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In a recent paper, C. F. J. Wu showed that the jackknife estimator of a
distribution function has optimal convergence rate O(n~'/%), where n
denotes the sample size. This rate is achieved by retaining O(n) data values
from the original sample during the jackknife algorithm. Wu’s result is
particularly important since it permits a direct comparison of jackknife and
bootstrap methods for distribution estimation. In the present paper we
show that a very simple, nonempirical modification of the jackknife estima-
tor improves the convergence rate from O(n~/%) to O(n~5/¢), and that
this rate may be achieved by retaining only O(n?/3) data values from the
original sample. Our technique consists of mixing the jackknife distribution
estimator with the standard normal distribution in an appropriate propor-
tion. The convergence rate of O(n~%/6) makes the jackknife significantly
more competitive with the bootstrap, which enjoys a convergence rate of
O(n~1) in this particular problem.

1. Introduction. In an interesting recent paper, Wu (1990) discussed the
performance of the jackknife distribution estimator. Wu derived necessary and
sufficient conditions for asymptotic normality of the estimator, and showed
that the optimal convergence rate is O(n~!/%), where n denotes the sample
size. He demonstrated that this optimal rate may be achieved by retaining
O(n) of the data values during the “resampling without replacement’’ part of
the jackknife algorithm.

Wu’s contribution is particularly significant since it allows jackknife and
bootstrap methods to be compared in the context of distribution estimation. It
is known [e.g., Singh (1981) and Babu and Singh (1983, 1984)] that in a wide
range of problems, the bootstrap can estimate distribution functions with an
error of O(n™!) in probability and O{n~'(loglog n)'/?} almost surely. The
inability of the jackknife to do better than O(n~'/2) must be seen as a
disappointment. As Wu (1990) notes, this relatively large error is due to the
fact that jackknife resampling is ““without replacement,”” whereas the original
sampling used to generate the data was ‘‘ with replacement,” since the effec-
tive population size was infinite. Bootstrap methods perform better than the
jackknife because they preserve the “with replacement’’ sampling scheme.

Nevertheless, as we shall show in the present paper, all is not lost for the
jackknife. A simple modification of Wu’s procedure allows the convergence rate
to be substantially improved, from O(n~1/2) to O(n~5/¢). The latter rate is
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available with probability 1, and is achieved by retaining O(n?/3) of the
original data values in each jackknife resample. To achieve the enhanced rate
we take a jackknife estimator G of a distribution which is asymptotically
N(0, 1), and which is computed by retaining r data values in each jackknife
resample; and we correct it by mixing it with the limiting normal distribution
®. Our final estimator is simply

(1.1) G =126+ (1 -V,

where f=r/n, and we suggest taking r ~ const. X n?/3, This estimator cor-
rectly allows for the O(n~1/2) term in an Edgeworth expansion of the target
distribution. In that sense it is second-order correct, and is relatively competi-
tive with second-order correct bootstrap methods such as percentile- and BC,
[Efron (1987) and Hall (1988)]. By way of contrast, the jackknife methods
considered by Wu (1990) are only first-order correct.

An intuitive explanation of our method may be given as follows. The usual
Jjackknife method fails for two reasons. First, it uses an effective sample size of
r, rather than rn. This means that the jackknife’s implicit second-order correc-
tion is of size r~ /2 rather than n~!/2. Second, the form of the implicit
second-order correction is not quite right, being in error by terms of size
r/n + n~Y2 If we mix the jackknife and normal approximations in the
proportion (r/n)%:{1 — (r/n)'/?}, we effectively replace r~1/2 by n=1/2 in
the implicit second-order correction. And if we also ask that r/n — 0, we
ensure that the form of the second-order correction term is asymptotically
right. By considering third-order terms we may show that the most appropri-
ate size of r is r ~ const. X n?/3,

Of course, the enhanced jackknife convergence rate of O(n~5/%) still falls
short of the bootstrap rate, and the precise error of the jackknife method is
affected by the choice of r. This tuning parameter must also be selected for
Wu’s (1990) uncorrected jackknife. For these reasons we tend to favour the
bootstrap approach, although we agree that the jackknife algorithm has advan-
tages [Wu (1990), pages 1450-1451).

