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SPLINE SMOOTHING AND OPTIMAL RATES OF
CONVERGENCE IN NONPARAMETRIC REGRESSION MODELS!

By PAUL SPECKMAN

University of Missouri, Columbia

Linear estimation is considered in nonparametric regression models of
the form Y; = f(x;) + &;, x; € (a, b), where the zero mean errors are uncorrelated
with common variance o2 and the response function f is assumed only to have
a bounded square integrable gth derivative. The linear estimator which
minimizes the maximum mean squared error summed over the observation
points is derived, and the exact minimax rate of convergence is obtained. For
practical problems where bounds on || |2 and ¢ may be unknown, gener-
alized cross-validation is shown to give an adaptive estimator which achieves
the minimax optimal rate under the additional assumption of normality.

1. The model. Consider the nonparametric regression model
Yi=f(xi)+ci7 i=19"'9n7

where observations are taken at distinct points on a finite interval [a, b]. The
usual assumptions on the random errors are in force, i.e., Ee; = 0, Ee;e; = 8,02,
where §,; is the Kronecker delta, but the response function f is assumed only to
belong to a gth-order Sobolev space W? = {f: f has ¢ — 1 absolute continuous
derivatives, | f9 |12 = [5 (f?(x))? dx < oo}.

The model is motivated by certain robustness considerations. For small
a > 0, the class ., = {f € W% || f?| = a} can be viewed as a collection of
response functions at least locally well-approximated by polynomials of degree
g — 1 (or order q). If a regression method is uniformly good within this class, it
is robust to arbitrary small departures from the standard gth-order polynomial
model. This concept of robustness is related to the models of Sacks and Ylvisaker
(1978).

This paper deals with global convergence for linear estimators. Let % be the
class of all estimators f (x) which are linear in the observations, and define

T(}, ) = /n) Ty (Fx) — f(x:)2

In Section 2 a family of linear estimators f.,, v >0, is introduced which is optimal
in the following sense. For any a > 0 and ¢ > 0, there exists a yo = vyo(«, o) such
that

minjegmaxes, ET(f, f) = maxes, ET(f,,, f).
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OPTIMAL RATES OF CONVERGENCE 971

Being minimax, f, is model robust in the sense of Sacks and Ylvisaker.

The behavior of the minimax estimator is studied in Section 3 for suitably
regular sequences of observation sets, and the exact asymptotic rate of conver-
gence is obtained. In particular, Theorem 3.4 shows that O(n~2/(33*Y) ig the best
possible rate for any linear estimator. This is exactly the optimal global rate
established by Stone (1982) for arbitrary estimators assuming g-times differen-
tiable f. Stone’s models are more general since there is no restriction to the linear
case. However, under the assumptions here, the best in a large class of linear
estimators with the “correct” rate of convergence is studied.

The minimax estimator is a variant of spline smoothing. To describe it, natural
splines are defined in Section 2 and the spline basis of Demmler and Reinsch
(1975) is introduced. The work here is related to the least squares and bias
minimizing splines studied by Agarwal and Studden (1980), but the B-spline
basis they employed is different. There is a close relationship between the
minimax estimator and the usual smoothing spline of Reinsch (1967). The
statistical properties of the latter method have received considerable attention
recently (see, e.g., Wahba, 1975; Wahba and Wold, 1975; and Craven and Wahba,
1979), and some of the results here extend the work of these authors for ordinary
smoothing splines.

Section 4 is devoted to a practical method for applying the estimator with the
best uniform rate of convergence. The idea is to find an estimator which has the
same asymptotic rate of convergence as the minimax one calculated when || f© ||
and o2 are known. The problem is to find a good estimate for v, the parameter
indexing the family of estimators, based on the data alone. This kind of problem
seems to be intrinsic to any nonparametric method in one form or another. Here
v is estimated by the method of generalized cross-validation introduced in Craven
and Wahba (1979) and Golub, Heath and Wahba (1979). The main result,
considerably stronger than the comparable one Craven and Wahba obtained, is
that there is a sequence v, depending only on the observations such that

ET.(f;,, f)/inf,ET.(f,, f) — 1

as n — oo for suitably regular sequences of observations.

