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ASYMPTOTIC OPTIMALITY FOR C,, C;, CROSS-VALIDATION
AND GENERALIZED CROSS-VALIDATION:
DISCRETE INDEX SET!

By KERr-CHAU L1
University of California, Los Angeles

G, Cp, cross-validation and generalized cross-validation are useful data-
driven techniques for selecting a good estimate from a proposed class of linear
estimates. The asymptotic behaviors of these procedures are studied. Some
easily interpretable conditions are derived to demonstrate the asymptotic
optimality. It is argued that cross-validation and generalized cross-validation
can be viewed as some special ways of applying C,. Applications in nearest-
neighbor nonparametric regression and in model selection are discussed in
detail.

1. Introduction. Let y, = (¥, ¥,..-, ¥,)’ be a vector of n independent
observations with unknown mean p.,, = (g, o, ..., 4,)’. Write

yi=“i+ei, i=1,2,...,n,

and assume that the random errors e; are identically distributed with mean 0
and variance o2 Suppose that to estimate p,, a class of linear estimators
fi.(h) =M, (h)y,, indexed by h € H,, is proposed. Here M, (k) is an n X n
matrix and H, is just an index set. After observing the y,’s, our concern is to
select an A from H,, so that the average squared error L, () = n™Y||p, — f,(h)||?
may be as small as possible (|| - || denotes the Euclidean norm).

ExaMPLE 1. Model selection: Suppose associated with y, there are p,
explanatory variables x;;, x,,..., x;, , arranged in decreasing order of impor-
tance. To estimate p,, one may employ the first 2 variables to propose a linear
model y; = Z?,lxi ;B; + e; with unknown parameters 8, j =1,..., h, and then
use the least-squares estimator (k) = X,(X;X,) 'X/y, to estimate p,. Here
X, denotes the n X h design matrix (x;;) and the information matrix XX, is
assumed to be nonsingular. Clearly, M, (h) = X,(X/X,) 'X, is a projection
matrix of rank A. We may take H, = {1,2,..., p,}. Our goal is to determine an
appropriate model for the purpose of estimating p,,.

ExXAMPLE 2. Nearest-neighbor nonparametric regression: Let p be a natural
number and X be the compact closure of an open connected set in R”. Suppose
Y1» Yas+ -+ ¥, are observed at distinct levels x;, X, ..., X,, which become dense in
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X as n — oo. Assume that p; = f(x;) for an unknown continuous function f on
X. An h-nearest-neighbor estimate of f at x; depends only on the % observations
whose x values are closest to x;. Let x, ; denote the jth nearest neighbor of x;,
in the sense that |x; — x, ;|| is the jth smallest number among the n values
”x X, i’ =1,2,..., n. Ties may be broken in any systematic manner. For a
ngen welght functlon w, »(+), the h-nearest-neighbor estimate of u; is i,(h) =
Zj-=1 h(])yl(j) ThUS p‘n(h) = (p‘l(h)’ L] P’n(h))/ takes the fOI’I'Il M, (h)anIth
each row of M, (h) being some permutation of the vector of the weights
(w,, x(1), .- -, w, 4(h),0,...,0). Conditions on the weight function will be given
later. Stone (1977) gave extensive studies on the asymptotic behavior of this
procedure for a deterministically chosen sequence of h. For our purpose, we may
take H, = {1,2,..., n}. It is then desired to use the same data to decide the
number of neighbors that should enter into our estimate.

For these two examples, the index set H, is discrete and has finite cardinality.
Examples with continuous H,, including ridge regression, smoothing splines and
kernel nonparametric regression, will not be treated here. But some basic results
or principles derived in this paper are expected to carry over [see Li (1986) for
results on ridge regression and smoothing splines].

The following three well-known procedures of selecting k will be studied in
this paper.

(i) Mallows’ C; [Mallows (1973)]: Select 4, denoted by A,,, that achieves

(1.1) min n7 Yy, = Bu(R) [+ 2070 e M(B).
€

(ii) Generalized cross-validation [Craven and Wahba (1979)]: Select A, de-
noted by A, that achieves
_ R 2
n~ Yy, - B(h)]

(1.2) heH, (1 - ntr My(R))*

(iii) (Delete-one) cross-validation [Allen (1974), Stone (1974) Geisser (1975)
and Wahba and Wold (1975)]: Select £, denoted by hC, that minimizes the sum
of squared prediction errors for y;, with y, itself being excluded from the data set.
A rigorous definition of this (delete-one) procedure requires the specification of
estimators (or predictors) to be used when the sample size is n — 1. But formally,
given Y, Yo,.evs Yic1> Yit1r+++» Yoo W€ may write the predictor of y;, (or the
estimator of p;) as §_; = L7_,m,;(h)y; with m (k) being zero. Then h, achieves

~ 2
1.3 i - M (h ,
(1.3) min |y = M,(R)y,|
where Mn( h) is an n X n matrix with 7, ;(h) as the th entry.

