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ASYMPTOTIC CONDITIONAL INFERENCE FOR
THE OFFSPRING MEAN OF A SUPERCRITICAL
GALTON-WATSON PROCESS

By T. J. SWEETING
University of Surrey

Consider a supercritical Galton—Watson process (Z,) with offspring
distribution a member of the power series family, and having unknown mean
8. The conditional asymptotic normality of the suitably normalized maximum
likelihood estimator of @ given the conditional information is established. The
conditional information here is proportional to the total number of ancestors
V,, and it is also seen that this statistic is asymptotically ancillary for § in a
local sense. The proofs are via a detailed analysis of the joint characteristic
function of (Z,,V,), and the derivation serves to highlight the difficulties
involved in establishing such conditional results generally.

1. Introduction. This paper is concerned with asymptotic conditional in-
ference for the offspring mean 6 in a supercritical Galton—-Watson branching
process. The branching process with unknown mean is an instance of a non-
ergodic statistical model, where the appropriately normed sample Fisher infor-
mation, W, (0) say, converges to a nondegenerate random variable W, rather than
to a constant; see for example Basawa and Scott (1983). Under suitable regularity
conditions it can be shown that, for such a model, (X, (8), W,(8)) converges in
joint distribution to (Z, W) where X, () is the appropriate randomly normed
maximum likelihood estimator (m.l.e) §,, and Z is a normal random variable
independent of W [Sweeting (1980) and Basawa and Scott (1983)]. This result
suggests that (a) some statistic V, related to W,(8) might be regarded as
asymptotically ancillary for 6, since the asymptotic distribution of W (8) is
continuous in 6, and hence effectively constant over the main range of variation
of the distribution of 9n, and (b) the conditional sampling distribution of X, ()
given V , whose use would be dictated by the conditionality principle, would still
be asymptotically normal.

If this is the case, then approximate confidence intervals for § based on this
conditional distribution will coincide with approximate Bayesian h.p.d. intervals.
Similar remarks have been made in Sweeting (1978, 1980) and amplified in Feigin
and Reiser (1979). As noted in Sweeting (1982, 1983), however, a rigorous
verification of (a) and (b) would appear to be far from easy in general, although
one would expect such results to be true for many cases of interest.

It should be noted that the approach considered here is not the same as that
considered by Keiding (1974) for the birth process, and later more generally by
Basawa and Brockwell (1984). They condition on the limit random variable W,
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926 T. J. SWEETING

and then treat the unobserved value w of W as a nuisance parameter, which is
then estimated, via V,, for instance. This approach has the attraction of reducing
a nonergodic model to an ergodic one; the final result still does not tell us
whether asymptotic normality holds conditional on V,, however.

In this paper we obtain the conditional limit theorem in the case of a
supercritical Galton—-Watson process with unknown offspring mean #, when the
offspring distribution is a member of the power series family of distributions. The
“related” conditioning statistic here is the total number of ancestors V,,, which is
proportional to the conditional information. Moreover, the results imply that V,
is asymptotically ancillary for 8 in a local sense. The derivation, which follows
the detailed analysis in Dubuc and Seneta (1976), highlights the difficulties
involved in establishing such conditional limit theorems more generally. The
problem is rather more difficult than, and in fact includes, the problem of
establishing a local limit result for V.

There have been a number of articles recently concerning approximate ancil-
larity and conditionality, mainly pertaining to independent samples. Much of
this work has developed from the papers by Efron and Hinkley (1978) and Cox
(1980); see also Hinkley (1980), Barndorff-Nielsen (1980), Ryall (1981), Amari
(1982), and McCullagh (1984). In particular, the construction of approximate
ancillary statistics based on the observed information has received much atten-
tion.

2. Preliminaries and statement of results. Let (Z,=1,Z,,...,Z,) be a
sample of successive generation sizes from a supercritical Galton—Watson process.
We assume that the nondegenerate offspring distribution ( p;) is a member of the
power series family, p; = fA{F(\)}~! where A > 0, ;> 0, and F(A) = X f;\.
We suppose that f, =0, so that 6 = E(Z,) > 1, and assume o = ¢?%(f) =
Var(Z,) < oo. The maximum likelihood estimator 6, of 8 is given by

9n =1+ ‘/n—l(Zn - 1),

where V, = Y7207 is the total number of ancestors (Heyde, 1975). Moreover, the
conditional information is ¢ =2V, (Heyde, 1975), and

T(0)=(6"-1)"(0-1)V,> W as.
It is shown by Basawa and Scott (1976) that
(1) (X.(0), T,(8)) - (Z,W)

in joint distribution, where X () = V%, — ) and Z ~ N(0, ¢%) indepen-
dently of W. Furthermore, the convergence in (1) is locally uniform in 6 > 1
[Sweeting (1978, 1980)].

