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OPTIMAL WEIGHTS FOR EXPERIMENTAL DESIGNS ON
LINEARLY INDEPENDENT SUPPORT POINTS

By FrIEDRICH PUKELSHEIM AND BEN TORSNEY

Universitdit Augsburg and University of Glasgow

An explicit formula is derived to compute the A-optimal design weights
on linearly independent regression vectors, for the mean parameters in a
linear model with homoscedastic variances. The formula emerges as a
special case of a general result which holds for a wide class of optimality
criteria. There are close links to iterative algorithms for computing optimal
weights.

1. Introduction. In experimental design the main tool for the checking
of optimality of a candidate design are equivalence theorems [see Kiefer (1974)
and Pukelsheim and Titterington (1983)]. Or else we may use algorithms that
find optimal designs by machine computation. However, Torsney (1981) and
Kitsos, Titterington and Torsney (1988), Section 6.1, recently established an
explicit formula for c-optimal designs provided the regression vectors that
support the design are linearly independent. The notion of c-optimality indi-
cates that interest concentrates on the scalar subsystem c’6 of the full mean
parameter vector § € R*. A special case is reported in Karlin and Studden
(1966), page 362, and a closely related formula appears in Studden (1977), page
413.

In the present article we investigate s-dimensional subsystems K'6# and
arbitrary optimality criteria ¢. In general, the ¢-optimal weights for K'6
satisfy a nonlinear fix point equation. For A-optimality an explicit formula
emerges, generalizing the c-optimality formula mentioned above. For D-opti-
mality we obtain a new proof of Atwood’s (1973) result that the optimal
weights are bounded from above by 1/s. Otherwise our result points to an
algorithm that is a particular member of a family introduced by Silvey,
Titterington and Torsney (1978).

Much of the previous work on the subject uses differential calculus. In the
present article we derive our results from an equivalence theorem which is
based on the subdifferential calculus of convex analysis [see Pukelsheim
(1980), Theorem 5]. As a consequence we obtain a complete coverage of the
“boundary problems’’ that arise with the optimal design problem. In particu-
lar, three items deserve special mentioning.

(i) Our optimality criteria ¢ are information functions; that is, they are
nonnegative, homogeneous and concave. They need not be differentiable.
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(ii) Our optimization problem runs over all designs on the given regression
vectors. We do not need to restrict attention to those designs under which the
parameter system K'6 is identifiable (i.e., estimable, testable).

(iii) The optimal support may be a strict subset of the given regression
vectors; that is, some of the weights of the optimal design may vanish. We do
not require the weights to be positive at the point of optimality. This is of
relevance if the number of given regression vectors exceeds the dimensionality
of the parameter system of interest.

The set of competing designs considered in the present article is the set Z of
all designs on the finite regression range 2'= {x,, ..., x;} C R*. Therefore we
omit reference to the set of competing designs and simply speak of ¢-optimal
designs for K'6, where K'6 designates the parameter system of interest. Our
crucial assumption is that the regression vectors x,,:.., x; are linearly inde-
pendent.

2. The model. We consider the classical linear model where for each
regression vector x; € R* "we make real observations Y » for j=1,...,n,
whose expectation depends linearly on x; and on an unknown mean parameter
0 € R,

(1) E[Y,] = «.

The observations Y; ; are taken to be uncorrelated and of equal variance. In the
present article we assume that the regression vectors x,,...,x;, say, are
linearly independent.

If the full mean parameter system 6 € R* is of interest, there have to be at
least [ = k& regression vectors for # to be estimable. More generally, we
consider parameter subsystems K'0 with a coefficient matrix K € R*** that is
of full column rank s. Then the number of regression vectors lies between s
and &,

(2) s<l<k.

The lower bound s is needed so that K'6 is identifiable, and the upper bound
" k is enforced by the assumption of linear independence. Optimal designs may
be supported by as much as s(s + 1)/2 + s(k — s) regression vectors [see
-Fellman (1974), Theorem 4.1.4, or Pukelsheim (1980), Theorem 6]; for s > 1
this number exceeds k. Hence our restriction (2) means that we are investigat-
ing designs with a small support size, only. For practical purposes such
designs are preferable anyway.

The experimental design underlying model (1) is determined by the replica-
tion numbers n,, ..., n;. More generally, we take an experimental design to be
given by the weights w;,

l

1
min w; > 0, Y ow, =1.
i=1 i=1
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The weight w; is the proportion of observations to be made when the regres-
sion vector is x;. For model (1) we have w;, = n,/L!_in;.

