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ASYMPTOTIC OPTIMALITY OF THE FAST RANDOMIZED
VERSIONS OF GCV AND C; IN RIDGE REGRESSION
AND REGULARIZATION

By DipiEr A. GIRARD
CNRS and Université Joseph Fourier

Ridge regression is a well-known technique to estimate the coefficients
.of a linear model. The method of regularization is a similar approach
commonly used to solve underdetermined linear equations with discrete
noisy data. When applying such a technique, the choice of the smoothing
(or regularization) parameter h is crucial. Generalized cross-validation
(GCV) and Mallows’ C; are two popular methods for estimating a good
value for A, from the data. Their asymptotic properties, such as consistency
and asymptotic optimality, have been largely studied [Craven and Wahba
(1979); Golub, Heath and Wahba (1979); Speckman (1985)]. Very interest-
ing convergence results for the actual (random) parameter given by GCV
and C; have been shown by Li (1985, 1986). Recently, Girard (1987, 1989)
has proposed fast randomized versions of GCV and Cy. The purpose of this
paper is to show that the above convergence results also hold for these new
methods.

1. Introduction. Suppose that we observe an rn-dimensional vector y, of
data satisfying the regression model

y,=f,+e,, where f,=X,g,, e,~A#(0,0°),

where X, is a known n X p, (design) matrix, f, and g, are unknown
deterministic vectors and e, ~ .#1(0, 2I) means that e, is a random vector of
independent normal variables with mean 0 and common variance o [note
that, in this paper, we take essentially the same notations as in Li (1986) since
most of his results will be used in the following]. In addition we suppose that
we observe (or generate) a noise vector w,, independent or not of e,, with the
same probability law as e,,, except for the factor o

w, ~4(0,1).

In the ridge regression approach (or standard regularized least squares ap-
proach) [e.g., Golub, Heath and Wahba (1979), Li (1985, 1986)], the estimates
of g, and f, have the following form:

(1.1) g.(h) = (XLX, +hI) Xy, f£.(h)=M,(h)y,,
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RANDOMIZED VERSIONS OF GCV AND C,, 1951

where h is the smoothing (or ridge) parameter to be chosen and
(1.2) M,(h) =X, (X.X, +hI)'X}

is the smoothing (or influence) matrix corresponding to k. It is easy to show
that any spline smoothing problem can take the form of a ridge regression
problem after a suitable orthogonal transformation [e.g., Demmler and
Reinsch (1975), Speckman (1985), Li (1985)].

Most of the procedures for choosing % consist of minimizing with respect to
h a certain function of the residual n~!|ly, — £,(A)I*> and of the trace tr M, (k).
An exception is the residual method which is known to give typical over-
smoothing [Craven and Wahba (1979), Hall and Titterington (1987)]. As in Li
(1986), we consider two of the most popular selection methods. Mallows’ C;,
[Mallows (1973)] consists of choosing 2 by minimizing

(1.3) CL,(h) = n~Y(I = M (h))y,|* + 202n " tr M(R).

If o2 is not known, a popular method is generalized cross-validation or GCV
[Craven and Wahba (1979)] which selects A by minimizing

n (I = Mu(h))y.|*

1.4) GCV,(h) = 5.
( [n=ttr(I — M, (h))]

In most of the typical applications, any smoothing matrix of the family
{M,(h): h > 0} is neither explicitly known nor can it be easily computed and
stored: Instead, any required estimate M,(h)y, is generally computed by
solving a linear system of the form (1.1) by a direct or an iterative method. In
practice, there exist many important applications where computation for given
h of such an estimate, and of the associated residual, costs much less than
order n® (for instance, one-dimensional spline smoothing problem, multidi-
mensional iterative smoothing techniques, or, more generally, least-squares
problems with sparse, banded or well-structured matrices). In some special
cases, efficient algorithms have been established for the computation of the
GCV function; see Elden (1984) for the banded matrix case, Hutchinson and
de Hoog (1985) for the one-dimensional spline smoothing problem [earlier,
Utreras (1980) has provided an approximate algorithm for the equally spaced
data case], Girard (1988) for the one-dimensional partial spline (e.g., disconti-
nuities-preserving smoothing) problem, Girard (1987a) for well-structured
tomographical reconstruction problems. Unfortunately, for many other appli-
cations the evaluation of the denominator of the GCV function (the trace-term)
generally costs much more than the computation of the residual term, so the
use of exact GCV requires an enormous computational task for large data set.

