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ON SIMPLE ADJUSTMENTS TO CHI-SQUARE TESTS WITH
SAMPLE SURVEY DATA!

By J. N. K. Rao AND A. J. ScotT
Carleton University and University of Auckland

For testing the goodness-of-fit of a log-linear model to a multi-way
contingency table with cell proportions estimated from survey data, Rao and
Scott (1984) derived a first-order correction, 8. , to Pearson chi-square statis-
tic, X2 (or the likelihood ratio statistic, G?) that takes account of the survey
design. It was also shown that 8. requires the knowledge of only the cell
design effects (deffs) and the marginal deffs provided the model admits direct
solution to likelihood equations under multinomial sampling. Simple upper
bounds on 8, are obtained here for models not admitting direct solutions, also
requiring only cell deffs and marginal deffs or some generalized deffs not
depending on any hypothesis. Applicability of an F-statistic used in GLIM to
test a nested hypothesis is also investigated. In the case of a logit model
involving a binary response variable, simple upper bounds on &, are obtained
in terms of deffs of response proportions for each factor combination or some
generalized deffs not depending on any hypothesis. Applicability of the
GLIM F-statistic for nested hypotheses is also studied.

1. Introduction. Rao and Scott (1984) have studied the impact of sample
survey design on standard multinomial-based methods for multi-way con-
tingency tables, under general log-linear models. This work and previous inves-
tigations have shown that clustering in the survey design can have a substantial
impact on the significance levels of the standard chi-square test, X2, or the
likelihood ratio test, G2. Hence, some adjustment to X2 or G? is necessary,
without which one can get misleading results in practice. Rao and Scott (1984)
obtained a simple adjusted statistic, X2/8. , requiring the knowledge only of cell
design effects (deffs) and the deffs of marginals to determine 8. provided the
model admits a direct (explicit) solution to likelihood equations under multi-
nomial sampling (see also Bedrick, 1983). The correction 4. is particularly useful
if the researcher does not have access to micro-data files and hence has to
perform secondary analyses from published multi-way tables reporting the deffs.
Improved corrections to X2 or G2, based on the Satterthwaite approximation,
can also be obtained when the full estimate covariance matrix, V, of cell
estimates is available. Asymptotically valid methods, based on V and using the
Wald statistic, have also been proposed by Koch et al. (1975) and others.
However, the Wald statistic tends to become unstable and leads to high signifi-
cance levels compared to the nominal level a as the number of sample clusters
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decreases and the number of cells increases (Fay, 1983 and Thomas and Rao,
1984).

The first purpose of this article is to provide some simple adjustments to X?
or G? in those cases not covered by Rao and Scott (1984), viz. the models not
admitting direct solutions to multinomial likelihood equations. These corrections
require only the cell deffs and the marginal deffs, as in the case of models
admitting direct estimates, but lead to conservative tests or nearly conservative
tests (as defined in Section 2.1) when compared to the corresponding 8. re-
quiring the knowledge of V. The applicability of an F-statistic used in GLIM
(McCullagh and Nelder, 1983) is also investigated. '

The second purpose is to obtain similar simple adjustments in the case of logit
models involving a binary response variable. Although such a model can be
viewed as a special case of a suitable log-linear model, it is important to find
corrections to X2 or G2 in terms of deffs and marginal deffs of estimated
response proportions within factor combinations since the published tables for
logit analysis usually report only the deffs of estimated response proportions.
Moreover, as shown in Section 3, these adjustments lead to less conservative
tests as compared to those based on the cell deffs in the extended table
appropriate for log-linear model analysis. It may also be pointed out that logit
models corresponding to log-linear models with direct estimates are often not
realistic in practice.

2. Log-linear models. A log-linear model M on the population cell propor-
tions m, is a multi-way table may be written as

(2.1) w = (6)1 + X8.