ExXAMPLE 1. Model selection (continued): Since M, (k) is a projection with
rank h, the C; procedure reduces to the more famous C, criterion which selects
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A that minimizes

. oA 2 9

On the other hand, GCV selects A by minimizing
i — 1)y, — BB
min n(n — )y, = E(2)]

GCV happens to take a form almost identical to another procedure S, proposed
in Hocking (1976), and Thompson (1978), which selects A by minimizing
(n—1(n—-h)"Y (n—-h-1)"Yy,— . (h)>% S, was motivated by treating the
response variable y and the explanatory variable x jointly as a multivariate
normal random variable in a prediction problem. This aspect of S, is further
explored in Breiman and Freedman (1983). For (delete-one) cross-validation, y; is
predicted by §_, = x{( X} _; X, ) 'X} _;y, _;,where X, ;isthe(n—1) X h
submatrix of X, with the ith row deleted and y, _; is the subvector of y, with
the ith coordinate deleted. Let D (k) be an n X n diagonal matrix with the ith
diagonal element equal to (1 — m;(h)) ™}, where m,(h) is the ith diagonal matrix
of M (h). Then the delete-one estimate of p, takes the form M,(h)y, with
(1.4) M,(h) = D(h)(M,(h) = I) + I,

where I denotes the n X n identity matrix. To see this, first observe that a
simple application of the Gauss-Markov theorem implies that the least-squares
estimate fi,(%) of u; (given the model A) based on the whole sample y,,..., y, is

the best linear combination of y, and the delete-one estimate §_,. From this
observation, it follows that

i(h)=m(h)y,+ X m;(h)y;=m(h)y, + (1=my(h))d_;
J*i
[the weight for §_, has to be 1 — m,(h), otherwise fi,(h) will be biased].
Therefore _, = (1 — m;(h)) ‘i (h) — 1 — m,(h))"'m,h)y, yielding (1.4). The
cross-validation criterion (1.3) amounts to the following:
(1.5) min ! Y (1= my(R) (5 - £(h))
- i=1

Note that the ith residual y, — (k) has variance (1 — m;(h))o>.

ExXAMPLE 2. Nearest-neighbor nonparametric regression (continued): Since
each x; has itself as the first nearest neighbor, it follows that all the diagonal
elements of M,(h) are equal to w, ,(1). C, criterion (1.1) amounts to the
following:

min 7y, = §,(h) | + 20%, (1),
heH,

n

The GCV criterion (1.2) becomes

- a 2

n” Yy, = Ba(R)]
min )
heH, (1 - wn,h(l))
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For (delete-one) cross-validation, the delete-one estimate J_, equals
2” W, #(J)¥ij+r (for another possible definition see Remark 5.1 in Section 5.2).
From thlS, we see that each row of M, (h) is again some permutation of the
weights w, ,(7); but the diagonal elements of M (h) are identically zero.

The primary goal of this paper is to demonstrate that under reasonable
conditions, these procedures are asymptotically optimal in the sense that

1.6 L(h) i babilit
(1.6) lnfheHL(h)—) , in probability.

Thus using these procedures, statisticians may do as well as if they knew the
true p.,, [but are restricted to the use of the linear estimators fi,(4)]. For brevity,
we shall omit the phrase “in probability.”

Let R, (h) = EL,(h), the expected average-squared error. Denote the maxi-
mum singular value of M, () by A(M,(h)). Section 2 proves the asymptotic
optimality of C, criterion under the conditions that

(A1) limsup A(M,(h)) < oo,
n—>oo heH,
(A2) Eeim
(A3) L (nR,(h))"
heH,

for some natural number m. Condition (A.l) is quite natural. In fact, if
A(M,(h)) > 1, then fi(h) is inadmissible and is dominated by some other linear
estimators [Cohen (1966)]. To explain (A.3), we first observe that in nonparamet-
ric regression or in parametric regression with the number of unknown parame-
ters growing up to infinity as the sample size increases, the optimal risk R (k) is
typically of order n~'*%, for some & > 0. Thus, if the cardinality of H, is of
polynomial order, n%’, for some 8’, then we can always find an m so that (A.3) is
satisfied. (A.2) is just a moment condition on the error distribution which may
not be satisfied if distribution-robustness is of concern (but that is a separate
issue and will not be discussed here). For the model selection problem of
Example 1, we need only to take m = 2 in (A.2) and replace (A.3) by the weaker
condition (see Corollary 2.1)

A3 inf :
(A3) o0f nR(R) = o0

The assumption (A.3’) seems quite reasonable if p,, the number of explana-
tory variables, grows as the sample size increases. For instance, in the problem of
selecting the suitable degree of a polynomial to fit a response curve, (A.3") will
hold when the true regression function is not a polynomial [Shibata (1981)].

The asymptotic optimality of GCV is established in Section 3. This is based
on a connection between C; and GCV via the notion of nil-trace linear estimator
[Li (1985), page 1357, Remark 1].
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Li (1985) provides another way to look at GCV using Stein estimates and
Stein’s unbiased risk estimates [Stein (1981)]. Section 4 will strengthen the
results in Li (1985) by showing that the Stein estimate selected by GCV is
asymptotically optimal.

