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Mannheim
This paper is concerned with parametric regression models of the form
Y= f(tijs 0,)+error, i=1,...,n, j=1,...,T;,, where the continuous

function f may depend nonlinearly on the known regressors ¢;; and the
unknown parameter vectors ;. The assumption of an a priori known f is
dropped and replaced by the requirement that qualitative information about
the structure of the model is available or can be generated by a preliminary
exploratory data analysis. This framework —allowing both f and the individ-
ual parameter vectors to be unknown—necessitates a detailed discussion of
identifiability of model and parameters. A method is then proposed for the
simultaneous estimation of f and ; by making use of the prior information.
An iterative algorithm simplifying computation of the estimates is presented,
and for min{n,T},...,T,} — oo conditions for strong uniform consistency of
the resulting estimators of f and strong consistency of the estimators of 6;
are established. Some examples illustrating the method are included.

1. Introduction. Many experiments in biomedicine and in the physical
sciences are initiated to study a biological (chemical,...) process by a number of
independent realizations. Therefore, based on some expemnental design, at
consecutive times (or ages,...) ¢;;, observations Y;, ,....T,i=1,...,n,
are obtained for a sample of 1nd1v1dua1s (or experlmental umts, ...) of size n. In
such situations it is often adequate to assume that Y, the jth observation on

the ith individual, satisfies the regression model
(1) Y, =f(t;)+e; i=1,..,n,j=1,.,T,.

13

lj’

Here the (unknown) regression function f, € C(R, R) may depend nonlinearly on
the known regressors t;; € [a, b] = J, a, b € R known; a < b. The unknown
error terms ¢,;; are reahzatlons of independent random variables with expecta-
tion 0.

Often the sample of individual regression curves will show a certain homo-
geneity in structure leading to the assumption that they are generated according
to some parametric model

(2) f.(t) =f(¢,0,), forallted,i=1,...,n

The function f € C(J X #,R) represents the typical functional shape common to
all f;, and it is usually unknown. It may depend nonlinearly on the unknown
individual parameter vectors 0, € #, i = 1,..., n, representing the individual
variation. # denotes some subset of a (finite-dimensional) Euclidean space &.
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Classical nonlinear regression analysis is based on the assumption that the
model function f is specified a priori. Then the individual parameter vectors 6,
can be estimated by nonlinear least squares, yielding also an estimate of the
individual regression functions f;. The requirement of a prespecified model
function is very restrictive, and in many applications the specification of f does
not rely on more than a clever guess.

Self-modeling nonlinear regression (SEMOR) offers more flexibility: It suffices
to specify an appropriate class of functions containing the true model. SEMOR
then estimates the “best-fitting” model function and the corresponding parame-
ter vectors simultaneously. In some applications the individual parameters will
be of main interest, whereas in other applications the pattern of f will be more
relevant. In any case, the choice of a reasonable class of functions containing the
true model is a crucial step for SEMOR. It is not possible to construct an
estimation method, which, without making use of any a priori knowledge about
the structure of the model, automatically grinds out an appropriate model
function and interpretable parameters. This is a consequence of the problem of
identifiability arising within model (2), to be discussed in Section 2. Some
examples will be given, the most important, in view of previous applications,
being the following.

PARAMETRIC MODEL WITH A POPULATION PARAMETER. Assume
fi(')=G>\("0i) =:f('90i)9 i=1,...,n,
for some unknown but fixedA € L c R’, I € N, where G: L > C(J X #,R) is a
known continuous function. Day (1966) investigated a particular case of this
approach, relevant for modeling growth data, with 2= R2X R, R,:=10, o,
and

Gx(t; 0,{) = 051)(1 + eXp(—oz(z)t + ai(a)))—l/x, A € R+; 0, = (0,:(1), 0i(2), oi(a))T.

SHAPE-INVARIANT MODELING (SIM). In this case the lack of knowledge
about the functional model is not formalized by some finite-dimensional parame-
ter, but it is embedded in some general structural form.

The simplest SIM assumes 2 = R2 X R? and

[©))

t— 6f
fi(t) = oi(l)z( 0.(2; ) 09 = {(¢,6;),

13

for some unknown but fixed function z € C(R, R).

Such a model was first proposed and applied by Lawton, Sylvestre and
Maggio (1972), introducing a special version of the estimation procedure defined
in Section 3. A similar technique was later used by Stuetzle et al. (1980) for
modeling human height growth.

After a discussion of the problems of identifiability in Section 2, the estima-
tion procedure is given in Section 3. In Section 4 an algorithm is proposed,
simplifying computation of the estimates. It is a generalization of an algorithm
used by Lawton, Sylvestre and Maggio (1972). Within Section 5 consistency
properties of the SEMOR estimators are investigated. Further aspects such as
numerical considerations and applications will be treated in a forthcoming paper.
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2. Model identification. The parametric regression model defined by (1)
and (2) is supplemented by the following assumption.

AssUMPTION 1. The individual parameter vectors 6., 8,, 0,,... are realiza-
tions of i.i.d. random variables. The common distribution function F possesses a
compact support S(F) Cc &.

For simplicity, we will in the following not distinguish notationally between a
random variable and its realization. The correct interpretation will become clear
from the context.

Note that the basic concepts and results of this paper do not depend on that
0,,0,,... are realizations of a random variable. It is merely required that
asymptotically the sequence (4;),_, , . behaves as if it were generated by a r.v.
with distribution function F [i.e., (1 /n)): * .8(0) - fg(0) dF(6) for any bounded
continuous function g]. However Assumption 1 in its present form avoids
formal problems and is a natural requirement in the given context.

Model (2) together with Assumption 1 [F and S(F') being possibly unknown]
will be referred to as the “SEMOR MODEL.” In the following we will assume
model (1) and that for some model function f the SEMOR MODEL holds.

We now can formulate the estimation problem to be considered more pre-
cisely.

STATEMENT OF THE PROBLEM. The purpose of this paper is to introduce a
general method for estimating the model function f [on J X S(F)] as well as the
parameter vectors ,,0,,... from (1) and (2), by using a priori information
about the SEMOR MODEL.

It should be noted that by Assumption 1 only the values of f on J X S(F) are
important for modeling the underlying process.

Given that all possible realizations of the underlying process were known,
there still exist infinitely many different functions and parameter vectors satisfy-
ing the SEMOR MODEL. If, e.g., Z=R and f(t,8) = e*’, then obviously for
each 0 € 2, f(-,0)=g(-, %) with g(¢,9)=2"? and 9,=1n2- 6, and the
SEMOR MODEL still holds when replacing there f by g, 6, by ¥, and F by the
corresponding distribution function of the r.v. Jy,. Consequently, it is impossible
to deduce f and 6,, 6,,... from the observations only Any estimation procedure
has to be based on a general concept formalizing the use of a priori knowledge to
obtain identifiability of the SEMOR MODEL. Th1s is the problem of this
section.

The problem of identifiability to be considered is two-fold: There is a “global”
one, to guarantee that f can be uniquely determined on J X S(F'), and there is
an “individual” one, to ensure identifiability of the.individual parameter vectors,
given f on J X S(F). Note that only the global problem is peculiar to SEMOR,
the:individual one is a problem of ordinary nonlinear regression, too. To solve
the global problem we have to use a priori information in order to distinguish f
from any function g with g # f [on J X S(F)] such that for each 6 € S(F),
there exists a ¥ € # satisfying f(-,0) = g(-, 3;). With respect to all other
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functions, at least asymptotically (n — o0), the sample of individual regression
curves [derived from (1)] suffices for identification. To solve the individual
problem we have to guarantee that the mapping f; — 6, is uniquely determined
for all i.

The following prior information can be expected within applications:

(a) Knowledge about the underlying process derived from the field of applica-
tion.

(b) Information about common structural properties of the individual regression
curves obtained by a preliminary analysis [e.g., by nonparametric regression
and differentiation; see Gasser and Miiller, (1984)].

Such prior knowledge will usually lead to at least qualitative assumptions
about f, i.e., about the functional dependence between the possible realizations
of the given process and an adequate set of parameters. The SIM approach used
by Lawton, Sylvestre and Maggio (1972), for example, was motivated by finding
a common qualitative structure characterizing the shape of all individual curves
of the sample, with individual variation consisting of scale and shift differences.

In the following we will assume that a priori knowledge suffices to specify
some structural properties of the model function and an adequate parameter
space Z. This can be formalized by determining the set M, say, of all functions
g € C(J X Z,R) satisfying the resulting conditions. In certain cases the require-
ment f € M will already solve the problem of identifiability. Note that if
according to (a) and (b) it is possible to specify f completely, this leads to
M= {f}.