2. A basis for natural splines and the minimax estimator. Given a
distinct knot set {x;, -- -, x,} C (a, b), let % denote the n-dimensional space of
‘natural polynomial splines of degree 2¢ — 1 with simple knots at the prescribed
points. Specifically, s € #¢ if and only if s € C%2(a, b), the space of functions
on (a, b) with 2¢ — 2 continuous derivatives, s~V is constant on (x;, Xi41),

i=1 -.-,n—1,and s = 0 on (g, x1), (x,, b),j =¢q, ---, 2¢ — 1. Thus
s is a polynomial of degree ¢ — 1 on [a, x;] and [x,, b] and of degree 2g — 1 on
(xiy Xi41), L =1, .., n — 1, with jumps in the (2¢ — 1)st derivative only at the

knots. Natural splines have a well-known minimum norm property (cf. Greville,
1968). (Assume n = q.) For any f € WY, there is a unique s € . such that s(x;)
=f(x;),i=1, ---,n,and | s9| < | g9| for any g € WY interpolating f at the
knots. In particular, || s9| < || f9].
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The basis {#,, - - -, ¢,} for ¢ of Demmler and Reinsch (1975) is determined
(essentially uniquely) by the conditions

27’=1 ‘pi(x/)¢j(x/) = 5ij

b
(2.1) f P2 (x)¢ " (x) dx = ;)\,
0=A1= “ee =Aq<}\q+1$ c e an
fori,j =1, .-, n. The eigenfunctions {#,, ---, #,} corresponding to the zero

eigenvalues span the space of polynomials of order q. Demmler and Reinsch
showed that ¢, has exactly k& — 1 oscillations for k > q. Note that if f = ¥, 8., €
4, then | f?12 =3 B7\. (All summations range from 1 to n unless otherwise
noted.)

To construct an estimator, let ﬂk =Y Y;%:(x;). Since the basis defined by (2.1)
is orthogonal, B is the least squares estimate of 8, for f € %9 and

Zk—l ﬁh¢h(x)

is exactly the least squares polynomial of order q if n = g. The global minimax
estimator fy, derived in the next section, can be viewed as the natural spline

(2.2) Fr(x) = 3ia1 (1 = VyA)s Bufi(x),

where v = 0 is a smoothing parameter and the standard notation (), =
max{t, 0} for t real is used. Thus f, (x) is the least squares polynomial of order q
plus added terms depending on the value of +.

REMARK 2.1. Reinsch’s smoothing spline has the form
fom(® N) = Ta1 (1/1 + AN)BPi(x)

(see Demmler and Remsch for details with p = A\™"). Speckman (1980) and Li
(1982) have shown that f,,, has a local minimax property.

The main results of this paper rely on a version of the asymptotic characteri-
zation of the eigenvectors and eigenvalues (2.1) first given by Utreras (1979,
1980).

Let G € W? be a continuously differentiable function mapping [0, 1] onto
[a, b] with G’(x) = ¢ > 0 on [0, 1] for some constant c. We consider the sequence
ofsetsfa<xp<--- <x,,<b},n=1,2, ..., generated by x,, = G((2i — 1)/2n).
Equivalently, let p(x) = 1/G’(G™*(x)). Then p is a continuous density on [a, b]
and

(2.3) (2 — 1)/2n = f " () dx

uniquely determines the set. (This is almost the regular sequence of Sacks and
Ylvisaker, 1970.)
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With this sequence,

b
1
;1— =1 ¢kn(xin)¢jn(xin) ~ f ¢kn(x)¢jn(x)p(x) dxy

suggesting a comparison with the continuous version: find a set {{}5—;, spanning
W< and eigenvalues {v,}%-; such that

b
} j‘: Yr(x)yj(x)p(x) dx = by;
(2.4) k,j= 1,2, ...

b
f Y2 (x) dx = Spjvie

But this is equivalent to the eigensystem of the differential equation (cf. Utreras,
1979)

$(x) = (=1)Wy (x)p(x),
ya) =yP0b) =0, j=4¢q,---, 291,

which can be solved or approximated in certain cases. Moreover, {{:}i-; is a
complete orthonormal system in L?(a, b) under the inner product

(£, 9) = fb f(t)g(¢)p(t) dt,
and ’
f= Xk B € L?
belongs to W7 if and only if
19U = Tier Bive < o».