It should be noted that our results are only significant when the second-order
term in an Edgeworth expansion of the true distribution does not vanish. In
the example of estimating the distribution of a mean, this is equivalent to
asking that skewness (called «; in Section 2) be nonzero. Otherwise, the
jackknife approximation proposed by Wu (1990) is in error by only O(n~1),
and the accuracy O(n~%/¢) achieved by our recommendation is not the best
possible.

Section 2 outlines the argument which motivates the corrected estimator
defined at (1.1), and Section 3 summarizes a simulation study which demon-
strates, in a particular problem where n is small, that our method improves on
the uncorrected jackknife but falls short of bootstrap accuracy. Thus, the
asymptotic theory appears to accurately predict small sample behaviour. Fi-
nally, in Section 4 we describe and illustrate a procedure for efficient approxi-
mation to quantiles of jackknife distribution estimators.
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2. Methodology and main results. We treat initially the case of the
Studentized mean, and then outline results in a more general context.

Let 2'={X,,..., X,} denote a random sample drawn from a continuous,
univariate distribution with finite fourth moment. Denote the population
mean and variance by u and o2, and let the sample mean and variance be

n n
X-n1'YX, &2=n'Y (X -X).
i=1 i-1
We wish to estimate the distribution G of T = n¥/*(X — w)/6:
G(x) =P(T <x) = ®(x) +n ?py(x)d(x)

(2.1)
+ 7 py(x)¢(x) +o(n7h),

where
pi(x) = §ra(22 + 1),
pa(x) = x{Fry(x? — 8) — frd(x* + 2x% = 3) — (2 + 3)}

and «; denotes the jth cumulant of (X; — w/o.

The jackknife algorithm based on retaining r of the original » data values
in each resample may be described as follows. Let 2°* = {X¥, ..., X'} denote
a resample of size r < n, drawn randomly without replacement from 2". Write
X* = r 1L X and 6*2 = r (X — X*)? for the mean and variance of 2*.
Put f=r/n, and observe that E(X*|Z) = X, var(X*|2) =1 - X1 —
n 1717162 Thus, T* = r/%(X* — X)/{(1 — f)*/%6*} is the version of T in
the sampling-without-replacement problem. The jackknife estimator of G is

G(x) =P(T* <x|2).

Existing theory of Edgeworth expansion for sampling without replacement
[e.g., Robinson (1978) and Babu and Singh (1985)] provides the formula

(2.2) P(T* < xI.Q”) = l‘I)(JC) + "_l/zél(x)qb(x) + O(r—l/z)
with probability 1, where

(2.3)  gy(x) = Wyf8x2 = (1 - F) M1 - 2f) (= - D} - )

and k3 = 6 3n"'L(X, — X)®. Indeed, the techniques of Babu and Singh (1985)
permit (2.2) to be extended to a third term, so that

G(x) = P(T* <x|Z) = ®(x) +r~/%4(x)d(x)

+r7gy(x)d(x) +o(r7h)
with probability 1. Sufficient regularity conditions are that E|X; < o« for
some ¢ > 0, that X, have a continuous distribution, and that r,n — «
together in such a manner that f is bounded away from 1. The polynomial g,
is odd and of degree 5, and its coefficients are bounded with probability 1.
In the event that f — 0, resampling without replacement converges to
resampling with replacement. This is reflected in the fact that the polynomials

(2.4)

|8+£
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§; in expansion (2.4) converge to their counterparts in (2.1). For example, we
know from (2.3) that, since &; = x5 + O(n~1/2*°) with probability 1 for each
e >0,

(2.5) (%) = py(x) — 2y f + O(n~V/2% 4 F2),
Similarly,
(2.6) Go(x) = po(x) +o0(1).

We may now deduce from (2.4) that the jackknife estimator G satisfies

G(x) = (x) +r~?py(x)(x) + 1~ 'py(x)d(x)
(2.7) —r2p "1l d(x) + O(r~V2n~1/2%e 4 p3/272)
+o(r 1)
with probability 1, for each ¢ > 0.

