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NONPARAMETRIC RENEWAL FUNCTION ESTIMATION

By EDWARD W. FREES
University of Wisconsin

The renewal function is a basic tool used in many probabilistic models
and sequential analysis. Based on a random sample of size r, a nonparametric
estimator of the renewal function is introduced. Asymptotic properties of the
estimator such as consistency and asymptotic normality are developed. A
discussion of an application to warranty analysis is also provided.

1. Introduction. Let X, X,,... be identically and independently distrib-
uted random variables with distribution function F. Assume that F' has positive
mean p and finite variance 6% With S, = X, + - -+ + X, let F¥(¢) = P(S, < t)
be the k-fold convolution of F for £ > 1. The renewal function H is defined by
(1.1) H(t) = Y F®)(¢)

k>1
for ¢ > 0. Although we do not assume here that the data come from realizations
of a renewal process, the function H is of interest in renewal theory because H(t)
is the expected number of renewals in an interval (0, ¢] for a renewal process with
underlying lifetime distribution F. The renewal function plays an important role
in many probabilistic models [cf. Feller (1971) and Karlin and Taylor (1975)] and
sequential analysis [cf. Woodroofe (1982)].

Most nonparametric estimators of H(¢) are based on a realization of a renewal
process and on theorems which yield simple approximations of H(t) for asymp-
totically large values of time {. For example, suppose that nonnegative observa-
tions are recorded and that F has an arithmetic distribution. Recall that a
distribution function is said to be arithmetic if its support is on {0, +d, +2d,...}
for some constant d and otherwise is nonarithmetic. Then, the result

(1.2) lim H(t) — t/p = (o” + p— u?)/(207),

where the limit goes through multiples of d [cf. Feller (1968), page 341], suggests
the use of the estimator

(1.3) A(t) = t/p + (82 + - p2)/(22),

where fi and 62 are estimators of u and o2 based on the data recorded up to time
t. See Yang (1983) for an application of ﬂ(t) to continuous sampling plans. See
Cox and Lewis (1966) for an early treatment of the statistical analysis of renewal
processes. See Brillinger (1975) and Vardi (1982) for more recent discussions.

In this paper, estimators of H(¢) for a fixed time ¢ are based on a random
sample of size n, X;, X,,..., X,. Estimation of the distribution function F and
linear functionals of F' are problems that have been thoroughly investigated in
the literature [cf. Serfling (1980), Chapters 2 and 6]. Viewing H(t) defined in (1.1)
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RENEWAL FUNCTION 1367

as merely the infinite sum of convolutions of F, it seems natural to estimate H(¢)
based on a sum of estimator of the convolutions of F. As one would suspect, even
though estimators of the type in (1.3) are based on recorded observations, they do
not perform well for small (relative to p) times ¢. This was pointed out by Frees
(1986). In that study the author introduced several estimators, both parametric
and nonparametric, of H(¢) for a fixed time ¢ based on a random sample of size n.
We now define a nonparametric estimator which performed particularly well in
the simulation portion of that study. Let {i,, i,,..., ,} be a subset of size & of
{1,2,...,n} and let ¥  be the sum over all (") distinct combinations of

k
{i,, ig,..-1,). Then, an unbiased estimator of F*)(¢) is

(1.4) FO() = (7) LI+ 4K, < 2).

Here I(-) is the indicator function of a set. Let m = m(n) be a positive integer
depending on n such that m < n and m1 o as n 1. Then, a nonparametric
estimator of the renewal function is

(1.5) Hyt) = 3, B ().
k=1

Often we will simply use m = n. Some advantages of introducing the design
parameter m are discussed in Section 5.

The estimator of F*)(¢), E{*)(¢), is a U-statistic and thus it is easy to
establish that for each 2 > 1 and for each ¢ > 0 that

FW(t) - FO(¢), as.