In view of (2.1) and (2.4), it is reasonable to expect that ., ~ n~%), and
Men = vi/n. The next result makes the approximation precise.

THEOREM 2.2. Assume {x;,} -, satisfies (2.3), and let
Bin = D1 f(Xin) Prn(xin)
and '
b
Br = f f(x)r(x)p(x) dx.

Then for fixed k=1, 2, ---,
(25&) lim,,_mn}\hn = Vp,

(2.5b) lim,_..8%./n = B%,
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and
(2-50) limn—-»ooﬂlzmxkn = ﬂ%"k-
Moreover
(2.5d) Agkn = 07 (keg(p))*(1 + 0o(1)).
Where

b -1
(2.5€) ¢(p) = w(f p(x)¥% dx)

In (2.5d), o(1) denotes a term tending to zero as n — o uniformly for
ki, < k < ks, for any sequences ki, — % and ks, = 0(n¥®*Y),

ProOOF. Utreras (1979, 1980) proved (2.5a) for k fixed. His method can be
extended to show that n'/?¢,, — ¥ in q.m., yielding (2.5b) and (2.5¢). (2.5d) is
Corollary 5.4 of Speckman (1984).

3. The minimax estimator. The derivation of the minimax estimator
depends on the following version of a result of Kuks and Olman (1971).

LEMMA 3.1. Let A = diag{\,, ---, \,} be a nonnull diagonal matrix with
O0=N=...=X<N1 = --- =\, <. The solution to the minimax problem
mingmaxg as<a2|| (I — B)8|* + o%r(B’'B)
where the minimum is taken over n X n matrices B is achieved when B = B(y)
= diag{(1 — vy\)+} for some constant v > 0.
PROOF. See the Appendix.

THEOREM 3.2. With f, given by (2.2),
minje g maxses, ET(f, f) = min,maxes, ET(f, f,)
= mings,=yz1, (1/n)fay + o® Tioy (1 — VyN)3)
_ Proor. If f is any linear estimator, there is an n X n matrix A such that
£ = (f(x1), -+, f(x2))" = A(y1, -+, ¥n) . Let £ = (f(x1), - - -, f(x,))’ and write
ET(f, /) = A/n){ 0 — A)f | + o2tr(A’A)}.

Since this clearly depends on f only through its values at the observation points,
ET(f, f) = ET(f, s) where s € % is the (unique) interpolating natural spline

satisfying s(x;) = f(x;), i = 1, ---. Thus by the minimum norm property of s,
1591 = 179] and
(3.1) supres, ET(f, f) = sup,e 40z, ET(f, 5).

Now let ® = [¢;(x;)];j=1,....» be the n X n orthogonal matrix determined by the
basis (2.1), and let A = diag{\, - - -, A\,} be the diagonal matrix of eigenvalues.
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For s € 74, there exists € R" with 8 = (s(x1), - - -, s(x,))’ = ®8 and || s?||* =
B’ AB. Then for any linear estimator f = Ay, (3.1) implies
supres, nET(f, f) = maxgas=2(1/n){| I — A)®B |2 + o’tr A’A}.

Now by lemma 3.1 with B = &’A®, the minimax value is achieved with B =
D(y) = diag{(1 — vy\;),} for some v > 0. Thus

(3.2) A(y) = ¢D(v)®’
is minimax for some . The expression for the minimax value follows since

2 -1
, O=<sy=s2A
maxg as<ez | (L~ A()) @8 * = {ZZZ_I v

g+15
and the proof is complete.
To obtain asymptotic results, we consider the sequence of observation sets
specified by (2.3). For fixed n, let di.(y) = (1 — YA+, k=1, ..., n and let
pan(y) = (/n) + (1/n) Thegrs (1 = Yyha)i.
Also, define e,(y) = supres, ET(f, f.,). Then by Theorem 3.2, for 0 = ¥

= >\(;~|1-1,nv
en('Y) = n_17a2 + 02#2n(7)'

The asymptotics are simplified somewhat by a suitable change of scale. Let
r= (29 + 1)7* and 6 = n”"y. Throughout the ensuing discussion, if g is any
function of v, a function g of & will be defined by g(8) = n*7g(n’s) = n'"g(v).
In particular,

(3.3) 62(8) = 8a® + o%izn(8), 0 =6 =<n"Azlin.

