-,0, asn— .
i=1

Consequently, if we define
( )‘P(x) = T2(G; T\(F; x)) + 2¢,(x)
4.34
= TG T(F; x)) + [Ty(F; x, y)T(G#; Tu(F; v)) dF(y),
then, by (4.27)-(4.34), we obtain

(4.35) nl/z{Tn0 - T(F)-n! Zn: xp(Xi)} —-,0, asn— co.

i=1

This leads us to the following.
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THEOREM 4.7. Suppose that (4.24), (4.31) and the hypothesis of Lemma 4.3
hold, and v** defined by (4.30) is finite. Then for the FJE T, we have

(4.36) nAT,) = T(F)) > #(0,05),
where
(4.37) of = Ep[{(v(X)})] and ¢(x) is defined by (4.34).

It may be noted that for the classical jackknifing, TX(G*; Ty(F; x)) = Ty(F; x),
and hence y(x) = T\(F; x). Thus o = of. Theorem 4.7 immediately leads us to
the following.

COROLLARY 4.7.1. Suppose that the conditions of Theorem 4.7 hold. Then
the classical and FJE are square-root-n stochastically equivalent, whenever

ag TPGHT(E )+ [T(F %, )TYGE TUF; ) dF()

=T(F;x) a.e.

This explains the role of the compact derivatives T\(+), Ty(-), T2(+) and the
(partial) derivative T)3(-) [of T(-)] in the maintenance of the asymptotic
closeness [up to O(n~'/2)] of the classical and FJE, and in the endeavor of
enhancing the robustness of FJE, we should keep (4.38) in mind so that we do
not deviate too far. However, in general, for FJE (4.38) may not hold, and o?
defined by (4.37) is different from ¢ defined by (2.14). Thus to make full use of
FJE in drawing statistical inference on T(F'), we may need to estimate oZ.

5. FJE: Estimation of asymptotic variance. In Theorem 2.1 we have
established the a.s. convergence of the jackknifed variance V.* to o7 defined by
(2.14). Also, in the last section, we have shown that for the FJE, the asymptotic
normality holds with the asymptotic variance o} defined by (4.37) and that o}
and o may not be equal. For a trimmed jackknifed estimator, Hinkley and
Wang (1980) have suggested a suitable method of estimating o, and Parr (1985)
has also a suggestion in his case. For general FJE, we would like to consider a
two-step jackknifing for the variance estimation.

Toward this proposal, we may note that 7)) = T%G,), where G, is the
empirical d.f. of the T), ;, defined by (2.11). Let T,?, (and T,{*}) be the statistic
T, computed from a sample of size n — 1 (and n — 2) obtained by deleting X;
(and X;, X;) from the given sample of size n, for i # j =1,..., n. For each i
(=1,..., n), define

(61) T,.;=(n=-1TO, - (n-2)T, forj(#i)=1,...,n.

If we denote the empirical d.f.’s for the samples of sizes n — 1 and n — 2
(resulting from the deletion of X; and X;, X; from the complete sample of size n)
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by F(®, and F{Y), then using the same expansions as in (2.24)~(2.27), we have
T, ;= T(F2) - (n - 2)[T(FH) - T(F))]
= 1(F,) + [T(F2) - T(F,)] - (n - 2)[T(FY)) - T(F2,)]

5.2
( ) = T(Fn) + Tl(Fn; Xj)
- (2(n - 2)) [2T(F,; X, X)) + Ty(Fy; X, X))] + 11
where ’
(5.3) max {n|r, .1} =0, as.asn - co.

l<i#j<n
As such, by (2.26), (5.2) and (5.3), we obtain
(5.4) max |T, ;.;— T, ; + n 'Ty(F,; X,, X;)|=o(n7?), as.asn— o.

1<i#j<n
For each i (=1,...,n), the empirical d.f. of the T, ;.; is denoted by G¥,,
whereas, as in Section 2, the empirical d.f. of the T, ; is denoted by G,. Then,
using (5.4) and proceeding as in the proof of Lemma 4.3, it follows that

(5.5) max sup {n1/2|G,(,i_)1(x) - G,,(x)|} -,0, asn - oo.
l<i<n 4
At the second stage of jackknifing, we identify that the FJE based on the
T

wiy (J=1,...,n with j # i) is nothing but T%G{?,) for i = 1,..., n. Thus
the pseudovariables generated by these FJE are given by

(5.6) Q,.;=nT%G,) — (n-1)TYGY,), fori=1,...,n.
Using (5.4)—(5.6), we obtain
Q... = T°G,) - (n - 1)[T°(G?,) - T°(G,)]

= T%G,) - (n— 1) [TY(G,; x) d[G2,(x) — Gy(x)]

+0(n||GP2, - G,II?)
= T%(G,) - (n = 1) [T¥(G,; x) dG2,(x) + 0,(1)
= Tn0 - i Tlo(Gn; Tn,i:j) + Op(l)
J=1(j#i)

(5.7)—_— Tn0 - Z {Tlo(Gn; Tn,j) - n_1T2(Fn; Xi’ Xj)Tl(i(Gn; Tn,j)} + Op(l)

J=1(j#9)
= T, - n[TX(G,; x) dG,(x) + TG, T,,.)