The Monte Carlo cross-validation procedure proposed by Girard (1987b,
1989) is a general approximate version of GCV which eliminates this draw-
back. It consists of generating a few independent pseudorandom vectors
w!,...,w™ each following .#1(0, I), and replacing n~'tr M,(h) in (1.4) by

n’* n
k

the average of the m estimates (w* M (h)w’)/(wk, wk), k=1,...,m. In
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Girard (1987b, 1989), it is shown, both theoretically and practically, that using
a few of such estimates (say m = 10 or even m = 1 if n is large enough) is
sufficient to obtain an approximation of the GCV function with very good
relative accuracy, in typical spline smoothing problems; see Section 3.1.1 and
also Girard and Laurent (1989) for some other applications. Here we consider
this method without averaging (i.e., m = 1) not as an approximation but in its
own right, and we call it randomized GCV (or RGCV) since the name Monte
Carlo generally refers to iterated processes intended to approximate determin-
istic quantities. So we define RC; as the procedure which selects & by
minimizing (see Remark 2.1 for a variant)

RCL,(h) = n"Y|(I = M(R)y,|" + 20%n K w,, M,(h)w,).
And we define RGCV as the procedure which selects A by minimizing

n (I - My(h))y, |*
[n~Xw,, (I - M,(R))w,)]*

RGCV,(h) =

The main goal of this paper is to show that RGCV and RC;, the random-
ized version of GCV and C;, will always possess the same asymptotic validity
as the classical exact GCV and C;, respectively [at least for the convergence
properties established in Li (1986)].

As in Li (1986), let A, and A, denote the h selected by C; and GCV,
respectively. Let also A, and A denote the A selected by their randomized
versions, RC; and RGCV, respectively. Note that all these parameters are
random variables, as functions of y,; but the latters are also function of w,.
Define L, (k) as the true loss while estimating f, by f,(A):

L(k) =n1£, - £,(h)|".

Li (1986) has shown that under weak assumptions, C; and GCV are asymptot-
ically optimal (a.0.) in the sense that as n — «, the inefficiency tends to 1, that
is,

L,(h)

m - 1, in probability,
for h=h M> ﬁG. These results are much stronger than the previous ones of
Craven and Wahba where only the deterministic minimizer of E GCV, (ex-
pected function which actually is not observable) was shown to possess an
expectation inefficiency (i.e., with EL, in place L,) that tends to 1. Note that
this expectation a.o. can be immediately extended to any criteria whose
expectation can be written as the sum of EL, (or EGCV,) and a term
independent of % (e.g., this is the case for RCL,,).

In this paper we shall show the a.o. of RC;, (Section 2) and RGCV (Section
3) in the same sense and under the same assumptions as in Li (1986).
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For the sake of completeness, let us recall these required assumptions. The
only condition needed for C; or RC; to be a.o. is

(A1) linf nEL, (h) — =,

that is, the rate of convergence of the minimal expected error inf, . , EL,(h) is
slower than 1/n. Li (1986) points out that (A.1) implies more or less that
p, — © and that, without (A.1), it seems that no selection procedure can be
a.0. For many problems, this condition is equivalent to the condition that £, is
not infinitely “smooth”. For example, in typical polynomial spline smoothing
problems, inf}, . , EL,(h) tends to 0 at the rate n~'*® for some small constant
& > 0 except if f, happens to be the discretization of a low order polynomial
[see, e.g., Wahba (1985)].