Sometimes, however, M will determine f only up to an equivalence class of
functions being observationally and structurally equivalent and differing only
with respect to some homeomorphic parameter transformations. In this case the
selection of an element out of this class will often be a matter of convenience or
of ease of interpretation. One way to do this is to introduce an appropriate
normalizing condition (e.g., with respect to expectation or variance of the
parameters and /or certain values of f). Such a normalizing condition has to be
defined on the basis of the transformation law characterizing the given equiv-
alence class, ensuring that it enables identification but imposes no real restric-
tion.

Normalizing conditions are important within the whole range of parametric
modeling of data. For example, consider ANOVA. The standard model of
one-way classification with random effects involves a population parameter,
which is not identifiable according to the model structure. Identifiability then is
reached by the normalizing condition that the expectation of the factor is 0.

Such conditions can be formalized by determining the corresponding operator
N, which assigns to each element g of the equivalence class, being associated
with a distribution function F,, a unique parameter transformation leading to
the normalized element f, being associated with a normalized distribution
function F.

A priori information leading to the construction of a set M and a “normaliz-
ing” operator N now has to guarantee identifiability of the model. This is
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formalized by Definition 1. We will use the notation:

(a) H(Z) denotes the set of all homeomorphisms from £ onto Z.

(b) & denotes the set of all distributions functions F* defined on &, possess-
ing a compact support S(F*) C %.

(c) A function g € C(J X #,R) is called “observationally equivalent to f ”
(abbreviated g = f) if for each 8 € S(F) there exists a # € # so that f(-,0) =
I4 ( “ 6)'

Furthermore, g|;, g, denotes restriction of g to J X S(F).

(d) For some g € C(J X #,R) with gE=f, an F* € # is called “SEMOR-
equivalent to F when associated with g” (abbreviated F* =, F) if it is the
distribution function of a random variable &, satisfying f(-, 8,) = g(-, #,).

DEFINITION 1. For some M c C(J X #,R) and some operator N: M X
F— H(Z) with g(-, N(g, F*)(-)) € M for any (g, F*) € M X #, the SEMOR
MODEL is called “completely identifiable by M and N” if the following
conditions are satisfied:

G feM
(i) For all g € M with gl 5y = flsxs) and each § € S(F),
g(-,0) #g(-,9), forany ¥ € 2 with 4 + 9.
(iii) For all g€ M and F* € # with g = f and F* =, F,
(3) f(-,0)=g(-, N(g, F*)(8)), foreachd € S(F).

REMARK. An important special case of this concept of identifiability is the
following: A priori knowledge might be sufficient to specify M such that there
does not exist a g € M with g # f [on J X S(F)] and g = f. Then the SEMOR
MODEL is already completely determined by M, and no normalizing condition
is required. In terms of Definition 1, this means that the SEMOR MODEL is
completely identifiable by M and the (trivial) operator N defined by N(g, F*) =
id for all (g, F*) € M X & (abbreviated N = id), where id denotes the identity
function on £.

EXAMPLE 1: PARAMETRIC MODEL WITH A POPULATION PARAMETER. Assume
that the SEMOR MODEL holds with

f(¢,0) = Gy(t,0), foralldc®,ted,

for some unknown population parameter A € L ¢ R’, / € N, where G: L -
C(J X #,R) is a known continuous function.

In this case the SEMOR MODEL is completely identifiable by M =
{G).]A* € L} (and N = id), given the following conditions are satisfied:

(a) Definition 1 (ii) holds.
(b) For all A* € L with A* # A, there exists a § € S(F') such that G,(+, 0) #
G,«(-, ?) for all ¥ € £.

These conditions are satisfied for Day’s model.
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ExaMpPLE 2: SIM. Assume #=R2 X R? and let the SEMOR MODEL
hold with

@ £(2,6) = o“)z( .

for some unknown function z € C(R, R).

3

) +6®, forall@ e, ted,

This model is much larger and identifiability needs more consideration. Let
M denote the set of all functions g € C(J X £#,R) such that there exists a
z, € C(R,R) with g(¢, 9) = #Dz((t - 1?(3))/1?(2)) + 9® for any 9 =
(19(1) 9@ H® ,«}(4))'1‘ e IR2 X R2.

For a, 8 > 0 and v,8 € R we define the homeomorphism 4, 4 . 5 by

R gy o(8) = (30 a, 9@ - B, §® + 30 .y, 9@ 4 90 . §)T.

h, g, , s has the property that g € M implies g(-, h, 45, 4(-)) €M It is a
“structural homeomorphism” preserving the -structure of the shape-invariant
model.

In real applications [compare Lawton, Sylvestre and Maggio (1972)], the SIM
approach will often be motivated by finding a common qualitative structure
characterizing the shape of individual curves, interindividual variation consisting
only of scale and shift differences. This can be used when looking for conditions
guaranteeing identifiability.

DEFINITION 2. For some p €N and g¢,,...,q, € {2,1, -2, —1} a continu-
ously differentiable function v: J* — R (for some interval J* C R) possesses a
“(qy,-- -, gp)-succession of characteristic points” iff there exist p points x; <
xy < --- <x,so that for each r=1,..., p, x, is the location of a (true) local
maximum of v, local minimum of v, local maximum of v’ or local minimum of v’
as g, is equal to 2, 1, —2 or —1. v has “exactly one (g,,..., g,)-succession of
characteristic points,” if the points x,,...,x, with the above property are
uniquely determined. Then x,,..., x,, are called “locations of the characteristic
points.”

In terms of this definition a sample of curves possesses a common qualitative
structure, if for some p € N and some ¢,,..., g, € {2,1, —2, —1}, each individ-
ual regression curve has exactly one (g,,..., g,)-succession of characteristic
points. Having found such a structure within a given sample of curves, it is
natural to assume that this is an intrinsic property of the whole population, and
that also z possesses such a (g, ..., g,)-succession of characteristic points. For
P = 2 these requirements already suffice to guarantee Definition 1(ii) and un-
identifiability reduces to the structural homeomorphisms A, 4, 5- To ask for
p = 2 avoids overparametrization, since otherwise the structure might be so
simple that the individual parameter vectors cannot be uniquely determined
(e.g., an exponential decay). One way of dealing with the structural homeomor-
phisms is to fix the values of locations and amplitudes of some characteristic
points. On the other hand, the structure of SIM implies that each individual
curve is a scale—shift transformation of the “basic curve” z = f(-,(1,1,0,0)T). In
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order to interpret z and the individual parameters, it will sometimes be advanta-
geous to assume that the basic curve quantitatively represents an “average
curve” with average locations and amplitudes of the characteristic points repre-
senting the common pattern. This is equivalent to the normalizing condition
Ef, = (1,1,0,0)T, with E denoting expectation.

These considerations motivate the following proposition providing sufficient
conditions for identifiability.

PROPOSITION 1. Assume that for some p >2_and some gq,,...,q, €
(2,1, -2, -1}, f(-,S(F)) C Z, where Z, respectively Z, denote the collection of
all functions v possessing exactly one, respectively no, (q,, ..., q,)-succession of
characteristic points. Under the assumption that (4) holds, the SEMOR MODEL
is then identifiable in the following ways:

(a) Suppose, additionally, there can be determined constants c,, ¢y, c5,c4 € R
with ¢, < ¢y and c3, ¢, > 0 (c3 # c,) such that for some ry, r, € {1,..., p}, we
can assume thatz € Z, . . ., LetZ, ., . ., denote the set of all functions
v € Z with the property that x, = c,, x,, = ¢,, v(x,) = c3 and v(x,,) = ¢,, with
Xy,..., X, being the locations of the characteristic points of v.

Then the SEMOR MODEL is completely identifiable by

M= {g EM|z, €2 ¢, e Y Z}

and N = id.
(b) Assuming E6, = (1,1,0,0)T and z € Z, the SEMOR MODEL is com-
pletely identifiable by

M:={geMz,eZUZ}
and

N(g, F*) = h withe, = [0 dF*(0),  r=1,2,34,

e, ez, €3, €4

forallg €e Mand F* € #.

A proof is contained in the Appendix.

REMARK. Defining M in such a way that it also contains functions z,
possessing no (qy,..., g,)-succession of characteristic points has technical rea-
sons: Estimating f and studying consistency (compare Sections 3 and 5) is
simpler if M can easily be closed by defining bounds for z and z’. Note that,
instead of restricting M to the set of all g € Mwithz, € Z, ., ., .,V ZCZU
Z [instead of z, € Z U Z as in Proposition 1(b)], the normalizing condition used
in Proposition 1(a) can also be formalized by defining a corresponding (nontriv-
ial) normalizing operator N.

The next example is illustrative. It is not taken from a real application.
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ExampLE 3. Let o :=[0,1], #= R2 X J and assume
oDz (¢¢?), for0 <t <69,
602, (¢°%)z,((¢ — 69)°7), fore®<t<1,

for some unknown functions z,, z, € C(J,[0, oo[). Furthermore, suppose the
following additional model assumptions:

f(¢,0) :

(a) z, is continuously differentiable and strictly monotonically increasing.

