A NOTE ON BAHADUR'S TRANSITIVITY

By Eitan Greenshtein

Hebrew University and Ben Gurion University

Let X_1, X_2, \ldots be a sequence of random variables, $(X_1, \ldots, X_n) \sim F_{\theta}^n$, $\theta \in \Theta$. In a work by Bahadur it was shown that, for some sequential problems, an inference may be based on a sequence of sufficient and transitive statistics $S_n = S_n(X_1, \ldots, X_n)$ without any loss in statistical performance. A simple criterion for transitivity is given in Theorem 1.

1. Introduction. Let $X_1,\ldots,X_m,\,m\leq\infty$, be a sequence of random variables, $(X_1,\ldots,X_n)\sim F_{\theta}^n,\,\,\theta\in\Theta$. Bahadur [1] has shown that in a typical sequential decision problem it is enough to consider a sequence of sufficient statistics which is transitive under every $\theta\in\Theta$. The reason is that the risk function of any sequential procedure Δ whose decision at the nth stage is a function of X_1,\ldots,X_n can be achieved by a procedure Δ' whose decision at the nth stage is a function of $S_n(X_1,\ldots,X_n)$, if and only if S_1,S_2,\ldots is a sequence of sufficient statistics which is transitive under every $\theta\in\Theta$.

DEFINITION 1. The sequence $\{S_n\}$ is transitive if the conditional distribution of S_{n+1} , conditional upon X_1, \ldots, X_n , is a function of X_1, \ldots, X_n only through S_n .

A closely related concept is that the sequence S_1, S_2, \ldots is a Markov sequence. When there is a one-to-one map from S_1, \ldots, S_n to X_1, \ldots, X_n , the sequence S_1, S_2, \ldots is Markovian if and only if it is transitive.

An important work dealing with the concept of transitivity is by Ghosh, Hall and Wijsman [3]. Some criteria for transitivity are given there, using invariance considerations.

In Theorem 1 we give a criterion for a sequence of sufficient statistics to be transitive. The same proof can be used to show that such a sequence is a Markov sequence.

2. Main result. We assume that $F_{\theta}^{n} \ll F_{\theta_{0}}^{n}$ for every n and for some $\theta_{0} \in \Theta$, and that X_{1}, \ldots, X_{n} is Euclidean for $n = 1, 2, \ldots$. Hence conditional distributions are well defined.

Denote by $F_{\theta}^{n+1}(x_{(n)},s_{n+1}|s_n)$ the conditional distribution of $(X_{(n)},S_{n+1})$ conditional on $S_n=s_n$, where $X_{(n)}=X_1,\ldots,X_n$. Let

$$f_{\theta}^{n}(s_{n}) = \frac{d\overline{F}_{\theta}^{n}(s_{n})}{d\overline{F}_{\theta_{0}}^{n}(s_{n})},$$

Received February 1990; revised September 1992. AMS 1991 subject classifications. Primary 62L10; secondary 62B99.

Key words and phrases. Sufficiency, transitivity.

where $\overline{F}_{\theta}^{n}(s_{n})$ is the distribution of S_{n} under θ . Finally, we denote by $\hat{F}_{\theta}^{n+1}(s_{n+1}|s_{n})$ the conditional distribution of S_{n+1} conditional on $S_{n}=s_{n}$, and by $\tilde{F}_{\theta}^{n}(x_{(n)},s_{n},s_{n+1})$ the joint distribution of $X_{(n)}$, S_{n} and S_{n+1} .