Section 5 discusses the asymptotic optimality of cross-validation. A general
viewpoint is that cross-validation is closely related to C;. In fact, since trace
M, (h) = 0 we see that cross-validation is just the C; procedure applied to the
class of delete-one estimates {Mn(h)yn: h € H,}. Thus, we have strong reasons
to believe that the asymptotic optimality for cross-validation should follow from
that for C;, providing that the delete-one estimate is very close to the initial
estimate. Examples 1 and 2 are treated in detail.

Technical proofs will be given in Section 6.

2. C,and C;. Lete,= (e e,,...,e,) and A,(h) =1— M,(h), where I is
the n X n identity matrix. First, observe the identity

Yy, = Ba(B) | + 20%n 7 tr M (R)
(2.1) = n7Yell* + L(h) + 2n7" (e,, Au(R)p,)
+2n"Yo2tr M,(h) — (e,, M,(h)e,)).
Since n~'||le,||? is independent of A, h u also minimizes
L(h) +2n " (e,, A (h)p,) + 2n Y o2tr M, (k) — (e,, M,(h)e,))

over h € H,. If we can show that n™Xe,, A, (h)p,) and n~Yo?tr M, (h) —
(e, M,(h)e,)) are negligible [compared with L,(h)] uniformly for any h € H,,,
then the asymptotic optimality property (1.6) is established for A = A u- More
precisely, it remains to show that in probability,

(2:2) sup n”'(e,, A,(h)p,) /R, (k) =0,
heH,
(2.3) sup n‘1|02trMn(h) - {e,, Mn(h)en>|/R,,(h) -0
heH,
and
(24) sup |L,(h)/R(k) - 1| > 0.
heH,

These statements will be verified in Section 6. Now we have

THEOREM 2.1. Assume (A.1)~(A.3) hold. Then C, is asymptotically optimal,;
i.e., (1.6) holds for h,,, defined by (1.1).

The following two subsections are devoted to the application of this theorem
in Examples 1 and 2.

2.1. Model selection—Example 1 (continued). Consider the model selection
of Example 1. (A.1) holds obviously because M,(4) is a projection matrix. To see
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that (A.3’) implies (A.3) with m = 2, observe that
(2.5) nR, (k) =| A (h)p|’ + ho? > ho?.
Hence for any fixed natural number &
k pfl
L (nR,(h) "< ¥ (nRy(R) P +0™* XL A7
R=1

(2.6) heH, h=k+1

—9 0
: -4 -2
< k(hlélflnan(h)) +o hgﬂh .

Now by (A.3"), we can choose £ — oo slowly enough so that k(inf nR (h))"2 - 0.
On the other hand, since L¥_,h"? is convergent, the last term in the above
display converges to zero as k& tends to . This proves (A.3). We summarize the
result by the following.

COROLLARY 2.1. For the model-selection setting of Example 1, C, is asymp-
totic optimal if (A.3') and (A.2) with m = 2 are satisfied.

When 62 is unknown, we should replace it by an estimate in (1.1).

CoROLLARY 2.2. If o? is replaced by a consistent estimate 6°, then C, is still
asymptotically optimal under (A.3") and (A.2) with m = 2.

Proor. The identity (2.1) still holds with o2 replaced by 62. Therefore, in
addition to (2.2) and (2.4), we need only to verify (2.3) with o2 replaced by 2.
Obviously, it is enough to obtain

|62 — 6%n"tr M (h) 0
sup -0,
heH, Rn(h)
which holds because tr M,(h) = h < nR,(h)o™2 O

Shibata (1981) demonstrated the asymptotic optimality property of a related
selection procedure, final prediction error (FPE) criterion, which selects A& by
minimizing n7!|ly, — f,(h)||%(n + 2k), under the normality assumption of e,
condition (1.3) and the assumption that the rank of the largest model considered
p, is of order o(n). The last condition makes his selection procedure not
completely data-driven because it is hard to judge when p, will be small enough
compared with n. It was also claimed that C, and FPE are asymptotically
equivalent. However, this equivalence crucially depends on the assumption
P, = o(n); for example if p, = n, then FPE always selects h = p,, the full rank
model, which is obviously an overfitting.

2.2. Nearest-neighbor nonparametric regression—Example 2 (continued).
Condition (A.1l) is satisfied if we have the following conditions on the weight
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function:

there exists a positive number 8’ such that
(2.7) w, (1) <1 -6,

for any n, A > 2;
(2.8)  for any n, hand i, w, (i) = w, ,(i +1) > 0;

R
(2.9) S w, (i) = 1.
i=1
The proof appeared in Li (1985), Lemma 4.1. Condition (A.3) will be satisfied if
the optimal rate of convergence is slower than n7, i.e.,

(A.3") lim (hinf R,,(h))n1~1/m = .

n— oo €H,

We summarize the result by the following.

COROLLARY 2.3. For the nearest-neighbor nonparametric regression prob-
lem, C, is asymptotically optimal if (A.2), (A.3") and (2.7)-(2.9) hold.

REMARK 2.1. The constraints on the weight function (2.7)-(2.9) are only
used to guarantee (A.1). As mentioned before, for A(M(h)) larger than 1 the
resulting estimate is inadmissible. Thus, in practice, we should check to see if
AM(M(h)) is too large. This comment applies to any nonparametric regression
estimate, including kernel estimates. The smoothing spline estimate always
satisfies the condition A(M(h)) < 1, an advantage over its rivals.