However, asymptotic properties of H,(t) are not immediate since H,(¢) is not a
U-statistic. In Section 2, the almost sure (a.s.) consistency is established by
showing that H,(t) is a reverse martingale with respect to an appropriate
sequence of sub o-fields plus some negligible terms. Also in that section for the
case m = n, we prove a.s. uniform consistency, the Glivenko—Cantelli property,
when the uniformity is restricted to bounded subsets of the positive real line. In
Section 3, the asymptotic normality, when properly standardized, of H,(¢) is
proved via the projection technique popularized by Héajek [cf. Serfling (1980),
Chapter 9.2.5]. To keep potential applications for this estimator as broad as
possible, we distinguish between the usual renewal theory assumptions of non-
negative observations and the more general framework which also permits
negative observations. The latter is the situation usually encountered in sequen-
tial analysis. In Section 4, we prove the consistency of an estimator of the
asymptotic variance. This provides the important result of large sample interval
estimates which is illustrated with an example in warranty analysis. We conclude
in Section 5 with some general remarks.

2. Almost sure consistency. Let a € R and g, be a real valued function -
defined on R* = [0, o0) such that

(2.1) [ lguwld T kFOw)) < oo,

k>1
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For each k > 1, define m~'(k) = inf{n: m(n) > k}. We will also use the assump-
tion

(2.2) [ lgdwld T (m (k) = )EFD(w)) < oo,

k>1

In this section we establish the following result.

THEOREM 2.1. Suppose that (2.1) holds. Then,

(2.3) /Owga(“)d(élkaFn‘k)(“)) - fowga(u)d( X k“F"”(u)),

k>1
in probability.

Further suppose that (2.2) holds. Then the convergence in (2.3) can be
strengthened to a.s. convergence.

Note that in the case m = n, we have m~'(n) = n and the requirement (2.2) is
vacuous. In Sections 4 and 5, we give applications where a # 0. To provide
motivation for Theorem 2.1, we consider the following corollary for the case
a=0and m = n.

COROLLARY 2.1. Suppose that m = n and that g is a function defined on R*
such that [{°|g(u)| dH(u) < oo. Then,

nh_)n:o /Ooog(u) dH,(u) = j(;oog(u) dH(u), a.s.

Corollary 2.1 indicates that the sequence of random measures associated with
the sequence {H, H,, n > 1} possess a type of ergodic property. The statement
of Corollary 2.1 is similar in flavor to the statement of the key renewal theorem
of Smith (1958), (1.3). Some of the applications of Smith’s key renewal theorem
are also present in the estimation context of Corollary 2.1. For example, since
H(t) < oo for each t> 0 when p is positive and o2 is finite, we may let
g(u) = I(u < t) to get that H,(t) - H(t) as. when m = n. When m # n, from
Theorem 2.1 it is easy to see that H,(t) — H(t) in probability. This is
strengthened in Theorem 2.2 below to a.s. convergence by requiring that m(n)
grows sufficiently quickly. Define X~ = min(0, X).

THEOREM 2.2. Suppose that F has positive mean p. and finite variance o2.
Suppose that either, for r > 2,

(2.4) EIX7|"<o and n=0(m"2)
or, for some 6, > 0 and all |6| < 0,,
(2.5) Eexp(—0X") <oo and logn=o(m).

Then, for eacht > 0,
(2.6) H,(t) - H(t), a.s.
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REMARKS. When X is a nonnegative random variable, from (2.5) we see that
the only moment requirement is that 62 < co. The growth conditions on m are
to ensure that the bias of H,(t) in estimating H(¢) dies out sufficiently quickly.

Corollary 2.1, together with some results on uniformly convergent measures
due to Rao (1962), is also used to prove

THEOREM 2.3. Suppose that m = n and that F has positive mean p and finite
variance o2. Then, for eacht > 0,

sup |H,(u) — H(u)|— 0, a.s.
uelo, t]

REMARKS. Note that Theorems 2.1-2.3 do not require that the support of F
be on R* and also hold for both arithmetic and nonarithmetic distributions.
From (1.2), we see that H(¢) asymptotically approaches a straight line with
positive slope and hence is not bounded. This also holds for F nonarithmetic
since limit theorems similar to (1.2) are available, cf. Feller (1968). Thus, one
would not expect Theorem 2.3 to be true when the supremum extends over R*
and, indeed, counter-examples can be easily constructed.