Here p. is the T-vector of log probabilities p, = Inz,, t=1,..., T, X7, = 1,Xisa
known T X r matrix of full rank r (< T — 1) and X’1 = 0, 0 is the r-vector of
parameters, 1 is the T-vector of 1’s and #(0) is the normalized factor to ensure
that Y7, = 1. Let p denote a consistent estimator (typically, a ratio estimator) of
@ = (..., 7p) under the given survey design, and let yn (p — m) converge in
distribution to Nj(0,V) as the sample size n — oo, where V is psd. T X T
matrix. If P is a post-stratified estimator adjusted for known population counts
of a supplementary variable (or variables) and if these variables are included in
the multi-way table, then the rank of V is less than T — 1 (but assumed to be
greater than the rank of X); otherwise the rank of V is T — 1, noting that
YD, = 1. In the example of Section 2.2, the estimate p was a post-stratified ratio
estimator adjusted for projected census age—sex counts at the provincial level.

We obtain “pseudo m.le.” & of w by solving the likelihood equations ap-
propriate under multinomial sampling, viz. X'd = X’p.

2.1. Goodness-of-fit. The Pearson chi-square statistic for testing the good-
ness-of-fit of model M, say 7, = m,(0), is obtained as

(2.2) X2=nY (B, — %)°/%,
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Alternatively, the likelihood ratio statistic is given by
(2.3) G?=2n) pIn(p,/%,).

Rao and Scott (1984) have shown that X2 or G? is asymptotically distributed as
(=) a weighted sum of 7' — r — 1 independent x? variables W, under the model,
where the weights §; > -+ > 8;_,_; > 0 are the eigenvalues of the generalized
design effects matnx Voq, V,. Here V,, = C'D,’ 1C/n and V, = C’'D,'VD,'C/n
are the asymptotic covariance matrices of ¢ = C’fi under multlnomlal sampling
and under the survey design, respectively, where i = (fi,..., ir)’, i;=1n p,,
D, = diag(m,...,7p) and Cis any T X (T — r — 1) matrix of rank T—r -1
with C’X = 0 and C’1 = 0. In particular, C may be chosen as the matrix which
complements X to form the model matrix of the saturated model provided it is
orthogonal to X as in the standard parametnzatlon of a log-linear model.

A first-order correction to X2 or G2 is given by X2/8. (or G%/8), where §. is
a consistent estimator of

8§ =38/(T-r-1)
and ‘
(T - r - 1)8. = tr(C’D;C) " '(C’'D; VD, 'C)

(see Rao and Scott, 1984, Section 2.4). This correction, in general requires the
knowledge of estimated covariance matrix, V /n, of p. However, in the case of a
model M leading to direct estimates # of the form

7= T1bs, /Hm,.,
i J
Rao and Scott (1984) have proved that

(T-r-1). = ;(1 —m)dy— Z{;(l - wol)d,,,}

4 i
(2.4)
+I{Z(-m)d,}.

J b;

Here 6 denotes the set of subscripts for an arbitrary cell, 8, is a subset of
subscripts in 6 and ¢; is the set of subscripts common to §; and 6, for some i and
t. Also dy= Var(p,,)/[m,(l —m)/n], dy = var(p,, )/[7’0 (1 —m)/n], d

var( p by, )/ ['714, aa- 7, )/n] are the deffs of cell estimates Dy and the margmals Dy,
and p,, respectively, and =, = [m, /Tl7, under M, where m, and =, are the
margmals of m,. Thus only the cell deffs and the deffs of margmals are needed to
compute 9. .

In the case of a model M not admitting direct estimates, Rao and Scott (1984)
made a somewhat ad hoc proposal to use the 8. corresponding to a nested model
M *“closest” to M and permitting direct estimate of m, i.e., a model 7, = 7,(0*)
given by p = a(°;)1 + X*0*, where X0 = X*0% + X**0** X* is T X r* of
rank r*, X** isT X (r — r*) of rank r — r* and r — r* is as small as possible.
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We now obtain an improvement to this suggestion which leads to an approxi-
mate upper bound to 8. under M. Let G*? = 2nLp,In(p,/#*) denote
the likelihood ratio test of the goodness-of-fit of model M *, where #* is the
pseudo m.le. of 7, under M*. We have EG*= (T — r — 1)8. and E*G** =
(T — r* — 1)8* , where E and E *, respectively, denote the asymptotic expecta-
tion (i.e., the limit of sequence of expectations as n — co) under M and the
asymptotic expectation under M *, and 8.* is of the form (2.4) since M * admits
direct estimates.