As discussed in the previous section, if V, could be regarded as “asymptoti-
cally ancillary” for 6, then the conditionality principle would dictate basing
inferences about § on the conditional distribution of 8, given V. Moreover, V,, is
a prime candidate for such a conditionality resolution as it directly affects the
precision of 6, see for example Efron and Hinkley (1978) and the related
discussion. A statistic V, is often said to be approximately ancillary if its
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distribution is approximately free from 6. In practice, this usually comes down to
checking that the density of V,, is approximately free from 6, via an Edgeworth
expansion, for example, in the independent case. The definition of asymptotic
ancillarity however should really be based on the asymptotic behaviour of the
density or, as in this case, the probability mass function (p.m.f.) of V,, since it is
the lack of information contained in the observed value of V, which is relevant.
One possible formulation of asymptotic ancillarity in a local sense of V,, here is

2) 1. P(Vn = Dnlon)
( i P(V, =0, 0)

whenever |0, — 6] < A9~/2" and v,/c, > w for any A > 0, w > 0, where ¢, =
c,(0) = (8 — 1)"%6"™ — 1). [It should be noted that in Cox (1980) the phrase
“local ancillarity” refers to the behaviour of the distribution in a neighbourhood
of the true value of 6.] A very similar criterion to (2) was also used in Section 5,
Chapter 4 of Basawa and Scott (1983) while investigating the efficiency of
conditional tests in mixed exponential families.

Borrowing the notation in Dubuc and Seneta (1976), we shall say that the
process is of type (L, r) if L is the greatest integer for which the offspring
distribution is defined on a lattice {#L + r: £ = 0,1,... }. We prove the following
result.

THEOREM. (i) V, is asymptotically ancillary for 6 in the sense of (2), and (ii)
if (v,) is a sequence of integers such that v, = Z;f;(}rf(mod L)andv,/c,—> w>0
then

v}l/z(én - 0)",11 =v, z

in distribution, where Z ~ N(0, 62), uniformly in compact intervals of § € (1, o).

The proof is via a detailed analysis of the joint characteristic function of
(Z,,V,), along the lines of Dubuc and Seneta (1976). As a by-product, the local
limit theorem for V, is established, which implies the asymptotic ancillarity
of V,.

Write S, = (Z, — 1) — (8 — 1)V, and let U, = ¢, /%S, = T,}/?X,, (suppressing
the parameter 6). Define the characteristic functions ¢,(x, n) = E(e’*S=T1Vn)),
V8, &) = E(e’CUntT)y = ¢ (¢, V%, ¢, ). From (1) and the continuous map-
ping theorem we have

(3) Va8, 8) - (8, §) = E(e VW)

uniformly in finite rectangles, where U = W'/2Z. Furthermore, (¢, ¢) =
Ee*VE(e™ " |\W) = g((a{)* ~ it) where g(s) = E(e™*"). Let y3({) =
E(e"Ur|V, = v) be the conditional characteristic function of U, given V, = v.
The relationship between {:({) and the joint characteristic function is given by

¥1(§)p(v) = pi(v),

where

pi(v) = (L/27) /_”//LLe-w%,,(f, cut) dé.
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See for example Bartlett (1938). Clearly p2(v) is the p.m.f. of V,. The proof
consists essentially of showing that L~ 'c,pi(v,) = p‘(w) for an appropriate
sequence (v,) with c,'v, > w > 0, where pf(w) = (1/27)[® e "“y(§, &) d§,
from which it will follow that ¢5(¢) = ¢“({) = E(e'Y|W = w).

3. Lemmas. We need a number of results concerning the joint characteristic
function ¢,(x,n) of (S,,V,). Let Hy(s,t) = E(s%t"), n>1, be the joint

probability generating function of (Z,, V,)). These generating functions are recur-
sively related by

(4) H,(s,t)=tf(H, (s, t)), n=1, Hys,t)=s,

where f(s) = E(e*%) [Jagers (1975)]. Define K(z, 0) = e’f(z) where 6 is real
and z complex with |z| < 1. Let K ,(z, 6) be the nth functional iterate of K(z, )
in the first argument: that is, K,(z,0) = K(K,_(z,0),8), n = 1, where we
have set K (2, 0) = z. It follows that H,(s,e") = K,(s,n), and so ¢,(x,n) =
H (e'x, e/~ ~Dx)) = ¢~ ixK (eX,n — (§ — 1)x). We shall need the following
estimates.

