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THE LIMITING DISTRIBUTION OF THE
AUTOCORRELATION COEFFICIENT UNDER A UNIT ROOT

By KariM M. ABADIR

American University in Cairo

The limiting distribution of the normalized autocorrelation coefficient
in the case of a unit root is given in a closed form. It is found that high
order transcendental functions such as the parabolic cylinder functions are
indispensable to express this distribution, thus departing from the simple
standard normal distribution that arises in the case of a stable root. Using
the formulae derived in this paper, some numerical results available from
previous studies are then extended and refined. Finally, the formulae are
manipulated analytically to explain the unusual shape of the distribution.

1. Introduction. Consider the time series {y,} generated by the process

(1.1) Ye=ay,_ 1 T &,

where &, ~ NID(0, 02), y, = ¢ (constant), and « is the unknown root. The
least squares estimator of « is

(1.2) &=Y 51 /ny_l,
t t

where X, refers to the sum from ¢ = 1 to T' (sample size). White (1958, 1959)
considered deriving density functions for the normalized & when a € R and
T — . He derived closed forms for the densities when |a| # 1, but was unable
to do so for |a| = 1. Instead, he presented a limiting variate expressed in terms
of a Wiener process. His result is (after a minor correction)

(1.8) U= (a-1)T/V2 —»,(W(1)® - 1)[\/§[01W(t)2dt]_1, a=1,

where —, refers to convergence in distribution, and W(¢) is the standard
Wiener process on the interval [0, 1]. For a generalization of this result to
multivariate series, see Phillips and Durlauf (1986).

Later, Rao (1978) derived an integral which lends itself to numerical
calculations to give the limiting density function of U without recourse to
generating W(¢). However, his formula was quite complex, thus restraining its
practicality. Also, Dickey and Fuller (1979) used simulations to derive empiri-
cal densities for U; and Evans and:Savin (1981) used numerical inversion
techniques to obtain the exact densities associated with U. In a related
development, Sargan and Bhargava (1983) used contour integration to get a
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AUTOCORRELATION COEFFICIENT LIMITING DISTRIBUTION 1059

simplified integral expression for the distribution of the Durbin-Watson type
of statistics, which are close approximations for —UY8 /T.

However, no closed form for the limiting density functions of U has been
given so far. It is, therefore, the aim of this paper to do so.

2. The densities. Let

2.1 Z @ 1 T R lal =1
( . ) - (a ‘/5 - gs al =41,
which has a nondegenerate limiting distribution [White (1958)] and where

V2 (a 2
R = To? (; - 1) Xt:y?_p S = W;yf—r

_The joint limiting characteristic function of R and S is

. ~1/2
e—iv/\/2—|:COS(2\/i—u_) - vV i sin(&/if)l ,

where v corresponds to R and u to S [e.g., Evans and Savin (1981), page 758,
or White (1958), pages 1192-1193]. Then, a theorem by Gurland [(1948), pages
229-230] gives the cumulative distribution function (cdf) of Z as

F(z) % ~ L tim (/__: + fw)e—i"/ﬁ

271 e—0 €
-1/2
1 dv
X |cos(2Viu ) — vv ™ sin(2viu )l —

(2.2) L

g gem ([ e

. ~1/2
/ d
cos(2V — vz ) — _u;z sin(2V — ivz )l Tv

X

When z < 0, a change of variable (new v = old v/ V- 2) in (2.2) leads to

F(z) = 1 + L lim e”[cos(2\/— vx )

2 2’7Tl e—0
-0 12 qu
- V — sin(2V— vx )] -

1
3 + — lim fe [cosh(Zw/lE)

271
v ~172 dy
+ ; Slnh(Z‘/lE)] 7,

(2.3)
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where x = —2V/2, and L is a path of integration made up of two segments:
from —«i to —ei, and from &i to «i (note: ¢ is arbitrary). The integrand has a
simple pole at v = 0 so that, by Cauchy’s integral formula,

dv

(2.4) qu;gséceu[cosh(zﬁ) + \/g sinh(2x/ﬁ)]— : —=1

where C is any closed curve encircling no singularity other than v = 0, in the
positive (counterclockwise) direction. Suppose that this curve C is a circle of
radius &, then we can rewrite (2.3) as

-1/2 dU

(25) F(z) = %fpe"[cosh(m/ﬁ) + \/g sinh(Z\/E)] -

where the new path of integration P is obtained by adding that half of the
circle C for which Re(v) > 0 to the original path L. Since

cosh(2vvx ) + ‘/g sinh(2Vvx ) = [cosh(2Vux )] |1 + \/g tanh(2\/1E)]

- 16vx )
(27 + 1)%x?