Since the models M and M * are close, let 7,(8) — 7,(06*) = n™'%a,. Now
following Rao and Scott (1984, pages 54-55) it is easily seen that

T
EG**= (T —-r*—-1)8*+ ) al/m(0).
t=1"
Hence, noting that G*% > G? we get
T

(25) 8<(T-r-1)"YT—-r*—1)8*+(T—r— )Y aZ/q,(0).

' t=1
One could estimate (T — r — 1)~ 'Xa?/7,(0) from the sample data but it is likely
to be small relative to the first term on the right-hand side of (2.5) when M and
M * are close. Hence, we suggest the “nearly conservative” correction

X2/[(T— r—1)"NT-r*- 1)3,*] or

&/[(r - r-1)7HT - re - 1)82],
where §* is a consistent estimator of 8* This correction is conservative com-
pared to using X2/8* or G2/6* , as suggested by Rao and Scott (1984), since
(T —r—-1)"YT - r* — 1)8*> §* Empirical results given in Section 2.1 seem
to support the hypothesis that (2.6) leads to a “nearly conservative” test.

An exact upper bound to §. under M can also be obtained from some
separation inequalities for eigenvalues (Scott and Styan, 1985). We have
T-r—1

(2.7) 8.< Y AN/(T-r-1),

(2.6)

where A, > A, > -+ >Ap_, >0 are the nonzero eigenvalues of D, 'V. A
practical implication of this result is that one could calculate an exact upper
bound on & , and hence obtain a conservative test compared to X2/ 8. or G?%/ 5.,
if the published tables also report the estimates A; of all nonzero eigenvalues, A,
of D V. This should be feasible since the A; do not depend on any hypothesis,
unlike the §;. If the A; are not available, a simple upper bound on §. depending
only on the cell deffs d, can be obtained from (2.7) as follows:

T-r—1 T-1
(T-r-16.< Y N< Y N=(T-DA. =trD]'V
1 1

(2.8)

T
%xl_'%)du
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where d, = Var(p,)/[7,(1 — m,)/n] are the cell deffs. However, the upper bound
(T —1A. /(T —r—1)on 8. is not likely to be good unless r is small relative
to T.

Nathan (1984) expressed 5. as a linear function of the elements of estimated
covariance matrix, n~'V, of cell estimates P and then proposed to minimize 8.
subject to constraints on the elements of V. He applied standard linear program-
ming methods (after linearizing a nonlinear inequality constraint) to obtain
lower and upper bounds on §. , say ﬁm and 0,,, respectively. He proposed to use
8,, to correct X2, or the average of §,, and &,, when §,, is expected to lead to a
very conservative test, e.g., when little information about cell and marginal deffs
is available.

2.2. Example. Hidiroglou and Rao (1983) have considered a 2 X 5 X 4 table
from the Canada Health Survey, 1978 with the following variables: (1) sex (male,
female); (2) drug use (0, 1, 2, 3, 4 + drugs in a 2-day period); (3) age group (0-14,
15-44, 45-64, 65 + ). They obtained A.= 1.614 and the 8. values given in Table
1 for the following seven hypotheses: (a) complete independence (1 ® 2 ® 3); (b)
independence of one variable from the remaining variables jointly (1 ® 23; 2 ® 13;
3 ® 12); (c) conditional independence (I ® 2|3; 2 ® 3|1; 1 ® 3|2). For the hy-
pothesis of no three-factor interaction, we do not have direct estimates. The
nested model M *: 1 ® 3|2 is closest to this hypothesis with u = 3. Noting that
T-r-1=@-16-Dd-1)=12and T-r*—1=@2- )4 - 1)5 =15
we get §=[(T —r*—1)/(T—r—1)]6* = 1.74 as compared to true 5=166
which was computed from an actual estimate, V/n of the full covariance matrix
of p. Hence, the correction (2.6) to X2 i is excellent in this example. On the other
hand, the exact upper bound (T — 1)A. /(T — r — 1) = 5.4, thus leading to a
very conservative test of no three-factor interaction.