LEMMA 1. There exists p with p, < p <1 such that for all p > 1, |z|,
|2’| < R <1 and all 1, v one has

(5) IKp(z’ T’)ISARPP
and
(6) |K,(2,1) — K,(2/,7)| < Bgo?(lz — 2’| + |n — 7).

Proor. Choose A sufficiently small for p = f'(h) <1. If 0 < R <1 then
f,(R)10 where f,(s)=H,(s,1), and so there exists an integer N such that
fo(R) < hforall p> N.Thenif |2l]<R <1land p> N,

|Kp(z’ T’) ' = |K(Kp_1(2, n)’ TI) | SI f'(21)| IKp—l(z’ n)
where |z,| < |K,_,(2, n)| < h, since K(0,n) = 0. Thus |K,(z, 1)| <
p? MK y(z, )| and (5) follows.

For (6), write 8, = |K (2,m) — K, (2, 7)|; thenif p > N
8, <| [(Kp_i(2,m) = F(Kpoi(2/,m)) [ +]e™") = 1] |K (2", )
<pd,_ +In—n|Agp”
from (5). Iterating, one arrives at &, < p? M8y + Ag(l — p)~'|n — 7'). Finally,

it is readily verified that |(d/dz)K (2, m)| < C, and |(d/9dn)K y(2,m)| < C; for
all |z| <1 and all 7, so that §y < Cy|z — 2’| + C5|n — '] and (6) follows. O

b

Lemmas 2-7 mirror results in Section 2 of Dubuc and Seneta (1976) for the
characteristic function of Z,.

LEMMA 2. Foralle> 0
sup{|¢,(x,m)|: n > 1, |x| <7/L, e/c,<|n|<7/L} <1.
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PrOOF. From (3), ¢,($, £) — g((6¢)? — i¢) uniformly in finite intervals of R 2.
Clearly |g((a$)® — i£)| < g((0$)?), and |g(—i£)| < 1 if £ # 0, as in the proof of
Lemma 1 in Dubuc and Seneta (1976). Since g(s) is a decreasing function of
s > 0 it follows that sup{|y({, £)|: { € R} <1 for each £ # 0. Thus there exists
r€(0,1) and N > 1 such that |y,({,§)|<rif n>N and e<|§| <1 + 0)e.
Then if ¢/c, < |n| < ¢/c,_, we have |¢p,(x,n)| < r for £ > N since ¢,/c,_, <
1 + 6, and hence for this range of values

|6.(x>m) [ =K (e%,m — (6 — 1)x)| <|Kp(e™,n— (6 — 1)x)|

=|ou(x,m)| < .

Consider finally the region ¢/c,,_, < |n| < #/L. When 0 < § < |y| < #n/L there
exists S(6) <1 such that |f(e')| < S(8). Thus |¢,(x, M| < |d:(x, 1) =
|f(e™)] < S(8) <1 provided 0 <8 < |x] <#w/L. When x = 0 we have
[9,(0, M)| < |9o(0, n)| = | f(e™)] < S(e/cn_;) < 1 and it follows by continuity that
sup{|¢,(x, M|: Ix| <7/L, e¢/cny_, <|n| < 7/L} <1 as required. O

In a similar way to Dubuc and Seneta (1976) we define the sequence of
intervals
Jo={m L7l <ml < 7L %Y},  k>1L
LEmMA 3. Foralln >k, |x| < 7/L,n € dJ,, k> 1 there exists a constant A
such that

Proor. We have
6a(x,m) | =K, (e*,n = (6 — 1)x)|

=|K,_i(e%ox(x,m),n —~ (6 — 1)x)]|

and by Lemma 2 there exists R < 1 such that |¢,(x,n)| < R for all |x| < #/L,
1n € J,, k > 1. The result now follows immediately from inequality (5) of Lemma
1.0

Dubuc and Seneta (1976) show that g(s) is a lower bound for f,(e~*/) for all
s € (0,1), where f,(s) = H,(s,1). We require a similar bound for A, (e /),
where h,(t) = H,(1, t). Establishing such a bound requires a little more work,
but one does arise as a consequence of the bound for f, (e~ /).