The exact optimal asymptotic rate of convergence of e, is established with the
aid of a lemma. Recalling the definition of ¢,(p) in (2.5e), define

my = 2q%c,(p)/((2q + 1)(q + 1))
and

h(8) = 6a? + ¢ *m,, §>0.

LEMMA 3.3. Asn— oo,

(3.4a) fign(8) = 67 m, + 0(1)
and
(3.4b) €,(8) = h(3) + o(1),

where 0(1) denotes a term tending to 0 independent of 6 € I for any fixed interval
IC (0, ).
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PrRoOOF. If the estimate of (2.5d) were exact, then u,,(v) would equal
(g/n) + (1/n) 328 (1 — Vuk*)}

with u = ¢,(p)?/n. Assuming 0 < §* < n™"y < §** < o, then there exist positive
constants A* and A** such that

(3.5) A*n™l < u < A*¥n™,

But in this range, one may check that
2
(36) Nt (1 — Juk®)? = uVe f (1 — y)2 dy(1 + o(1))
0

with error term o0(1) tending to zero uniformly for u satisfying (3.5) as n — .
Thus, under (3.5) the summation in (3.6) contains O(n") terms and is bounded
below by cn” for some constant c. This implies that the first n'/2 terms (say) can
be disregarded, and by the uniformity of (2.5d), for n’/? < k < cn’,

pon(y) = (1/n){Swncksn—g (1 = Vuk™)3}(1 + 0(1)).
Evaluating the right side of (3.6) yields
p2a(y) = Ny Tmy(1 + o(1)),
and a change of variables gives (3.4a). Finally, (3.4b) follows directly by definition.

THEOREM 3.4. If {x;,}, satisfies (2.3),
minje g maxses, ET(f, f) = n""'Cy(a, o)(1 + o(1)),

where C,(a, ¢) = a®(a’m,/(2q))'"(2q + 1). Moreover v, = n’d, with 8 =
[62my/(2qa®)]* ™, is asymptotically optimal in the sense that

maxes, ET(f,., f) = n"'Cyla, ¢)(1 + o(1)).

PROOF. Let v, be any minimizer of e,(y) and let §, = n™"y,. Since v, €
[0, Agiin], 8, = O(n'™") by (2.5d). Let 6} = 1 and consider é,(6%) = h(1) + o(1).
By optimality, é,(5,) < é,(1) = a®> + m, + o(1) from (3.3) and (3.4a). Since é,(5,,)
> §,a?, this implies that lim sup 4, < . Moreover, é,(8) = o%,,(5), and by (3.4a)
and the fact that fi,,(6) is a nonincreasing function of é, lim inf 8, > 0. Thus
there is a compact interval I = [§*, 6**] C (0, «) such that é, € I for all n
sufficiently large. One can check that h(d) is strictly convex and has a unique
minimum at 8, with h(8,) = C,(a, ¢?). It is then routine to show that 4, — 8, and
€,(8,) — h(do) using the fact that é,(6) — h(s) uniformly on I.

4. The adaptive estimator. This section develops the asymptotic prop-
erties of a practical method which achieves the rate of convergence of Theorem
3.4 for arbitrary f € W9, | f9| = a > 0, even if « and ¢ are unknown. We begin
with a lemma giving the asymptotic rate of convergence for fixed f and showing
incidentally that f, is an asymptotic equalizer rule. From now on there is no
ambiguity in the estimator used and f is assumed fixed, so for simplicity let
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T,(v) = T(},, f). In the notation of Section 2,
Tn(‘y) = n_l n =1 (fy(xm) f(xin))2
= n_l 2z=1 (ﬁkn - dkn(‘Y)Bkn)2-

LEMMA 4.1. Assume |f9| = a > 0 and let v} be a minimizer of ET,(vy),
n=12,..-. Then

4.1) Y

and

n’8(1 + o(1))

ET,(v}) = n'C,(I f@ll, ¢®)(1 + 0(1)),

where 6, and C, are given in Theorem 3.4.