Suppose the published tables reported only the cell deffs and the deffs of the
one-way marginals in the three-way table. Then, one could compute 8. from (2.4)
only for the hypothesis of complete independence (1 ® 2 ® 3) since the remain-
ing hypotheses admitting direct estimates also require the deffs of two-way
_ marginals. We can, however, compute the bound §. for the latter hypotheses by
treating I ® 2 ® 3 as M *. The resulting §. -values are also given in Table 1. The
bound &, is satisfactory for the hypotheses 2 ® 13,3 ® 12 and 2 ® 3|1 with small

TABLE 1
8. -values for seven hypotheses admitting direct estimates:
Canada Health Survey data
Hypothesis
10203 1023 2013 3012 1023 132 2031
5. 2.09 1.40 2.25 2.09 1.63 1.39 2.31
S5.: — 341 2.31 2.40 4.05 4.32 2.70
d.f.: 31 19 28 27 16 15 24
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u, but it leads to overly conservative test for the remaining three hypotheses
(and also for the no three-factor interaction hypothesis).

2.3. Nested hypotheses. To test a nested hypothesis H,,: 0, = 0 given the
model M: p = @#(0)1 + X,0, + X,0,, the Pearson chi-square statistic is given by
A 2)2,2
(2-9) X2(2|1) = nZ("Tt - 771:) /Ty

where 7% are the pseudo m.l.e. under H,, obtained from X{é = X{p. Alterna-
tively, the likelihood ratio statistic

G?(21) = 2nY pIn(%,/7,) = G*(2) — G*(1)

=2nY #In(4,/%,)

can be used to test H,,, where G*(1) = 2nLp,In(p,/#,) and G?*2) =
2nY.p,In(p,/ wt) Rao and Scott (1984) have shown that

(2.10)

(2.11) G?’(1) ~n(p—m)A'D;'A(p — 7)
and
(2.12) G*(211) ~ n(p ~ =)' XE4(X;PX,)E, X (p ~ m)

under H,,: 6, = 0. Here ~ denotes asymptotic equivalence,

X =(X,X,), A=I-PXX'PX) X,

_ E
(P X - ) = X - 0), s,
2
where E, is u X T, and
X, = (I - X,(X{PX,) 'X{P)X

Since Vn (p — ) is asymptotically N(0, V), it follows from (2.11) and (2.12) that
both G%(1) and G?%@2|1) are asymptotically distributed as weighted sums of
independent x? variables W, and W,* under H,, say X7~ ""1n,W, and X¥¢v,W,
respectively, ;>0 and vy, >y,> -+ >v,>0. A first-order correction to
G?*2|1) is given by G2(2|1)/9. , where . is the estimate of y.= Ly,/u, i.e., we
treat G%(2|1)/9. or X2(2|1)/4. as x2 under H,,.

In the case both M and M;: p = ﬁ(‘:}l) + X0, admit direct estimates, the

adjustment factor y. can be computed knowing only the cell deffs and the deffs
of marginals. This follows from the result

(2.13) uy. = EG%(2]1) = EG?(2) — EG?*(1)

and noting that both EG22) and EG?*1) have the form (2.4). For instance, in a
three-way table, we can get a simple adjustment y. for testing the hypothesis
1 ® 23 given 1 ® 2|3. On the other hand, this method does not work if M does
not admit direct estimates, as in the case of testing for I ® 2|3 given the
hypothesis of no three-factor interaction in a three-way table.
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If M corresponds to a closed-form model and M, does not admit direct
estimates, then a test similar to (2.6) can be obtained by bounding M, above by a
similar closed-form model with fewer parameters and using the exact expression
of the form (2.4) for EG?(1). If M does not admit direct estimates and M,
corresponds to a closed-form model, then a similar test can be obtained if M
could be bounded below by a similar closed-form model with more parameters.