LEMMA 1. Let $S_n(X_1, ..., X_n)$, n = 1, 2, ..., be a sequence of sufficient statistics for $F_{\theta}^n(x_1, ..., x_n)$, $\theta \in \Theta$. Then the following hold:

(i)
$$dF_{\theta}^{n+1}(x_{(n)}, s_{n+1}|s_n) = \frac{f_{\theta}^{n+1}(s_{n+1})}{f_{\theta}^{n}(s_n)} dF_{\theta_0}^{n+1}(x_{(n)}, s_{n+1}|s_n) \quad a.e. (\overline{F}_{\theta_0}^n).$$

(ii)
$$d\hat{F}_{\theta}^{n+1}(s_{n+1}|s_n) = \frac{f_{\theta}^{n+1}(s_{n+1})}{f_{\theta}^{n}(s_n)} d\hat{F}_{\theta_0}^{n+1}(s_{n+1}|s_n) \quad a.e.(\bar{F}_{\theta_0}^{n}).$$

PROOF. (i) $d\tilde{F}_{\theta}^{n+1}(x_{(n)}, s_n, s_{n+1}) = f_{\theta}^{n+1}(s_{n+1}) d\tilde{F}_{\theta_0}^{n+1}(x_{(n)}, s_n, s_{n+1})$ by sufficiency. Hence,

$$\begin{split} dF_{\theta}^{n+1}\big(x_{(n)},s_{n+1}|s_n\big) &= \frac{f_{\theta}^{n+1}(s_{n+1})\,dF_{\theta_0}^{n+1}\big(x_{(n)},s_{n+1}|s_n\big)}{\int f_{\theta}^{n+1}(s_{n+1})\,dF_{\theta_0}^{n+1}\big(x_{(n)},s_{n+1}|s_n\big)} \\ &= \frac{f_{\theta}^{n+1}(s_{n+1})}{f_{\theta}^{n}(s_n)}\,dF_{\theta_0}^{n+1}\big(x_{(n)},s_{n+1}|s_n\big). \end{split}$$

(ii) Immediate from (i). □

COROLLARY 1. S_{n+1} is sufficient for θ with respect to the family $F_{\theta}^{n+1}(x_{(n)}, s_{n+1}|s_n), \theta \in \Theta$.

Theorem 1. Let $S_n(X_1,\ldots,X_n)$, $n=1,2,\ldots$, be a sequence of sufficient statistics for $F_{\theta}^{n}(x_1,\ldots,x_n)$, $\theta\in\Theta$. Suppose that, for $n=1,2,\ldots$ and for every value of S_n , S_{n+1} is complete with respect to the family $\hat{F}_{\theta}^{n+1}(s_{n+1}|s_n)$, $\theta\in\Theta$. Then $\{S_n\}$ is transitive under every $\theta\in\Theta$.

PROOF. It suffices to show that S_{n+1} and $X_{(n)}$ are independent conditional upon $S_n = s_n$.

By Corollary 1, S_{n+1} is sufficient for θ with respect to $F_{\theta}^{n+1}(x_{(n)}, s_{n+1}|s_n)$, $\theta \in \Theta$, and by assumption it is complete. By sufficiency of S_n , $X_{(n)}$ is ancillary. Hence by Basu's lemma ([5], page 191), S_{n+1} and $X_{(n)}$ are independent conditional upon $S_n = s_n$. \square

In the following two propositions, we will consider the completeness assumption.

Proposition 1. Suppose $\{S_n\}$ is a sequence of complete and sufficient statistics for $F_{\theta}^{n}(x_1,\ldots,x_n)$. Suppose $\hat{F}_{\theta_0}^{n+1}(s_{n+1}|s_n) \ll \overline{F}_{\theta_0}^{n+1}(s_{n+1})$ for every

value of s_n . Then S_{n+1} is complete with respect to $\hat{F}_{\theta}^{n+1}(s_{n+1}|s_n)$, $\theta \in \Theta$ for every value of s_n .