LEMMA 4. There exist numbers a > 0, 7 < 1 such that for all t € (0, 7) and
alln > 1, h, (e ) > g(at).

Proor. Write P(s) = —log f(e™®). Then P(s) is an increasing concave func-
tion, P(0) =0, lim,_,  P(s) = oo, and P,(s) = —log f, (e *) is the nth func-
tional iterate of P(s). Write Q,(¢) = —log h,(e”"); then from (4), @,(¢) =
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P(Q,_(t)) +t n =1, from which it follows that @,_,(¢) + ¢t < @,(?), since
P'(s) > 1forall s> 0. Let s, > 0and let A = P'(s;) > 1. Thenif u + t/A < s,
a first-order Taylor expansion gives P(u) + ¢t < P(u + t/A). Now choose ¢ so
small that @,(¢) < s,. It then follows that @,(¢) = P(Q,_(¢)) + t < P(Q,_,
(¢) + t/X) since Q,,_(t) + t/A < Q,_,(t) + t < Q,(t) < s,. Iterating, one finds
that

Q.(t) < P(Qy(2) + t(A71 + -+ +A=*" 1)) < P (a2),

where a = A/(A — 1). Finally, since @,(t/c,) = —log g(¢) one can choose ¢; so
small that @,(¢t/c,) <s, for all n>1 and 0<t<t, ging Q,t/c,) <
P(at/c,). Therefore h,(e /) > f(e */) > g(at) if 0 <t <a~!, from
Lemma 5 in Dubuc and Seneta (1976), and the result follows on choosing
r=min(a"}, ¢). O

LEMMA 5. There exists a function V* defined on (0, o) such that (a) V* is
slowly varying as x —» 0 +, (b) V* is bounded on every interval (e, «), ¢ > 0,
and (c) for all |x| <7w/L,n,w € dJ, with |n —7|<8andalln >k

|6a(x>m) = du(x, M) | < 1" *V*(c,8).
Proor. We have
|#n(x, 1) — d(x, )| =| K (e%,n = (0 — 1)x) — K, (e, v — (6 — 1)x)]

= |Kn—k(z’ ,B) - Kn—k(zl’ :B/)|:

where z = eX¢,(x, 1), B =1 — (6 — 1)x, etc. From Lemma 2 there exists R < 1
such that |¢,(x,n)| < R for all n > &k, n € J,, and Lemma 1 now gives

(7) 16,03, 1) = 6(, W) | < Bre™ *(|ox(x,m) — dx(x, n) |+ 8).
But
'¢k(X’ 'I‘)) _ ¢k(x’ ,n/)| — |E(ei(XZk-*—n/Vk)(et(’ﬂ_n')Vk — 1))|
< Ele!m Vi — 1| < C(1 = hy(e?))

as in the proof of Lemma 6 in Dubuc and Seneta (1976). But if ¢,§ < 7 then
Lemma 4 of that paper and Lemma 4 here give

1 — hy(e™?®) < ac,dV(cd),

where V(s) = (1 — g(s))/s is slowly varying as s = 0 + . Thus, |¢,(x,n) —
o.(x, )| < 6V (c,0) where Vi(x) = CaV(x), x < 7 and Vi(x) = C, x > 7. With
a suitable choice of V*(x) the result follows from (7). O

LEMMA 6. Let ¢($, &) be the joint characteristic function of (X,Y), and
suppose that

(1/27) [" 88, §)e™ 7 dg

converges locally uniformly in y to a function p*(y) (necessarily continuous in y)
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for every fixed ¢ and any fixed sequence of positive numbers 1, — co as n — oo.
Then p°(y) is the density of Y, and pY(y)=¢X(§)p°(y) where ¢(§) =
E(e®X|Y = y).

PrOOF. Consider the complex measure dF(y) = ¢7({) dF(y), where F is the
distribution of Y. Note that F? is of bounded variation, and that the characteris-
tic function ¢¢ of F¥ is given by ¢¥(¢) = [e®%pX({) dF(y) = ¢(¢, §). Then, as in
Dubuc and Seneta (1976), it is seen that [2p%(y)dy = F¥(a, b) at continuity
points of F¥, the proof applying without change to a complex measure. Thus
Dp%(y) is the density of F¥. Setting { = 0, it follows that p°(y) is the density of Y,
and hence p¥(y) = ¢’({)p°(y) as required. O

LEMMA 7.

(1/2m) [T ey, (8, €) d > 92(5)p(w)
locally uniformly in { € R and w > 0 where p(w) is the continuous density of W,
and y“({) = E(e*Y|W = w).