(b) The (“switch-off”) function z, is continuously differentiable and monoton-
ically decreasing with z,(0) = 1, z,(1) = 0 and |z24(0)| = C, where C is a known
constant with C > 0.

(c) There exists some a* €10, 1[ such that a*.< §® for all § € S(F).

Let M denote the set of all functions g that can be modeled in this way, when
replacing f by g and z,,z, by some continuously differentiable functions
2415 242 With 2z, , being monotonically increasing and z, , satisfying (b). Again
there are structural homeomorphisms: If for a,8>0 we set h, 4(9):=
(a- 9D, B - 3@, 9®)T, then obviously g € M implies g(-, k, 4(-)) € M. To re-
solve this unidentifiability, we might, e.g., use the normalizing conditions
E6®M =1and E6P = 1.

Under these assumptions the SEMOR MODEL is completely identifiable by
M and

N(g, F*) =h, ., with (e, e,)" = [(89,09)" dF*(6),
forallge M and F* € #.

The proof is omitted.

The above examples might illustrate the scope of additional model assump-
tions leading to identifiability according to Definition 1. A general approach
covering a large number of possible applications can be described as follows: As a
first step one should try to determine (via a priori knowledge) for some subset %
of a Euclidean space, some 2 >0, J;, C R4, ..., J, C R%, 1,,...,1, €N, and
some L C RY, I > 0, an operator G: L X C(J;,R) X + -+ XC(J, R) X J X Z —
R so that the corresponding SEMOR MODEL holds with
(5) f(t,0) =G, , . .(t.0), 0€Rted,

where z, € C(J,R),..., 2, € C(J,, R) are unknown fixed functions and A € L
is an unknown fixed parameter vector [for notational convenience we assume
that for & = 0 (5) reduces to Example 1, whereas for = 0 there is no population
parameter]. Obviously, this covers all our examples, and includes also the
two-component SIM introduced by Stuetzle et al. (1980) for modeling human
height growth. Sometimes identification is immediate from the structure of G
(e.g., Day’s model). Otherwise, one might proceed as follows:

Restrict the class of functions to be considered by using a priori information
and/or common structural characteristics of the sample of all estimated
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individual curves (Examples 2 and 3). The resulting subsets Z, c C(J,,R),
«evyZy, C C(J,, R) should guarantee that with

© M= {geC(JXRR)(-,8) =G, . .. (9

forsome A, €L, 2,,€2,,...,2, , € Zk} ,
possibly by using additional regularity conditions, either

(a) the SEMOR MODEL is completely identifiable by M and N = id [Exam-
ples 1 and 2 under Proposition 1(a)]; or '

(b) the remaining unidentifiability is due to structural homeomorphisms (Ex-
amples 2 and 3) and can be resolved by defining appropriate normalizing
conditions determining a nontrivial N [Examples 3 and 2 under Proposition
1(b)].

When the model function f has been properly identified this does not
necessarily hold for the different functional components [e.g., f(¢, 0) =
0z,(t)z4(t)]. For p € {1,..., k} identifiability of z, on some set I, C o, addition-
ally requires that for any (A*, z¥,...,2¥) € L X Z,,..., Z, with

GA‘,z;‘,...,zt(t, 9) = f(t’ 9)’ for all (t’ 9) €dJ X S(F),

it holds that
z3(x) = z,(x), forallx eI,

Under the conditions of Proposition 1, z is identifiable on the interval Ig,, =
[infy ¢ g (@ — 09)/0®, sup, ¢ (b — 89)/0P]. Considering Example 3, let us
assume that there exist a € S(F) with §® = 1 and a § € S(F) with f(¢,6) =0
for some ¢ > 0. It is easy to see that then z; and z, are identifiable on their
whole domain J.

3. The SEMOR approach. In the following we will again assume model (1)
and the SEMOR MODEL. Having identified the SEMOR MODEL, a natural
way to obtain estimates of f and 0,,..., 6, seems to be the following approach:

Solve the least-squares problem

1215 ol a2 121 & .
-y = Y..— f(¢.,6)) = min in —-Y — - —g(t:,9)),
LT El( 5= 1(6,6)) = min , i Rz Ti,gl(y’ g(t,, 9,))
and then normalize the solutions obtained, using the operator N.

However, M will usually be infinite dimensional. In this case, from a compu-
tational, as well as from a statistical point of view, no reasonable estimates can
be obtained in the above way. With respect to # the problem arises that the
existence of parameter vectors solving a nonlinear least-squares problem can
only be guaranteed when minimizing within a compact set. Hence, M and %
have to be replaced by some appropriately restricted subsets.

For defining a reasonable estimation method, we thus need some additional
conditions. It will be assumed that we can find an M c C(J X %,R), an
operator N: M X #— H(2) and some D C % such that Assumption 2 holds.
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AssuMPTION 2. (a) The SEMOR MODEL is completely identifiable by M
and N.

(b) D is compact and S(F) c D.

(©) N|yxs, is measurable, where %, denotes the set of all F* € # with
S(F*) c D.

REMARK. Within the rest of the paper (including the Appendix) spaces of
continuous functions will be endowed with the topology of compact convergence,
whereas %, will be considered with respect to the weak topology, induced by
convergence in distribution. Measurability of N on M X %, refers to the
corresponding Borel sets.

A reasonable way of restricting the function space M is indicated by Proposi-
tion 2.

PROPOSITION 2. Let # C M be a set of functions uniformly bounded and
equicontinuous on J X D. Then for each ¢ > 0 there exists a compact set S R”™
( for some r € N) and a continuous mapping a. & — M such that

min max |a,(x) — g(x)| <e, foranyge 4,
a,eA XE€EJIXD

where A = {a|s € ¥}.

The proof is straightforward.

We will call a set A C M being defined by A = {a,|s € &} for some ¥ € R’,
r € N, and some continuous mapping a: & — M a “parametric subspace of M ”
[e.g., any set of polynomials of a given order is a parametric subspace of
C(R,R)]. Equicontinuity of a set of functions roughly means that all functions
have a similar “degree of smoothness.” Thus Proposition 2 says that if there
exists some knowledge concerning bounds and the degree of smoothness of f, one
can always find a parametric subspace of M containing functions arbitrarily
close to f on the “relevant” domain J X D (note that the proposition only
guarantees existence; the problem of selecting an appropriate A will be consid-
ered later). The procedure of restricting an infinite-dimensional class of functions
to a parametric subspace has analogies in nonparametric regression: As men-
tioned by Geman and Hwang (1982) most well-known nonparametric estimators
of a regression function can be interpreted as least-squares estimators with
respect to some parametric family of functions.

These considerations lead to the idea of determining estimates of f and
0,,...,0, as outlined above by replacing there Z by D and M by some compact
parametric subspace A suitable for approximating f (compactness of A is
required in order to guarantee existence of solutions of the least-squares prob-
lem).

DEFINITION 3. A method for the simultaneous estimation of f and 6,,..., 40,
is called “self-modeling nonlinear regression” (SEMOR) if for given M C
C(JXZR), DCcR and N: M X F—> H(R) satisfying Assumption 2,
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estimates f and 4,,..., §, are obtained as follows:

(i) Determine least-squares estimates f and 4,,..., §, by solving
121 5% . JNY)
~ X 5 L(¥%-1(2,8))
(7) i=1 “i j=1
1 1 &

)y T gl (%, - ay(t;, 8))",

where A C M is a prespecified compact parametric subspace of M (A is called
“approximation space for M ”).
(ii) Normalize these estimates. Set

f=1(-, N(F, F)("))
and
6,= N(f,F)7'(6;), foralli=1,...,n,

with F denoting the empirical distribution function of 0~1, cee, 67n. f and él, eees b,
are called (D, A, N)-SEMOR estimates of f and 6,,...,0,

Obviously, (7) is a nonlinear least-squares problem with n - d + r parameters,
where d denotes the number of components of the individual parameter vectors.
Thus Lemma 2 of Jennrich (1969) together with the measurability of N guaran-
tees the existence of measurable SEMOR estimators.

REMARK. (a) If the SEMOR MODEL is identifiable by M (and thus N = id),
step (ii) of the SEMOR procedure is obviously superfluous. In this case f=fand
6,=4.

(b) ’I‘he regularity condition that there can be found a compact subset D ¢ %
containing the true parameter vectors is required in ordinary nonlinear regres-
sion, too [compare Jennrich (1969) or Wu (1981)]. It is thus not peculiar to
SEMOR. Finding appropriate bounds in order to determine such a D will
generally be no problem, since these bounds might be chosen arbitrarily large
(respectively, small).