PROOF. Let $\varphi_{s_n}^{n+1}$ be such that

$$d\hat{F}_{\theta_0}^{n+1}(s_{n+1}|s_n) = \varphi_{s_n}^{n+1}(s_{n+1}) d\overline{F}_{\theta_0}^{n+1}(s_{n+1}).$$

Let $h(s_{n+1})$ be any integrable real-valued function. Then

$$\int h(s_{n+1}) d\hat{F}_{\theta}^{n+1}(s_{n+1}|s_n) = \int h(s_{n+1}) \frac{f_{\theta}^{n+1}(s_{n+1})}{f_{\theta}^{n}(s_n)} d\hat{F}_{\theta_0}^{n+1}(s_{n+1}|s_n).$$

The equality is shown by using Lemma 1(ii). The last expression equals zero for every θ if and only if

$$\int \! h(s_{n+1}) \, f_{\theta}^{\, n+1}(s_{n+1}) \varphi_{s_n}^{\, n+1}(s_{n+1}) \, d \overline{F}_{\theta_0}^{\, n+1}(s_{n+1}) = 0 \quad \text{for every θ}.$$

By the completeness of S_{n+1} this implies $h \varphi_{s_n}^{n+1} = 0$ a.e. $(\overline{F}_{\theta_0}^{n+1})$, which implies h = 0 a.e. $(\hat{F}_{\theta_0}^{n+1}(\cdot|s_n))$, which by using Lemma 1(ii) implies h = 0 a.e. $(\hat{F}_{\theta}^{n+1}(\cdot|s_n))$ for all θ . The proof now follows. \square

PROPOSITION 2. Let $S_n(X_1,\ldots,X_n)$ be a sequence of sufficient statistics. Suppose that, for every n, $\overline{F_{\theta}}^n(s_n)$, $\theta \in \Theta \subseteq \mathbb{R}^k$, is a k-dimensional exponential family with a canonical parameter θ and a canonical observation S_n (for a definition see [2], page 1). Suppose Θ has a nonvoid interior. Then S_{n+1} is complete with respect to $\hat{F_{\theta}}^{n+1}(s_{n+1}|s_n)$.

PROOF. Let $\theta_0=0$, w.l.o.g. Then $d\overline{F}_{\theta}^{\,n}(s_n)=\exp(\theta\cdot s_n-\psi_n(\theta))\,d\overline{F}_0^{\,n}(s_n)$ and

$$d\hat{F}_{\theta}^{n+1}(s_{n+1}|s_n) = \frac{\exp(\theta \cdot s_{n+1} - \psi_{n+1}(\theta)) d\hat{F}_0^{n+1}(s_{n+1}|s_n)}{\exp(\theta \cdot s_n - \psi_n(\theta))} \quad \text{a.e. } (\overline{F}_0^n),$$

by Lemma 1(ii).

Using this presentation we see that $\hat{F}_{\theta}^{n+1}(s_{n+1}|s_n)$, $\theta \in \Theta$, is an exponential family, where Θ is a canonical (nonvoid) parameter set and S_{n+1} is a canonical observation; hence S_{n+1} is complete. \square

3. Examples. Most of the examples in [3] can be derived by applying Theorem 1. We will consider two examples; the first is taken from [3].

Example 1. Let $\{X_i\}$ be i.i.d. $X_1 \sim N(\mu, \sigma^2)$. Let $\theta = \mu/\sigma$. Let

$$S_n = \overline{X}_n / \sqrt{\sum^n \left(X_i - \overline{X}_n\right)^2}$$
.

Then S_n is sufficient for S_1, \ldots, S_n when the parameter of interest is θ (see

[4], Exercise 9, page 250, and [3]). Presenting $N(\mu, \sigma^2)$ as an exponential family with $(\sum^n X_i, \sum^n X_i^2)$ a minimal sufficient statistic for $(\mu/\sigma^2, -1/(2\sigma^2))$, we get that $(\sum^n X_i, \sum^n X_i^2)$ is complete. Hence, any function of $(\sum^n X_i, \sum^n X_i^2)$ is complete. In particular,

$$S_n\left(\sum_{i=1}^n X_i,\sum_{i=1}^n X_i^2\right) = \overline{X}_n/\sqrt{\sum_{i=1}^n \left(X_i - \overline{X}_n\right)^2}$$

By Proposition 1 and Theorem 1, S_n is transitive.