If both M and M, do not admit direct estimates, then a similar test can also
be obtained if M could be bounded below by a similar closed-form model with
more parameters and M; bounded above by a similar closed-form model with
fewer parameters.

An exact upper bound on v. , similar to (2.8), can also be obtained. Rao and
Scott (1984) have shown that Y= -+ 27,>0 are the eigenvalues of
X;PX,) ‘X 2VX2) Using the matrix result of Scott and Styan (1985) again, an
upper bound on y. is given by

(2.14) Y. < Zu:)\i/u.
1

The practical implication of the result (2.14) is that one could calculate an
upper bound on 9. if the published tables also report the estimates of all A;, the
eigenvalues of D !V, or at least of the few largest ones since u is likely to be
small. If the A; are not available, a simple upper bound depending only on the
cell deffs, d,, can be obtained from (2.14) as follows:

(2.15) uy. < i)xi <(T-D)A.=Y(Q-a,)d,.

However, the bound (T — 1)A. /u on y. is not satisfactory since u is usually
small relative to T.

2.4. GLIM method. We now study the effect of survey design on the method
used in GLIM (see McCullagh and Nelder, 1983). The statistic

G2(2|1) /u
GO AT -7 —1)
is used to test H,,, by treating it as a F-variable with d.f. ¥ and T — r — 1,
respectively. Using the first-order adjustment to G%(1) and G%(2|1), we get

Y. X0/U

n-x%‘—r—l/(T_ r— 1) ’
where 7, = ):"h /(T —r- 1) and y = 3v,;/u. Hence, F reduces to a F-variable
provided y. =7., and x2 and x%_,_, are stochastically independent. Noting
that Vn (p — m) is asymptotically N;(0,V) and applying the well-known Craig
theorem for independence of quadratic forms in normal variables to (2.11) and
(2.12), we find that G%(1) and G?*(2|1) are asymptotically independent if and only
if
(2.18) (A'D;'A)V(XE;(X;PX,)E,X’) =

(2.16) F=

(2.17) F=
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The condition (2.18) holds if V = AP for some constant A (> 0) since
AVX = A[I - PX(X'PX) 'X’|PX = 0.

In this case, y. = 7.= A. and F is asymptotically distributed as F-variable with
uand T — r — 1 d.f., under H,,. It is important to note that F does not require
any adjustment factor, unlike G?%(2|1). Altham (1976), Brier (1980), Cohen (1976)
and Rao and Scott (1981) proposed random effects models for two-stage cluster
sampling leading to V = AP. The condition V = AP, however, is somewhat
restrictive in practice since it implies a constant deff for all cell estimates p; and
all linear combinations of p,. Even if this condition is not satisfied, the statistic
F might work well if 5. is close to y. and T — r — 1 is large, since the
denominator in (2.16) then converges to n. and the effect of stochastic depen-
dence would be minimal. GLIM, however, does not provide a statistic for testing
the goodness-of-fit of model M, considered in Section 2.1.

3. Logit models. Suppose that the first variable among % + 1 variables can
be considered as a binary response variable and the remaining as factors
affecting the response. If the log-linear model contains the saturated submodel
for all the % factors, then it is well known that it is equivalent to a logit model.
That is, the log-linear model (2.1) can be written as

(3.1) b= (::;) _ )|t + (:Z 0, + (_:)6,

where p; = (;1,.--, big)" is the vector of In, having level i of the response
variable, i = 0,1, R = T/2, Z, is a known matrix (of rank R — 1) corresponding

to the saturated submodel with associated parameters 6,, and 6 = (0‘_;’) The
equivalent logit model is given by

1
1

(3.2) ‘ {=17B.
Here B = 20 is the m-vector of parameters, ¢ is the R-vector of logits I; = p,; —
Poj» Mij=1Inm;, j=1,...,R, and Z is the R X m model matrix of rank m.