It is easy to see that for a parametric model with a population parameter any
compact subset of M (containing A) can be used as approximation space. If M is
defined by (6) for a continuous operator G and some sets L, Z,, ..., Z,, we might
define an approximation space A by replacing in (6) L by some compact subspace
L*c L and Z,, p =1,..., k, by some compact approximation spaces Ay of Z,
(e.g., spaces of sphne functlons) Then together with an estimate f == G, 2 tpeeen i .
of f, SEMOR also yields estimates 2; , of the functional components z,

=1,..., k.

ExaMpPLE: SIM. Assume the conditions of Proposition 1(a).
As a first step one might determine constants a, a,, a,, a;, a, and B,, B, Bs, B,
such that for all 6 € S(F)sup,cIf(x,0) <@, a <{f(x,,0)<a; a3<
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If(xr’ 0) f(xr ) 0)' =< ay and Bl < X, B2s B3 < Xy B4 [xr7 xrz' rlth
respectlvely r2th characteristic point of f(-,0), as spec1ﬁed by the normahzmg
conditions]. Rough guesses of these constants might be obtained by analyzing
the observations (this might be done visually or by nonparametric methods).

Given these constants, with a;:=az/|c; — c4|, @, = a,/|c;— ¢4, B; =
Bs/(cy — ¢;) and B, == B,/(c, — c,), the compact subset

= (0 eMa, <00 <a, B, <6 <pB, B, - 0%, <69 <p,- 0%,
a; — 0%¢; < 69 < a, — 60c,)

of # = R2X R? satisfies Assumption 2(b).

Together with J, D characterizes the “relevant” domain J* = [a*, b*] =
[infy o pla — 99)/9D, supy < p(b — @) /3] of 2. In order to approximate z on
J*, one might then determine a set A* of cubic spline functions based on a
corresponding knot sequence on J* [see de Boor (1978)].

This leads to defining A as the set of all functions g € M with the property
that there exists a z; € A* with sup,  ;+|27(¢)| < @,a such that

z}(a*) + z}'(a*)(t — a*), fort < a*,
z,(t) = 22(t), ' for a* < t < b*,
22(b*) + 227 (b*)(t — b*), fort = b*.

It can easily be seen that A is a compact parametric subspace of M.

Under the conditions of Proposition 1(b), appropriate sets D and A can be
defined analogously. However, to determine D rough guesses of average ampli-
tudes and locations of some characteristic points are additionally required.

It should be noted that the actual data analytic and computational steps
involved are simpler than the formalism might imply. Only reasonable guesses of
B1s Bss B3, B, are of interest (in order to determine J%), a,a;, @y, ag, a, are
merely required for technical reasons. They might be chosen extremely large
(respectively small) such that the above conditions are “obviously” satisfied.

REMARK. As mentioned above, (7) is a nonlinear least-squares problem with
a usually large number of n - d + r parameters. One might ask, whether so many
parameters can be estimated without running into the kind of problems that
typically occur, when the proportion of the number of observations to the
number of parameters is too small. Let T:= T, = T, = .-+ = T, so that the
number of observations available is n - T. A prerequisite for a conventional
nonliner regression analysis is that T'/d is “large enough.” When this is fulfilled,
the relative increase by the r parameters characterizing the approximation space
will generally be modest, since r < n-d < n - T. For example, assume a SIM,
and let n =25 and T = T,,...,T, = 25. Then the number of observations per
parameter is 6.25 for a fixed model and 5.21 for SEMOR, when using as much as
24 knots for a cubic spline approximation.

4. The computation of SEMOR estimates. Following Definition 3, as the
first step to obtain SEMOR estimates f and § o 5,,, one has to solve (7) being,
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as mentioned above, a nonlinear least-squares problem with n - d + r parame-
ters. Thus one might doubt the practical computability of SEMOR estimates for
large n, since then—from numerical reasons—it will be extremely difficult to
solve a nonlinear least-squares problem with so many parameters directly.
However, there exists an iterative procedure decomposing this overall minimiza-
tion problem into a sequence of low-dimensional least-squares problems with d
or r parameters, respectively. This algorithm is motivated by the following
argument, which is due to Lawton, Sylvestre and Maggio (1972). Obviously, if f
were known the parameter vectors 4, ..., d, could be determined by solving n
independent least-squares problems with d parameters, respectively (which is
much simpler than solving an n - d parameter least-squares problem). On the
other hand, if we knew 6,,...,0, we could determine f by just solving a
least-squares problem with r parameters. This leads to the obvious idea that one
might solve (7) by using the following iterative scheme.

ALGORITHM.

START: Select a first guess f° of f. Then determine for eachi=1,...,n, an
initial approxzmatwn 6? of 6, by solving

T E (v - 7o(¢ u’e‘o)) - ;‘“2% Zl( =t 9)"

(h+ 1)s'r ITERATION STEP (h € N, := N U {0}): Compute an improved ap-
proxzmatton f Fr+1 of f by solving

2 B (% e, ) = min £ L F (3, a0

llljl =ljl

where 0, ..., 8" denote the parameter vectors obtained in the previous iteration.
For each i =1,...,n determine an (h + 1)st approximation 0}*! of 6, by
solving

1 T . 1 & 2

il _fr h = il r

7 (%= T 8] = win g 3 (%= 10 0))
STOPPING CONDITION: Stop iteration if for some prespecified 8§ > 0,

—y Z( Pt 00) ~ ¥ 2( — R, 601)) < 6.

=ljl llljl

We now have to investigate convergence properties of this algorithm. To
simplify notation we hereby use the following abbreviations:

(a) §% = (@7,...,0") for h € N,.

() Forge Aand § = (9,,...,9,) € D",
R 121 25% 9
‘I(g, ’9') = Py Z T (Yij _g(tij’ 0i)) .

-~
I
—
~.
I
—
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We then obtain

PROPOSITION 3. (i) There exists a ¢ > 0 so that q(f fr 0”) —cash — oo.
(ii) For each limit point (f’, 0’) € A X D" of the sequence (f*, 6” Ynens

(8) c= q( f, 0') = .;ninnq( f, 19) = min q(as,ﬂ’).

€D a, €A

A proof of this proposition is contained in the Appendix. Proposition 3 implies
the following corollary.

COROLLARY 1. If for any (f’,0") € A X D" satisfying

q( f’,0—7) = min q( f, 5) = min q(as,ﬁ’) > min min q(as, 5),
¥epn a,€A a,€A FeD"

we also have
q(f,9) > q(F°,6°),

then any limit point ( f, 51, vy ﬁn) of the sequence (f*, 5{', ..., 8" is a solution
of (7).

Proposition 3 motivates the stopping rule used above: We stop iteration if the
iterates (f*, 8") are “close enough” to some limit point ( 7, 5") [= (a,, 6’ for
some s’ € ¥ ] satisfying (8). Moreover, Proposition 3(ii) implies that such a limit
point is a stationary point of g if s’ is an inner point of & and if g is
differentiable (with respect to s and 6) at (a,, 6) = (a,, 0’) Thus we can infer
from Proposition 3 and Corollary 1 that the above iteration can be considered as
an algorithm for solving (7). It might end up in another stationary point of g
(this might happen to any other algorithm for solving this nonlinear least- squares
problem too), but it follows from Corollary 1 that if the initial guess (f° 00) is

“close” to a solution (f,8) = (f,0 -+, 8,) of (7), then the iteration solves the
minimization problem (7).

5. Consistency. Sufficient conditions for strong consistency of SEMOR
estimators will be established as min{n, T,...,T,} — oo.
Some (weak) assumptions regarding design and error term are required.

AssuMPTION 3. Let (Y)); jens (&;)); jen and (0 )ien be sequences of ran-
dom variables with the followmg property There is a sequence (%;;); ;en Of
design points such that for all n, T\,...,T, € N, model (1) and the SEMOR
MODEL hold for a.e. sequence of reahzatlons of Y, ¢, and 6, i=1,...,n,
J =1,..., T,. Furthermore, let the following hold:

i

(1) The random variables ¢;; are independent with expectation 0, finite
variances o;; and finite fourth moments of; satisfying: (a) For each i € N there
exists a ¢; >Oso that aj<c and a,J_,c for all j € N. (b) There exists a
constant ¢ < oo, so that (1/n)L?_,¢c; < ¢ for all n € N.
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(ii) For each subinterval #C o there exists a 7' € N and an & > 0 so that
1 T
- Z x,(t,]) > g, forall T> Tandeveryi €N,

where x , denotes the indicator function of #.

REMARK. Assumption 3(ii) holds for most of the reasonable designs arising
in practice. Given a systematic design with t;; = t; (for each i € N), it is merely
required that the relative number of all ¢ falhng 1nto some specified subinterval
of J does not converge to 0. Also the case of mlssmg observations is included. It
has then to be assumed that, as inf;_ \7; increases, the relative number of
missings per individual tends to zero with some uniform rate. The case of
controlled “jittered” design is covered as well.