The remainder of the section is devoted to the proof of Theorems 2.1-2.3. The
technique is to show that &g (u) (X7 k°F{*)(u)) is a reverse martingale plus
negligible terms. Reverse martingales are a natural tool in this context if we note
that F(%)(¢) is a U-statistic. The idea of applying reverse martingales to U-statis-
tics is due to Berk (1966). An application of Doob’s (reverse) martingale conver-
gence theorem will then establish Theorem 2.1. Let {X,,, X,,,..., X,,,} be the
order statistics associated with (X, X,,..., X,}. We use x, =
0(X1p-evs Xnns Xnits Xpsas---) 1 =1, to define the sequence of nonincreasing
sub o-ﬁeldq which are implicitly used in all of the following reverse martingales.
We preface the proof of Theorem 2.1 with a preparatory lemma.

LEMMA 2.1. Let g () be as defined in (2.1). Then,

+ [Tew d[ X reu(S, <))

k>n

R, = [“eu)d| $ BEOW)

~ [Tew al T rFew)

k>1
is a zero mean reverse martingale.

Proor. It is easy to see that RM, is x,measurable and integrable. That
E(RM,|x,41) = ,+1 8. can be seen by integration by parts and noting that

FP(u), k<n,
I(S, < u), k>n, as. ]

E(I(Sk =< u)an) = {
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ProOF OF THEOREM 2.1. Assume (2.1) and without loss of generality, assume
g.(u) = 0. Define

L R0

k=m+1
and
Zy = [ 8w d| T RIS, < ).
0 k>n

With Lemma 2.1 and (2.1), as a consequence of Doob’s (reverse) martingale
convergence theorem we have

lim [ g, (u) d( Y kED(u)
Y k=1

+ Zln + Z2n
(2.7) .
=/(; ga(u)d(kglk“F( )(u)), a.s.

Since Z,,, is monotone and bounded, lim Z,, exists. By Fatou’s lefnma,

ElimZ,, < lim Efwga(u) d( Y kOIS, < u))
0 k>n

(2.8) )
- limfo ga(u)d( ¥ k"F‘k’(u)) - o.

k>n

Since lim Z,,, is nonnegative and has nonpositive expectation, it is zero a.s. Thus,
by (2.7) and (2.8), to prove (2.3) we need only show that Z,, — 0 in probability.
By the Markov inequality, for ¢ > 0,

P(zm>e)38—1/0°°ga(u)d( 5 k"F"”(u)) -0

k=m+1

by (2.1). We now further assume (2.2) to prove the a.s. version of (2.3). By (2.7)
and (2.8), we need only show that limsup Z,, = 0 a.s. By the Markov inequality
and a change of summation, for ¢ > 0,

R T CL I T 0]

n>1 n>1 k=m+1
— e [Tgu(wy d[ X (m (k) = B)RFO(w)) < o0
0 k>1
by (2.2). This is sufficient for the proof by the Borel-Cantelli lemma. O

Proor orF THEOREM 2.2. We first assume (2.4). By a straightforward exten-
sion of Lemmas 1 and 2 of Heyde (1964) [see also Gut (1974), Theorem 2.1],
E|X™|" < oo implies

(2.9) Y R72F(E) < oo.

k>1
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Thus, since n = O(m’~2) implies m~(n) = O(n"~?2), we have
(2.10) Y m Y (R)FP(t) < 0.
k>1

This is sufficient for (2.2) with @ = 0 and g, (u) = I(u < ¢). By Theorem 2.1 this
proves the result under (2.4). Now assume (2.5). Since p > 0, there exists 6, > 0
such that

p= /exp(—ﬂzu) dF(u) < 1.
By the Markov inequality,
(2.11) F®(t) = P(—0,S, > —0,t) < exp(0,t)p*.

Since log n = o(m) means there is a sequence 8, — 0 such that log n < §,m, we
have m~'(n) < exp(8,,-1,,n). This and (2.11) are sufficient for (2.10) which
proves the result under (2.5). O

ProoF oF THEOREM 2.3. Let A = {w: w <t and w is a discontinuity point,
of HY}. Since the set of discontinuity points of F¥)(-) is countable for each & > 1,
A is countable and we can let {a;} be some enumeration of A. Define g(u) =
Yo l(u = a;). Since [{°g(u) dH(u) < H(t) < o, by Theorem 2.1 we have

T ¥ () - F(a )~ T (H(a,) - Ha, ).