_ 3.1. Goodness-of-fit. 1t is a common practice to report the survey estimates
1-’]- =p, ,-/I? +j of response proportions P, =m ,/7.; for each factor combination,
J, along with their standard errors or estimates of deffs

D, = Vax(B)[B(1 - P)/(n7.))] ",

where p,;=p,;+p,; and 7, =m;+ m; It is important, therefore, to
express the first-order correction 8. or the simple upper bounds to 8. in terms of
the deffs D; or the eigenvalues of the design effects matrix V,# Vp, where
V,p = diag(P(1 — P,)/7 ,1,..., Ps(1 — PR)/7m . ) and Vp/n is the asymptotic
covariance matrix of P = (P,,..., PR)’ under the survey design.

In the context of logit models, the only log-linear models admitting direct
estimates correspond to those logit models saturated with respect to £ — 1 or
less factors with the remaining factors excluded (Haberman, 1974 and Roberts,
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1985). Such models are usually not very realistic in practice since they do not
even cover the often-used models with all factors (two or more) acting additively
on the response. Hence, the expression (2.4) for 8. , corresponding to log-linear
models yielding direct estimates, is not very useful. Moreover, the only nested
logit model yielding direct estimates and “closest” to a logit model with two or
more factors acting additively is the model with only one factor. Hence, the
correction (2.6), based on 8.* will be overly conservative in the context of logit
models.

The exact upper bound (2.8) in terms of the cell deffs d, (assuming that d, are
available) also leads to overly conservative tests since the corresponding log-lin-
ear model must contain the saturated submodel containing all the & factors, thus
leading to a large value of r. However, as shown below, we can find good upper
bounds on &. in terms of the deffs D, of the response proportions, P

As stated in Section 2.1, the §; are eigenvalues of Vg 'V, where Vy,/n and
V,/n are the asymptotic covariance matrices of ¢ = C'ﬁ. under multinomial
sampling and under the survey design, respectively, and C’X =0, C’1 = 0.

Noting that
<_[% 2
Z, -Z
is the log-linear model (2.1), we can choose C’ = W'(Vy;', —V;;'), where W =
W — Z(Z'Vy,'Z) '2'Vy,'W, ( ;‘;) is the matrix which complements X to form

the model matrix of the saturated log-linear model, and V,,/n is the asymptotic
covariance matrix of /= (ll, ) )’ under multinomial sampling. Here l

ln[ /(1 - P)] - ln(pl_]/p2_]) and
Vo= (I —DD;( _[) = (VD) 7,

where D, = diag(w,,...,wg) and w; =7, ;. Since & reduces to ¢ = W’Vo_llf’
under the above choice for C, we get

Vo, = W'Vy,'W = WD, V,,DW.
Also, V, can be expressed in terms of Vp as
V,=D,'V;;VV;2D, ! = V,,D, VDV,
so that
V, = W'V;,'VV;,'W = WD,V,DW.

H~ence, the 6£’ i= L..., T —r—1, are the eigenvalues of (W’D,V,,D W)~
(W'D VD W) = (WA W) }(W’'AW), say. We also note that T —r —1=
. Arin 1;pper bound on the first-order correction, 8. , to X2 or G2 in terms of the

largest R — m eigenvalues a; > -+ > ag_,, of Vo Vo, = Aj'A can be obtained
from the matrix result of Scott and Styan (1985) or more simply as follows. We
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can write
(R - m)s. = tr(WAW) (WAW) = tz(YAY’) }(YAY")
B R-m yi’Ayi
i—1 Y'Aoy: ’
where

Y= BW-/= (yly""yR—m)l’ yi’AOyj= 0’ l #=j’
and B is a R — m X R — m nonsingular matrix such that
YA,Y' = BWAWB’' =D,
where D is a diagonal matrix. Such a matrix B exists since W’A (W is symmetric.
Now, using a well-known matrix result (see Rao, 1973, page 59), we get
R-m y/Avy. R—-m

(3.3) (R-m)d. < sup Y, y,l Vi _ ;.