PrOOF. The first step of the proof is to show that 6} = n™"y}; is bounded. By
Theorem 3.4 lim sup n*"ET,(y}) < ». Since ET,(y) =n"'Y (1 — d.(7))28%,
+ 2z, (), (3.4a) implies that lim inf n™"y% > 0. By assumption, 0 < || f@||%> =
Y B%v, < ®, so there is at least one index j for which 8%y, > 0. But n7'8%, — 7,
SO we must have djn(v) — 1 in order for ET, ('y,,) — 0. In particular, ET,(v}) >
n~'y¥\.08% for n sufficiently large. Now let T.06) = n*'T,(n"8) and &* =
n- 'y,’f Since \j.8% — v;B7 > 0, lim sup ET,(6%) = ,3, lim sup 6}, implying
lim sup,_..6f < . Thus there is compact interval I C (0, «) such that
6} € I for all n sufficiently large.

To finish the proof, it suffices to show that ET,.(5) = h(5) uniformly for
6 € I as in the proof of Theorem 3.4. Only a lower bound is necessary since
ET,(8) < é,(5), so let e > 0 be arbitrary. There is an integer M such that

T wBE > NP — e);
hence applying (2.5¢) and (3.4a), we have
lim inf, o ET,(8) = lim inf, {6 M, M\enB2, + 6 Y% m 02
= 51f9U%1 — &) + 67V m,0?
with uniform convergence on I, and the proof is complete.
To estimate the optimal parameter v}, we use generalized cross-validation, or

GCV, as introduced by Craven and Wahba (1979) for ordinary smoothing splines.
The GCV function is

Voly) = n7ty — £ 1¥[n7'tr(@ — A(Y))1%

where A(y) is given by (3.2) and f'y = A(v)y. Because the spline basis is
orthogonal, A

(4.2) Va(y) = 71 $iay (1 = drn(7))2682:/(1 = p1n(y))?
with .
ﬂm(’Y) = n_l 2:=1 dkn(’y)
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The minimizer of V,, a function of the data alone, is taken as an estimate
of vX.

The derivation in Craven and Wahba (1979) shows that GCV is ordinary
cross-validation in transformed coordinates. In addition, V,(vy) is an estimator
of ET,(v) with near constant bias, hence intuitively the two functions should be
minimized at approximately the same point. A weak version of the desired result
is given in the GCV theorem of Golub, Heath and Wahba (1979), namely

(EVo(y) = 0® = ETo(v)/ETa(y) < [2m1n(y) + (022 (¥)/R2a (YN (1 = pan(y))2

As in Lemma 3.3, it is not hard to show that

(4.3) #1.(8) = O(1);
hence
(4.4) (EV.(y) = ¢®> = ETW(v))/ET.(y) = 0(1)

uniformly for ¥ € n'I, where I C (0, «) is an arbitrary closed interval. Moreover
(cf. Golub, Heath and Wahba, 1979, Corollary 1), the minimizer of EV,(vy), say
v%, satisfies ET,(v3)/ET.(v¥) — 1. This result is suggestive but incomplete
since EV,(v) is also unobservable. The purpose of this section is to extend the
arguments in Craven and Wahba (1979) to obtain a comparable result for the
sample version. This is accomplished under

ASSUMPTION 4.2. (a) Yy, ---, Y, are independent, normally distributed with
mean EY; = f(x;,) and variance ¢2.

®) 19l =a>o0.

The results below establish weak consistency for a sequence v, of possibly
local minimizers of V,(v). Specifically, let I = [6*, §**] C (0, ) be arbitrary with
0o € I, and define v, to be the minimizer of V,(vy) over I.

REMARK. Note that because V,(v) is continuous in v, ¥, is measurable (in
“w” of the underlying probability space) as in the standard proof of measurability
of maximum likelihood estimators.

THEOREM 4.3. Under Assumption 4.2, there exists a sequence of (possibly
local) minimizers {y,} of V,.(y) such that ./v% — 1 in probability.

REMARK. As a referee has pointed out, it remains unclear whether or not the
unconstrained application of cross-validation also leads to “efficient” (or even
consistent) results. This is important because the point of cross-validation is to
provide a completely data-driven choice of the smoothing parameter. In its
present form, the theorem requires an a priori choice of 6* and 6**, which are
themselves smoothing parameters. The efficiency of the unconstrained version
remains an open problem.
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The proof is broken down into several steps, beginning with an extension of
Kolmogorov’s inequality.