Thus, without loss of generality, we may assume that H(u) is continuous for
u < t. The result is now immediate from Corollary 2.1 and Theorems 4.2 and 6.1
of Rao (1962). O

3. Asymptotic normality. Define

(3.1) £n(c) = Cov(FO™(e = (X, + -0+ +X))),
Feo(t— (X, + -+ +X,))).

In this section we prove the following result.

THEOREM 3.1. Assume 0% < oo. Suppose that either, forr > 2,
(3.2) EI X |"<o and n=0(m*>*)
or (2.5) holds. Then, for each t > 0,
Vi (H,(t) - H(8)) > , N(0,2),
where

o2= Y Y rst,(1) < oo.

s=1r=1

REMARKS. Note that Theorem 3.1 holds for F' both arithmetic and nonarith-
metic. See Dynkin and Mandelbaum (1983) for a general discussion of weak
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convergence of symmetric statistics of possibly infinite order. The specific appli-
cation in Theorem 3.1 does not seem to fit into their broad framework.

From the definition of F{*)(¢) in (1.4), an easy calculation shows that
(33)  E(EM(8)|X,) = (k/n)F*(t = X,) + (1 — k/n)F®)(¢).

Define a truncated version of H(t), H*(¢t) = L7 ,F*)(t). We define the projec-
tion of H,(t) on H*(t) by

A,(6) = T E(H,(0]X,) - (n - DHA).
From (3.3), we have
(84)  H,(t) - H*(t)=n" Zn‘, f R{F*=D(t - X;) — F¥(¢)) .
j=1k=1

The idea of projecting H,(¢) onto the original independent observations is due
to Hoeffding. Since H,(¢) is just the sum of n independent random variables, the
usual theorems for double arrays of independent random variables -are used to
obtain a limiting asymptotic distribution for H,(¢). We then show that the
moments of H,(¢) — H,(t) are small in the appropriate sense to get an identical
asymptotic distribution for H ().

From (3.1) and (3.4), we have

(3.5) Var(B,(¢)) =n™" ¥ rst, (1).

r,s=1
To calculate Var(H,(¢)), we first examine the covariance between F.”)(¢) and
F*)(t). Let {a,, a,,..., a,} and {b}, b,,..., b} be two subsets of {1,2,..., n}
that have ¢ < min(r, s) elements in common. Then,

EI(XaI + X, + o+ X, < t)I(Xb] + Xy, + o +X, <t)
—FO()FS(t) = £,,(c).
Thus,

Cov( B0, B0) = () £ (£)(27 ento)

since the number of distinct choices for two subsets of size r and s, respectively,
having exactly ¢ elements in common is (':) ( ﬁ) ( n- s). Thus,

(3.6) Var(H,(8) = ¥ ()X (8)(" 2 8)tnlo)-
r,s=1 c=1
To calculate Cov(H,(¢), I:In(t)), we first note that

Cov(E"(t), Fe~1(t - X,)) = r/n&,(1).
Hence, from (1.5) and (3.4),

(3.7) Cov(H,(t), H(t)) = f‘, rs/né&, (1).

r,s=1
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Thus, from (3.5)—(3.7),

nE(H, () = B0 = £ {n(2)" L (227 Eeule) - 6. (D).

We now present a series of simple lemmas which, when taken together, provide
a proof of Theorem 3.1.

LEMMA 3.1. Assume o2 < oo and either (3.2) or (2.5). Then o2 < oo and

(3.8) lim/n Y, F®(t) =0.

k>m

Proor. We first assume (3.2). Since E|X |” < oo, we have (2.9). Thus, using
(3.2),

i T o - of T w2 Fh(),

k>m k>m

which proves (3.8) under (3.2). Now assume (2.5). With (2.11),
yn ¥ FM(t) < exp(G,t)Vn 3 p* -0,

k>m k>m

by an easy application of 'Hospital’s rule since log n = o(m). To show of < o0,
note that for ¢ > 1,

(3.9) |£,.(c) | < min(F (), F©(t))
and use (2.9) and (2.11). O

LEMMA 3.2. Under the assumptions and notation of Theorem 3.1,
Jn (B(2) - H() » p N(0,02).