In addition to (A.1), a second condition is required for the a.o. of GCV or
RGCV. This condition says, roughly speaking, that X, X! must be ill-condi-
tioned for large n. Specifically, the eigenvalues A; , 2215, > -+ =4, , >0
of X! X, must satisfy [as in Li (1986)] the following condition: ?

For any m such that m /n—0, we have

(A2) ( /( 5 A%,n) Do
i=m+1

where we write A; , =0 for i = p, + 1,...,n. Note that (A.2) is satisfied in
typical spline smoothing problems [see Li (1986)].

Finally a third condition [which is a natural condition to be able to prove
consistency of any f (h )] is also required: We must assume that there exists a
deterministic sequence h such that f .(h,) is consistent, in the sense

n
Z /\i,n

i=m+1

(A.3) EL (h,) — 0.

2. Optimality of randomized Mallows’ C;. For the sake of complete-
ness, we will also recall the main results of Li (1986).

THEOREM 2.1 [Li (1986)]. Under (A.1), C,, is a.o.

The main steps of the proof of Li can be outlined as follows. As it is classical,
it is enough to prove that CL (h), possibly corrected by a term ¢, independent
of h, approximates the true loss L, (k) with a relative accuracy which tends to
zero uniformly in A, that is,

(2.1) CL,(h) —c, =L,(h)(1 +¢,(k)), where suple,(h)|=o0p(1),
h=0

where 0p(1) denotes a random quantity which tends to 0 in probability as
n — . (Throughout this paper, all the convergences of random quantities will
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be in probability.) Now, since we can write
CL,(k) —n"Ye,|* — L,(h)
(2.2) =2n"Ye,,(I - M,(h))f,)
+2n7 (0 tr M, (h) —(e,, M,(h)e,)),

the above uniform relative closeness for large n of CL,(h) — n‘IIIenII2 and
L,(h) is easily deduced from the following results that we recall from Li
(1986).

ProposITION 2.1 [Li (1986)]. Under (A.1), we have the following conver-
gences in probability as n — «:

|n~Ne,, (I = My(h))f,)|

2.3 sup -0,
(2:3) pi EL,(h)
lo2nttr M, (k) — n"Ye,, M (h)e,)|
2.4
(24) pup EL,(h) ”0
(2.5) sup M— -1/-0
' h>0 ELn(h‘) )

Let us turn now to RC;. We can write
RCL,(h) = CL,(k) + 20%(n"Yw,, M, (k)w,) — n~' tr M,(h)).

So, to show the uniform relative closeness of RCL (k) — n_lllenll2 and L,(h)
under (A.1), it is enough to show that o2n~w,, M, (h)w,) — o?n~ tr M, (h)
is also negligible, compared to EL,(h), uniformly over A > 0. But this is
simply the second convergence result of Proposition 2.1 applied to the problem
of estimating f, from y;* = f, + ow, in place of y, = f, + e, (in other words,
Proposition 2.1 is also true with ow, in place of e,). Thus we also have:

THEOREM 2.2. Under (A.1), RC; is a.o.

REMARK 2.1. In Girard (1989), it is shown that, if we look for a better finite
sample estimate of CL,(4), then it is better to use the normalized estimate
{w,, M, (h)w,)/{w,,w,) in place of n~{w,, M,(h)w,) in RCL,. Theorem
2.2 also holds for this normalized RC; . This can be easily proved by splitting
(w,, M,(h)w,)/{w,,w,) —n~1tr M (h) into two components as in the proof
of Proposition 3.2.