To establish cons1stency results for SEMOR, one 1nev1tably has to allow the
approximation space to “grow” with sample size, i.e., one has to construct an
appropriate sieve of approximation spaces [compare Grenander (1981)]. Using
that, due to Proposition 2, (on J X D) any compact subset of M can be
approximated up to an arbitrarily small error by parametric subspaces, we get
the following theorem.

THEOREM. Let Assumption 3 hold, and suppose that there are some given
DcR McC(JXZRR) and N: M X F— H(R) satisfying Assumption 2.
Assume that there can be determined a compact subset # of M containing at
least one function g € # withg = f [onJ X S(F)]. Furthermore, suppose that,
when restricted to M X F;,, N(-,-) and N(-,-)~! are continuous at each
(8 F*) € M X F}, withgk fand F* =, F.

Let {A,}, r €N, denote a family of function spaces with the following
properties:

(1) For eachr € N, A, is a compact parametric subspace of # C M.

(2) For each ¢ > 0 there exists a r, € N so that for all r > r, and every g € A,
inf sup |g(x) - a(x)l <e.
a€A, x€JXD

Moreover, assume mappings m — n,, and (i, m) - T, om,ny, i, T, €N,
so that, as m - o, n,, - ooandmf,eNT - 0.

Furthermore, let for r,m e N, f,m and élrm""’én .r.m denote
(D, A, N )-SEMOR estimators bemg determined with respect to the random
variables Y;; pi=l...,n,, j= L...,T;

Finally, let S be some compact subset of X with S(F) C S such that Definition
1(iii) still holds when replacing S(F) by S in (3). Under these conditions, we
obtain for each sequence (r(m)),, cn With r(m) = o as m - o:

(a) With probability 1,
hm f(m) w(t,0) =f(t,0), uniformlyforall (¢,0) € J X 8.

(b) For each i € N with probability 1,

lim. b, =9,

i, r(m),m
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(c) With probability 1 for every e > 0,

1
—#{i€ (L., 2116 = b, rimy mllz 2 €} 2 0, asm > 0.

REMARKS. (a) The assumption of the theorem that one should determine a
compact subset .# of M containing some g with g = f [on J X S(F)], imposes
some restriction. In view of possible applications, it is a rather weak one. By
Ascoli’s theorem a subset .# C M is compact if it is closed, equicontinuous and if
for each x € J X %, {g(x)|g € A} is bounded. Usually it will suffice to have a
rough idea about appropriate bounds and about the “degree” of smoothness of
the model function. This will generally not be too difficult, since these bounds
might be chosen arbitrarily large, whereas the “degree” of smoothness assumed
might be arbitrarily small.

(b) Assume that f can be modeled by (5) for some continuous operator G, and
that for some p € {1,..., k} the pth functional component z, is identifiable on
a compact set I, C Jp. If M is defined by (6) for some compact sets FcC L,
% cZ,...,%, C Z, under the conditions of the theorem we then obtain that
as. z; 5,2 uniformly on I,. This is an immediate consequence of asser-
tion (a), since identifiability implies that for any e > 0 there exists a § > 0 such
that for all (A%, 2,...,2}) € X Z,,..., %, with sup, ¢ 125(x) — 2,(%)ll =
& SUD; gye s IGa, 2p,..., 22 (8 0) — f(2, 0)"2 > 8.

(c) For a given model let S be the largest set such that identifiability of f on
J X S(F') implies identifiability of f on J X S. For example, for a parametric
model with a population parameter one obtains S = £#. According to the theo-
rem, SEMOR then consistently estimates f on J X S.

Within many models S will depend on S(F'). Given a finite number of observa-
tions, the problem then arises how to lnterpret a SEMOR estimate £, if S(F) is
completely unknown. In any case, in view of assertion (c) of the theorem it is
reasonable to look for a set D, where the sequence {6}i1,... » of the parameter
estimates clusters, and to study f on o X D. Within most apphcatlons however,
it will be possible to deal with this problem by making use of the particular
model structure. As an example assume a SIM. Interpreting f will generally be
based on analyzing 2;, which under the above conditions is a consistent estima-
tor of z on Igpy. Since Ig; depends on S(F'), one might study 2z; within an
interval I*, which can be expected to satisfy I* C Ig;,. In particular, one might

use
17, 1z, 1 2 12

I*=|la-—-Y 053))/_ ) 0»'(2),(17 -=2 é;(g))/_ ) éi(z)]‘
[( nig n,;, n; n,_

6. Conclusions. A first step in a conventional nonlinear regression analysis
consists in choosing a parametric model, which seems appropriate in view of the
visual structure of the data and which incorporates a priori knowledge. After
estimating parameters, the adequacy of the model is checked by applying
goodness-of-fit tests. If the fit is poor, the model function is modified and the
same strategy is pursued. This “controlled guessing” depends on the skill and the
patience of the statistician and does not constitute a generally applicable and
reproducible method.
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Self-modeling nonlinear regression is a general concept to determine both an
adequate model and the parameters from the data, based on qualitative, struct-
ural information only. Further basic conditions are that the parameter space %
(and, in particular, its dimension) can be fixed, and that the model is identifiable,
possibly after applying some normalizing operation. The examples given il-
lustrate that this is usually much easier than specifying a priori the quantitative
functional dependence on parameters and design. Spaces of spline functions will
often be a natural choice when defining the approximation spaces needed for
estimating the model. A crucial assumption for SEMOR is the availability of
replicate data. In many fields, this is common. In other fields, the new possibili-
ties offered by SEMOR might be an incentive to plan experiments for more than
one experimental unit. This should be done at least once, in order to gauge the
model within some framework.

In this paper we have presented the concepts of SEMOR and we have given
some theoretical justification. After this first step, data-analytic and algorithmic
problems need to be discussed at more length (our experience in this respect was
so far quite encouraging). Further theoretical problems also need clarification.

APPENDIX

PROOF OF PROPOSITION 1. Let g denote a function with g € M and g f
such that the corresponding function z, € C* (R,R) is in Z U Z. Then for each
0 € S(F) there exists a 9, o € 2 so that

3
_()0

® 1 t____ﬂg
£ 00 = (0,0) = £(8,0,) = 94)z,| 3

0
0@ + 9%,

0(1)2( ‘-

for all t€J [0=(0D,0®,09,097; 9, ,= (9%, 9%, 85, 3¥)T]. By as-
sumption, for each § € S(F') the resulting regression curve f(-,0) possesses
exactly one (g, ..., g,)-succession of characteristic points located at some points
x{ < .-+ <xP. Thus, for each r = 1,..., p, depending on the value of g,, the
functions 2((¢ — 69)/6®) and z,((t - 0(3)0 )/3$,), respectively their derivatives,
have a (true) local extremum at ¢ = x"’ Consequently, 2,2, € Z, and for each
0 € S(F) it holds forall r=1,..., p,

(9) A x0=00x + 60 = 3Bz, + 99,
and

(10) f(xf’ 0) = 0(1)z(xr) +09 = ﬂé})l)zg(xg,r) + ﬂg)ﬂ) = g(xg,r’ 19g,t'))’

with x,,...,x, and x,,,..., x, , denoting the locations of the characteristic

points of z and z,.
. To prove assertions (a) and (b) we now have to show that Definition 1(i)—(iii)
are satisfied with respect to the definitions of M and N within (a) and (b):

(a) Clearly, (i) holds. To show (ii) and (iii), we only have to consider the case
2,24 €2, C Z. Since then x, = ¢, =x,,, X, =C =%, ,, 2(x,)=

(1, g, C3, 04)

€3 =2,(x,,) and 2(x,) =c, =z x 3,2), €)) and (10) hold if and only if
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0 = (35, 8%, 03, 99T = (69,09, 0®,9M)T = § for each 6 € S(F).
Hence, (ii) and (iii) are fulfilled.