Combining (2. 1) and (2.7) we see that the corrected jackknife estimator G,
given by (1.1), satisfies

G(x) = G(x) = () *py(x)d(x) — rn~ ¥ jr3d(x)
+0(n7* + r2n7%2) + of(rn) "~ 1/2}.

Since (2.1) and (2.7) are available uniformly in x then so is (2.8).

The absolute value of the right-hand side of (2.8) is minimized by taking
r ~ cn?/3, where ¢ = c(x) is selected to minimize |c™!/2p,(x) — (1/4)ckg| sub-
ject to ¢ > 0. Depending on the signs of p,(x) and kj it may be theoretically
possible to render this quantity equal to zero by a particularly judicious choice
of ¢. However, such an approach requires careful empirical selection of r and
is not very attractive. More generally, taking r to equal the integer part of
Cn?/? for any fixed C > 0, we see from (2.8) that
(2.9) sup |G(x) — G(x)l = O(n~5/%)

—o<x <

(2.8)

with probability 1.

Under similar assumptions [specifically, that the distribution of X, has
finite (8 + £)th moment for some ¢ > 0, and is continuous], the usual per-
centile-¢ bootstrap approximation to the distribution G is in error by o(n™Y
in probability and O{n~'(loglog n)'/?} with probability 1; see for example
Singh (1981) and Babu and Singh (1983, 1984). Therefore, the approximation
at (2.9) is not quite as good as the bootstrap approximation, but it is neverthe-
less a substantial improvement on the best possible approximation obtainable
by directly applying the jackknife approximation G: for kg * 0,

(2.10) inf sup |G(x) — G(x)l ~ con™ /2,
1<r<n—-1 _p<x<w
where

Co = %Ix3loir;f sup |(2x%2+ 1)+ (f ' - 1)1/2
<

(;.11) <l _w<x<o
X (1= /)TN - 2F)(x? - 1) — 37} (x).
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The infimum in (2.10) is achieved asymptotically by taking r ~ nf,, where f,
attains the infimum in (2.11).

In this discussion we confined attention to the Studentized case, since this
is often useful in applications. For example, it may be employed directly to
construct confidence intervals and hypothesis tests. There is an analogue of
our technique in the non-Studentized case, which more closely parallels the
line of development taken by Wu (1990). There, we define T = n*/%(X — u) /o
and T* = r/(X* - X) /{1 - f)l/2 }. As before, but with this new notation,
define G(x) = P(T <x) and G(x) = P(T* < x|2"), and let G be given by
(1.1). Each of (2.7)-(2.9) has a direct analogue in this setting, albeit with
different polynomials py, p,, 4;, §,. For example, the new version of p, is
pix) = (1/6)kz(1 — x?). Again, (2.9) holds if r ~ Cn®® for some C > 0.

Many other contexts are identical in principle to that of the Studentized
mean, differing only in the form of the polynomials p;, p,, §;,§,. We shall
consider the so-called ‘“smooth function model” for valid Edgeworth expan-
sions, first brought to prominence by Bhattacharya and Ghosh (1978). There it
is assumed that the sample 2= {X,, ..., X, } is d-variate, that the univariate
parameter 6 = g(u) is a smooth functlon of the vector mean u = E(X,), and
that the estimator § = g(X) is the same function of the sample mean. Assum-
ing nondegeneracy and sufficiently many moments of the sampling distribu-
tion, n'/%(f — 6) is asymptotically normal N(0, 02), where o2 = h(y) can also
be expressed as a smooth function of u. (This may require an extension of each
vector X, to incorporate products of earlier components.) Take 6% =h(X)
and T = n'/%(f — 6)/6. As Bhattacharya and Ghosh (1978) noted, expansion
(2.1) is valid for quite general statistics T of this form, provided we assume
adequate moment and smoothness conditions on the underlying population.
The polynomial p; is of degree 3/ — 1 and of opposite parity to j.