3. Optimality of randomized GCV. The extension of the results of Li
for GCV will not be so easy as for C; [althcugh it will be more easy if we make
a further assumption, see (A.4) defined below]. We first recall the main results
of Li (1986).
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THEOREM 3.1 [Li (1986)]. Under (A.1), (A.2) and (A.3), GCV is a.o.
For the proof of this theorem, Li considers the following simplified version
of the Stein estimate of f,,, defined by
) tr(I — M,(h))
I(7 = M, (h))y, |

[see Li and Hwang (1984), Li (1985), for discussions on some advantages of
f.(h) over f,(h) related to certain robustness concepts]. And Li makes use of
an interesting connection between GCV and the associated Stein’s unbiased
risk estimate (SURE)

(3.1) f(h)=y,- o s(I — M,(h))y,

[r (1 - M (R))]”
n (I = M(R))y, |*

initially proposed as an estimate of the risk EL,, where

(3.2) SURE,(h) = 0% — 0o

E.(h) = n1£, — £,

is the true loss while estimating f, by f,(%). Indeed, it is clear, by comparing
(3.2) and (1.4), that A also minimizes SURE (k) over A > 0.
A first key result used in the proof of Li (1986) is the following:

THEOREM 3.2 [consistency of GCV, Li (1985)]. Under (A.3) and the condi-
tion on the eigenvalues (A.2), f (hy), where hg is the GCV choice, is a
consistent estimate of f,, that is,

L,(khg)~- 0.

ReMArk 3.1. To show this, Li first established the interesting fact that,
even without the assumptions (A.1), (A.2) or (A.3), SURE, (k) is always a
consistent estimate of L (k) uniformly over both f, € R® and h > 0 [Li
(1985), Lemma 4.2]. Next, since (A.3) implies L,(k,) — 0 [Li and Hwang
(1984)], one can conclude [as in the proof of Theorem 4.1 of Li (1985)]
that, with only (A.3), f ,,(ﬁ(;) selected by GCV is always consistent, that is,
L,(hg) — 0. Note that, from the consistency of SURE (k), this also implies
that with only (A.3) we have SURE () — 0 or equivalently

(3.3) GCV,(hg) - o2

ReEMARK 3.2. These results have actually been proved under a weaker
assumption [condition (5.6) of Li (1985)] on the eigenvalues of X! X, . The fact
that (5.6) of Li (1985) is weaker than (A.2), has been used by Li (1986) without
giving its proof. However, a rigorous proof can be obtained from this author [Li
(1990)]. The interested reader could check that this weaker assumption is also
sufficient for the consistency of RGCV.
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A second key result is Proposition 3.1 of Li (1986), which states that for
some appropriate sequences A [in particular, under (A.1) and (A.2), the
consistency of A can be seen to be sufficient, cf. the proof of Theorem 3.4] we
have a certain relative closeness of SURE (k) and L (A).

ProposITION 3.1 [Li (1986)]. Under (A.1), for any h random or not, such
that

(1= M ()| - o2

and .
(n~"tr M, (B))
A hd Py

n=ltr M2(h)

we have
|SURE,(h) — L,(h) — n"le,|* + o2|
rS -
L,(h)

and

L (h)/L(h) - 1.

We will see [cf. the proof of the a.o. of RGCV in Theorem 3.4] that these are
the two results of Li that we have to extend to our randomized GCV and to the
corresponding randomized version of Stein’s unbiased risk estimate, RSURE,,
that we define by

(7w, (1= M(R))w,))’

_ 2
n (I = M,(h))y, |
or its normalized version NRSURE , defined by

RSURE, (k) = o2 —

(I-M,(h)w,)\* 2
NRSURE (k) = o2 — o {w,, ( ~ ”2 )¥s) ) /n‘lll(I—Mn(h))anI :

Note that these two criteria have the same minimizer A g as RGCV,.
Before proceeding with our proof, we state some other useful results that
are direct extensions of Lemma 5.1 and Lemma 5.2 of Li (1985).

_ LEmMA 3.1.  For any sequence h, random or not, such that GCVn(fL) - o2
£,(h) is consistent if and only if n=* tr M, (h) — 0.