(b) Obviously, (i) holds. As has been shown above, for each g € M with g = f,
the corresponding function z, is in Z and satisfies (9) and (10). By assumption,
P =2 x <x, and x,, < x,,. Moreover, without restriction, we can assume
that 2(x,) # 2(x,) and z,(x, ;) # 2,(x, ;). [Otherwise, since neither z nor z, can
be constant within ]x,, x,[, respectively 1x,,,x,,[, there has to exist an
additional local maximum or minimum of 2z, respectively z,, at a point
X €]xy, x,[, respectively X, €]x, ,, x, ,[. Then, obviously, z(xl) # 2(X) and
2g(x4 1) #* 24(X,) and (10) holds when replacing there x, by %, x, , by X, and x}
by the corresponding characteristic point of f(-,8)]. We thus obtam for every
0 € S(F)

yor_22) = 2(x)

W = = gy
& zg(xg,Z) - zg(xg,l) &
X9 — X
9@ = g@_"2 "1 _ p®
(11) L Xgo— Xg Be:

35y =09 + 09(x, — Byx, ) = 69 + Oy,

196(,"‘), =09 + 0(1)(z(x1) — gz (x, l)) = 0@ + M8,
Since for each r=1,..., p, x, and x, , are uniquely determined, this implies
that for any 6 < S(F), &(-, ) =f(-,0) holds if and only if ¥ =19, ,=
hag Bever 350) with a,, Bg, Yg» 8¢ defined by (11). Hence, (ii) holds. Furthermore
since Ef, = (1 1,0,0)T, we obtam Edy = Eh, g .. (01) = (ag Bg Yg, 8)7%,
and thus (111) is fulﬁlled O

Proor oF PROPOSITION 3. (i) By construction

q( f"h’ g’h) > q( f"h+1’ g'h) > q( f"’h+1’ 9’h+1) >0,
which proves assertion (i) and shows that
ci= hmqu(f" %) = 1nf q(f"‘“1 ) = (f’,ﬂ_"),
€
for any limit point (f, 0 )EAXD" of(f” 0”),,6,\,

(i) Let ( f’, 6") be an arbitrary limit point of the sequence ( fr am ren and let
(f?,8%), . be a subsequence converging to (f’, §"). Since ¢ is continuous on
A X D" by Lemma 1 of Jennrich (1969), mma caq(a,, 'y ) [= min, . 5q(a,, 6’ ]
and min g p- qa(f’, 19) are also continuous in §’ € D" and f’ € A. Consequently,

=q(7,0) = lim q([*, ™) = lim q([***, ™)
r—oo r—oo
lim min q(as, 9"') = min q(as, 5”)

r-o a,€A a, €

and

q(f", )

For the proof of the theorem we need two lemmas. Within these lemmas and
within the proof of the theorem we will use the following notation: For m € N,

ﬁm‘l(fh',yh’)= lim minq(fh',5)= minq(f’,s). ]

r—o r>o jep” Jep"
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f.. and 071, e 0:;,,,,," denote the least-squares estimators obtained within step
(i) of the SEMOR procedure, yielding the (D, A, (), N)-SEMOR estimators

frimy,m ™= Fns Ny B X)) a0 0, 1y, = N(fos B) 70, ), 8= 1,000, 1
F,, denotes the empirical distribution function of 4, ,,,..., ] and A, =N

(Frur Bi)- "
LEMMA A. Under the assumptions of the theorem, we have:
(a) For each i € N with probability 1 for m — o,

l 7;',m
T ( f(t;,6:) — &(t;, '9))%' -0,

t,m j=1
uniformly for all ¢ € D and each g € A .

(b) With probability 1 for m — o,

—Z_f_ ((U’ ) g(tu,ﬂ))el—)O

Ry i=1 “i,m j=1
uniformly for all g € M and every sequence (9;);cn € D.

ProoF. First we will prove assertion (a). To simplify notation, for any
m, i, p € N, we will use the abbreviations

&= sup sup sup|g(¢,d) —g'(¢d),
&g,8' €M ¥,YeD ted

b—a
tr,p:=a+(r—1) forr = 1,...,p,
riym,p = {je {1,....T; )t € [t, ) t,H,p)}, forr=1,...,p—1,
CIp,i,m,p:'= {jE{l,. lm}'tlje[pp’ ]},
7'r,i,'m,p_#ejz,mpy forr=1,...,p,
1
gr,i,m,p:_ '71_ Z €l forr=1,...,p.
l:"njeflr,i.m.,p

(Since #, D and J = [a, b] are compact, ¢ < o©.)

Select an arbitrary i € N and an arbitrary & > 0.

The compactness of J and D implies that each g € / is uniformly continu-
ous on J X D. Furthermore, by Ascoli’s theorem, it follows from the compact-
ness of # that .# is equicontinuous. Consequently, there exists a p € N,
P = P, ;, so that for each g € # and all ¢ € D,

t, 9 t,9)| <
5P lg(t, ¢) — g(¢', )| 4¢—
|t—¢t|<(b—a)/p
Here c; denotes a constant satisfying o2 < for all j € N. Its existence is
guaranteed by Assumption 3(i)(a).
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We now obtain for all ¢ € D, each g € # and every m € N,

‘,_,T—‘ Z (f(t;,0,) — &(ti;, 9))e,;

i,m j=1
p 1
< Z (f(tr,p’ai) _—g(tr,p’ 0))T_ Z €ij
r=1 L mJEJrzmp

+ F}—é ) [( (u’ ') g(t,], ))

1j€diim,p

~(#(t,,:6) = &(t,,p» 9))] ;s

P 1
CZT Z &

r=1 “i,m j€d, ; m p

+{T1 Zp: > [(f(tu’ 6,) - f(rp’ ))

"mr=1.]EJrlmp

<

1/2
—(g(tij’ '9) - g(tr,p’ ] ™ Z EU}

m j=1

L e \2 Tim 172
Hl—2X X ( ) 2 — o) + e
{ T'mr-=1jeJ,,i'm'p 2\/0_,- g( U) i
p
<Y brimp
r=1
1 2 e \2
([ ramds
9 T 1/2
1 i & 1 i,m
+ T, 2 _ g2
EES R
1/2
s £2 £2 1 T‘lm
=¢ +{— +|— 2 _ 2
crglgr hmP { 4 4C,' Tz m ng(ell ou)
1/2

101
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Since inf;T;, > 0 as m — co, it follows from Assumption 3(ii) that
T, = # — o0 as m — oo for all r=1,..., p. Since, furthermore,

r,i,m,p eIrtmp

< T, ,, and since due to Assumption 3(i)(a) a, %< c¢;< oo foreach j €N,

r,i,m,p <
the strong law of large numbers implies that for all r = 1,..., p as m — oo,
1
gr,i,m,p= T Z sij -0 a.s.
i'm jeJr,i,m,p

Moreover, since by Assumption 3(i)(a) E(e - 02 2<af; < ¢; < oo for every
J € N, the strong law of large numbers also ylelds

1 Ti,m
(ef] 0,21) >0 as.asm— o
T‘i,m Jj=1 .
and hence
1/2
£2 T'i.m
$im = T Z(sfj—oﬁ) -0 asasm — oco.

¢ i,m j=1

Combining these considerations, we obtain

lim P

m— oo

K

sup | sup sup
m>m | €D geH

p €
Zrzmp _2-+§i,m<

r

> lim ‘P( sup

m— oo m>nm

1 Ti,m
T - (f(tij’ 6,) — &(¢;, '9))%'
i,m j=1
s) =1.
Since ¢ is arbitrary this proves assertion (a).
It remains to prove assertion (b).
Choose an arbitrary & > 0. Then select a p € N, p = p,, so that for any
gE€M and all ¢ € D,

P lg(t, ¢) — g(t', #) < 4‘/—
[t—¢|<(b—a)/p
Hereby c is the constant given by Assumption 3(i)(b) with the property that
(1/n)Lr c; < c < oo forall n € N.
Using the notation given above, the following holds for all (¥#;); .y € D, each
g €M and every m € N,
1 m T m

o > Z (f(tu, 6;) - g(tU"&))

mi=1 “i,m j=1

[(f(t,,, ) = £(t,, 5. 8) = (&(ti;, 3:) — &(¢,, pr 9))]°
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1=1
1 ny p 1 n,, 1 D € P
S0 % Thimpt || X 7= £ Tums 57
n i=1r=1 nhmp {[nm i=1 Ti,m rgl b p 2‘/5
1/2
1 Ry 1 sz( . 2)
X|— —_ g —o05)+c
nm i=1 T‘l,m Jj=1 Y Y
1/2
1 = P £ 82 1 ™ 1 Tim
—Z Z rzmp + -+ U ™ (8” 03)
N, 21 -1 2 4cn, ;5| Ti,m_1=1

As mentioned above, the strong law of large numbers implies for all ; € N and
eachr=1,...,p,

§.imp—0 as.asm— co.
Moreover,
2 /
0< lim E§, ;, ,< lim ‘/Eg”mp
m— o0 m— oo m— o0

Thus for all 72 € N with probability 1,

p 1 %
lim ) — ) (gr,i,rh,p - Egr,i,rh,P) =0.

m—o0 r=1"m i=1

It follows that a.s.

P 1 "a .