PrROOF. From (3.8), Vn (H(t) — H*(t)) — 0 and thus, sufficient for the proof
of the lemma is
(3.10) (AL(8) - H¥(t) > 5 N(0, 02).
To prove (3.10), from (3.4), define
m
U, = n—lkz (FU=D(¢ - X;) — F(t)).
-1

Now (U,; j=1,....,n, n> 1} is a double array of random variables that are
independent within rows. Now EU, ; = 0 and, by (3.5),

Var( i Unj) =n! 'Zn: rs€,(1).
Jj=1 r,s=1

It is easy to check that the usual uniform asymptotic negligibility and Lindeberg
conditions hold [cf. Serfling (1980), Section 1.9.3]. O
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LEMMA 3.3. Under the assumptions and notation of Theorem 3.1,

z {"('rl)—l % ()27 £)ente) - rss,s(l)} o,

r,s=1

Proor. Sufficient for the proof is

(3.11) n % (2)7E (82D )eule) >0

r,s=1 c=2

and

(3.12) £ (a(2)(3)(225) - re)tat) o
To prove (3.12), we have

r,s=1
n\"! (n—s n—s n—1
n(r) s(r_l)—rs rs{(r—l)/(r—l)_l}
Thus, we have (3.12) since 62 < o and by the dominated convergence theorem.

Similarly, (3.11) is proved using (3.9) and an application of the dominated
convergence theorem. O

< 2rs.

4, Interval estimates and an example. A local asymptotic normality re-
sult such as Theorem 3.1 is appealing because it gives information about the rate
of convergence of H,(t) to H(t). However, in applications it is also desirable to
give interval estimates of H(t). In this section we present an estimator of ¢2 and
prove its weak consistency. This result and Theorem 3.1 immediately provide a
confidence interval for H(t).

Let £,, = E(FU (¢t — X)F¢~ (¢t — X)). We wish to estimate

o= Tt )= X st~ £ F0().

r,s=1 r,s=1 r>1

To define an estimator of £,,, let {i,,i,,...,7,,,_,} be a subset of {1,2,..., n},
not necessarily ordered. Let ©, denote the summation over all permutations of
subsets of size r + s — 1 from {1,2,..., n}. An unbiased estimator of &, is

érs=(n_r_s+1)!/n!ZI(Xil +Xi2+ T +Xl’5t)
p

(X, +X, +--+X,  <t).

1

In this section, we prove the following result.

THEOREM 4.1. Let m; = my(n) be a positive integer depending on n such
that m, < n and m, 1 o0 as n1 0. Then, with ¢ < c© and

my

m, 2
(4.1) o= Y rsf, - ( Yy an(k’(t)) ,
k=1

r,s=1

we have o2 — o2, in probability.
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COROLLARY 4.1. Assume that the conditions of Theorem 3.1 hold and let o?
be defined as in (4.1). Then

Vn /o,(H,(t) — H(t)) - p N(0,1)
and thus, for a € (0,1),

lim P(H,(t) — 2, 40,/Vn < H(t) < H,(t) + 2, 40,/ ) =1 — @,

n— o0

where z,, ,, is the upper a/2 quantile of the standard normal distribution.

Proor oF THEOREM 4.1. From Theorem 2.1, with a=1 and g, (u)=
I(u < t), we have

Y RE®(t) > Y kRF™(¢), in probability.

k=1 k>1

Thus, we need only show that

m,
Y rsé,— Y rst,, inprobability.

r,s=1 r,s>1

Let

Rn = Z rsé\rs + Z rSE{I(Sr < t)I(Sr+s—l - Sr—l < t)|Xn}

r+s—-1<n r+s—1>n

- Z rs&rs'

r,s>1

As in the proof of Theorem 2.1, the remainder of the proof is to show that R, isa
reverse martingale, apply Doob’s (reverse) martingale convergence theorem, and
show the excess terms are negligible. O