Let 27* = {X{,..., X} denote a resample of size r < n, drawn randomly
but without replacement from 2. Put X* = r 'L X*, 6* = g(X*), 6*2 =
h(X*)and f= r/n. Then E(X*|Z) = X and

n
var(X*2) = (1 =)L - n ) (nr) " L (X, - X)(X, - X)"

i=1
= (1 - f)r Hvar(X,) + 0,(n"1/?)},

where all sides of the displayed identities are d X d matrices. From these
results, and the fact that g(X*) — g(X) is (by Taylor expansion) -approxi-
mately linear in X* — X, we see that conditional on 2, T* = r'/2(6* — §)/
{A-f )'/26-*} is asymptotically N(0,1). The conditional distribution function
G of T* admits the expansion (2.4), in which the polynomials ¢, and §,
satisfy analogues of (2.5) and (2.6):

qi(x) = py(x) + fo(x) + O(n™1/2% + f2),

42(x) = pa(x) +0(1),
where p is an even polynomial of degree 2.
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It is now straightforward to develop versions of (2.7)-(2.9). In particular, if
the corrected estimator G is defined by (1.1) and if » ~ Cn?/3 then (2.9) holds.

3. A simulation study. Table 1 summarizes the results of a simulation
study designed to compare the performances of the uncorrected and corrected
jackknife distribution function estimators described in Sections 1 and 2 in a
particular problem. Results are also given for the analogous percentile-¢ boot-
strap estimator. [See Hall (1992), page 15] for an introduction to the per-
centile-t bootstrap.] The problem considered is that of estimating quantiles of
the distribution of the Studentized mean, T = n'/%(X — u)/&, of a random
sample of size n = 16 from a chi-squared distribution with u = 1 degree of
freedom. Quantile estimates are required, for example, to construct confidence
intervals for u and may be obtained by numerically inverting the appropriate
distribution function estimate. For example, the corrected jackknife a-quantile
estimate is given by 7, = G~ (a).

TaBLE 1
Means, mean squared errors and empirical error rates of uncorrected- and corrected-jackknife and
percentile-t bootstrap quantile estimators

Left tail Right tail
error error
a r mean mse rate mean mse rate
0.025 8 -6.20 15.0 0.024 1.65 0.0621 0.013
—5.41 9.65 0.033 1.73 0.0532 0.010
9 —5.36 7.80 0.030 1.62 0.0581 0.013
—4.85 5.36 0.040 1.69 0.0468 0.010
10 —-5.12 6.83 0.036 1.58 0.0628 0.015
—4.68 5.62 0.044 1.65 0.0487 0.013
11 —4.55 4.13 0.045 1.54 0.0689 0.018
—-4.29 3.80 0.051 1.59 0.0534 0.015
12 —4.47 461 0.048 1.47 0.0845 0.025
—4.33 4.48 0.049 151 0.0685 0.020
Bstrap —4.42 3.81 0.047 1.73 0.0493 0.009
Exact* —4.49 0.024 1.58 0.022
0.05 8 —4.40 5.72 0.050 143 0.0364 0.033
—3.83 3.70 0.062 1.48 0.0375 0.024
9 —4.23 5.28 0.056 141 0.0338 0.035
—3.53 3.03 0.073 1.45 0.0338 0.027
10 -3.69 3.02 0.068 1.40 0.0359 0.041
—3.38 2.56 0.075 1.43 0.0344 0.033
11 —-3.63 3.29 0.072 1.37 0.0384 0.039
—3.42 3.01 0.078 1.40 0.0355 0.036
12 —3.48 3.17 0.081 1.33 0.0431 0.043
—-3.06 2.24 0.091 1.35 0.0393 0.041
Bstrap —-3.26 1.83 0.078 1.45 0.0280 0.034
Exact* —-3.40 0.045 1.34 0.047

*Based on 108 simulated values of T = n'/%(X — pn)/é.
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In this particular study 1000 random samples of size n = 16 were gener-
ated. Uncorrected and corrected quantile estimates were obtained from each
sample based on 1000 without replacement resamples of sizes ranging from
r = 8 to r = 12. Percentile-t bootstrap estimates were also computed for each
sample based on 1000 with replacement resamples of size 16.

The “left tail” values in Table 1 are the means, mean squared errors and
empirical error rates of the various a-quantile estimates. The ‘“right tail”
values are the analogous results for the (1 — a)-quantile estimates. Results are
given for @ = 0.025 and a = 0.05. Upper and lower values for each value of r
correspond to uncorrected and corrected jackknife estimates, respectively. The
empirical error rates in the left and right portions of the table are, respec-
tively, the proportion of times T fell below and above the quantile estimate in
1000 simulations.