~lim 'lim >y — Z (fr,i,m,p - Egr,i,rh,p) =0.

m—o0 m—o0 r=1"m i=1
On the other hand, by Assumption 3(i)(a), Eg, im, p <¢/T, ,forall i, meN
and each r = 1,..., p, whereas from (1/n,, )E‘=lc ¢ < oo (for all m € N), it
follows X% ,c,/i? < 0. Since, additionally, independence of the r.v. ¢; i, JEN,
implies independence of the r.v. £, , ., i € N, we can deduce from the strong
law of large numbers that for all m € N with probability 1,

hm Z Z(grlmp £r,i,rh,p)=0'

m—o0 r=1 mL 1

It follows that a.s.

lim lim Z Z( rt,rh,p_Egr,i,rh,p)=0'

Mmoo m—oow r=1 Mm j=1

Combining this, we can 1nfer that as.

lim lim Z Z (gr i,m,p E£r,i,7h,p)

Mmoo m—w r=1 MM i=
P 1 "

= lim lim Z—Z(g,,i,m,p—Egr,i,m,p)=0

m—>00 Mm—>00 p=1 n; i=1
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and, consequently,

Z Z(ér,mp E¢ ;i mp) =0 as.asm— oo.

r=1 n, i=1

Since by Assumption 3(1)(b), 1/n, )X’ 1\/_ O(l)(m_,w), which implies

p
0< lim Z ZEgrz,mpShm Z Z _=O’
m-—o0 r= 1nm i=1 m—o0 r=1 nm i=1 Tt,m
we can thus conclude

1 ™ P

— Y Y imp—0 as.asm— oo.
mi=1r=1 .

On the other hand, it follows from Assumption 3(i) that E(s; — 02)® < af; < ¢;
and X® ,c,/i® < co. Hence we can infer from the strong law of large numbers
that as m - oo,

(s?- - 0-2-) -0 as.,

and therefore
1/2

} -0 as.

Combining again these considerations, we finally obtain

LR Y (-a)

lim P sup sup sup E ™ Z (f(tlj’ t) g(ttj’ g )) )
m— 00 m>m ﬂl,...,ﬂnMEDgEa/l mi=1 t m j=1
1 "™ P
> lim P| sup |é— Ziri,m,p+2+§m <eg|=1
m— oo m>nm mi=1r=1

Since ¢ is arbitrary this proves assertion (b). O

LEMMA B. Under the assumptions of the theorem, with probability 1

(12) —Zsup(f(t ) = Fu(t.6,,))" >0, asm > .

m i=1ted
ProoOF. The proof will be given in two steps.

STeEP 1. With probability 1

(13) - Zm —17— lzm(f(tu’ot) f ( U’ ))2 -0, asm — oo0.

mt=1 i,m j=1
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Under the assumptions of the theorem there exists an f* € # with
[*luxscry = floxsr) Moreover, there exists a sequence ( f,n))men Of functions
with f,,,) € A, for each m € N so that for m - o, f,(n(x) = f*(x) uni-
formly for all x € J X D. By definition, for each m € N the least-squares
estimators f,,, 4, ,,...,0, , minimize (1/n ol /T, Ehen(Y;; — &k, 9))°

with respect to all g € Ar(m) and all 4,,..., 9, €D. Therefore for each m € N,

S

i, m

- Z e Z ( ij r(m)( 11’0)) ni gm —T—-—. {:’( :n(tij’ 0:»"'))2'

mz=1 i,m j=1

Taking into account the model assumption Y;; = f(¢;;, 6;) + ¢;;, this yields for
each m € N,

) (F(858:) = Frmy(tis ,))

n, i=1 T'i,mj=1
2 " 1 Tim
+7L—;i=l—T—i—v—”'.j=1( ( iy z) fr(m)( ijs '))eij
1 Ny 1 Tim ) ) 2
2 n_ml=1T_ §( ( l]’ l) - fm(tlj’ ol,m))

9 tw 1 T
+-n—"§'1‘;—’§(f(tu’ z) f(U’ l’")) Eije

Since a.s. §, € S(F) c D for all i € N and thus, by construction of the sequence
( f r(m))m € N’

nm

1ZITZ(( 0) ~ Frm(t:00))
n = T m jo l_]’ l r(m)\ “ijs Vi
a.s. converges to 0 as m — oo, the assertion of Step 1 follows from Lemma A(b).

STEP 2. (13) implies (12).

This will be proved by contradiction. Assume that for some sequence of
realizations of the r.v. (13) holds, whereas (12) is wrong. Then there exists an
¢ > 0 and a sequence (m;),n such that for each I € N,

1 - - 2
— ¥ sup(f(£,6) - f(t.6, ) 2 e
my i=1 teJ
Furthermore, due to the equicontinuity of .# and the compactness of J X D,
there exists a p € N so that for each g € # and all 4, 3 € D,

sp |(£(2,9) - g(t, ) - (1(¢,9) - (e, ) < 5.
e~ 1562 ay/p
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Using the notation introduced within the proof of Lemma A, this yields

—_ Z ™ ( ( iy z) fm( U’ i rn))2

mtl ,m j

"z 2 wp (10600 - R0 4 - 5

1r=1 T‘i:m [te[tr,p, tr+1,p]

1
> n,
1 T;. ; 2 €
% min e e (7(60) - L(64,0))" - 5]
m i=1r=1,...,p i,m
On the other hand, since inf; . \T; ,, = oo, Assumption 3(ii) implies the existence
of an ” € N and of a y > 0 with the property that for all m > m and every
ieN,

r=1,...,p Ti,m
Combining these relations one can conclude that for each ! € N with m, > r,

T Z ™ Z (f(tw z) fmz( u’ot mz))2

Py i=1 ' my j=1

1
ZY;L—_ Z Sllp( (t 0) fm,( Z i, m,))2_ 2] 2 ‘Yg'

my i=1 teJd

This is a contradiction to (13). O

PROOF OF THE THEOREM. (a) To prove assertion (a) we have to show that
a.s.as m — oo

r(m) m(t 0) (t N( fm’ m)(ﬁ)) - f(t a)
uniformly for all (¢, 9) € J X S.
To prove that (14) holds with probability 1, it suffices to show that with

probability 1,
fefand F =; F,

(15) L
for each limit point ( f, F) € # X Fp, of (f, By) pen-

This can easily be seen by the following argument: Assume that for some
sequence of realizations of the r.v. (14) does not hold, whereas (15) does. Then
there exist an ¢ > 0 and a subsequence (fm,’ ml),eN of (f,,, E),nen such that
foreach [ € N,
(16) sup | (s N( £ B, )(8)) — (2, 9)| 2 .

(t,¥)eI %S

Due to the compactness of D, %, is sequentially compact. Since by construc-
tion F, € %, foreachle N, together with the compactness of .#, this implies
the emstence of a limit point ( f, F) €M X Fp of ( fm,’ m,)zeN C M X 3*",, and
of a further subsequence (fm,( o o p))},,GN satisfying f,, ) — fand F, @ 9
F as p - . From (15) follows fe f and F =; F. Thus, by assumption, N| .z
is continuous at ( f, F) yielding N( fm,( 2 Py p)) — N(f, F). Using (16), we can

(14)
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conclude

e< lim  sup fm,(p)(t’ N( Fror ﬁm,(p))(‘?)) - 1(2, ‘”l
p—o (t,¥)EJIXS

= sup |f(¢, N(F, F)(9)) - f(¢,9)],
(t,¥)eJ XS
establishing a contradiction to the definition of S.
By Lemma B, (12) holds almost surely. Moreover, by the Glivenko—-Cantelli
theorem and by the definition of S(F'), with probability 1

. F, -, F, asm— oo,
(17) (Fm: empirical distribution function of 4,,..., 0nm),
(18) 0, S(F), forallieN.
Consequently, the common probability of (12), (17) and (18) is 1, too. Theorefore
to prove assertion (a) of the theorem, it suffices to show that combining (12), (17)
and (18) implies (15).

Thus let us assume that (12), (17) and (18) hold for some sequence of
realizations of the r.v. Under this assumption (15) can be derived as follows.

Let ( f, F) € # X %, denote an arbitrary limit point of ( fm r)men and let
( fm,» m,),EN be some subsequence converging to ( f, F'). We have to show that
fefand F= 7 F. This will be done in two steps.

StEPl. fEf.

By definition, f — f (in the topology of compact convergence), implying
f.. (t,0)— ft, 0 umformly for all (¢ 60) € J X D. Since 0, m, € D for each
[ € N, it follows from (12) that as [ — oo,

N,

¥ sup(£(6,8) - 7(2,0,.,))" = 0.
my i=1 ted
This implies
1w

— Y mmsup(f(t 6,) —f(e, 0))

Ry, i=19e€D ted
and hence, due to (18),

(19) [, | min sum (£(2,6) = 72, 9))"| a0 0.