3. Generalized cross-validation. Most literature relates GCV to C, via
Taylor expansion. For A such that n~*tr M (k) is small, (1 — n"'tr M,(h)) 2 is
approximately equal to 1+ 2n~'tr M, (h). Thus, it has been claimed that
minimizing (1.2) is asymptotically equivalent to minimizing

n7 Yy, — A (A)I2(1 + 207 tr M, (),

which was again claimed to be asymptotically equivalent to C, because of the
consistency assumption that n'|ly, — i, (h)||> > 6% These heuristics suffer
from two basic logic difficulties:

(i) by assuming n~'tr M,(h) = o(1), we already impose some artificial condi-
tion on the selection class, violating the spirit of being data-driven;

(i) by assuming consistency, we have placed too much confidence on a
procedure whose asymptotic property is still to be investigated.

Finally, one can not justify the asymptotic equivalence by simply demonstrating
that the difference between two minimization criteria is of order o(1). As a
matter of fact, there do exist examples, where C, is consistent and asymptoti-
cally optimal while GCV is consistent but not asymptotically optimal [see Li,
(1986)].
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Li (1985) pointed out a direct way to relate GCV with C; via the notion of
nil-trace estimate. Consider the linear estimate

(3.1) En(h) = —ay, + (1 + a)i,(h),
with
(3.2) a=n"YrM,(h)/(1 - n~tr M,(R)).

If we apply the C, procedure to select an estimate from the class {ji,(A):
h € H }, then it is easy to check that the resulting minimization procedure is
exactly the same as GCV, (1.2). Note that the matrix associated with g ,(A),

(3.3) M(h) = —al + (1 + a)M,(h),

has trace 0. Intuitively, for those A with small n~'tr M,(h) [as is the case for
which {i,(4) is a good candidate, at least being consistent], the nil-trace esti-
mates p,(h) are close to the original estimates p,(%). On the other hand, for
those h with large n~'tr M,(h) (poor candidate), the corresponding nil-trace
estimates p(A) are expected to become even poorer because of the negative
weight for y, in the expression of (3.1). It is important to point out that we are
not recommending the use of (3.1) to replace the original estimate as a final
estimate. It is only a device aiming at some understanding about GCV. Efron
(1986) commented that despite the name, GCV is nearly a member of C;. Our
nil-trace estimate approach supports this comment.

The following theorem provides conditions to justify the replacement of the
original class by the nil-trace class.

THEOREM 3.1. For any sequence of random variables ﬁn, taking values in
H, such that

(3‘4) Ln(ﬁn) = Op(l)a
(3.5) lim P{|n_1trAn(fzn)| > 6} =1, forsome?d >0
and

(3.6) (n"ltrMn(fzﬁ))z/n"ltrMn(iln)M,;(fzn) — 0, inprobability,

we have
(3.7) n g, (A,) - ﬁn(izn)||2/R,,(ﬁn) - 0.

Conditions (3.5) and (3.6) can be interpreted as follows. First, observe that the
ith diagonal element m (k) of M, (k) is the weight on ith observation itself for
estimating its own mean p;. Call these diagonal elements self-weights. Clearly
the average variance of fi (h), which equals ¢%n " 'tr M, (h)M(h), comes partly
from these weights. In fact, since (n~*tr M (h))? < n™'L"_(m,(h))?, we see that
if the portion of variance contributed by self-weights accounts for only a small
percentage of the average variance of fi,(4), then (3.6) holds. Similarly, (3.5)
holds if self-weights are not too close to one, which is quite easy to achieve.
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We are ready to apply C, to the nil-trace class. Then, using Theorems 2.1 and
3.1, we establish the asymptotic optimality for GCV.

THEOREM 3.2. Assume that (A.1)-(A.3) and the following conditions hold.:

. inf L,(h)— 0;
(a.4) Jinf L,(h)

for any sequence {h, € H,} such that

(A5) n~'tr M,(h,)M;(h,) -0,
we have (n‘ltrMn(hn))2/n‘1trMn(hn)M,;(hn) - 0;
(A.6) sup n 'trM, (h) <vy,, forsomel >y, > 0;
heH,
(A7) hsug (n‘ltrMn(h))2/n‘1trMn(h)M,;(h) <7Y,, forsomel > vy,>0.
€

Then sz is asymptotically optimal.

(A.4) assumes only the existence of consistent selection procedure when p., is
known. The interpretation of conditions (A.5)—(A.7) is the same as that for
3.1)-(3.2).

The following two subsections demonstrate how to apply Theorem 3.2.

3.1., Model selection. Since tr M,(h) = tr M(h)M,(h) = h, (A.5) obviously
holds. (A.6) is the same as (A.7), requiring that the largest model has rank
D, < ny for some 0 <y < 1. But this constraint can be easily removed by the
following argument.