There exist many optimality criteria which serve to discriminate between
competing designs [cf. Kiefer (1974)]. Almost all of them depend on the
moment matrix ‘

1
M(w) =), wx;x, =XA,X.

i=1
Here the matrix X € R'** assembles the regression vectors x; according to
X' = (x4,...,x;). Since the [ regression vectors are assumed to be linearly

independent, the matrix X has full row rank /. The matrix A, is defined to be
the diagonal ! X I matrix with the weight vector w = (w;,...,w;) on its
diagonal.

Given an optimality criterion ¢, a closed-form expression for the ¢-optimal
weights would be extremely useful. Our results imply such an explicit formula,
for the particular case of the average-variance criterion. When applied to the
full parameter system 6, the A-criterion demands minimization of

1 _
(3) Ztrace M(w) Y
the average of the variances of the least squares estimates Beees ék, standard-

ized relative to sample size n and model variance o2. It follows from our
Corollary 4 that, when [ = &, the A-optimal weights for 0 are

Vbii
4 W, = —
@ S

and the minimum value of (3) is
1/
(5) —I-e_( Z Vbjj)
j=1

where b,,,...,b,, are the diagonal elements of the positive-definite %2 X &
matrix

i=1,...,k,

2
’

B=(Xx)""
A direct proof of this special case is easy. For the full parameter 0 all weights
w; must be positive, and differentiation of the objective function
L trace M(w) ™" = — trace AZ}(XX") " - bu
7 trace (w) = 7 trace w ( ) —ki=1wi
leads to the optimal solution (4) and the minimum value (5).
For a parameter subsystem K'6 the objective function (3) turns into

1 -
% trace K'M(¢) K,



OPTIMAL WEIGHTS FOR EXPERIMENTAL DESIGNS 1617
and an optimal design may have some weights that vanish. Instead of aug-
menting the calculus approach by a discussion of the boundary behaviour, we

derive the general result from the equivalence theorem.

3. d-optimal weights. Let .# the set of all moment matrices on the

regression range 2'= {x,,..., x;}. Given a moment matrix M € .#, the infor-
mation matrix for K'0 is
(6) Cx(M) = min{LML’: LeRs** LK = Is},

where the minimum is taken relative to the Loewner ordering [see Gaffke and
Pukelsheim (1988)]. In particular, if the first s out of the £ components of 6
are of interest, then K’ = (I, 0), and (6) becomes

(7) CK(M) = M11 - M12M2_2M21~\

In general, the subsystem K'6 is identifiable under M if and only if the range
of M includes the range of K, and then (6) is the positive-definite s X s matrix

(8) Cx(M)=(K'M"K)™ "

Expressions (7) and (8) are invariant to the choice of the generalized inverses
M, and M~ of M,, and M, respectively.

If all weights are positive, then a convenient generalized inverse of M(w) =
X'A X is the Moore—Penrose inverse

M(w)" =X'(XX')"'A;1(XX') ' X.

This is the starting point for Torsney (1981) and Kitsos, Titterington and
Torsney (1988). Let A~ denote the set of all generalized inverses of a matrix
A. With no restrictions on the weights, we obtain the inclusion relation

(9) X'(XX') AL (XX) X c M(w)
Hence upon introducing the ! X s matrix

(10) V=(XX)"'XK,

the information matrix in (8) takes the form

(11) Cx(M(w)) = (VAZV) .

Now let ¢ be an information function on the set of nonnegative-definite
s X s matrices. The design problem then is: ’

1l l
Maximize ¢(Cx(M(w))) for w € R’ subject to milll w; 20, Y w =1
1= i=1

The following theorem describes the optimal solution in terms of a fix point
relation for the weights w;. It makes use of the polar ¢° of the information
function ¢ [see Pukelsheim and Titterington (1983), page 1062].
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THEOREM. Let the weight vector w be such that K'0 is identifiable under
M(w), that is, the range of M(w) contains the range of K, and let C be the
information matrix Cx(M(w)) from (11), with V given by (10).

Then w is ¢-optimal for K'0 if and only if there exists a nonnegative-definite
s X s matrix D with the properties that

(12) ¢(C)¢°(D) = traceCD =1

and that the weights satisfy

(13) w;=ya,; foralli=1,...,1,

where a,;,...,a; are the diagonal elements of the nonnegative-definite 1 X 1
matrix

(14) A =VCDCV'.

Proor. For the direct part assume w to be ¢-optimal for K’'6. By Theorem
5 of Pukelsheim (1980), there exist a nonnegative-definite s X s matrix D
fulfilling (12) and a generalized inverse G € M~ such that, foralli =1,...,1,

(15) x!G’KCDCK'Gx; < 1.
In the case that x; is a support point of the design ¢, that is, w; > 0, (15)

holds with equality and the product K'Gx; is invariant to the choice of
G € M. A convenient choice is

(16) G=X(XX)""AL(XX)'X

from (9). Furthermore, observe that x; = X'e;, where e; is the Euclidean unit
vector of R* with ith entry unity and 0’s elsewhere. Thus (15) yields

1 =e,ALVCDCV'Aje; = %,
and leads to relation (13).