Proor. First, the consistency of f,(A) implies n~ (I — M, (A)y, |I*> - o2
[because L,(h)=n"'(I - M h)y, —e,l> and n"Ye,l?> > ¢2] and thus
[n=ttr(I - M (A)P = n= (I - Mn(ﬁ))ynll_z/gCVn(ﬁ) — 1. Conversely, since
GCVn(ﬁ) — o? implies the consistency of £ (4) [by the uniform closeness of
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SURE (k) and L ,(h), cf. Remark 3.1], then, by writing from (3.1),
~ A 2
n Y E.(h) — £.(h) ]

o? GOV (k) [ . 2
- e ) GCV,(h)[n~ tr(I - M,(R))]%,

we see that n= 1 tr M n(ﬁ) — 0 implies the consistency of f'n(ﬁ). ]

Lemma 3.2. For any sequence h, random or not, such that GCV,(h) - o2,
we have

n~ttr(I - Mn(l’;,))2
z 1
[n=ttr(1 - M,(h))]
Under (A.2), from this it follows that n~' tr M, (h) — 0.

Proor. Li has stated the first part of this lemma [Li (1985), Lemma 5.2] in
the particular case where A = ﬁG. But it suffices to note that the only
condition on fLG used in his proof [Li (1985), pages 1374-1376] is that
SURE,(h;) = 0, or equivalently, GCV,(hg) - o2. The second statement of
this lemma is proved in Li [(1985), page 1365], under a weaker assumption on
the eigenvalues than (A.2) (see Remark 3.2). O

3.1. Consistency of RGCV. In this section we will show, under the only
conditions (A.2) and (A.3), the consistency of the ridge-regression estimate
£ (A rg) selected by RGCV. From Lemmas 3.1 and 3.2, we see that it suffices
to prove that GCVn(ii re) = o2 This will be proved here by recalling that
GCV,(hg) - o? [cf. (3.3) in Remark 3.1], and by showing a certain uniform
closeness between GCV, (k) and RGCV, (k) over h > 0.

We will first consider (Section 3.1.1) an additional assumption with which
the proof of the consistency of RGCV is easy. Next we will see (Section 3.1.2)
that this assumption is unnecessary.

3.1.1. With an additional assumption:
Let us define ¢, ,, as in Girard [(1989), Theorem 2.4, in the particular case
D =1, Q = I], with r, = rank(X,),

(n/(n - rn))l/z, ifr,<n,
Con = n 1/2 n
’ (n_IZ)«;ﬁ) (n_IZ)\;}L), if r,=n.
i=1 i=1

It was shown in Girard [(1989), Corollary 2.5] that the relative precision
(i.e., relative standard deviation) of (w,,(I — M,(h))w, ), as an approximation
of tr(I — M,(h)), is a nonincreasing function of A, uniformly bounded by
V2n2% .
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It is thus natural to consider the following condition on the asymptotic
behavior of the eigenvalues of X! X, :

(A4) n~1%c, , = 0.

Then, assumption (A.4) guarantees that the uniform relative closeness of
(w,,(I - M,(h)w,) and tr(I — M,(h)) [and equivalently, of RGCV, */%(h)
and ch 1/%(h)] will hold and thus GOV V2(h pg)/sup, . o GOV V2(h) — 1.
Note that in typical spline smoothing problems and for some integral equa-
tions, ¢, , can be easily shown to tend to a constant [cf. Girard (1987b, 1989)],
so (A.4) is satisfied.

3.1.2. Without (A.4):

PRrOPOSITION 3.2. We always have the following convergence:

sup|GCV;/2(h) — RGCV;V?(h)| - 0.
h>0

Proor. We have to show that for any §,, 8, > 0, there exists an integer N
such that for n > N,

|n (I - M,(h)) = n~w,, (I - M,(h))w,)]
(3.4) P{ sup 1721 = M, k), |

A sufficient condition for (3.4) is that there exists a, > 0 such that

> 81} < 8,.