0

Il

Jj=0

X

1+ 160 ¥ [16vx + (2) + 1)272]_1],
j=0

[Spiegel (1981), pages 175, 267] then x > 0 implies that there are no singulari-
ties for the integrand when Re(v) > 0. We are now in a position to use the
Laplace inversion formula:

~1/2
F(z) =./—1{[cosh(2\/E) + \/g sinh(ZM)] /v}
~1/2
= @/_1{[62W+€'2M+ \/g(ezﬂ—e‘%/ﬁ)] /v}

j—;/z)/_l{e‘Zw“”_x (o - V%) }

(2.6) = x1/4\/§§( j v (\/17 N ‘/;)j+1/2

1
wherej=0,1,...,ooandw=2j+5

s e (N )

J

where [ =0,1,..., /.
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The last two steps are allowed because of the linearity property of the .2~ { }

operator. The probability density function (pdf) can be obtained by differenti-
ating the above expression with respect to z:

d
f(z) = — F(2)

e i A
- e~ 2wyox 1/2+1/4
(2.7) { o (Vo +vx)" 7 [“’ ZETS }
Vs
X wK(—l - %,(w + l)y) i 1/2K(—l - ;,(w + l)y)],
where

K(v,s) =e*/*D,(s)

2 2
_ g _1.1.8_) L-v)__s2 (l—v.i.s_)
2 ‘[E[IFI( 2727 2 /r( 2 ) r(—u/z)lF1 2 2’2

is a parabolic cylinder function [see Erdélyi (1953), volume 2, pages 117, 122,
123 for D,(s)], ; F|( ) is Kummer’s series [Erdélyi (1953), volume 1, pages 248,
278], and y = V2|x| = 23/4|z| . The last expression of (2.7) is reached with the
help of an inversion formula obtained by applying an asymptotic summation
theorem [derived in Abadir (1991) as a generalization of Erdélyi’s (1953),
volume 3, page 263] to expression 2.5.94 of Oberhettinger and Badii [(1973),
page 259]. One of the referees has kindly suggested the following (less involved
but less general) alternative derivation of the inversion formula:

e—2w\/ﬁ

o (o +Vx)

- e—z(w+1)¢ﬂ}

} _ e(2w+1)x_/—1{u—v/2 ‘/_
u

by a change of variable V& = Vv + vVx, and where both Laplace inverses have
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a unit parameter. Applying the convolution theorem and two inversion formu-

lae [e.g., Oberhettinger and Badii (1973), pages 209, 237, 258] to the right-hand
side of the above equality gives

e(2w+ Dx d

o (Vo + vz ) T(v/2)Vr Yo Vo
( )
—wzx
- Wf w21 4 u) R e i gy
v T 0

by a change of variable

= (“//_2;) e‘"’z"K(—V,(w +1)V2x),

from Erdélyi [(1953), volume 2, page 119],

which is the inversion formula used in (2.7).
As for the cdf of Z, it can be obtained by expanding 1/v in the last
expression of (2.6) before inverting the integrand:

F(2) - \/vz( S ()

. o~ 2wyvx ] —l-k-3/2
X ), £ \/j +1
% { T }

(2.8) where £ = 0,1,...,»
_2f2( 1/2) ""2’2/22( )( 2y)’

><§ykK(—l - ;,(w + l)y).

Both (2.7) and (2.8) converge by Hardy’s theorem. However, when z » —o, it
is computationally more efficient to use the following asymptotic expansion
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of (2.6):
F(z) = 2%* Z( J1/2)§( )( 2)’
—1-1/2 e
“x | =y )/I{Nﬂ)“}
_ %;(J —1.1/2)6_wzy2/2 ;(‘;)(_2)1
(—l - 1/2)

X E—kk————K(k -1, wy)

(2.9) P y

. e
w7y ) R

J

:]

32)K(k— L)
oe

1
XoF| —j, —k; 5;2)K(k -1, wy),

where K(—1,wy) = 2wew2y2/2®(—wy), ®(-) is the standard normal cdf,
K(k — 1, wy) = He,_(wy) are the Hermite (finite) polynomials when % € N,
and ,F,( ) is Gauss’ hypergeometric function [a finite series of 1 + min(j, k)
terms on the last line of (2.9)]. The Laplace inverse on the second line of (2.9)
is in Oberhettinger and Badii [(1973), page 259], and the transform of Gauss’
series on the last line is given in Erdélyi [(1953), volume 1, page 64].