PrOOF. The argument here is identical to that given in Dubuc and Seneta
(1976) on taking K (¢, w) = e "4y (£, £), ¢ = 0 and using Lemmas 3, 5, and 6
here in place of their Lemmas 3, 7, and 8, and we omit the details. It is only
necessary to note that ¢, '/?{| < #/L for all n sufficiently large for the applica-
bility of Lemmas 3 and 5. O

4. Proof of the conditional limit theorem. If Z = X + Y where X, Y are
two lattice random variables such that the distributions of X and Y|X = x have
period L, then it is easily seen that the distribution of Z must also have period
L. It follows that the distribution of both Z, and V,, have period L for all n > 1.
The poss1ble values of V, are easily seen to be among Y."_}ri(mod L) and hence if
(v,) is any sequence of positive integers such that v, = X" !r'(mod L) and
lim v,/C, = w > 0 then we have [cf. Bartlett (1938) and Steck (1957)]

n—-»oo

Y (§)pa(v,) = pi(v,) and
,,p,,(v )= (/2m) [

—‘ITC

mc,/L

_t(on/cn)$¢n(§’ g) d¢.

But now from Lemma 7, L~ ¢, p}(v,) = ¢*“({)p(w) locally uniformly in { € R.
We have therefore shown that ¢°:({) — ¢¥(¢) = E(e*Y|W = w) locally uni-
formly in { € R.

Finally,

E(e5%V, = v,) = E(ezs«v"/c,,r‘”vnm = vn)
- E(e"f“’_‘/2U|W= w) = E(e%?)

and the convergence in (ii) follows for each 8 > 1. For (i) and the uniformity in
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(ii) we need to check that the convergence in Lemma 7 is uniform in compact

intervals of (1, o). The convergence ¥ ,(¢, £) = ¥(§, §) required in Lemmas 2 and

7 is uniform in compacts of (1, co) from the uniform convergence in (1). Finally,

the choice of constants p, Ay, and By in the bounds (5) and (6) may be made

independently of # in compact intervals of (1, c0) for reasons of continuity.
Taking { = 0 we see that

P(V, = 0l0,) _ L™'¢u(6,)Pu(0alb,) €n(8)

provided ¢,(6,)/c,(8) = 1 as n — oo, which will be the case if and only if
6, — 6 = o(n™1), and (2) follows. O

5. Concluding remarks. For ease of exposition, only the case X, =1 was
treated here. It is a relatively straightforward matter to show that the theorem
remains true in the general case when X, =j > 1. [In the case of an arbitrary
initial distribution (a;, j > 1), then usually one would want to condition on the
observed value X, provided of course that (a,) is independent of 6.]

A more substantial generalization would be to relax the assumption that
Po = 0. In this case, it will be necessary to argue conditionally on nonextinction of
the process by time n. (It is inappropriate in the author’s view to condition on
nonextinction of the entire process, as this information is never actually availa-
ble.) This would require an extension of the arguments given here to the case
where p, > 0, and this has not been attempted. Note however that since
P(X, > 0]6) —» 1 — g(0) locally uniformly in § where q(#) is the probability of
ultimate extinction, and g(#) is continuous, the event { X, > 0} is asymptotically
ancillary in the sense used here.

A referee has pointed out that there must be a connection between the
asymptotic ancillarity of V, as defined here and a concept of asymptotic
ancillarity defined in terms of Fisher’s information contained in V. Specifically,
let I,(0) be Fisher’s information in the observed process up to time n and
I,(0) = E[k,(8)]* where k,(6) = log P(V, = v,/0). Then V, is asymptotically
ancillary in this sense if Iy(0)/I,(0) > 0 as n — oo. Indeed, in the present
problem this ratio is of order n26~". In the case of independence, Amari (1982)
defines higher-order asymptotic ancillarity essentially in terms of the order of the
corresponding ratio of information functions. It can be seen informally that the
two approaches to asymptotic ancillarity are very close, as k(0 + 8I,Y/?) —
k,(0) = 8I,'k/(6). Thus the convergence of I, /I, to zero will usually entail
(2) and vice versa. For a formal result it will be necessary to impose further
conditions on the sequence I, /2k/(8), and the question is not pursued further
here. Nevertheless, the close connection between the two concepts is illuminating.
The rate at which the ratio (2) converges to one is a measure of the degree of
ancillarity; in our case it is O(nf~'/?"), which is the same order as (I, /I,)"/%
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