In the case that x; is not a support point of £, that is, w; = 0, (15) becomes
useless and (13) merely holds because of the identifiability assumption. Namely,
without loss of generality let w,,...,w, >0=w,,; = -+ = w;. Then the
range of M(w) is spanned by x,, ..., x,. Since it includes the range of K, there
exists some r X s matrix H such that

K=(xy,...,x,)H
H
= (xl,...,x,,x,+1,...,x,)( 0)
_x[H
=X ( 0 )
For i > r we now get V'e, = K'X'(XX') 'e; = (H',0)e; = 0 and a,; = 0. Hence
w; = 0 = y/a,; again verifies (13).
For the converse part choose G as in (16). Then the arguments from the
direct part also show that the quadratic form in (15) equals 1 or 0 according to
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whether x; is a support point or not. Hence inequality (15) is satisfied, and
optimality follows. D

For c-optimality, the matrix V of (15) becomes the vector

(17) v=(XX') ' Xe.
CorOLLARY 1. The weight vector w is optimal for ¢'0 if and only if
M
w; = ’ = ..t
' ):5=1lvj|

with vector v given by (17), and in this case the optimal value is
1 2
c'M(f)_c = ( Z lvjl) .
Jj=1

ProoF. From C=1/D =(Mw)c)"! we get A= (c'Mw)c) v
Therefore a;; = (M(w)"¢) 'v? and 1 = Zw, = (¢!M(w) ¢) 2L |y;l. O

A proof of Corollary 1, assuming all weights to be positive, is reported in
Kitsos, Titterington and Torsney (1988), Section 6.1, but the result first
appeared in Torsney (1981). We note that it can be taken further for Fellman
(1974), Theorem 3.1.4 and subsequent remark, established that there must
always exist a c-optimal design satisfying our condition that x,,...,x; be
linearly independent. Combining the two results, we have the following corol-

COROLLARY 2. There always exists a c-optimal design on linearly indepen-
dent support points whose optimal weights, given the support points, can be
determined explicitly according to Corollary 1.

4. $,-optimal weights. An important family of criteria are the matrix
means ¢,(C) with p € [-, 1], that is, the p-mean of the eigenvalues of the
positive-definite matrix C. The familiar D-, A- and E-criteria are included as
¢0’ ¢—1 and ¢—oo'

CoROLLARY 3. Assume p € (—, 1. Then the weight vector w is ¢ ,-optimal
for K'0 if and only if

(18) wi= =0 frie1,.,
Lj-1ybi

where by, ..., b, are the diagonal elements of the nonnegative-definite | X 1
matrix

(19) B =vCrHiyy,



1620 F. PUKELSHEIM AND B. TORSNEY

with matrix V given by (10), and in this case the optimal value is
1 ! 2\ 1/p
é,(Cx(M(w))) = (;( )y vbjj) )
] Jj=1

ProoF. According to Lemma 3 in Pukelsheim (1980), page 355, the unique
solution to (12) is D = C?~! /trace C?. Hence A and B of (14) and (19) are
proportional, A = B /trace C?, and the result follows. O

For p = —1, that is, for the A-criterion, the matrix B in (19) simplifies to
VV’, and we obtain the explicit formula on A-optimality mentioned in Sec-
tion 2.

CoroLLARY 4. The weight vector w is ¢ _,-optimal for K'0 if and only if
formula (18) holds with

B=VV';
and in this case the optimal value is
s
(20) é_1(Cx(M(£))) = ———

(25-1y85)"

For p = 0, that is, for the D-criterion, the matrix B in (19) is
(21) B=VCV'=V(VAZV) 'V,
whence A in (14) becomes B/trace C° = B/s. It is known that, in the

Loewner ordering, B in (21) can be estimated from above by A,. From
w; = yb;;/s < y/w;/s we thus obtain

This bound is due to Atwood (1973) who proved it for an arbitrary number of
support points. When s =k our derivation yields B = A, and w; = 1/k,
which is in line with our crucial restriction (2).

For the general parameter p formula (18) suggests the iterative procedure
to choose, in step r + 1, the weight w{"*" proportional to /b;;(w) . This
procedure appears as case A = 1/2 in the family of algorithms introduced by
Silvey, Titterington and Torsney (1978). Namely, if ¢ is differentiable and the
weights are positive, then the function ®(w) = ¢(V'A;V)™) is differen-
tiable, with partial derivatives d; = d®/dw; = ¢(C)a,,/w?. Hence, with A =
1/2, our procedure requires w{"*? to be proportional to

(22) Vaii(w(r)) = w§')d{‘.