In order to verify the dominance assumption of Proposition 1 note that

$$d\hat{F}_{\theta}^{n+1}(s_{n+1}|s_n) = \int dF_{(\mu,\sigma)}^{n+1}(s_{n+1}|s_n,\bar{x}_n) dG_{(\mu,\sigma)}^n(\bar{x}_n|s_n),$$

where $F_{(\mu,\,\sigma)}^{n+1}(s_{n+1}|s_n,\bar{x}_n)$ is the conditional distribution of S_{n+1} , conditional on S_n and \bar{X}_n ; and where $G_{(\mu,\,\sigma)}^n(\bar{x}_n|s_n)$ is the conditional distribution of \bar{X}_n conditional on S_n . The measure $F_{(\mu,\,\sigma)}^{n+1}(s_{n+1}|s_n,\bar{x}_n)$ is dominated by the Lebesgue measure (using some algebra and the fact that X_{n+1} is normal); hence the same is true for $\hat{F}_{\theta}^{n+1}(s_{n+1}|s_n)$. The conclusion follows because of the equivalency of the Lebesgue measure and $\bar{F}_{\theta_0}^{n+1}(s_{n+1})$.

Example 2. Let $(X_1, \ldots, X_m) \sim N(\theta \cdot 1_m, \alpha \Sigma)$, where $\theta \cdot 1_m' = \theta \cdot (1, \ldots, 1) = (\theta, \ldots, \theta)$, α is a scalar and Σ is an $m \times m$ covariance matrix. Consider the following cases:

- (i) θ unknown, $a\Sigma$ known;
- (ii) a unknown, θ and Σ known;
- (iii) a and θ unknown, Σ known.

In all three cases, a sequence of sufficient statistics that can be presented as an exponential family exists. Using Proposition 2 and Theorem 1, those sequences are transitive.

We will elaborate on part (i) of the example.

Let $\Sigma_{(n)}$ be the covariance matrix of $(X_1,\ldots,X_n)=X'_{(n)},\,n\leq m,$ and $\theta\cdot 1_{(n)}$ its expectation vector. Then

$$\begin{split} dF_{\theta}^{n}(x_{1},\ldots,x_{n}) &= \exp\left[-\frac{1}{2}(x_{(n)} - \theta \cdot 1_{(n)})' \cdot \alpha^{-1} \cdot \Sigma_{(n)}^{-1}(x_{(n)} - \theta \cdot 1_{(n)})\right] d\mu_{n} \\ &= \exp\left[\theta \cdot 1_{(n)}' \cdot \alpha^{-1} \cdot \Sigma_{(n)}^{-1} \cdot x_{(n)} - \psi_{n}(\theta)\right] d\nu_{n}, \end{split}$$

where μ_n , ν_n and ψ_n are implicitly defined.

We see that $S_n = \mathbf{1}'_{(n)} \cdot a^{-1} \cdot \Sigma_{(n)}^{-1} \cdot X_{(n)}$ is a canonical observation from a one-dimensional exponential family, with a canonical parameter θ .

Acknowledgments. The observation stated as Theorem 1 was made thanks to a discussion with Professor L. D. Brown. The author would also like to thank Professor R. A. Wijsman for pointing out errors in an earlier version and for a helpful discussion.

REFERENCES

- BAHADUR, R. R. (1954). Sufficiency and statistical decision functions. Ann. Math. Statist. 25 423–462.
- [2] Brown, L. D. (1989). Fundamentals of Statistical Exponential Families IMS, Hayward, CA.
- [3] GHOSH, J. K., HALL, W. J. and WIJSMAN, R. A. (1965). The relationship between sufficiency and invariance, with application in sequential analysis. *Ann. Math. Statist.* **36** 575-614.
- [4] LEHMANN, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.
- [5] LEHMANN, E. L. (1986). Testing Statistical Hypotheses, 2nd ed. Wiley, New York.

DEPARTMENT OF INDUSTRIAL ENGINEERING AND MANAGEMENT BEN GURION UNIVERSITY P.O. BOX 653, BEER SHEVA 84120 ISRAEL