+n_1 Z T2(Fn; Xi’ Xj)Tl(i(Gn; Tn,j)

Jj=1

-n"'Ty(F,; X;, X;)T2(G,; Tn,i) + Op(l)

= Tn0 + Tlo(Gn; Tn,i) + n_l Z T2(F;t; Xi’ Xj)Tl(i(Gn; Tn,j) + Op(l)’

J=1
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where we assume that 7'%(-) is second-order Hadamard-differentiable and the
expansion in (4.24) holds. Thus, making use of (2.4)-(2.5), we obtain from (5.7)
that

5.8 Q,=n1YQ,,=T°+0+0+0,(1)=T°+0,1),
n , p n p

i=1

so that as n — oo,

max
l<i<n

(5.9)

{Qn,i - Qn} - {Tlo(Gn; Tn,i)

-, 0.

n
+n7! Z T2(Fn; Xi’ XJ)TS(Gn’ Tn,j)}

Jj=1

Note that by definition

(510) 271 Y TGy T,,)) = [{TGy )} dG,(x) = TO*(G,), say.
i=1

It follows from our results in Sections 2 and 3 that |G, — Ggl|| >, 0 as n — o;

G being the true d.f. of T\(F; X,). Thus the Hadamard continuity [in the sense

of (2.7)] ensures that as n — o,

(5.11) T*(G,) =, TP*(Gr) = T*(G),

where the last equality holds because of the translation-equivariance of 7°°(-). A
very similar treatment applies to the other two terms in the expansion of
n"'E’ {Q, ; — Q,)° using only the leading terms in (5.9). Thus if we define

n

(5.12) Vrr=(n-1)7" L (..~ Q)

i=1

we arrive at the following.

THEOREM 5.1. Suppose that the hypothesis of Theorem 4.7 holds, and, in
addition, the functionals in the expansion of (5.12) with the leading terms in
(5.9) are all Hadamard-continuous. Then, defining o} as in (4.37), we have

(5.13) V.** - o2, inprobabilityasn — oo.

Note that the construction of V** is based on the FJE at the first step and
the classical jackknifing at the second step. Thus V, ** may be regarded as a
two-step jackknifed variance estimator. This provides a natural jackknifed
estimator of of and removes some of the arbitrariness in the alternative
formulation of Hinkley and Wang (1980) and Parr (1985) for some particular
cases.

6. Some general remarks. We may recall that for the classical jackknifing,
the adjustment over the original estimator is O(n~!) [see (2.19)]. On the other
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hand, for the FJE, such a strong result on the bias would require stronger
regularity conditions. When seeking robustness through FJE, this refinement is
of relatively minor importance [as the robustness adjustments are generally
O(n~'/%)]. Thus a bias adjustment of o(n~1/?) with a good robustness property
of FJE may place it on a more attractive stand than the classical jackknifed
estimator.

In Sections 3 and 4, we have mainly stressed the asymptotic normality of the
classical and FJE. It is quite possible to extend the asymptotic normality results
to parallel weak invariance principles for the partial sequence {n~'/2k(TY —
T(F)); k < n}. A key to this invariance principle is provided by the well-known
result on the empirical d.f. F,

(6.1) max sup {n~"/%k|Fy(x) — F(x)l} = 0,(1).

1<k<n

As such, the results in Sections 3 and 4 may be extended in a routine manner.

The two-step jackknifing in Section 5 serves a very useful role in the estima-
tion of oZ. As has been explained earlier that, in general, ¢ and o7 are not the
same. Thus this difference reflects the relative increase in the asymptotic
variance of the FJE (while attempting to induce more robustness). A comparison
of V.* in (2.12) and V,** in (5.12) thus serves a useful role in the study of the
robustness versus precision of the FJE. If T, is asymptotically efficient, then
ol ¢ ol. However, if T, is not so, we may have even of < 0?2, so that the FJE
may induce robustness and enhance efficiency, too.
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