I(1 = M, (h))y, | 8
(3.5) P{}:)f‘; Qi) o 552,
plew |n=1tr(I - M,(h)) — n~Xw,, (I - M,(h))w,)| s
ie h20 n=1QY(h) =
(3.6) 5,
<=,
2

where Q,(h) = E(I(I — M,(h)) ynllz). Now, Li has shown [cf. proof of (7.2.2),
page 1370, in the proof of Lemma 4.2 of Li (1985)] that, with L denoting any
number greater than 0, we have

I(Z — M, (R))y. |
P{'»o Q)

where K and C are constants independent of n and of L. Thus, setting
L = 8Cs;, (3.5) holds for large n as soon as @, — 0. Turning to (3.6), one

<Ka,L'? +C(1-2a2) "L,
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can check that in the proof of (7.2.4) of Li [(1985), page 1371], it has been also
shown that (3.6) holds for large n provided an — «. Thus, there exists a,
such that (3.5) and (3.6) hold for large n. O

Now, we can write, with 3,(h) = GCV,”"/*(k) — RGCV, /%(h):
0 < GCV,; 2(hg) — GOV, V/?(hpg)
= GCV, /*(hg) — RGCV,; V2(hpg) — 6,(hre)
< GCV, '2(hg) — RGCV, V*(hg) — 8,(hpe)
=8,(hg) —8,(hrg) >0

by Proposition 3.2, and thus we conclude that, as soon as GCV, ' (h) tends to a
constant greater than 0, GCV,(% ;) tends to the same constant.
Thus we have proved:

Tueorem 3.3 (Consistency of RGCV). Under (A.3) and the condition on
the eigenvalues (A.2), ,(h ), where h g is the RGCV choice, is a consistent
estimate of f,, that is,

L,(hgs) — 0.
RemARk 3.3. Note that, since (A.3) is sufficient for GCV, (ﬁ ) > o2 [cf

Remark 3.1], we have also proved that with only (A.3) we have GCV, (ﬁ rg) = 02
or equivalently, the consistency of f,(% p).

3.2. Optimality of RGCV. Since the a.0. of RGCV will be shown using
similar lines of proof as in Li [(1986), Theorem 2], we have to extend Proposi-
tion 3.1 to NRSURE,,. For this it suffices to establish:

ProposITION 3.3. Under (A.1), for any h random or not, such that

(1~ M)y, a2,
we have
NRSURE,(h) — SURE (ﬁ)
L,(k)

Proor. By (2.5) of Proposition 2.1, it is enough to show that

(w2, (1= 2,y w0 = (n~ (2 = M (R))|
n (1 - M(B))y, | EL(B)
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Since the eigenvalues of M, (k) are all between 0 and 1, we can write

2
(A

) — (nt (1 - Mn(ﬁ)))zl

(<wn,(I—Mn(ﬁ))wn>

l (w,, M,(h)w,)
<2

5 —n'ltrMn(fz)'
Iw, |

n
<2

”W "2 (In_1<wn’ Mn(i;')wn> - n_ltrMn(ﬁ)|

+

(1 _ Il )n‘ltrMn(ﬁ)}).

n

Thus, since nllw, "2 - 1 and n~ (I — M (A)y,|I> = 2, it is enough to
show that

(1= (hwal/m))n e b (B)|
EL,(h)

and

|n_1<wn’ Mn(i;’)wn> - n_ltrMn(i;’)| o

= 0.
EL, (k)

Now, observing that n'/%(1 — n~!|w,||?) has a bounded variance, we have by
(A1),

[t = (Iwal?/n)] _ 221 = (Iwal/n)]

- d b
(EL,(h))"* ~ infy.o(nEL,(h))"*
and it suffices to use the inequality
tr M, (h) i tr M, (k) 1

n—l

(EL,(h))"* =" (o2n~1 tr M2(R))"” =7

to obtain the first required convergence. The second one results from (2.4) of
Proposition 2.1. O