LEMMA 44. LetZ,, ---, Z, be independent mean zero random variables with
Var(Z, + --- + Z,) = 6% <, and let
Z=1{(c, --,cn) ER=1=c1=ce=---=¢,20}.
Then
Plsupe | 31 ¢iZ;| > €] < o7/e’
for all e > o.
PrOOF. The set of extreme points of # is exactly the set {eo, - - -, e,} where

e, = (en, -+, €r) is defined by e,; = 1 if i < k, 0 if i > k. Since |} ¢:Z;| is a
convex function on # for arbitrary {Z;, -- -, Z,},

supg | Xi=1 ¢iZ;| = maXo<ksn| E?=1 erZ;| = max;<k<n| 2521 Zil.
Therefore
Plsupg | X%1 6iZ;| > ¢] = Plmax,| 35 Zi| > ¢] < ob/e
by Kolmogorov’s inequality (cf. Chung, 1974; Theorem 5.3.1), and the lemma is
proved.
We return now to the discussion of GCV. Let
K = K(n, 6*) = min{k: n"0*\pn, = 1},
80 di,(y) = 0 for all y = n’6 € n'I and k > K. Note that

(4.5a) Akn = 0(n™")
and
(4.5b) K = 0(n")

from (2.5 d). Also define X, = 8%, — B3, — ¢ and
Sp=n"" Theks1 X,
and let
Waly) = Va(y) = o® = Sa.

W, and V, differ only by a random quantity independent of +; hence they have
the same minimizer. In addition,

(4.6) EW,(y) = EV.(y) — o°

and the mean functions have the same minimizer, v, as well. The point of
introducing W, is that it seems more tractable because it depends essentially on
only K = O(n") terms. The key step provided by the next lemma is to show that
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the error W, — EW, is sufficiently small. To that end, normalize again by letting
W.(6) = n'"W,(n"5).

LEMMA 4.5. maxser| W,(6) — EW,(5) | = 0 in probability.
ProOOF. For ease of notation, we suppress the double subscripts and expand
(4.2) letting d, = di,(n"6) and
Un(8) = n™ Tkt (1 — de)?X,
to obtain -
W.(6) — EW,(3)

nT(1 = py)7? Thay (1 — di)’Xe — n'778,
(1 = ) ULG) — n' (2 = p1)Ssl.
After some manipulation, one can write

Un () = 8 Tk ca(d)Men Xy,

where c,(8) = min{1, (n"8\s,) *}. Note that 1 = ¢;(6) = --- = ¢,(6) = 0 for all
6 € I and by normality Z, = A\, X, satisfies the assumptions of Lemma 4.4. Using
normality again,

Var(Yio: MnXe) = Th1 Min(20* + 40%6%,)
= 20* Y Mn + 40® T M.
By (2.5d) and (4.5b), the first term is O(n™"). The second term is bounded by
40" kn 2h=1 MenBin < 40°Akn Th=1 MenBin
< 40"\l f917,

which is also O(n™") from (4.5a). Thus by Lemma 4.4, max;c;U,(6) — 0 in
probability.

The second term in (4.7) is easier. From (4.3), n' "y, is bounded and u; — 0
for 6 € I, so it suffices to show that S, — 0. But ES, = 0 and, by normality
(2.5d), and (4.5a),

Var(S,)

(4.7)

n=? Yh-k+1 20 + 40°6%,)
264/"‘ + (402/(n2AKn)) Eg=K+l >\knﬂ%n
=< 20*/n + 46®| f9)*/(n*Aka) = O(n7).

Thus the term involving S, is also negligible. Since (1 — ;)2 — 1 uniformly on
I, the proof is complete.

IA

PrROOF OF THEOREM 4.3. From the proof of Lemma 4.1, ET,.(3) — h(3)
uniformly on I. Thus using (4.4), (4.6), and Lemma 4.5, maxse;| W, (6) — h(5) |
—p 0. Once again, since h is convex with unique minimum at &,, we have
bn —p 00, where 6,, the minimizer of V,, is also the minimizer on I of W,.
But v, = n"4,, so (4.1) gives the desired result.
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THEOREM 4.6. lim, o ET,(¥,)/ET.(v}) = 1.
We need a lemma whose proof is similar to that of Lemma 4.5 and is omitted.
LEMMA 4.7. maxses| T,(5) — h(8) | —» 0.