It can be seen from Table 1 that the corrected jackknife estimator is almost
uniformly more accurate than its uncorrected counterpart. This holds for all
resample sizes r; the only exception being in the right tail when o = 0.05 and
r = 8. However, the accuracy of the corrected jackknife estimator typically
falls short of that of the percentile-¢ bootstrap estimator, as predicted by the
asymptotic theory. In this example, the performances of both the uncorrected
and corrected jackknife methods vary considerably with the resample size r.
We note, however, that the accuracy of jackknife methods based on half-
samples (r = 8) is substantially less than optimal.

4. Efficient jackknife resampling. In this section we propose a method
for reducing the number of without-replacement resamples required for accu-
rate approximation to jackknife quantile estimators. The method is closely
related to importance resampling for the bootstrap, introduced by Johns
(1988) and Davison (1988). However, complications arise in the jackknife
situation because, unlike bootstrap resamples, the components of jackknife
resamples are dependent.

Exact evaluation of the jackknife distribution function estimate G in Sec-

tion 2 requires computation of the statistic T * for all (’r‘) possible resamples, a
task which may often be impractical. Thus, in practice we approximate G by

A 1 B
Ga(t) = 7 L I(Ty <),
b=1

where T}, b = , B, are the values of T* computed from B independently
selected simple random samples of size r from 2. Notice that GB(t) is an
unbiased estimator of G(¢) for all ¢.

One way of obtaining a simple random resample of size r from 2  is via an
r-stage sequential procedure in which a value X, , say, is selected from 2 at
the jth stage whose subscript differs those selected at each of the preceding
stages. At the first stage a value is chosen at random from 2 in such a way
that the ith element has probability 7!, = n~! of being the one selected. At
the jth stage, j = 2,...,r, an element is chosen from 2\ {X;,..., X, }

ij_1
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with a remaining value X,, i & {i},...,i;,_;} having probability =], =
(n —j + 17! of being selected. Under this scheme, each element of 2" has
probability f = r/n of being in any resample. A modified form of the above
scheme in which elements of 2" have unequal probabilities of selection is
obtained by changing the selection probabilities at the first stage to 7}, = ;,
i =1,...,n, where the =/ s are positive and sum to 1, and by setting the
selection probabilities at the jth subsequent stage equal to

T i
M 1=,
if i €{iy,...,i;_;} and wJTi = 0 otherwise. Notice that the modified resampling
scheme reduces to simple random sampling if 7, = n~! for all i. Also, for
unequal ;’s the selection probabilities w}i at the jth stage are random
variables. ) ) .

Now, if T =r/2(6" — ) /{(1 — £)/%6"} where 6" and &' are computed
using a resample selected according to the modified scheme just described,

then
E{I(TT <t) ]L[ (n—j+ 1)w}ij|92”} = G(t)
j=1

for all ¢. Thus, an entire family of unbiased approximations for G(t) has the
form

N 1 B L
(41) GB(t;ﬂ-) = —E Z I(TbT < t) l—Il(n _j + l)Wﬁj(b)’
b=1 J=

where i, is the subscript of the element of & selected at the jth stage in the
bth resample.

Importance resampling for the bootstrap works by ‘“tilting”’ the selection
probabilities so that the mean value of the appropriate bootstrap version of T
is approximately equal to the quantile of interest. An intuitive rationale for
this approach is that quantiles close to the mode of a distribution can be
estimated more accurately than those in the tails. In the jackknife setting this
centering of the distribution of 7" may be achieved as follows. We confine
ourselves to the ‘“smooth function model”’ described in Section 2. Let Y;* be
the indicator that the ith element of £ is a member of a jackknife resample
and let g' = (g4, ... ,gp)T where g, is the derivative of g with respect to its
Jth component. Then, under the assumptions of Section 2, T* = X7_,¢,Y;* +
0,(r='/?), where

e={r(1-r)6% g (X) (X, -X), i=1,..,n.