First, let h* be the minimizer of inf, . ;; L,(h). Equation (2.4), which follows
from (A. 1) (A 3), implies that R, (h*) - 0 because of (A.4). From this it follows
that A*n~' — 0. Therefore denoting H, = H, N {h: h < ny}, we see that the
minimum loss does not increase for the restricted class H,: ie., inf,c, L,(h) =
inf}, ¢ 55, L,(h) except for a small probability that tends to 0 as n — cc. On the
other hand, Li (1985) proved that p.(hG) is consistent [i.e., Ln(hG) — 0] provid-
ing that the following addition condition on the random errors holds:

there exists a constant k’ so that for any a >0,

(3.8) supP{x —a<e <x+a} <ka.

xX€R
Equation (3.8) is satisfied if e; has a bounded density. Using this consistency
result and the previous arguments for h*, we see that ﬁGn“l — 0. Thus,
asymptotically, sz, the model selected by GCV when the class of models
considered is restricted to H, will be the same as hG, the model selected from

the entire class H,,. Therefore we see that it is not necessary to have the

condition p, < ny. The following corollary conveys the result we have estab-
lished.
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COROLLARY 3.1. For the model selection problem of Example 1, h is
asymptotically optimal if (A.2) with m = 2, (A.3"), (A.4) and (3.8) hold.

REMARK 3.1. Breiman and Freedman (1983) show the asymptotic optimality
of S, under a different set of conditions. Their conditions exclude, for instance,
the application in selecting polynomial regression models.

3.2. Nearest-neighbor nonparametric regression. Observe that
n e M,(R) = w, (1)
and that under (2.7),

h
n”'tr M,(h)M;(h) = ‘Elwn,,.(i)z > w, j(1)° + 271~ w, 4(1))"

Thus, it is clear that the following condition implies (A.5):

(3.9) there exist fixed positive numbers A, and A, such that
) w, (1) <\ A~0/222) for any n, h.

This condition was used in Li (1984) and can be easily satisfied by most
commonly used weights; for example, uniform weight, w, ,(i) = A~". In ad-
dition, (A.6) is also a reasonable restriction on the weight functions providing
that H, = {2,...,n} [note that GCV is undefined for A =1 because
¥, — B, =0and 1 — n~'tr M(1) = 0]. It reduces to condition (2.7).

Finally it is obvious that (3.9) and (2.7) imply (A.7). Therefore we obtain the
following desired result.

COROLLARY 3.2. Suppose that the weight functions satisfy the regularity
conditions of (2.5)-(2.7) and (3.9). Then h is asymptotically optimal if (A.2),
(A.3”) and (A.4) hold and H, = {2,..., n}.

REMARK 3.2. As argued in Section 2.2, condition (2.8) may not be necessary
providing that (A.1) is satisfied.

4. Stein estimates. Intuitively, the replacement of {i, (&) by p,(h) does not
seem appropriate if n”'tr M, (h) is not negligible because the weight on y, is
always negative. This is a weak point for considering p, (k). A better way of
replacement is by means of Stein estimates, defined by

in(h) = ¥, = o*tr A(R)| AL W)Y, AR}y,
which has an (approximately) unbiased risk estimate
SURE,(h) = o® = o*(tr A,(h))*/n| Au(R)y.|I"

The original version of these quantities, given in Stein (1981), was a little
complicated. Note that fi,(A) is also a linear combination of y, and {i,(A). But
unlike nil-trace estimate g (%), the weights are now data-dependent. They can
always be made positive by a slight modification as was suggested in Stein
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(1981). But for our purpose, this modification is not necessary since we are
studying asymptotics and the weights will be positive with probability nearly
one for large sample size. Stein estimates possess the nice property that as
estimates of p, they dominate the raw data y, for normal errors under some
mild assumption about the largest characteristic root of A,(h). Li and Hwang
(1984) studied the asymptotic behavior of fi, (k) for nonparametric regression
problems. Basically, fi, (%) and {i,(A) will be very close to each other providing
that fi (A) is close to the true value p.,. Hence using Stein estimates, we do not
lose efficiency if it is the case that the corresponding linear estimate performs
well; if not, by the property of bounded risks, we still have some guarantee that
estimation error for Stein estimates may not be as big as the linear ones which
usually have unbounded risks. This justifies the replacement of i () by fi (k).
Now it is easy to see the interesting consequence that the natural way of
selecting fi ,(#), minimizing SURE (&), is exactly the same as selecting {i,,(%) by
GCV. Li (1985) argued that SURE (h), initially proposed as an estimate of the
risk of the Stein estimate {i,(4), indeed does more than anticipated: It is always
a consistent estimate of the true loss n™Y|u, — fi,(h)||? although sometimes the
true loss does not converge [hence, for this case, SURE, (k) cannot be a
consistent estimate of the risk En~Y||p, — fi,(h)||2]. In addition, the consistency
is uniform in p, € R". The consistency of the Stein estimate selected by GCV,
p,,,(hG) was also established there. The following theorem strengthens this result
by proving the asymptotic efficiency of pn(hG)

THEOREM 4.1. Under the assumptions of Theorem 3.2, we have

. (g 2 .
(4.1) nin(ho) = pal/ inf L,(h) > 1
and
4.2 inf nYf,(R) — pa|/ i -1
(42) ot n (k) = "/ i Lo(R) > 1,
in probability.

As in Section 3, Theorem 4.1 applies to model selection and nearest-neighbor
nonparametric regression.