Vi ¥Rom i=1 YAy, i=1

YiAoy;=0
i#]

It should be feasible to report all the eigenvalues a; since they do not depend on
any hypothesis, unlike the §;. However, if the «; are not available, we can obtain
an upper bound to 4. in terms of the deffs, D}, of the response proportions P; as
follows:

M

R-m R
(34) (R-m)s. < ¥ ;< Y o;= Ra.= rV;V,= Y. D, = RD.
i=1 1

1

~.
I

The bound [R/(R — m)]D. on 4. is likely to be much better than the bound
(T - 1)/(T — r—1)]A., based on the cell deffs d,, since r is large and m is
small in the context of logit models.

The statistics X% and G? may be expressed in terms of the estimated response
proportions, IA’J and Pj(ﬁ) =7,/ as

(3.5) Xt=n} SA—2 D)

and
R . P (1_13')
: 2 _ 5., Pln—>% -B) B[
(3.6) G 2n1§’1p+’{Pjn}}(B) +(1 ’)n 1-P(B) }

respectively. Note that 7, =p, ;.

3.2. Nested hypotheses. We wish to test the nested hypothesis 8, = 0 given
the log-linear model
Z 0
)

By _ 1
m -} (5

7)) p= % Z2)

_Zl _Zz
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where
(g,
Z=(Z,,Z,) and 6=|_
8,

in (3.1), or equivalently H,;: B, = 0 given the model
£="17,B, + Z,B,,

where B, = 20, and B, = 20,. Note that in the notation of Sectlon 2.3 we have
the following correspondence

ZO Zl Z2 e0
38) X, = = =1 =0
09 %=( g} xm ) wefi) e

where Z, is R X u matrix.
The statlstlcs X?@2|1) and G*(2|1) may be expressed in terms of Py B) and

P(B) = #,,/4,, as

(3.9) X*@1) = n Z P+j(P;(f3) - I;’Eﬁ))
(B)(x - B(8))

o>

P.

J

and

(3.10) G*eIm) =20 % ﬁn{Pj(ﬁ)ln B Ly - I’j(ﬁ))ln(i'_e'(__

)
= 5() (1-6(»}’

respectively. Roberts (1985) has shown that an upper bound on v. , the first-order
correction factor, is given by X% ,a;/u. If the a; are not available, an upper
bound on v, is given by [ R/u]D.. This bound, however, is not good since u is
likely to be small relative to R. As in the case of log-linear models, the GLIM
F-statistic (2.16) may be used when the «; are not available. In the context of
logit models, F may be written as

o | o>

G*(2|1)/u
G*(1)/(R - m)’

Under H,,, the statistic F is treated as a F-variable with d.f. ¥ and R — m,
respectively.

(3.11)

3.3. Example. Roberts, Rao and Kumar (1985) fitted a logit model with two
factors, age and education, to explain the variation in unemployment rates
among males estimated from the October 1980 Canadian Labour Force Survey.
Age-group levels were formed by dividing the interval [15,64] into ten groups
and then using the midpoint of each interval, A, as the value of age for all
persons in that age group. Similarly, six levels of education, E,, were formed by
assigning to each person a value based on median years of schooling. Thus, the
age by education cross-classification provided a two-way table of R = 60 cell
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proportions, P, of employed males. Roberts, Rao and Kumar found that the
model

P.
ljk = 11’1 L

(3.12) 1-P, Bo+ BiA; + Bo AT + B3Ey + BLEY,
: J

j=1,...,10;k=1,...,6,

provides an adequate fit to the estimated cell proportions, 13jk. The estimate of 8.
is equal to 1.88, while the upper bound on §. is estimated as

R b 60(1 905) = 2.07
R-m™ 55 7 %
noting that m = 5. Hence, the upper bound, depending only on the estimated
cell deffs D, provides an excellent approximation to 6. The value G?/8.=
101.2/1.88 = 53.7 is not significant at 5% level when compared to x ,(0.05) = 73.3,
the upper 5% point of x2 with R — m = 55 d.f.
Given the model (3.12), the nested hypothesis H,,: 8, = 0 was also tested.
The first-order correction factor, v. , is estimated as 9.= 1.67 and