Most asymptotic expansions are nonconvergent, with the magnitude of
successive terms tracking a J curve of initial decline followed by a steep rise.
The sum in % of (2.9) fits this descrlptlon with the length of the initial decline
phase varying positively with y. It should be truncated while still at the initial
phase, and the leading term of the remainder will indicate the order of the
approximation. In practice, a precision of up to n decimal places (dp) would
require the first term of the remainder to be zero to n dp. For a general book
on asymptotic expansions, see Erdélyi (1956).
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When z > 0, similarly to (2.4),
~12 dy

(2.4) ziﬂ%e_”[cosh(w— vx ) — V —_13; sinh(2v — vx )] e 1

by Cauchy’s integral formula. Using the same definitions (for x, y, L, P, etc.)
as before, a change of variable (new v = old v times i/V2) and (2.4') can be
used to rewrite (2.2) as

11 D TV dy
F(z) =5~ gslim /e [cos(zﬁZ) - \/;— sm(21/l7§)] -
11 [ T dv
= — — ——lim [ e7¥|cosh(2V~ vx ) — {/ — sinh(2V - vx) —
2 2mie-0/L —-x
(2.10) since x < 0
1 v 12 dy
=1- -/ e ®lcosh(2V~vx) — 1/ — sinh(2V - vx) —
27i/p - v
from (2.4')

-1/2 dv

=1-Re ziwij;)e‘”[cosh(w— vx ) — ]/ _:v; sinh(2v - vx )] -

For the last step, see for example, Kendall and Stuart [(1977), volume 1, pages
97-99, especially (4.14)-(4.15)]. The integral is real by definition of a cdf, but
the expansions used below necessitate such a step. Expanding (2.10) along the
lines described in (2.6) and (2.8), then effecting a change of variable (new
v = —old v),

F(z) =1+ Re — W Z( Jl/z)il‘,({)(ﬂ)l

-1-1/2
x fr— o i
P

—X v

=1+Re ——— m/__ Z( Jl/z);(g)(ﬂ)l

T ]k—l—1/2 dv

x ¥ [e-vzomly - [ 2 kad
L), [ = "

=1+Rem/___2( jl/z)z( )( 2)!

k—1-1/2 d
XZ[ eV~ 2wi/—vx —vx[l_l/_ ] v
I X

(2.11)
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where @ is the reflection of path P across the imaginary axis for v, keeping in
mind not to cross the branch line (x, 0). Note that the expansions have created
two branch points: one at v = 0 and the other at v = x < 0. The real part of
the integral around v = 0, with —7 < argv < 7, is zero. So,

F(z) =1+ Re J—Z( jl/z)Z( )( 2)’

k—1— 1/2dv
XZ[ eV~ 2wi/—vx vx[l_ll_x]

and with the two branch points to the left of the path of integration,

F(z) = 1+Rei\/zx2(j _11/2)2( )( 2)’
b )

1 1/2 2
—1-Re le ?( F ) v/ Z( )( 2iy)’
(2.12) x Z(iy)"’K(k -1- l,i(w + l)y)
- 2

S

J
T(k—1+1/2)
X 7
k (-v)

[K(l —k- %,(w + 1)y)

1
+Re(—1)k'l_1/2K(l —k- g, —(w+ l)y)],
where the last formula follows from

e 2T (v + 1)

K(v,s) = [i7"K(-v — 1, —is) + i*K(—v — 1,is)]

V2
[e.g., Erdélyi (1953), volume 2, page 117]. The asymptotic expansion
v 1-v» 2
K(v,¢) = ¢, F, —é_"_é_; 52 + sgn(max(0, —¢))
(2.13)
V2 vl v 1+v 2
Ty (7 e Rl g E )
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where £ € R and

2Fo(B,v;0) = [T(B)T(y)] Z (B +j)T(y +J)-—

Jj=0

[e.g., Erdélyi (1953), volume 2, pages 122-123 and volume 1, page 182] allows
us to write

1
Re(—1)”“‘1/2K(z —k— o, -(w+ l)y)

= (DT = (w ]
k-1 1 k-1 3 -2 )

X Fo| = + =, S
270 2 4 2 4 (w+1)2y2

=K(l—k—%,(w+ 1)y),

which reduces (2.12) to
2 /2 j — . j
F(Z) — 1_ = - Z J :]'/2)e—(21+1)y22(J)(2y)l
y J Y
I'(k—-1+1/2)
Xy Z
k (-y)
From the first expression of (2.11), derivations similar to the ones above

yield
d
f(z) = - F(z)

(2.14)

K(l —k- %,(w + l)y).

= Re

,.,‘/Tx Z( j1/2)2( ‘)(_z)lfe—v—Zw,/'—W

=] e

(2.15) =Rem/_—xZ( .1/2)2( )( 2)f v—2u0i/ 0%

L I SR
[

m/_—xZ( -1/2); )( z)fvzwl_vx

(O I SR G N

= Re
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o VB (= 1/2) (), o
"R"’\F-Tx§( j )?(l)( 2)
—1-1/2

Xj'l{e“zw"“:ﬁ[l -1 _:v; ]