Now let us recall Lemma 3.1 of Li (1986) which states that the assumption
(A.2) of a large “variability” in the eigenvalues of X, X! is required for the
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desirable behavior of (n~! tr M,(A))?/n~" tr M2(h) when f (%) is a consistent
sequence:

LemMa 3.3 [Li (1986)]. Under (A.1) and (A.2), for any h random or not,
such that
L,(k) -0,
we have
(n~ttr M,(R))’
n~ltr M2(k)

We are now ready to prove the following analog of Theorem 3.1.
THEOREM 3.4. Under (A.1), (A.2) and (A.3), RGCV is a.o.

ProoF. It is immediate to see that for any sequence 4 such that L,(A) - 0,
we have n~ (I — M, (A))y,lI*> > 0% (see proof of Lemma 3.1), and thus by
Lemma 3.3, we can apply the results of both Proposition 3.1 and Proposition
3.3. By combining them, we see that the results of Proposition 3.1 will still
hold with SURE (4) replaced by NRSURE (). In particular, this holds for A
equal to the minimizer of L,(k), say h* [since inf, ., L, (k) < L, (h,) — 0, by
(A.3)], that is,

NRSURE (k%) — n” e, |> + o2 = L (k%) (1 + 0,(1)).
On the other hand, by Theorem 3.3, this also holds for & = 4 g
NRSURE,(hrg) — n7Ye, | + 02 = L,(hre)(1 + 0,(1)).

Now from NRSURE (4 ;) < NRSURE (h*) and L,(h*) < L, (), we ob-
tain L (hzg)/L, (k%) — 1. O

4. Remarks.

REMARK 4.1. The normality assumption for the errors may be unnecessary,
as noted by Speckman (1985) for the classical GCV. In the same way, weaker
(or different) assumptions on the distribution of the simulated vector w,
might then be sufficient. Recently, Hutchinson (1989) has studied this ran-
domized GCV and proposed a variant using a vector u, of independent
binomial variables equal to plus or minus one with probability 1/2, in place of
w,,. This proposal is based on the fact that (1/n)(u,, M, (k) u,) has a smaller
variance than any unbiased estimator of n~!tr M, (h) of the form
(1/nXv,, M (h)v,) with v, a vector of iid variables [Hutchinson (1989)]. Note
that {w,, M,(h)w,)/{w,,w,) (cf. Remark 2.1) is not of this form. However,
it can be shown that the variance of (1/n){u,, M, (h)u,) is bounded by
(n + 2)/n times the variance of (w,, M, (h)w,)/{w,,w,), and that this



1962 D. A. GIRARD

bound becomes sharp for well regular problems (e.g., smoothing splines with
equidistant data). Various numerical experiments in Hutchinson (1989) con-
firm that these two estimators, without averaging, give results (in the mini-
mization of GCV) essentially identical to the exact computation for n as small
as a few hundred. However, concerning asymptotic theory, the possible a.o. of
this variant seems not at all obvious, since a binomial error does not even
satisfy the condition [see (A.2) of Theorem 3.1 in Li (1985)] necessary for a
good behavior of f,(2) and SURE, (h).

REMARK 4.2. The asymptotic optimality results that we have obtained for
the fast randomized versions of GCV (or G,), are very encouraging since they
are exactly of the same type as the known results for the classical versions.
However, we are aware that in practice, these convergence results are not
sufficient to imply that the randomized version of GCV (or C;) and the
classical one will give similar performances with data sets of realistic size. The
rate of convergence toward the optimal parameter is also crucial to quantify
these performances. It would thus be useful to compare these rates for the two
versions of GCV (or C;). Note that such rates have recently been investigated
for standard parameter estimates in the context of kernel regression, see
Hirdle, Hall and Marron (1988).
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