Now, set 7, = n~ ! exp{ne; — K(n)} where K(n) = log(n 'X?_,e"). Then it
follows that T' is approximately N(n,1) as r — ». Since T* ~ N(0, 1), the
a-quantile of T'* is to first order equal to z,, the a-quantile of the standard
normal distribution. Thus, to approximate quantiles £, = G~ Ya) in the lower
tail of the distribution of T* we set n =z, and solve the equation in ¢:

-1/2
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GB(t ) = a. On the other hand, to approximate corrected jackknife a-quan-
tile estimators £, = G~ Ya) we set n = z, and solve
FY2Gg(t;m) + (1 = f2)®(t) = a.

A refinement of this approach is to choose 7 to minimize the asymptotic
variance of G(z,; 7). This leads to the same formula for the “optimal” n as
in bootstrap importance resampling. In practice, however, the asymptotically
optimal value of n differs little from z,. See, for example, Booth, Hall and
Wood (1993) for a simple discussion of importance resampling for bootstrap
quantile estimation.

The asymmetry of the tilting procedure about ¢ = 0 has the result that (4.1)
is more efficient for approximating quantiles in the lower tail. To approximate
uncorrected jackknife quantiles in the upper tail we first approximate H@) =
P(-T* < —t|12°) by Hy(¢t;w), say, and then set Gy(t;m) =1 — Hy(t;m).
Analogous modifications apply for the corrected jackknife.

For a numerical illustration of this procedure we use the following sample
of n = 25 paired data values from Davison and Hinkley (1988):

X 1546 505 280 410 1450 517 738 2225 1660 505 680 145 224
Y 155 68 28 25 190 82 92 196 164 68 82 36 195

X 733 1957 287 473 473 1260 1958 4375 1499 245 828 6361

Y 92 185 61 62 71 207 185 475 155 29 96 699
The problem we consider is that of approximating the quantiles of the distri-
bution of the Studentized ratio of means § = X /Y. In this case,

= {r( -H&y X, - (X/T)Y)T Y, i=1,..,n
and 62 = n‘IZ" dX; - (X/Y)Y)2Y 2
Table 2 summarizes the results for the case r = 15. The values given are
the means and mean squared errors of 100 independent approximations to

TABLE 2
Means and mean squared errors of approximations to corrected jackknife quantile estimators for a
Studentized ratio. The case n = 0 corresponds to approximation based on simple random sam-
pling, whereas n = z, = ®~Y(a) corresponds to importance resampling

n=0 n==z2,

« Exact* #,_ mean 100 X mse mean 100 X mse
0.005 -2.26 —-2.20 10.8 -2.14 2.51
0.01 —-2.02 -2.01 6.67 -1.90 3.50
0.025 -1.68 —-1.70 2.62 -1.60 3.35
0.05 —1.42 -1.41 1.52 -1.39 3.94
0.1 -1.14 -1.13 0.878 -1.14 1.73
0.9 2.28 2.30 11.6 2.31 274

“ 095 3.10 3.09 15.1 3.10 3.89
0.975 3.77 3.73 20.4 3.76 4.86
0.99 4.43 4.45 28.7 4.46 4.91
0.995 4.85 4.81 33.4 4.85 4.83

*Based on 10° simulated values of T'*.
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“exact” corrected jackknife quantiles obtained using simple random sampling
and importance resampling. Rows correspond to different values of a, with
a < 1/2 indicating the left tail and « > 1/2 the right tail. The performance of
the ordinary approximation to the jackknife estimate, based on simple random
sampling, is described in the column headed n = 0. The efficient jackknife
method is depicted in the column headed n = z,. Each approximation is based
on B = 100 resamples. The “exact” values were obtained by simulating 7T'*
10° times. The table indicates that in this example, importance resampling
greatly increases the efficiency of the approximations to quantiles in the right
tail of the distribution where the approximations based on simple random
sampling are highly inaccurate. In the left tail, importance resampling is more
efficient for small values of « and is slightly less efficient nearer the centre of
the distribution, although the approximants are more accurate than their right
tail counterparts.

Acknowledgments. We are grateful to two referees for their helpful
comments.
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