X

o= D= ]| )
I
wk (=1 - 2 i(w +1

( g i )y)
+(l + %)51{(—1 - g,i(w + 1)y)]}
= ;% ? (j —j1/2)e—(2j+1)y2§(g)(zy)lr(% - l)

wK(l - %,(w + 1)y) + %K(l + %,(w + l)yﬂ

X

X

A (i 1/2) ey ()2
( j )e( )Zl:(l)l“(l+1/2)

with the last step following from Erdélyi [(1953), volume 1, page 3]. If y were
to be replaced by V2x on the last formula of (2.7) and the real part of that
expression taken, then we would get the last three formulae of (2.15). In other
words, for z # 0,

TR

2
f(2) = —=Re ;

X

wK(—l - %,(w + 1)@)

1+1/2 3 ‘
- K(—l— g (W 1)@5)}}.
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TABLE 1
Quantiles of the distribution of Z

Quantiles (%) 1 2.5 5 10 50 90 95 975 99

z —9.684 -7.382 -5.685 -4.040 -0.603 0.667 0.907 1.137 1.437

3. Computations. Formulae (2.7)-(2.9), (2.14) and (2.15) formed the
basis of a numerical comparison with known results (tables and graphs) such
as in Evans and Savin (1981). They were found to be highly accurate and easily
programmable. Moreover, the sums given in these formulae converge very
rapidly, especially for j (hence I as well). The exception is for small positive
values of z when a high accuracy is required. For a precision of five digits and
0 <z < 0.5, (2.15) is nonconvergent in j, and (2.14) is nonconvergent in both
J and k. For z in this range, some accuracy had to be sacrificed by early
truncation of the series.

Table 1 is obtained by a selective grid search of z up to 3 dp, so that the
corresponding cdf is nearest to the required quantile. The table reflects a
strong negative skew in the distribution of Z, a fact pointed out by Dickey and
Fuller (1979) and Evans and Savin (1981). The one percent lower limit of the
distribution is —9.684, which compares to —2.326 for the normal distribution.
In fact, numerical efficiency aside, a major advantage of the formulae derived
above is that they lend themselves to analytic comparisons. For example, since

(3.1) K(v,§) =0(¢"), (-

for ¢ € R (see (2.13) or Erdélyi [(1953), volume 2, page 122]), then (2.7) implies
that

(3.2) f(z)=0

21/4ez/‘/8_
—_—, zZ > —
V—3mz

and (2.15) implies

911/4,~2/8
(33) f(z) = OI:—@——?—], Z2 = ®

which reflects a much faster rate of decay for the upper tail because of the
argument of the exponent. Moreover, comparing (3.2) to the standard normal
pdf,

e—s2/2

(3:4) ¢(s) = 5=,

one can understand why the lower tail of Z takes longer to die out than in the
case of the standard normal variate.
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In addition to (3.2) and (3.3), the following can be derived from (2.8):

-
Y e 3 3
= Z e~y /8 k b - — —
F(z) 0-21/We Zy K( k 2,2y)]
[ 4 [2 k
(3.5) O3, BE Z( )}
o 27/4e"‘/‘/_
= ——— — —o00
V—38mz | 2
and from (2.14),
25/4e—z‘/8_
(3.6) 1-F(z)=0 3 S
Tz

Formulae (3.5) and (8.6) can be inverted to give approximate values of z for
sizes 8 or 1 — 5, where 6 > 0 and small.

4. Conclusion. Unlike the formula in Rao (1978), the ones given here did
not require lengthy numerical integrations. Moreover, they are more parsimo-
nious than Rao’s [(1978), page 186] expression which is 13 lines long. Also, the
formulae derived here are more efficient than 51mu1at10n-based formulae
[White (1958), Dickey and Fuller (1979)]. :

It is important to remember that functions made of sums of transcendental
functions do not have unique forms. For example, (2.6) could have been
expanded into

F(z) = rxmz( 1/2);({)(_2@,

J
S T

(4.1)

—2\/-z:( et (4] -y

1/2) k (_ — _E )
X K|-l-k ,wy |,
zk:( k Y 2 Y

which is equivalent to (2.8), though different in form.

Two extensions apply to the results derived here. First, the distribution
functions obtained above are exactly the same for a wide range of more general
distributions for ¢,. For a discussion, see Rao [(1978), page 190] or Phillips
(1987). Second, these functions are also the same when, instead of (1.1), we
have a vector autoregressive process (VAR) with one unit characteristic root
(eigenvalue), and the remaining characteristic roots are stable [see Fountis and
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Dickey (1989)]. In this case, & /a in (2.1) is replaced by the largest modulus of
the roots of the characteristic equation arising from the estimated VAR.

Finally, due to the definition of Z employed in (2.1), the results derived in
this paper are valid for |a| = 1, thus extending (1.3) to a« = —1 as well:

& . T w(1)*> -1
( )\/'2' ¢ VB iw(t)dt’

and the derived functions are the densities of the right-hand side variate which
has a wider applicability than just unit root theory.

(4.2) la| =1

a
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