5. Cross-validation. Let p,n(h) denote the delete-one estimate of p,,
M, (h)y,. The exact form of M (h) can only be written down case by case.
However, a useful common feature is that all M (k) have diagonal elements
identical to zero. From this, we see that cross-validation is just the C; procedure
applied to the class of delete-one estimates {u$(4): A € H,}. The replacement of
the original estimate {i,(k) by p(h) can be justified intuitively by arguing that
for large n the delete-one estimate, which is based on a sample of size n — 1,
should be nearly the same as the original estimate. The following theorem makes
this type of argument more vigorous. Define

L(h) = n"Yp, - ps(R)|,
R,(h) = EL,(h).
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THEOREM 5.1. Assume that (A.1)-(A.4) and the following conditions hold:
(A.8) limsup A(M,(h)) < oo,
n—-ooheH,

(A9) ¥ (nR,(h)) " >0,
heH,

for any sequence {h,}, h, € H,, we have
(A.10) R, (h,)/R,(h,) =1

if either R (h,) — 0 or R, (h,) - 0.
Then h, is asymptotically optimal.

5.1. Model selection. For the model selection problem, we have discussed the
conditions (A.1)-(A.3) in Section 2.1. Briefly speaking, (A.1) holds automatically
and (A.3’) implies (A.3) with m = 2. In Section 6, we shall show that (A.8)-(A.10)
hold under the following additional assumptions (A(-) denotes the maximum
diagonal element of a matrix):

(5.1) limsup A(M,(h)) <1;

n— oo heH,
there exists some positive constant A such that for any n, A,
MM, (h)) < Ahn™1L,

Condition (5.1) is a weak assumption, assuming only that the self-weights are
bounded away from 1. Note that one property of a projection matrix is that
A(M,(h)) < 1. If the ith diagonal element is close to 1, then all other elements in
the ith row have to be close to zero, meaning that {i, (%) estimates p; almost
only by y, itself. Hence for such cases the delete-one estimate (which does not
use y; at all in estimating p,) clearly is not close to the initial estimate {i (&) [for
the extreme case that A(M,(h)) = 1, the delete-one estimate is undefined].

Condition (5.2) excludes extremely unbalanced designs. To see this, we need
the following view of the self-weights: The ith diagonal element of M, (%) times
o? equals the variance of the least-squares estimate (based on model h) of p;
[this is simply because of the property of projection matrix M, (h)M,(h) =
M, (h)]. Thus if A(M,(h))o? is too large compared with the average variance
hn~'62, then some p;’s are estimated much less accurately than others, an
indication of severe unbalancedness. Severe unbalancedness may also incur
nonrobustness [see, for example, Box and Draper (1975) and Belsley, Kuh and
Welsch (1980)].

We conclude this section by summarizing the result for model selection as
follows.

(5.2)

THEOREM 5.2. For the model selection problem of Example 1, assume that
(A2) with m =2, (A.3’), (A4), (6.1) and (5.2) hold. Then the procedure of
cross-validation is asymptotically optimal.

5.2. Nearest-neighbor nonparametric regression. Using Theorem 5.1, we
may establish the asymptotic optimality of cross-validation in nearest-neighbor
nonparametric regression.
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THEOREM 5.3. Under the assumptions of Corollary 3.2, h . I8 asymptotically
optimal.

REMARK 5.1. Another way of defining the delete-one estimate can be given
by letting y_, = Ef- W1, /(7)Y j+1)- If the weight function depends only on A
but not on n, then we have the same delete-one estimate as before. In general, it
seems that we need some conditions on the relationship between w,_, ,(j) and
w, (J) to guarantee that our asymptotic setting provides a reasonable embed-
ding of weight functions. For instance we may want to assume that

Sup; . ;< wlWo—1, W(J)/ Wy 1l (J) = 1| = 0if A — oo.
6. Proofs.

ProOOF OoF THEOREM 2.1. We shall prove (2.2) first. Given any § > 0, by
Chebyshev’s inequality we have

I

n2"E (e, (M)
-1
P sup n”(en A MRDV/RR) = 8) 5 B S R

which, by Theorem 2 of Whittle (1960), is no greater than
-2m -2m 2m —2m
87 ¥ n A (R RA(R) T,

heH,

for some constant C > 0. Now since n™ || A (h)p,||2 < R,(h), the last expression
does not exceed C§~ 2L, . u(nR,(h))~™, which tends to 0 by (A.3). Thus (2.2) is
proved. Equation (2.3) can be established in a similar manner, by noting that, as
an application of Theorem 2 of Whittle (1960),

E(o’tr M,(h) = (e,, M,(h)e,))"" < C’(tr M,(h)M;(h))",

for some C’ > 0 and that o2n~'tr M, (h)M(h) < R ,(h). Finally, it is clear that
(2.4) will follow from the following two statements:

(6.1) sup 1| ARy, M(R)er)|/R,(B) 0

and

(6.2) sup n” || M(h)e,|* - o®tr M,(R)M;(R)|/R,(h) - 0.
heH,

Since (A, (hp,, M (h)e,) = (M,(M)A,(h)p,,e,) and ||M(R)A(h)p,l® <
MM, (h))?|| A, (h)u,lI?, the proof of (6.1) will be the same as that of (2.2) in view
of (A.1). Similarly, write ||M,(h)e,||> = (M/(h)M,(h)e,,e,) and observe that
tr(M(h)M,(h))? < N(M,(h))*tr M;(h)M,(h). We see that (6.2) can be proved
exactly as (2.3). This completes the proof of Theorem 2.1. O

PROOF OF THEOREM 3.1. Observe that i (h,) — i, (k,) = a(i,(k,) - y,),
where & equals (3.2) with h replaced by A,. By (3.5), (3.6) and the fact that
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R, (h)>c’tr M AR)M,(h), we see that a?/R, (h ) converges to 0 in probability.
Finally, since [|i(4,) — ¥,lI% < 2li(A,) — )% + 2|le,l|% the desired result
follows from (3.4). O

PROOF OF THEOREM 3.2. First we shall show how to apply Theorem 2.1 to
the class of nil-trace estimators to obtain the following crucial result (6.5). Set
L (h)=n"Y g, (h) — p,l* and R,(h) = EL,(h). A simple computation leads
to

tr M,(R)M/(R) — n~Y(tr M,(R))’

tr M, (WM, (R) = (n~itr A, (h))’

and
1A (R, | + otr M (R)M,(R) — o’n" Y(tr M,(h)) .
(n~'trA,(h))*

Now, by (A.6) and (A.7), it is easy to see that there exist positive constants c;, ¢,
such that for any n, h € H,, we have

(6.3) ¢, <tr M (R)M!(h)/tr M,(h)M}(h) < c,,
(6.4) ¢, <R, (h)/R,(h) <c,.

From this, it follows that (A.1) and (A.3) also hold with R,(h) and M,(h)
replaced by R, (k) and M,(h), respectively. Hence, by Theorem 2.1, we have

(6.5) z"(ﬁa)/hié’flnz"(h) - 1.

In fact, the following analogue of (2.4) also holds:
(2.4) sup |L(h)/R,(h) —1| - 0.
he

Next let A, be the minimizer of L, (k) over h € H,. From (6.5), it is clear that
(1.6) will hold for h = ha if we can verify that

(6.6) L,(hy)/Ly(hy) > 1
and
(6.7) zn(ﬁG)/Ln(ﬁG) -1

Theorem 3.1 can be used to prove (6.6) and (6.7). To see this, first observe that
(8.5) always holds because of (A.6). Next, from (2.4’) and (A.4), it follows that
n~tr M (h,)M,(h,) — 0. Hence, by (A.5), (3.6) holds for h = h,. Finally, (3.4)
with ﬁ,, = h, is weaker than (A.4). Therefore, Theorem 3.1 applles for h = Ry,
and (6.6) follows as a simple consequence of (3.7) and (2.4). Turning to the proof
of (6.7), we need only show that

(6.8) n~tr M, (hg)M,(hg) — 0,
and (3.4) holds for A, = ;. Now by (6.6) and (A.4) we see that L, (h,) — 0,
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which implies
(6.9) L (fla) - 0,

because of (6.5). Then from (2.4") we conclude that R (ha) — 0, which in turn
implies n~'tr M, (hG)M (ha) — 0. In view of (6.3), we have established (6.8).
Finally, (3.4) follows from (6.9), (2.4"), (6.4) and (2.4). This completes the proof of
Theorem 3.2. O

ProoF oF THEOREM 4.1. To prove (4.1), by Theorem 3.2 it suffices to show
that

(6.10) n i he) = bnlhe) |/ La(ha) = 0.
First, observe that
. . n lo%tr A (ﬁa)
2 in(he) - inlha) | = .
I#.Re) = &Rl = | o s
= [(o® = n7Yeul1?) = L,(hg)
—2n‘1<en,pn—- i (ﬁG)>

—n"lo2tr M, hg ] /n_luA (hs) ynl

2
- 1) n_ln An(ﬁa)yn ”2

2

and that

n_1||A"(ﬁG)yn”2 = n_lllen + (p‘n - ﬁ‘n(ﬁG)) ”2 - 02’

because of the consistency of ﬁ.,,(fla). Therefore, to prove (6.10) it is enough to
verify

(6.11) (02— n Ye,l?)’/L,(hg) -
(6.12) (n"* (s tn = inlhg))) /LalBig) >
and

(6.13) (n"r M,(hg))/L(hg) - O.