PROOF OF THEOREM 4.6. It is equivalent to show that ET,(5,) — ET,(5*)
— 0. Since T,,(5,) — ET,(6%) —p 0 by Lemma 4.7 and Theorem 4.3, it suffices to
show that 7',(5,) is a uniformlyA integrable sequence (cf. Chung 1974, Theorem
4.5.4). Let dp = din(n'5,,). Since 6, < 6**, we have (1 — dj,)? < n’8** \, and, using
a standard inequality,

Tn(gn) = n—r ZZ=1 (&kékn - ﬁkn)2
207 Y01 dH(Brn — Brn)? + Ther BE(1 — di)?)
= 207" K (Ben — Bra)? + 26%*| f@ 2.

The last term involving the sum is uniformly integrable because K = O(n") and
{Ben — Brnli=1 by assumption is a sequence of independent standard normal
random variables. This completes the proof.

IA

REMARK. The normality assumption seems to be used _most critically in
applying the version of Kolmogorov’s inequality, where the (.,’s must be inde-
pendent. It seems likely that the results are true in greater generality.

5. Remarks. In order to compute 7., at least the first few eigenvectors and
eigenvalues in (2.1) must be generated. Demmler and Reinsch (1975) outlined a
relatively economical computational scheme which is especially suitable if only
the first few terms are needed.

For g = 2, Craven and Wahba (1979) gave a method for generating the entire
sequence {As, - - -, A} and {¥s, - - -, ¥,} based on a singular value decomposition.
In their notation, d? = Mets, k=1, ---, n — 2, and U = (¥3, ---, ¥,) is a
suborthogonal matrix. The first two terms in (2.2), the projection onto the
subspace of linear polynomials, are computed by ordinary least squares. As
Craven and Wahba point out, the expensive task of producing the entire basis
need only be performed once for each set of xs; so for many problems, the
procedure is relatively inexpensive. However, for n larger than 150 or so, this
approach is probably not feasible.

APPENDIX
We give a new proof of the theorem of Kuks and Olman (1971).

Proor or LEMMA 3.1. Let B = [b;;] be an n X n matrix and let

J(B) = maxgas=<ill (I — B)B||* + (¢%/a®)tr(B’B).
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By a simple transformation the quantity to be minimized is «%J(B). Also define

(A.1) Jo(B) = maxe<i=n(1 — by)?*/\i + (6%/a®) Tl bi.
Note that if B is a diagonal matrix such that
(A.2) bi=1 i=1,.--,q,

then J(B) = Jy(B). Moreover, if J(B) < « for any matrix B, then (A.2) must
hold. Let & denote the class of n X n matrices satisfying (A.2), and let e; denote
the ith coordinate unit vector in R*. If B € &,

J(B) = maxe<iz.|| (I — B)es|2/\; + (0%/a?) Tiy b
= maxg<i=a[(1 — bi)® + Tjmi b31/Ni + (0%/a®) T, bE
> Jo(B)

with equality if and only if B is diagonal. Let D € % be the diagonal matrix
which minimizes Jy. Then for any B,

J(D) = Jo(D) = Jo(B) = J(B),
hence D is minimax. Write D = diag(d,, - - -, d.), and let
(A3) Y= maxq<,-5n(1 - d,‘)2/>\,'.

From (A.2), it is clear that 0 < d; < 1 for 1 < i < n, for if either d; <O or d; > 1,
Jo(D) could be made smaller by replacing d; by 0 or 1, respectively. Thus if
g < i < n and equality holds in (A.3), then d; = (1 — vvy\;). Similarly, if
v > (1 = d;)?/\, it follows that d; = 0 since otherwise JJ,(D) could be decreased
by making d; smaller. From these conditions, d; = (1 — yv\)+ and by (A.3),

REMARK. The general minimax problem defined by
mingmaxg s<18’(I — B)’ W(I — B)8 + tr(B’B),

where W is a symmetric nonnegative definite matrix, is much more difficult. The
only cases that have been solved explicitly are when W is diagonal or has rank
1. (cf. Kuks and Olman (1972), Speckman (1980) for the latter.) Latter (1975)
treated the general case, but there is no explicit solution.

Acknowledgement. The author is indebted to an anonymous referee for
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