G?(2|1)/9.= 0.77,/1.67 = 0.46,

which is not significant at the 5% level when compared to x2(0.05) = 3.84. The
upper bound on y. , (R/u)D.= 60(1.905) = 114.3, is very conservative here since
R = 60 is much larger than u = 1. On the other hand, the F-statistic used in
GLIM gives

0.77/1
T 101.2/55

which is compared to F, ;5(0.05) = 4.03, the upper 5% point of F' random
variable with 1 and 55 d.f., respectively. The GLIM procedure has performed
extremely well for testing a nested hypothesis in the present example since
R — m = 55 is large and 9.= 1.67 is close to .= 8.= 1.88 (0.46 compared to 3.84
versus 0.41 compared to 4.03).

0.41,

Acknowledgments. The authors wish to thank Gad Nathan for helpful
comments. Thanks are also due to a referee for constructive suggetions.

REFERENCES

ALTHAM, P. A. E. (1976). Discrete variable analysis for individuals grouped into families. Biometrika
63 263-269.

BEDRICK, E. J. (1983). Adjusted chi-squared tests for cross-classified tables of survey data. Bio-
metrika 70 591-596.

BRIER, S. E. (1980). Analysis of contingency tables under cluster sampling. Biometrika 67 591-596.

COHEN, J. E. (1976). The distribution of the chi-squared statistic under cluster sampling from
contingency tables. J. Amer. Statist. Assoc. 71 665-670.

Fay, R. E. (1983). Replication approaches to the log-linear analysis of data from complex samples.
Unpublished. ’

HABERMAN, S. J. (1974). The Analysis of Frequency Data. Univ. of Chicago Press, Chicago.



SIMPLE ADJUSTMENTS TO CHI-SQUARE TESTS 397

HipiroGLOU, M. A. and Rao, J. N. K. (1983). Chi-squared test for the analysis of three-way
contingency tables from the Canada Health Survey. Technical Report, Statistics Canada.

KocH, G. G., FREEMAN, D. H., JR. and FREEMAN, J. L. (1975). Strategies in the multivariate
analysis of data from complex surveys. Internat. Statist. Rev. 43 59-78.

McCULLAGH, P. and NELDER, J. A. (1983). Generalized Linear Models. Chapman and Hall, London.

NATHAN, G. (1984). The effect of complex sample design on log-linear model analysis. Unpublished.

Rao, C. R. (1973). Linear Statistical Inference and its Applications, 2nd ed. Wiley, New York.

RaAo0, J. N. K. and ScOTT, A. J. (1981). The analysis of categorical data from complex sample surveys:
chi-squared tests for goodness of fit. and independence of two-way tables. J. Amer.
Statist. Assoc. 76 221-230.

Rao, J. N. K. and ScotT, A. J. (1984). On chi-squared tests for multi-way contingency tables with
cell proportions estimated from survey data. Ann. Statist. 12 46-60.

ROBERTS, G. (1985). Contributions to chi-squared tests with survey data. Ph.D. Thesis, Carleton
Univ., Ottawa, Canada.

ROBERTS, G. A., Rao, J. N. K. and KUMAR, S. (1985). Logistic regression analysis of sample survey
data. Technical Report, Carleton Univ., Ottawa, Canada.

SCOTT, A. J. and STYAN, G. P. H. (1985). On generalized eigenvalues and a problem in sample survey
analysis. Technical Report No. 209, Department of Mathematics and Statistics, Univ. of
Auckland.

THoMAS, D. R. and Rao, J. N. K. (1984). A Monte-Carlo study of exact levels for chi-squared
goodness-of-fit statistics under cluster sampling. Technical Report No. 35, Laboratory for
Research in Statistics and Probability, Carleton Univ. and Univ. of Ottawa.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS
AND STATISTICS AND STATISTICS

CARLETON UNIVERSITY UNIVERSITY OF AUCKLAND

OTTAWA, ONTARIO K1S 5B6 PRIVATE Bac

CANADA AUCKLAND, NEW ZEALAND