To illustrate how to calculate the estimator, we used observations of the time
to failure of a unit of electronic ground support equipment which were previously
used by the author (1986). The data can be found in Juran and Gryna (1970),
page 171, and Kolb and Ross (1980), page 170. In Figure 1 an estimate of the
failure rate curve is given which suggests an early failure rate of about 20 hours.
The estimate of the failure rate was based on Epanecnikov’s method. The
calculations were done on a VAX 11 /750 owned and operated by the Department
of Statistics at the University of Wisconsin-Madison. Now, it is not unusual for
the manufacturer of equipment to enter into an agreement to replace the
equipment for a certain length of time, say, W. This type of agreement is called a
warranty and W is the duration of the warranty. In this example, one reasonable
warranty duration is the end of the early failure period and thus we give a point
and interval estimate of H(20).
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Ground Support Equipment

Failure Rate
0.06 0.08 0.10 0.12 0.14

0.04

0.02

0.0

0 20 40 60 80 100 120 140

Time (in hours)

Fi1c. 1. Ground support equipment.

From Table 1, the estimate is H,(20) = 15 _, F{%(20) = 0.46194. Frees (1986)
compared this estimate with other estimators of H(20) and found it reasonable.
To calculate the estimated variance of this estimator, from Table 2 we have

4
o= Y rs (1) =0.75385.
r,s=1
Thus, an approximate 95% interval estimate of .H(20) is H,5(20) + 20,/ V105
which is roughly 0.46 + 0.17 or (0.29, 0.63).

TABLE 1
Convolution estimates for failure of a unit of electronic ground support equipment

k 1 2 3 4 - b 6 7 8

F{(20) 035238 009048 001684 000208 000016 0 0 O
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TABLE 2
Covariance estimates for failure of a unit
of electronic ground support equipment

£,.(1)
r/s 1 2 3 4
1 0.22821 0.05860 0.01091 0.00135
2 0.01733 0.00490 0.00061
3 0.00355 0.00048
4 0.00037

5. Concluding remarks. The renewal function arises in a wide variety of
applications of probabilistic models such as in reliability theory, inventory
theory, and continuous sampling plans. In this paper we have presented the
asymptotic theory of nonparametric estimation of this key function based on a
random sample. The simulation study of Frees (1985) showed that H,(t) per-
formed well for small (n < 30) sample sizes. The techniques of this paper may
also be useful in sequential analysis. For example, an important parameter in
sequential estimation is the expected value of the first passage time

r=inf{n > 1: S, > 0}.

From, for example, Woodroofe (1982), Corollary 2.4, we have

E(r) = exp{ Y P8, < 0)}, when p > 0.

k=1

Thus, by Theorem 2.1, with @ = —1,

- ew| ¥ E N0

k=1

is a consistent estimator of E(7). We intend to explore other applications of
nonparametric renewal function estimation in sequential analysis in another
paper.

Alternatively, one could estimate H(¢) by using the empirical distribution
function EM(¢) = F((¢). Estimates of F*)(¢) can be recursively defined by the
relationship

E®(t) = [FED(t - u) dEO(u),

Although F*)(t) is a biased estimate of F*)(t) (for k > 2), it does have the
advantage of being the nonparametric maximum likelihood estimator. Further,
F®(¢t) is a V-statistic and thus is closely related to the U-statistic F*)(¢). By
using some of the several well-known results on this relationship [cf. Serfling
(1980)], under mild conditions on F it can be shown that H (¢), defined as in
(1.5) with F*)(t) in lieu of F*)(t), is also consistent and has the same
asymptotic distribution. However, additional care must be taken with the
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estimator
H(t) = ¥ FP(2).

k>1
For example, suppose ¢ = P(X; < 0) > 0. Then, for ¢ > 0 and for each n,

¢"=P(X;<0,...,X,<0) <P(EP(t)=1), k=12,....

Thus, for each n, H(t) = o with positive probability.

In many situations the choice of the design parameters m and m, is dictated
by practical considerations, as in the example in Section 4. Theorems 2.2 and 3.1
give some theoretical guidelines for the choice of m. However, the convolution
F)(t) dies out quickly as %k approaches infinity [cf. (2.9) and (2.11)], and
typically m can be small compared to the sample size. A similar argument can be
made for m,. This is important since the amount of computations increases
quickly as m (or m,) increases.

Acknowledgments. The author would like to thank the Associate Editor
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