S(F)L9eD ted
Following Lemma 1 of Jennrich (1969),
q(6) = min sup( f(t,0) - (¢, 9))’
d€D ted
is a continuous function of § € S(F'). Thus combining (17) and (19) yields

fs( Hﬂnsup(f(t,o)—f(t,ﬂ))]dp(o)=

F)l 9eD ted

Due to the continuity of g and due to the definition of S(F'), this induces that
for each 8 € S(F'), q(8) = 0 [S(F) is the smallest closed set S with F(S) = 1].
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Thus for each § € S(F) there is a 4 € D C £ satisfying
sup ( (£,8) = f(¢,9,))" = 0
3 ted
implying f &= f.

Step2. F= =; F.
Lemma 2 of Jennnch (1969) implies the existence of a measurable mapping :
2 — D with

sup ((2,8) — f (¢, 2(8)))" = min sup(f(¢,0) — [ (¢, 9))’,
ted deD ted

for all § € 2. Since we can infer from step 1 that sup, < ,( (¢, 8) — f(¢, 7;(0)))3 =0
for any 8 € S(F), it follows that the distribution funiction F* of the r.v. h(6,)
satisfies F* =; F. From Definition 1(iii) and from the properties of N, we can
now conclude that h == N(f, F*) satisfies h]s( F) = hls) and f(-, h(")) € M. By
Definition 1(ii), this implies that for each § € S(F'),

(20)  f(-,8)=F(-,h(8)) #f(-,9), forall ® €D with & # h(9).

Hence, F = 7 F obviously holds if and only if F=F*,
Given m € N, ¢,8 > 0 and ¥ € D, we will use the abbreviations

I, .= #{i e {1,...,n,)sup(f(¢,8)—F(¢ 49",.,,,,))2 > e},
_ ted
S;(#) = {% € D|||9 - 9|, < 8},

R, .s= #{i e {1,...,n,}| inf sup( f(t,8,) —f(t, 1.‘}))2 < e}.
d€D ted .
B S5(h(6)))
It follows from (12) that for each ¢ > 0,

—I,, .0, asl— co.

n m,

Moreover, it can be obtained from (20) and (18) that for every é > 0,

1
lim lim —R, . ,=0.

e—=0 >0 nm,

Let v denote an arbitrary continuous function from £ into %, and select an
arbitrary y > 0. The function v is uniformly continuous on the compact set D.
Thus there exists a § > 0 satisfying

lo(8) — o(d))l, <y, forall &, 9 € D with ||§ — 9| < 8.
Now set
CON = sup |lo($) — o(D)],.
9,9eD
Since D is compact, we have CON < oo0. Hence there exists an ¢ > 0 such that

lim —R < —,
imoo Ly ™% " CON
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It follows from the definitions of I,, . and R,, . that for each /€N,

1y [o((8)) - o(8,...,) |,

Ry, i=1

1 1
my, e + CON——Rm,,s,B +y ;l_—(nm, - Im,,s - Rm,,e,s) ’

my my my

1
< CON—I]
n
so that for / sufﬁciently large

—:,,21” (r(8)) - o(8, )|, <200N€0—ﬁ+y—3y

Since v is arbltrary, this implies
(21) — 21" (h(8,)) - o(8, )], ~ 0, asi- oo,
m, i=

inducing thus
Jo(0) dE2(6) - /D(a)dﬁml(o)nz—) 0, asl— o,

where for m € N, F* denotes the empirical distribution function of
h(8,),..., h(d, ). Since it can be deduced from (17) that F* -, F*, we can
conclude that

[(0) dF*(6) - fv(ﬁ)dﬁml(ﬂ)lL—» 0, forl- oo.

Since v is arbitrary, we thus obtain
F~m, -, F*,
which proves F = F* and, consequently, F = i F.

(b) Choose an arbitrary i € N. To prove assertion (b) of the theorem we have
to show that with probability 1 as m — oo,

(22) . ai = hm 01 r(m), m = h-inoo ﬁ;zl(é'i,m)'
To prove this it sufﬁces to show that with probability 1,

for each limit pomt (8, F, F) of (8; s Fr» Fin) men-

This can be seen by the following argument: Assume that for some sequence
of realizations of the r.v. (23) holds, whereas (22) is wrong. Then there exists an
open neighborhood U of §; and a subsequence (0: r(m:) m,)zeN of (0;, r(m), m)meN
with the property that for each [ € N, (f, r(mg), my = (0, =) € U. But, since D
and .# are compact whereas %, is sequentially compact there exists a limit
point (4, f, F) € D X M X F, of (0, mp Tmyp m,)zeu and a further subsequence
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(@ iy mugey? :,,[m, mie)s n_converging to 0, f, F). Due to (a), f=f and F = =;F.
Since, by assumpflon, N(- ; )7t (vestricted to .# X %) is continuous at ( f, F),
it follows that h 1 N h~!:= N(f, F)~'. This implies

(24) o, )(0) - h™Y(¥), uniformly for all ¢ € D,

and thus AL (6, h~Y(0). This establishes a contradiction to (23), since

m,( 13 m,( ))

because of hm,( (0,, m,) € U for each s €N it holds A~ Yf) ¢ U and thus

h=Y () + 6,
Due to Lemma A,
T
(25) T _ 1(f(t‘l,, 0,) — &(t;,,9))e,; = 0, asm > oo,
,m j-

uniformly for all ? € Dandeach g € A,

holds with probability 1. In order to prove assertion (b) of the theorem, it suffices
then to show that combining (12), (17), (18) and (25) implies (23).

Thus let us assume that (12), (17), (18) and (25) hold for some sequence of
realizations of the r.v. Under this assumption (23) can be derived in the following
way.

Let (0 f,F)e Dx.#x #p denote an arbztrary limit point of the sequence
(0, m f Jmen and let (0, mp Imp Fm)ien be a subsequence converging to
(0, f, F). Set h = N(f, F).

It follows from (a) that A(S(F)) C D. Thus, by definition of 0, mp obv10usly
for each [ € N,

Tz;— ‘”:( a m( ij h(ﬂ))) —mjgl( ( 1’5""’))2.

Taking into account the model assumption Y;; = f(¢;;, 6;) + e, this yields for all
leN,

o gl(f(tu» 0;) — m( tij» h(6; )))

:m,

+TL Y ((28) = Fotir 1(8)))e

i,m; j=1
Tm, . .
> T— )y (f(tu’o) fm,(’fif’‘5’i,rnl))2
i,m j=1
+r Zl(f(tu’a) (tll’ol’ml)) i
i,m; j=1

Due to (25), and since (12), (17) and (18) imply (15), it follows that

™ Z (f(tzpo) fm,( l.l’ ;ml))z—”(), asl — oo.

z m; j=1
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Discarding all summations over ¢ within the proof of step 2 of Lemma B and
then applying the same arguments, it can be shown that this implies

Sup( f(t’ 0;) - fm,(t’ 0~i,m,))2 -0, asl— oo.
ted
Since fm, — f (uniformly on J X D) and 0: my = d, this yields
(26) 0= sup(f(t,6) -7 (, 6))’ = sup (f(2,8) — (& h(h=Y(8))))".
te te

By assumption, the SEMOR MODEL is completely identifiable by M > .# and
N, and thus Definition 1(ii) is fulfilled. Since, as shown above, f = f(-, A(+)) on
J X S(F), it follows that (26) holds if and only if §,=h~'(d). This proves
assertion (b).

(c) It remains to prove assertion (c) of the theorem. Obviously, it suffices to
show that if for some sequence of realizations of the r.v. (12), (17) and (18) are
satisfied, for each ¢ > 0,

Lo
(27) Qe,m = -l-’l—#{l € {1 ° nm}l ”0 r(m),m”2 = E} - 0

m
asm — oo.

This will be proved by contradiction.

Let us assume that for some sequence of realizations (12), (17) and (18) hold,
whereas (27) is wrong for some & > 0. Then there exists a § > 0 and a subse-
quence (n,,,); en Of (7,,),, e With the property that

(28) Q. >0, foreachleN.

There exists a limit point ( f, F) € M X Fpp of the sequence ( fm ) m,)zeN as well
as some subsequence (fm,( ” mu.))s eN convergmg to (f, F). As "has been shown,
fef F= =; F and N( fm, F_ ) - h= N(f, F) with the homeomorphism & €
H(2) satisfying (20). Furthermore, as has been derived within step 2, (21) holds
for each continuous function v: 2 — £, and thus, in particular, for v = A~

Hence one obtains

My(s)

Z "0 - A mzm)“2 -0, ass— oo.

myey =1

n

In the same way as in the proof of assertion (b), we can now derive (24). Since

1
" r(ml(a))v myq) hml(a) ’) mys ))’ thls ylelds
"”"l(u)
—— 2 10; = b, rimy i I> = 05 888 > 00,
my, i=1

implying obviously
Q. iy ™ 0, fors — oo.

This contradicts (28). O
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