Torsney (1981, 1983) proved monotonicity of this iteration, with A = 1/2,
in the case of p = —1. This choice of A relates to an earlier result of Fellman
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(1974), Theorem 3.1.5. Torsney also explored monotonicity of (22) for a
general criterion ¢, establishing a sufficient condition for monotonicity of the
choice A = 1/(¢ + 1) when the criterion is homogeneous of degree —¢. More
recently, Fellman (1989) reports a numerical study on the range of values of A
for which (22) is monotonic in the case p = — 1, while Torsney (1988) general-
izes (22) to the iteration that w{"*" is proportional to w{”f(d;, A), where
f(d,A) is a positive increasing function of d.

5. Examples. First, we consider the line fit model x(¢) = (1,¢), with
t € [—1, 1]. The regression range is

X= {(}):te [—1,1]} c R?,

and every optimal design is supported by the extreme regression vectors

=1 ==()

of &, as follows from Theorem 2.1 of Ehrenfeld (1956). With X = (i ‘i) the
vector v in (17) becomes

, 1 —1\/(c¢ lic,-c
o= xe-5(1 TH)a) - zlaea)
Hence the optimal weights w, and w, for ¢’6 are proportional to |c; — c,| and
le; + cgl. If ¢; = +cy, then one weight is 0.

Second, we consider the parabola fit model x = (1, ¢, ¢2) with ¢ € [— 1, 1]. We
choose K' = g (1) ‘1’) By symmetry considerations we can restrict attention
to the designs on the regression vectors x(¢) with ¢ = +1,0 [cf. Pukelsheim
(1987), page 213]. Hence we have

1 -1 1 1/ © 2 0
1 0o o], X-1=§ -1 0o 1].
1 11 1 -2 1

The diagonal elements of (XX')"! = (X~"YX~! are 1/2,2,1/2, whence the
A-optimal design for 6 has weights w_,, = 1/4 and w, = 1/2. The diagonal
elements of VV' = (X" !YKK'X"! are 1/2,1,1/2, whence the A-optimal
design for the linear and quadratic coefficient has weights w ., = (V2 — 1)/2
and w, = 2 — V2, as given by Pukelsheim (1980), Example 6.2.4.

Third, we consider a polynomial fit model of degree d, x(¢) = (1,¢,...,t%Y,
with ¢ € [—1, 1]. A reasonable support is formed by the quantiles of the arcsin
distribution, x; = x(s;) with

X=

1 1
(23) si=sin((zli— — 5)77), i=0,...,d,

as pointed out by Fedorov (1972) for the D-criterion. His arguments actually
apply to the full family of matrix means [see Pukelsheim (1992)].
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TaBLE 3
A-efficiencies [in %) of the arcsin support designs o
relative to the optimal designs 7§

3 4 5 6 , 7 8 9 10 11 12
98.878 98.623 98.569 98.548 98.537 98.531 98.527 98.525 98.523 98.522

The A-optimal weights are readily computed from Corollary 4, and are
exhibited in Table 1. Because the support points are the quantiles of the arcsin
distribution, we call these designs A-optimal arcsin support designs of.

In the line fit model (d = 1) and in the parabola fit model (d = 2), the arcsin
support designs are overall optimal, with optimal values 1 and 0.375, respec-
tively. In general, when the support points are allowed to vary over the
experimental domain [—1, 1], the A-optimal design 7¢ for the full parameter
vector @ in a dth degree polynomial model is distinct from the arcsin support
design oZ. The designs 7§ are given in Table 2, and were computed with the
FORTRAN program Polyplan of Preitschopf (1989).

Up to degree d < 12 the efficiency

e (O'd) - ¢-1(M(01§l))
TR ey(M(nd))

of the arcsin support designs relative to the optimum value stays above 98.5%.
The exact numbers are given in Table 3.

Finally, we present an example that demonstrates the loss of efficiency that
is due to our restriction to linearly independent regression vectors. Consider
the model for linear regression over the two-dimensional cube, x € 2°= [0, 1]2.

The A-optimal design for § puts mass 0.42265 on the vertices (‘1)) and (‘1’), and

0.1547 on ;) [see Cheng (1987), page 1598]. The A-optimal criterion value is
0.5359. Thus the A-optimal design sits on three support points, in the
two-dimensional regression range [0, 1]2.

We now check the linearly independent subsets of {(‘1)), (‘1’), ( i)} The first
two vectors, by symmetry, receive equal weight 0.5, and the A-criterion has
value 0.5. Hence this design has an A-efficiency of 93%. Alternatively, the
vectors (é and | ]) get weights 0.5858 and 0.4142, respectively, with A-crite-
rion value equal to 0.3431. The A-efficiency is merely 64%. It would seem that
the loss of symmetry is responsible for the sharp decline in the objective
function.
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