Now (A.3’), which is weaker than (A.3), and (2.4) imply that nLn(ﬁG) — 0.
Thus, (6.11) follows from the central limit theorem. Next, as was proved in the
proof of Theorem 3.2, (3.6) holds for h = ha This together with (2.4) implies
(6.13). Finally to prove (6.12), it suﬁices to show

(6.14) (n! (e, An(ﬁa)un>)2/Rn(ﬁa) -0

and

(6.15) (n"* (e, Mn(ﬁa)en>)2/Rn(sz) - 0.
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It is not difficult to see that (6.14) follows from (2.2), and that (6.15) follows
from (2.3), (6.13) and (2.4). This completes the proof of (4.1). The proof of (4.2) is
similar; namely, to establish (6.10) with hG replaced by the minimizer of
minheHnn_lllﬁn(h) — ,/|%, which can be carried out as before. O

Proor or THEOREM 5.1. Using Theorem 2.1, we have
L,(A.)/ inf L,(h) - 1.
alhe)/ inf Ly(h) ~
In addition, the analogue of (2.4) implies
L(h.)/R, (k)1

and
L (h*)/R (h*) -1,

when A, is the minimizer of inf,, . 5 L,(h). In the proof of Theorem 3.2, we have
shown that R, (h,) — 0, which, by (A.10), implies that R Ahy)/R (h*) - 1.
Thus, L A hs)/L(hy) — 1. Since L,,(h )< L(hy), it suffices to show that
L (h )/L (h ) = 1. Now since L (h,) — 0, we have Ln(h ) — 0, implying that
R (h ) — 0, which, due to (A.10), implies R (hc)/Rn(hc) — 1. Therefore, we
have L, (k,)/L,(h,) — 1 as desired. O

Proor oF THEOREM 5.2. It suffices to establish (A.8)-(A.10). First, using the
simple inequalities that A(AB) < A(A)A(B) and A(A + B) < AM(A) + A(B) for
any n X n matrices A, B, we see from (1.4) that (A.8) follows from (A.1) and
(5.1).

Next we shall prove (A.10). Observe that from (2.5) we have R (h,) > ¢%h,n"!
and R (h,) > o%h,n"! [note that the Gauss-Markov theorem 1mphes the
variance part in R (h ) is no larger than the variance part in R (k,)]. Thus,
either R, (h,) — O or R A(h,) — 0 implies that h,n~" — 0, which in turn yields
MM (h,)) - 0, due to (5.2). Thus, A(D(h,)) =1 + o(1) = A(D,(h,)), where
A(+) denotes the minimum diagonal element of a matrix. Therefore,

nR(h,) =|(M,(h,) = D, + o2 M, (h,)M(R,)

= (1 + o)) (M () — D, | + 0*(1 + o(1))tr M, (h)M;(h)
= (1 + 0o(1))nR(h,),

proving (A.10). Here, the second equality is based on (1.4).

To prove (A.9), we first let /, be the minimizer of min, . H, R A(h). Since (2.6)
still holds with R (h) replaced by R,,(h), it suffices to show that nR n(h ) = o0.
Suppose that this is not true. Then since nR,(A,) > o2h,, h, is bounded,

implying n lh — 0, again. Therefore, we can show that nR(h )=(@1+
o(l))nR(h ). Slnce R(h,) = 1nfh€HR Ah), by (A4) and (2.4) we see that
nR (h ) = o0, which implies nR (h ) = co. Hence, in any case, we have shown
(A.9) holds. This completes the proof of Theorem 5.2. O
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PROOF OF THEOREM 5.3. Again we only need to establish (A.8)-(A.10).

To prove (A.8), first let T, (h) = M «(h) + w, (DI and observe that
}\(M (h)) < MT,(h)) + w, ;(1). Now apply Lemma 4 1 of Li (1985) by treating
T,(h) as M,(h) [since T, (h) corresponds to a nearest-neighbor estimate with a
different weight function that satisfies (4.6) and (4.7)]. We see that A(T,(h)) is
bounded, which proves (A.8).

Next, we claim that (A.10) implies (A.9). To see this, first observe that (A.9)
follows from (A.3”) with R,(h) replaced by R o(h). Denote the minimizers of
min, .y R A(h) and min, . 4 R, (h) by A, and h,, respectively. Since R,,(h*) >
R,(h,), it suffices to show that R (h*) =1+ 0(1))Rn(h,,,) Hence, by (A.10),

we need only to verify that R (h ) = 0. Now, since R,(h,) - 0, by (A.10)
again, we see that R (hy) = 0, which implies the desired result R,,(h )= 0
because R (h,) < R A(hy). Thus, (A.9) will hold if (A.10) is satisfied.

It remains to verify (A.10). Let f_ = sup,c xf(X). From the definition of
M (h)y,, we see that

n Y [(M,(R) = My ()|

n h
=(1/n) Z ( Z (wn,h(j) - wn,h(j - 1))f(xi(j))

i=1\j=2

+w, (1) f(x,q) — w,, h(h)f(xi(h+1)))

h 2
< ( Z (wn,h(j— 1) - wn,h(j)) + wn,h(l) + wn,h(h)) f002

=2
< 4wn, h(]')2 fog’
where the first inequality follows from (2.8). Now compare

h
~ ~ 2 .
R (k) =n"Ypo— My(B)p,| + 02 L w, 1)
i=1
with
2 h 2
R, () =n"Yp, - M(R)p, | + o2 L w, 4(i)".

i=1

We see that the desired result R, (h)/R (k) - 1 will hold if

h
(6.16) wn’h(l)2 ;’ w,,',,(i)2 - 0.

Since }:L,,lw A2 =h! , by (3.8) we see that (6.16) holds if A — co. Finally, our
assumption that either R (h) > 0 or R (h)— 0 implies that A~! - 0, as
desired. The proof of this theorem is now complete. O
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